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Abstract
Antimicrobial therapeutic treatments are by definition applied after the onset of symp-toms, which tend to correlate with infection severity. Using mathematical epidemiol-ogy models, I explore how this link affects the coevolutionary dynamics between thevirulence of an infection, measured via host mortality rate, and its susceptibility tochemotherapy. I show that unless resistance pre-exists in the population, drug-resistantinfections are initially more virulent than drug-sensitive ones. As the epidemic unfolds,virulence is more counter-selected in drug-sensitive than in drug-resistant infections.This difference decreases over time and, eventually, the exact shape of genetic trade-offs govern long-term evolutionary dynamics. Using adaptive dynamics, I show that twotypes of evolutionary stable strategies (ESS) may be reached in the context of this sim-ple model and that, depending on the parameter values, an ESS may only be locally sta-ble. In general, the more the treatment rate increases with virulence, the lower the ESSvalue. Overall, both on the short-term and long-term, having treatment rate depend oninfection virulence tend to favour less virulent strains in drug-sensitive infections. Theseresults highlight the importance of the feedbacks between epidemiology, public healthpolicies and parasite evolution, and have implications for the monitoring of virulenceevolution.
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Introduction
Chemotherapies represent amajor selective force for microbes. It is now commonly acceptedthat the administration of these treatments always eventually selects for resistant strains (AFRead, Day, et al., 2011). However, drug resistance is not the only infection life-history trait thatmay evolve, and mathematical (S. Gandon et al., 2001; Sylvain Gandon and Michalakis, 2000)and some animal (AF Read, Baigent, et al., 2015; Schneider et al., 2012) models support the ideathat treatments can affect the evolution of virulence, defined here as the decrease in host fitnessdue to the infection (A Read, 1994).This study analyses the evolution of antimicrobial resistance in parasite strains that can varyin virulence. This trait was long seen as binary, following Pasteur’s view was that ‘virulent strainskilled whereas attenuated strains did not’ (Mendelsohn, 2002), which led to the successful identi-fication of ‘virulence factors’, some of which can be associatedwith drug resistance (Alcalde-Ricoet al., 2016; Beceiro et al., 2013; Copin et al., 2019; Geisinger et al., 2018; Giraud et al., 2017;Guillard et al., 2016; Van Tyne and Gilmore, 2014). However, the field is increasingly consideringvirulence as a quantitative trait under the control of many genes (Casadevall et al., 2011) butexperimental data is still more limited.In epidemiology, there is a rich literature on the evolution and spread of drug resistance (Spick-nall et al., 2013). Some studies also investigate the coevolution between two drug-resistance loci(Day and Sylvain Gandon, 2012). However, the coevolution of drug resistance and virulence israrely studied. The problem may appear simplistic at first because drug-resistant infections be-ing more difficult to treat, their virulence is likely is higher than drug-sensitive ones in treatedhosts. But coevolution can be less straightforward. For instance, as documented for several bac-terial species, there can be direct genetic associations between the two traits due to genes withpleiotropic action, which means they can affect multiple infection life-history traits for reviews,see Beceiro et al., 2013; Guillard et al., 2016. Note that in these studies, virulence is usuallya binary rather than a continuous trait. A final link between these two traits, which is the fo-cus of this study, is created by public health policies since less virulent strains are less likely tobe treated than more virulent ones. Symptoms are, almost by definition, the driver of curativetreatments (Canguilhem, 1978). The relationship between virulence, symptoms and treatmentrate is difficult to quantify, even if it is the basis of many discussions the medical field (Ewald,1980; Porco et al., 2005; Tuckett, 2013). In some cases, the link is clear. For example, before theadvent of the test-and-treat policy, international guidelines recommended initiating antiretrovi-ral therapy in HIV infected patients only when CD4 T-cell counts fell below a given threshold(Hammer et al., 2006), an event known to be associated with the virulence of the infecting strain
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Figure 1 – Epidemiological model flow diagram. Drug-resistant infections (in red) canoriginate from direct transmission or treatment failure in drug-sensitive infections (inblue). Dashed lines show infection events, arrows transition between states and lineswith a circle death or recovery events. Individuals who die or recover from the infectionare removed from the system. Parameter notations are detailed in Table 1.
(Fraser, Lythgoe, et al., 2014). In the case of malaria, some advocate for the treatment of asymp-tomatic infections (Chen et al., 2016). Finally, this issue is particularly timely in the context ofovertreatment and the evolution of antimicrobial resistance (Lin et al., 2012).Classical theory predicts that if virulence is adaptive for the parasite, defined here to encom-pass both micro- and macro-parasites, host qualitative resistance selects for increased levels ofvirulence (Sylvain Gandon and Michalakis, 2000). If host resistance is quantitative, which wouldbetter correspond to efficient drug treatments, virulence is not affected in simple models (Ali-zon andMinus van Baalen, 2005). However, if multiple infections are allowed in the system, theirprevalence decreases, potentially affecting virulence evolution (S. Gandon et al., 2001). Althoughthe long term effect of host resistance (or prophylactic treatments) on virulence evolution maybe equivalent to therapeutic treatments in simple models, on the short term, however, the factthat only a fraction of hosts are treated based on infection life-history traits may influence evolu-tionary dynamics. Furthermore, the nature of the trade-offs between infection life-history traitscan also affects the effect of treatment rate on the evolutionarily stable level of virulence (Porcoet al., 2005).Variations in infection life-history traits may occur in different ways. At one extreme, drugresistance can evolve rapidly because one or a few mutations can have large phenotypic effects;as illustrated for instance in the case of Mycobacterium tuberculosis (Telenti, 1997), Plasmodiumfalciparum (White, 2004) or influenza virus (Foll et al., 2014). Conversely, quantitative traits suchas virulence or transmission rate tend to evolve on a rougher fitness landscape, as estimated forinstance in the case of Human Immunodeficiency Virus (HIV) infections through the virus loadproxy (Hinkley et al., 2011). Furthermore, drug-resistance is known to be associated with fitnesscosts for the parasite that can lead to decreased transmission, as shown for bacteria (Anderssonand Hughes, 2010; Luciani et al., 2009) but also viruses (Kühnert et al., 2018).Here, I adopt an evolutionary epidemiology standpoint and introduce quantitative strain vari-ations in virulence as well as qualitative variations in infection drug resistance. The model isgeneric and can be re-scaled in time to capture either acute, influenza-like, infections with hightransmission rate or chronic, HIV-like, infections with lower transmission rate. A key assumptionis that the rate at which an infected host receives treatment can correlate with infection viru-lence. The hypothesis tested here is that this correlation can generate coevolutionary dynamicsbetween virulence and drug resistance on the short and long terms. These are explored by apply-ing the Price equation (Day and Proulx, 2004) and the adaptative dynamics (Dieckmann, 2002)frameworks, respectively, to study virulence evolution.

Model and Methods
The SI model.

I assume a classical Susceptible-Infected model (Keeling and Rohani, 2008) in which infec-tions caused by a strain i are either drug-sensitive or drug-resistant (Figure 1). Let us denoteby S the density of susceptible hosts, by Ii that of drug-sensitive infections by strain i and by
IR
i that of drug-resistant infections by strain i . Infection traits are assumed to be ‘heritable’ such
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that the infection of a susceptible host by a drug-sensitive infection by strain i (at a rate βi ) yieldsa drug-sensitive infection by strain i . New drug-resistant infections appear in two ways: eitherthrough the infection of a susceptible host by a drug-resistant infection (at a rate βR
i ), or follow-ing the treatment failure of a drug-sensitive host. The latter event occurs at a rate ρiγi , where γiis the treatment rate and ρi is the proportion of drug failure. For simplicity, hosts are assumednot to recover from drug-resistant infections. Finally, new hosts enter the system at a density-independent rate λ and die with a natural mortality rate µ. Infected hosts experience additionalmortality, i.e. virulence, α for drug-sensitive infections and αR for drug-resistant infections. Notethat in the model, virulence and transmission rate can differ in drug-sensitive and drug-resistantinfections. Biologically, these trait differences could originate from fitness-costs associated withdrug resistance (Andersson and Hughes, 2010). Finally, for infected hosts, I assume that theycan also recover naturally from the infection (i.e. independently of the treatment rate γi ) at aconstant rate ν. Individuals who die or recover naturally are removed from the system, whichimplicitly assumes lifelong immunity.The dynamics of the system are captured by the following set of Ordinary Differential Equa-tions (ODEs):

dS
dt = λ− µ S −

(
βi Ii + βR

i IR
i
)

S(1a)
dIidt = βi S Ii − (µ+ ν + αi + γi) Ii(1b)
dIR

idt = ρi γi Ii + βR
i S IR

i −
(
µ+ ν + αR

i
)

IR
i(1c)

Forα, β, γ and ρ, variations between infections are assumed to depend on genetic differencesbetween strains and to vary slowly. Conversely, drug resistance is assumed to be a more labiletrait. A possible biological interpretation is that it reflects the state of themajority of the parasitesin an infected host at a given time point. Let us allow this trait to vary, while the others remain
Table 1 –Model parameters and notations used.

Notation Description
α virulence
β transmission rate
γ treatment rate
ρ treatment failure ratio
λ host input rate
µ host baseline mortality rate
ν natural recovery rate
i relative to parasite strain i
m relative to a mutant strain
R relative to drug-resistant infections
∗ relative to an evolutionary stable strategy (ESS)
n number of parasite strains
pi proportion of strain i in drug-sensitive infections
qi proportion of strain i in drug-resistant infections
xA average value of trait x in compartment A (drug-resistant or sensitive)CovA (x , y) genetic covariance between traits x and y measured in compartment AVarA (x) genetic variance in traits x measured in compartment A
φ invasion fitness
a variation in virulence in drug-resistant infections
b variation in transmission rate in drug-resistant infections
p transmission-virulence trade-off shape parameter
q treatment-virulence trade-off shape parameter
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constant; whence the existence of the two classes Ii and IR
i and the possibility to ‘mutate’ fromthe former to the latter (reversions are neglected in this model). Genetic mutations from a strain

i to a strain j are neglected because if the mutation kernel is symmetric these terms cancel out(Day and Proulx, 2004).For simplicity, I assume that αR
i = aαi and βR

i = bβi , meaning that all strains undergo similarvariations in infection traits with the acquisition of drug-resistance. Note that this assumptionimplies that βR
i = b β0 (a αi)p . Typically, if drug resistance is costly for the parasite, we expectto have a > 1 (i.e. increased virulence) or 0 ≤ b < 1 (decreased transmission rate), where a and

1/b can be interpreted as fitness costs.
Short-term evolutionary dynamics.

To follow the trait dynamics at the population level, I introduce x I (resp. xR ) as the aver-age trait value of x in the drug-sensitive (resp. drug-resistant) compartment. Mathematically,
x I = ∑

i pixi , where pi = Ii/IT is the fraction of strain i among all the drug-sensitive infections.Similarly, xR = ∑
i qixi , where qi = IR

i /IR
T is the fraction of strain i among all the drug-resistantinfections.The dynamics of the total densities of infected hosts (IT and IR

T ) are governed by the followingODEs: dITdt = β
I S IT −

(
µ+ ν + αI + γI

)
IT(2a)

dIR
Tdt = ρ γI IT + βR R S IR

T −
(
µ+ ν + αR R

)
IR
T(2b)

Even for this simple SI model, each strain i is characterised by 6 infection traits (αi , αR
i ,βi ,

βR
i , γi and ρi ). Furthermore, at the population level, the average values of each of these traitscan differ in the drug-sensitive and drug-resistant compartments (I and IR ). Note that there isan identifiability issue between the treatment failure ratio (ρ) and the treatment rate (γ) sinceboth are averaged simultaneously in equation 2b. Note also that, in this simple system, naturalmortality and recovery rates (µ and ν) have the same effect on the dynamics, which means eithercan be set to 0 without affecting short-term dynamics.After some calculations using the Price equation formalism introduced by Day and Proulx(2004) and described in Appendix S1, I obtain the following ODEs to capture the dynamics ofthe average trait value of a trait x in the drug-sensitive compartment and a trait y in the drug-resistant compartment:

dx I

dt = CovI (β, x) S − CovI (α, x)− CovI (γ, x)(3a)
dyR

dt ≈
IT
IR

(
y I − yR

)
ρ γI + S CovR

(
βR , y

)
− CovR

(
αR , y

)(3b)
where CovA (x , y) is the genetic covariance between traits x and y measured in compartment

A. This will be discussed further in the Results but, for example, a positive covariance betweentreatment rate and virulence CovI (γ,α) > 0 means that more virulent infections are treatedmore.
Long-term evolution.

System 1 accepts three equilibria for (~S , ~Ii , ~IR
i ), which are detailed in Appendix S1. The firstequilibrium corresponds to a disease-free equilibrium,where the parasite goes extinct (λ/µ , 0, 0).In the second, resistant infections are only maintained via treatment failure (γi ρi ). Without it, the

equilibrium simplifies into (µ+ν+αi +γi
βi

, λ
µ+ν+αi +γi

− µ+ν
βi

, 0
). In the third equilibrium, all infections

are found to be drug-resistant: (µ+ν+αR
i

βR
i

, 0 , λ
µ+ν+αR

i
− µ+ν

βR
i

).
By adopting an adaptive dynamics approach, it is possible to investigate the convergenceand evolutionary stability of fixed points (Dieckmann, 2002). Practically, we study a version ofsystem 1b for 2 strains, where one of them, referred to as the ‘resident’ and denoted by the
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subscript r , is assumed to be at its endemic equilibrium, and the other, the ‘mutant’ denoted bythe subscript m, is assumed to be rare.As described in Appendix S1, the next generation theorem (Diekmann et al., 1990; Driesscheand Watmough, 2002; Hurford et al., 2010) tells us that the fate of the mutant is governed bythe largest of the two following eigenvalues:
φ1 = βR(αm)

µ+ ν + αR(αm)
~S and φ2 = β(αm)

µ+ ν + αm + γ(αm)
~S(4)

where ~S is the equilibrium density of susceptible hosts in a ‘resident’ population before the emer-gence of a mutant strain with virulence αm. Note that transmission and treatment rates, as wellas the virulence of drug-resistant infections, can here be functions of virulence in drug-sensitiveinfections. As in the short-term evolution model, we can, for example, model the fact that morevirulent infections are treated more by assuming that the derivative of γ(α) with respect to α ispositive.If φ = max(φ1,φ2) > 1, the mutant invades the resident system and becomes the new resi-dent.One possible biological interpretation of the two eigenvalues φ1 and φ2 is that either theparasite spreads via drug-resistant or drug-sensitive infections. This dichotomy originates fromthe assumption that the mutant is initially rare, which makes the generation of drug-resistantinfections via mutation a second-order term that vanishes when evaluating the eigenvalues ofthe Jacobian matrix.Classically, a virulence level will be defined as evolutionary stable and denoted α∗ if it is suchthat
∂φ

∂αm

∣∣∣∣
αm→α∗

= 0(5a)
∂2φ

∂α2m

∣∣∣∣∣
αm→α∗

< 0(5b)
Numerical simulations.

To illustrate the analytical results, I perform numerical simulations with n = 20 strains thetraits of which are drawn at random (the R script used with the default parameter values is inAppendix S2). These simulations assume a positive covariance between virulence (αi ) and treat-ment rates (γi ), therefore considering that more virulent infections are treated more. Practically,I assume that the values of αi and γi are drawn in a multivariate normal distribution such thatVar(α) = 1/6, Var(γ) = 1/12, and Cov(α, γ) = 1/10. The resulting (αi , γi) pairs are shown inFigure S3A.The default time unit in the simulations is weeks. However, since the demography plays avery minor role in the model (it mainly determines the initial number of susceptible hosts), thesystem can be rescaled to any time unit without affecting the results qualitatively.Following empirical and experimental data (Anderson and May, 1982; de Roode et al., 2008;Doumayrou et al., 2012; Dwyer et al., 1990; Fraser, Hollingsworth, et al., 2007; Råberg, 2012;Williams et al., 2014), the transmission rate is assumed to be traded-off against infection durationdue to the cost virulence such that
βi = β0 α

p
i(6)

where β0 is a scaling constant. If 0 < p < 1, theory predicts there is an intermediate evolutionarystable level of virulence (Alizon and Minus van Baalen, 2005; M. van Baalen and Sabelis, 1995).In the Appendix, I also investigate the effect of noise in the trade-off relationship. Practically,this is modelled by assuming that the realised transmission rate is normally distributed aroundthe value predicted from the trade-off, i.e. with mean β0 α
p
i and variance 0.2 (see Figure S3B).Finally, for simplicity, I assume in the simulations that drug-resistance infections are similarto drug-sensitive infections (a = b = 1).
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Results
Virulence rapid evolution.

The Price equation formalism gives us a qualitative understanding of the selective forcesacting on infection traits. The short term dynamics of our main trait of interest, virulence indrug-sensitive infections, are obtained from equation system 3:

dαI

dt =
trade-off︷ ︸︸ ︷CovI (β,α) S −

virulence cost︷ ︸︸ ︷VarI (α) −
treating symptoms︷ ︸︸ ︷CovI (γ,α)(7a)

dαR

dt ≈
IT
IR

(
αI − αR

)
ρ γI

︸ ︷︷ ︸treatment failure
+ b S CovR (β,α)︸ ︷︷ ︸trade-off

− a VarR (α)︸ ︷︷ ︸virulence cost
(7b)

where a ≥ 1 and 0 < b ≤ 1 are parameters that relate to the fitness cost associated withdrug-resistance.
In drug-sensitive infections, virulence evolutionary dynamics are similar to that described forclassical SIR systems (Day and Proulx, 2004). The first term in the right-hand side of equation7a indicates that the average virulence increases (i.e. more virulent strains spread more) if thereis a positive covariance between transmission rate and virulence, which is also known as thetransmission-virulence trade-off hypothesis (Alizon and Michalakis, 2015). This effect is ampli-fied by the availability of susceptible hosts (S), as demonstrated experimentally in a bacteria-phage system (Berngruber et al., 2013). According to the second term, virulence is costly andif there is genetic variation for this trait, more virulent strains are counter-selected; a phenom-enon introduced more than a century ago by Theobald Smith as the ‘law of declining virulence’(Méthot, 2012).
The third term in equation 7a deserves some explanations because it involves the rate atwhich infections are treated (γi ). In most epidemiological models, this rate is assumed to be thesame for all the strains. Here, this term allows us to assume that treatments are triggered byinfection symptoms, which are themselves correlated to virulence. If the covariance is positive,the term acts as a selective force against virulence in the drug-sensitive compartment.
Virulence evolutionary dynamics in the drug-resistant infections compartment are partly gov-erned by similar forces than in the drug-sensitive compartment. The second term in the right-hand side of equation 7b is the transmission-virulence trade-off, while the third is the law ofdeclining virulence. The proportionality constants a and b originate from our simplifying assump-tion regarding the link between traits expressed both in drug-sensitive and drug-resistant infec-tions (see the Model section).
The first term in equation 7b corresponds to treatment failure events and homogenises traitvalues between drug-sensitive and drug-resistant compartments. If virulence is the same in thetwo compartments, this term is zero. As mentioned above, variations in the fraction of treat-ments that fail (ρi ) cannot be separated from variations in the treatment rate (γi ). Finally, thisterm is weighted by the density of drug-sensitive and drug-resistant infections. Initially, infec-tions are drug-sensitive and this treatment failure term governs most of the dynamics. It is onlyin a second phase that transmitted drug-resistance can matter and that the second and thirdterms weight in. This term is not present in 7a because reversions from drug-resistant to drug-sensitive infections are neglected in this model.
Overall, virulence in the drug-resistant compartment should be less selected against than inthe drug-sensitive compartment because of the absence of covariance term between α and γ inequation 7b.
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Numerical simulations.
Short-term evolution. To illustrate these analytical results, I perform numerical simulations with
n = 20 strains with sets of traits drawn at random and assuming a transmission-virulence trade-off. Figure 2 shows the short term evolutionary dynamics predicted by the Price equation for-malism (dashed lines) and those obtained via simulations (plain lines). For simplicity, I assumethat drug-resistance infections do not incur a fitness cost.Figure 2A illustrates the diversity of the epidemiological dynamics among all of the 20 strains.We see that not all the strains spread during the epidemics. We also see that initially, all the in-fections are drug-sensitive (dotted lines start from 0). Figure 2B shows the total densities ofeach type of infection (drug-sensitive or drug-resistant) and the predictions from the Price equa-tion formalism (dashed lines). These predictions are correct at first but they rapidly overestimatethe spread of drug-sensitive infections (in blue) and underestimate the spread of drug-resistantinfections (in red).Focusing on average infection trait values, Figure 2C shows that, as predicted, virulence de-creases faster in the drug-sensitive infections than in the drug-resistant infections. However, italso shows the limits of the Price equation because parasites eventually evolve to complete avir-ulence. Note that in the Price equation approach, I assumed different initial trait values for thedrug-sensitive and drug-resistant compartments. Indeed, drug-resistance is initially absent in thesimulations (the plain red line starts with a lag) and average infection virulence is much higherin this compartment. This is because resistant infections first emerge from treatment failure andnot all strains have the same exposition to treatments. Therefore, instead of using the averagevirulence of all the strains in the population as our initial value, we weight these virulences bythe recovery rates. This approximation is consistent with the simulated dynamics (Figure 2C).Importantly, the mismatch in virulence observed in drug-resistant infections is not solely dueto this initial effect of more virulent infections being more treated. Indeed, as shown in Supple-mentary Figure S1, even if initial densities of drug-sensitive and drug-resistant infections areassumed to be equal, therefore implying a pre-existence of drug resistance, the initial virulencein the two compartments are identical but there is still a more rapid decrease in virulence inthe drug-sensitive compartment, as predicted by the Price equation model. This cannot be ex-plained by a fitness difference between the two strains because there is no fitness cost in thesesimulations.Because of the genetic variances and covariances, other traits coevolve with virulence. InFigure 2D, we see that the Price equation does not predict any difference in transmission ratebetween sensitive and resistant infections. In the simulations, the transmission rate in the drug-resistant compartment remains higher than that in the drug-sensitive compartment but this isdue to the initial increase in virulence in this compartment (explained above). For the rate atwhich infections are treated (Figure 2E), we see a similar pattern than for virulence, which is con-sistent with the fact that the two are strongly correlated. Finally, Figure 2F shows the fraction ofdrug-resistant infections. Again, the Price equation is initially accurate but it rapidly underesti-mates the spread of drug resistance. From a biological standpoint, it is interesting to notice thatthe decrease in the average level of virulence goes along with a decrease in average treatmentrate.
Long-term evolution. Long-term simulations show that the parasite can persist (Figure 3A). Wealso see that the average virulence in the drug-sensitive compartment (in blue) increases beforereaching avirulence (Figure 3B). After a long transient phase, it even drops below the averagevirulence in the drug-resistant compartment (in red). Figure 3C shows that strains can be main-tained by different types of infections. For instance, for times between 100 and 300, the purplestrain is present mostly in drug-sensitive infections, whereas the green strain is present in drug-resistant infections. We also see that only three of the strains persist after time 200 and thatone of the strains seems to eventually take over the population. The nature of these strains canbe predicted before running the simulation by calculating the two eigenvalues from equation 4.Based on equation 10, we also know whether this fittest strain is found mostly in drug-resistantor drug-sensitive infections.
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Figure 2 – Short term evolutionary dynamics. A) Dynamics of the densities ofsusceptible hosts (dashed black line), of drug-susceptible infections (plain colouredlines) and drug-resistant infections (dotted coloured line). Each colour corresponds toone of the n = 20 strains. B) Same as A but the blue line shows the total density ofdrug-susceptible infections and the red line the total density of drug-resistantinfections. The dashed lines are the predictions from the Price equation system. C)Average virulence in the drug-sensitive (blue) and drug-resistant infections (red) fornumerical multi-strain simulations (plain line) and the Price equation system (dashedline). D) Same as panel C for transmission rate. E) Same as panel C for treatment rate. F)Fraction of the infections that are drug-resistant in the multi-strain simulation (plainline) or using the Price equation (dashed line). We assume no fitness cost (a = b = 1)and a transmission-virulence trade-off (β(α) = 10−4√α). Other parameter values are
λ = 0.02, µ = 4.5× 10−5, ν = 0, a = b = 1, ρ = 0.1, Cov(α, γ) = 0.1, Var(γ) = 1/12,Var(α) = 1/6, α(0) = 1/2, γ(0) = 1/4, S(0) = 104, Ii = 5, and IR

i = 0. The default timeunit is the week (but it can be rescaled without affecting the results qualitatively).
Since the system only contains 20 strains, the presence of drug resistance at equilibrium doesnot only depend on the model parameter. In Supplementary Figure S2, I show that the presenceof drug resistance can be negligible with the same parameter values but with 20 other strainschosen at random using the same distribution.
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Figure 3 – Long term evolutionary dynamics. A) Dynamics of the densities ofsusceptible hosts (black), drug-susceptible infections (blue) and drug-resistantinfections (red). B) Average virulence in the drug-sensitive (blue) and drug-resistantinfections (red) for numerical multi-strain simulations. C) Dynamics of the densities ofsusceptible hosts (dashed black line), of drug-susceptible infections (plain colouredlines) and drug-resistant infections (dotted coloured line). Each colour corresponds toone of the n = 20 strains. D) Fraction of drug-resistant infections. Parameter values arethe same as in Figure 2 for the multi-strain simulation.
Adaptive dynamics.

The adaptive dynamics approach can be seen as the opposite of the Price equation approach:the latter is accurate in the short term, whereas the former is accurate in the long term. The ma-jor problem with adaptative dynamics is that it requires making assumptions about trade-offrelationships, and we currently lack detailed biological data regarding most of these trade-offs.Generic qualitative trends can still be analysed by, at the same time, results based on criticalfunction analysis show that trade-off relationships with only slight differences can lead to quali-tatively different evolutionary outcomes (Kisdi, 2006; Svennungsen and Kisdi, 2009). Therefore,this final subsection should be more interpreted as the illustration of a potential scenario ratherthan a widespread system behaviour.
ESS values. Using the adaptive dynamics approach, it is possible to know which of the strainspresent in the system will eventually persist. Since there is no density-dependent feedback(eigenvalues only depend on ~S and not on ~Ii or ~IR

i ). As shown in the methods section, thereare two expressions for the dominant eigenvalue (equation 4). Based on earlier work, we knowthat these two eigenvalues either yield a null virulence, a maximal virulence, or an intermediateevolutionarily stable (ESS) level of virulence depending on the exact shape of the relationshipbetween transmission rate and virulence (M. van Baalen and Sabelis, 1995).
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The ESS eventually reached, provided that parameter values allow for its existence, is the onethat maximises its fitness as expressed in equation 4. The first candidate ESS value can readilybe obtained using classical approaches if we assume the generic transmission-virulence trade-off from equation 6 with 0 < p < 1 and assuming that virulence in drug-resistant infections isproportional to that in drug-sensitive infections (αR
i = aαi ):

α∗1 = p µ+ ν

a(1− p)(8)
as shown previously, we find that there can only be a finite non-zero ESS if 0 < p < 1.The second candidate ESS value is less trivial as it also relies on the shape of the trade-offbetween treatment rate and virulence. As shown in the Appendix, we can derive a condition that
α∗2 must satisfy, assuming the same transmission virulence trade-off function:

f (α∗2) = p (µ+ ν + γ(α∗2)) +
(

p − 1− dγ
dαm

∣∣∣∣
αm→α∗

2

)
α∗2 = 0(9)

We know from condition S13b that f is a decreasing function of α∗2. Therefore, increasing thevalue of a parameter in f will require a larger value of α∗ such that f (α∗) = 0. For instance,increasing the recovery rate (ν) selects for higher virulences, as expected (Minus van Baalen,1998). We see that increasing the intensity of the treatment rate favours more virulent strains.However, the faster the treatment rate increases with the virulence, i.e. the larger dγ/dα, thelower the ESS virulence.
Multiple equilibria. One less common feature of the current system is that, as the virulence of theresident strain evolves via successive invasion/replacement events characteristic of the adaptivedynamics approach, it is theoretically possible for the system to switch between the two steadystates. Indeed, based on equation 4, the fittest strain, denoted with a star (∗), is the one with thehighest value of

max
(

βR(α∗)
µ+ ν + αR(α∗) , β(α∗)

µ+ ν + α∗ + γ(α∗)

)
(10)

From this equation, we see that without a cost associated with drug resistance, i.e. if βR ≥
β and αR ≤ α, the system will always tend towards drug-resistant infections as soon as thetreatment rate is non-zero (and provided that there is sufficient genetic variation).We can also formulate a qualitative analysis of this simple system and distinguish betweentwo evolutionary scenarios. First, if one type of infection state (drug-resistant or drug-sensitive)always has higher fitness than the other, then virulence will evolve to this single peak. Second,if the nature of the infection state with the highest fitness depends on the virulence value, thenthe initial virulence may lead the system to evolve to a local maximum. As shown in Figure 4, ifthe initial virulence is zero then the system will converge to the ESS virulence corresponding tothe drug-sensitive equilibrium (dotted yellow line). A large mutation event, e.g. the emergenceof a very virulent strain, could move the system to the drug-resistant ESS (plain red line), whichis a global maximum. Note also that increasing the scaling parameter between treatment rateand virulence favours less virulent strains in the drug-sensitive equilibrium (dotted blue line).However, the decrease in virulence (i.e. the shift of the fitness peak to the left in Figure 4), alsocomes with a decrease in parasite fitness, which can make the drug-resistant equilibrium (redplain line) globally stable.From a public health perspective, this means that targeting more virulent infections withhigher intensity can be an interesting strategy because it favours less virulent strains. However,a potential risk is that the local ESS with a drug-sensitive infection disappears and that the drug-resistant ESS becomes globally stable. More realistic functional links between treatment rateand virulence could affect these results and even generate more elaborate eco-evolutionaryfeedbacks, for instance, if the number of infected hosts affects the treatment rate (Dieckmann,2002; Pharaon and Bauch, 2018).
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b = 0.5.

Discussion
As attested by the resolution from the United Nations in 2016, anti-microbial drug resistanceis a world issue with strong implications for public health policies (Wernli et al., 2017). However,efforts are still required to popularise it as an evolutionary process (Antonovics et al., 2007). Thisis not a mere semantic issue because it means envisaging antimicrobial resistance as a dynami-cal process, which directly impacts the design of optimal therapies (AF Read, Day, et al., 2011;zur Wiesch et al., 2011). Using an epidemiological modelling framework to analyse short-termand long-term evolution, I show that public health policies can generate differences in virulencebetween drug-resistant and drug-sensitive infections.First, assuming that more virulent infections are more symptomatic and, hence, more treated,the initial emergence of drug-resistance is expected to occur first inmore virulent strains. Second,even if drug-resistance pre-exists in the population, virulence should initially be less counter-selected in the drug-resistant population, leading to drug-resistant infections being less virulenton average. The more the epidemic unfolds, the more this gap can widen or shrink.Indeed, in the long term, the nature of the strain that takes over the host population re-sults from genetic trade-offs. In this simple model, we find using an adaptive dynamics approachthat the strain that takes over the population will generate either mainly drug-sensitive or drug-resistant depending on the nature of the fitness costs associated with drug resistance. Thesetwo outcomes correspond to two different ESS. In the case where drug-sensitive infectionsdominate, we find a positive correlation between treatment rate and virulence selects for lessvirulent strains. However, depending on the parameter values, the risk is that targeting more vir-ulent infection (i.e. increasing the correlation) may lead the ESS associated with drug-resistanceto become globally stable, thereby rendering the new ESS value independent from the treatmentrate.
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Biological implications.
One direct consequence of these results has to do with the estimation of infection virulence,especially in an outbreak situation. Indeed, in addition to controlling for host differences that canaffect virulence (since it is a shared trait between the host and the parasite), the drug-resistantnature of the infection should also be taken into account since, initially, virulence is expectedto be higher in drug-resistant infections. The advantage of drug-resistance compared to otherbiases, such as reporting rate, is that it can be assessed a posteriori on clinical samples. Thedownside is that there can be a direct link between drug resistance and virulence. Ideally, onewould want to also assess parasite virulence in vitro, but this is much less straightforward thandrug resistance.There are several ways to test the predictions of this study. One possibility could be to usean experimental system where treatment can be applied to hosts based on the symptoms theyexhibit. One difficulty is that it requires to have hosts large enough to detect the symptoms andapply treatment without affecting the rest of the population. Another difficulty is that it imposesto be able to generate real epidemics. Fungal or bacterial parasites of plants could provide theideal system. Another possibility would be to analyse existing clinical or agronomical data. Apotential parasite could be HIV infections because drug resistance is well characterised (Beeren-winkel et al., 2003) and virulence can be estimated through set-point virus load (Fraser, Lythgoe,et al., 2014). However, a major difficulty is that to test the model, we would either need to knowthe nature of the fitness cost potentially associated with drug-resistant mutations. A possibilitycould be to use algorithms that can partly predict virus load based on the virus sequence (Hinkleyet al., 2011).

Simplifying assumptions.
Several simplifying assumptions were made to analyse the model. One of them is that drugresistance is a binary trait when virulence is a continuous one. Modelling drug-resistance as acontinuous trait is possible. However, from a modelling point of view, unless we have detaileddata to calibrate mutation kernels, it would be impossible to distinguish strain-level variations inthe level of virulence from variations in the level of resistance. As a consequence, the feedbackbetween the ecology (treatment policies) and trait evolution (drug resistance) would disappear.Conversely, it would be possible to model virulence as a discrete trait. This would have the ad-vantage that by modelling the system with (at least) two loci, one governing the drug resistancephenotype and another governing the virulence phenotype, we could draw parallels with andperhaps use data on virulence factors. Multi-locus drug resistance mathematical model alreadyexist that can readily tackle this question (Day and Sylvain Gandon, 2012). Unfortunately, thisbinary structure is poorly adapted to capture quantitative variations in virulence, which havebeen shown to lead to trade-off relationships with other traits such as transmission rate (Ander-son and May, 1982; de Roode et al., 2008; Doumayrou et al., 2012; Dwyer et al., 1990; Fraser,Hollingsworth, et al., 2007; Råberg, 2012; Williams et al., 2014). In the end, the main resultswould most likely depend on the genetic linkage between the two loci and on the assumptionregarding the fitness effect of the alleles at the virulence locus (Day and Sylvain Gandon, 2012).The model can be extended in several ways. For instance, since demography has no impact,the time scale is flexible, which means the model will exhibit similar dynamics for short infec-tions with a high transmission rate and chronic infections with low transmission rates. Anotheroversimplifying aspect of this model resides in its inability to discriminate between the rate atwhich an infection is treated (γi ) and the probability of treatment failure (ρi ). One possibility totackle both limitations simultaneously would be to explicitly model recovered individuals andassume that immune memory is not lifelong. Another extension could be to model symptomsexplicitly. However, the problem with splitting the I compartment between a pre-symptomaticand a post-symptomatic stage is that, at least with the Price equation formalism, this would mul-tiply by 2 the number of equations required to follow trait-dynamics, making the short-termevolution results less easy to interpret.
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Our formalism has the advantage to allow for a continuum of strains with varying values ofvirulence and transmission rate. Regarding the latter parameter, one simplifying assumption ofthe model is that it is defined as a function of virulence. In reality, the realised transmission ratewill be distributed around this expected value. As illustrated in Supplementary Figure S3, I alsoallowed some degree of noise on this transmission rate. In general, the results are qualitatively ro-bust to this noise and themain variable that is affected is the fraction of drug-resistant infections(Supplementary Figure S4). The model also assumes a saturating transmission-virulence trade-off relationship, which means there exists an intermediate optimal level of virulence (Alizon andMichalakis, 2015; M. van Baalen and Sabelis, 1995). Without it, parasites evolve to avirulencebut they still do so more rapidly in the drug-sensitive than in the drug-resistant infections.
Short vs. long-term predictions.

The qualitative predictions from the Price equation appear to be correct initially but thereis an increasing mismatch for some traits as the epidemic unfolds. This is expected because thevariances and covariances are constant parameters in the simulations. However, as the epidemicunfolds, the relative frequency of each of the 20 strains varies over time (as illustrated by Figure2A) therefore altering the variances and covariance. To take an extreme example, if a singlestrain dominates, the variances will be 0. Because the formalism used here does not update thecovariance matrix, it is bound to eventually be unable to predict the dynamics accurately.For the adaptive dynamics, we have the opposite issue. On the short term, the variations invirulence or on drug-resistance only depend on the genetic diversity and may be at odds withthe predicted ESS value. It is only on the long term that the system will converge towards theevolutionary equilibria predicted by the modelAnalysing the same systemwith the Price equation and the adaptive dynamics gives us insightinto the early and late evolutionary dynamics without resorting to numerical simulations. Gain-ing more insights into the system will require more assumptions regarding the underlying corre-lations between traits. In particular, it would be interesting to allow for compensatory mutationsto mitigate the effect of drug resistance costs. Furthermore, modelling explicitly within-host dy-namics, and explicitly tracking the competition between drug-sensitive and drug-resistant vari-ants of a given strain through nested models (Mideo et al., 2008) could be a way to study theinteraction between levels of adaptation.
Data and code availability

The R script used to generate the figures is available as a supplementary .txt file online (DOI:10.1101/2020.02.29.970905).
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Appendix S1. Supplementary methods
S1.1. Price equation calculations.

Following the Price equation formalism introduced by Day and Proulx (2004), we take thederivative with respect to time of pi = Ii/IT , we get
dpidt = 1

IT

(dIidt −
dITdt pi

)(S1)
From equations 1b and 2a, we get

dpidt =
[(
βi − βI) S −

(
αi − αI

)
−
(
γi − γI

)]
pi(S2)

Let us look at the evolution of the average value of a given trait x . If we assume that the traitof a genotype i does not value with time, we have:
dx
dt =

∑

i
xi
dpidt(S3)

From equation S2, we have:
dx
dt =

∑

i
xi
[(
βi − βI) S −

(
αi − αI

)
−
(
γi − γI

)]
pi(S4)

This can also be written as
dx
dt = S Cov (β, x)− Cov (α, x)− Cov (γ, x)(S5)

Similarly, we can define the proportion of genotype i in the drug-resistant compartment as
qi = IR

i /IR
T and derive it with respect to time to get:
dqidt = 1

IR
T

(dIR
idt −

dIR
Tdt qi

)
(S6a)

= ρi γi
Ii
IR
T

+ βR
i S qi −

(
µ+ ν + αR

i
)

qi − ρ γI IT
IR
T

qi − βR R S qi + µ+ ν + αR R qi(S6b)
=
(
ρi γi pi − ρ γI qi

) IT
IR
T

+
(
βR

i − βR R
)

S qi −
(
αR

i − αR R
)

qi(S6c)
For a given trait y in the drug-resistant compartment, we have

dy
dt =

∑

i
yi

[(
ρi γi pi − ρ γI qi

) IT
IR
T

+
(
βR

i − βR R
)

S qi −
(
αR

i − αR R
)

qi

]
(S7a)

= IT
IR
T

∑

i
yi ρi γi pi −

IT
IR
T

∑

i
yi ρ γ

I qi + S Cov (βR , y
)
− Cov (αR , y

)(S7b)
≈ IT

IR
T

(
y I − yR

)
ρ γI + S CovR

(
βR , y

)
− CovR

(
αR , y

)(S7c)
The assumption made to reach the last step is that yi γi ≈ γI pi .As before, for the main trait of interest (virulence) and with the same assumptions as beforewe get:

dIR
Tdt = ρ γI IT + βR R S IR

T −
(
µ+ ν + αR R

)
IR
T(S8a)

dαR

dt

R

= IT
IR
T

(
αR I − αR R

)
ρ γI + S CovR

(
βR ,αR

)
− VarR (αR

)(S8b)
dβR

dt

R

= IT
IR
T

(
βR I − βR R

)
ρ γI + S VarR (βR

)
− CovR

(
αR ,βR

)(S8c)
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S1.2. System equilibria.
The detailed equilibria of the main equation system are the following:

(~S , ~I , ~IR) =
(
λ

µ
, 0 , 0

)(S9a)

(~S , ~I , ~IR) =



µ+ ν + αi + γi

βi
, λ− (µ+ ν)~S

βi ~S
(

βR
i

βi
γi ρi

αR
i +µ+ν−βR

i
~S + 1

) ,

γi ρi (λ− (µ+ ν)~S)
~S
(
βR

i γi ρi + βi (αR + µ+ ν − βR
i ~S)

)
)

(S9b)
(~S , ~I , ~IR) =

(
µ+ ν + αR

i
βR

i
, 0 , λ

µ+ ν + αR
i
− µ+ ν

βR
i

)
(S9c)
S1.3. Adaptive dynamics approach.
Deriving the invasion fitness. We now adopt an adaptive dynamics approach to study long termevolution based on the functional relationship between treatment rate and virulence (γ(α)). Forgenerality, we also initially denote mutation rate as a function of virulence (ρ(α)). Finally, weassume a transmission virulence trade-off (β(α)) otherwise virulence will not be adaptive andalways be selected against.Let us rewrite the ODE system:

dS
dt = λ− µ S − β(α) S I − βR(α) S IR(S10a)
dI
dt = β(α) S I − (µ+ ν + α+ γ(α)) I(S10b)
dIR

dt = ρ(α) γ(α) I + βR(α) S IR −
(
µ+ ν + αR(α)

)
IR(S10c)

Following the next-generation matrix theorem (Diekmann et al., 1990; Driessche and Wat-mough, 2002; Hurford et al., 2010), the Jacobian matrix of the system (J ) can be decomposedinto a ‘birth’ (F ) and a ‘death’ (V ) matrix:
F =

[
β(α) S 0
ρ(α) γ(α) βR(α) S

](S11a)

V =
[
µ+ ν + α+ γ(α) 0

0 µ+ ν + αR(α)

](S11b)
The eigenvalues of F .V−1 are

φ1 = βR(α)
µ+ ν + αR(α) S(α) and φ2 = β(α)

µ+ ν + α+ γ(α) S(α)

Following the adaptive dynamics framework, we then assume that system S10 is at en epi-demiological equilibrium where the parasite persists (see equations S9). This strain is referredto as the ‘resident’ strain and its trait of interest, virulence, is denoted αr . We then assume thatanother strain emerges through mutation that has a slightly different trait value αm. Key assump-tions are that the mutant density is rare compared to that of the resident and that its trait valueis close to that of the resident.Note that if we allow for ‘reversions’ of drug-resistant infections, the eigenvalues can still bederived but their expression is less clear.We can also see that any link between treatment failureprobability and virulence does not matter on the long run.

Samuel Alizon 19

Peer Community Journal, Vol. 1 (2021), article e47 https://doi.org/10.24072/pcjournal.38

https://doi.org/10.24072/pcjournal.38


A perturbation analysis of the system for a rare mutant where the density of susceptible isset by the endemic equilibrium of the resident strain therefore leads to the following eigenvalues
φ1 = βR(αm)

µ+ ν + αR(αm) S(αr ) and φ2 = β(αm)
µ+ ν + αm + γ(αm) S(αr )

In this simple model, the ESS corresponds to the strategy that maximises these invasion fit-nesses (Dieckmann, 2002). Since the resident trait only affects the density of susceptible hosts,the fitness optimum is an absolute maximum and not a relative maximum.
Evolutionary singular strategies. The first eigenvalue φ1 is identical to that of SI systems studiedin details in earlier studies. Depending on the concavity of the transmission-virulence trade-offcurve, there can be an ESS with an intermediate level of virulence. More precisely, as shown byM. van Baalen and Sabelis (1995), there is an ESS if there exists a virulence α∗ that satisfied thetwo conditions

dβ
dαm

∣∣∣∣
αm→α∗

= βR(α∗)
µ+ ν + αR(α∗)

dαR

dαm

∣∣∣∣∣
αm→α∗

(S12a)
d2β

dα2m

∣∣∣∣∣
αm→α∗

<
βR(α∗)

µ+ ν + αR(α∗)
d2αR

dα2m

∣∣∣∣∣
αm→α∗

(S12b)
They also show that there is an elegant graphical interpretation to this condition, which isthat if there is an ESS, then in α∗ the tangent of the parametric curve (βR(αm),µ+ ν + αR(αm))also passes through (µ+ ν, 0). Note that treatment rate (γ) has no effect on this ESS.The second eigenvalue is very similar to the first and, again using thework fromM. van Baalenand Sabelis (1995), it can be shown that the second ESS satisfies the following conditions:

dβ
dαm

∣∣∣∣
αm→α∗

= β(α∗)
µ+ ν + α∗ + γ(α∗)

(
1 + dγ

dαm

∣∣∣∣
αm→α∗

)
(S13a)

d2β

dα2m

∣∣∣∣∣
αm→α∗

<
β(α∗)

µ+ ν + α+ γ(α∗)
d2γ

dα2m

∣∣∣∣∣
αm→α∗

(S13b)
Assuming that conditions S13 are satisfied, we can study the effect of variations in treatmentrate on the ESS value, which is found by solving equation S13a. This condition can also bewrittenas

f (α∗) = µ+ ν + α∗ + γ(α∗)
β(α∗)

dβ
dαm

∣∣∣∣
αm→α∗

−
(

1 + dγ
dαm

∣∣∣∣
αm→α∗

)
= 0(S14)

We know from condition S13b that f is a decreasing function of α∗. Therefore, increasingthe value of parameter in f will require a larger value of α∗ such that f (α∗) = 0. For instance,increasing the recovery rate (ν) selects for higher virulences, as expected (Minus van Baalen,1998). We see that increasing the intensity of the treatment rate favours more virulent strains.However, the faster the treatment rate increases with the virulence, i.e. the larger γ′(α), thelower the ESS virulence.Notice that with the transmission-virulence trade-off function assumed in the main text, wehave, for 0 < p < 1,
f (α∗) = p (µ+ ν + γ(α∗)) +

(
p − 1− dγ

dαm

∣∣∣∣
αm→α∗

)
α∗ = 0(S15)

Appendix S2. Simulation R code
This appendix contains the R code used for the simulations and generating the figures.
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Appendix S3. Supplementary Figures
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Figure S1 – Short-term dynamics with pre-existing drug resistance. Virulence in thedrug-resistant compartment still decreases more slowly than in the drug-sensitive com-partment if we assume that the initial density of the two types of infections is equal(therefore that drug resistance is not only generated by treatment failure initially). IR
i = 5and other parameter values are identical to that in the main text.
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Figure S2 – Long-term evolutionary dynamics. Even with the same parameter values asin the main text, drug-sensitive infections can eventually dominate the system. This isbecause we only have a limited number of strains in the simulations. Parameter valuesare the same as in the main text but the n = 20 strains are different (although drawnusing the same covariance matrix as in the main text).
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Figure S3 – Trade-off relationships between model parameters. A) Positive covariancebetween virulence and treatment rate (values are drawn from a multivariate distribution).B) Trade-off relationship assumed between transmission rate and virulence and pointsobtained when by adding noise to the transmission rates (normal distribution with mean
β0 α

p
i and variance 0.2). Dashed lines show the results of a linear model fit between αand γ in panel A, and the theoretical trade-off relationship from equation 5 for panel B.
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Figure S4 – Short-term evolutionary dynamics assuming noise in transmission rates. Fig-ure captions are identical to that in the main text. Parameter values are identical to thatin the main text, except for the noise, which is generated by a Gaussian distribution cen-tred around the transmission value predicted by the trade-off shown in Figure S3B andwith relative standard deviation 20%.
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