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Abstract

Quasi-steady gravity currents propagating first on a horizontal and then up a sloping boundary
are investigated by means of theoretical analysis and laboratory experiments. The bottom slope
ranged from 0.18 to 1 and full- and partial-depth configurations were considered. The developed
theoretical model, using the depth averaged momentum equation, provides new physical insight
into the importance of the different forces that act on the current and accounts for the gravity
component along the slope, whose effect increases with both the slope angle and the ratio of
current depth to ambient fluid. The height of the current decreases linearly with up-slope dis-
tance and the spatial rate of decrease, expressed by the current shape parameter is determined
from the theory, using the measured up slope distance at which the current stops. This current
shape parameter is found to depend on the slope only and it is not dependent on the current to
ambient fluid depths. It can then be used to calculate the current velocity and the up-slope dis-
tance reached by the current. It is shown that the front velocity of all performed experiments is
predicted by the theory indicating that the theory remains valid up to a slope equal to 1.

Keywords: Gravity currents, theoretical model, experiments, sloping bottom

1. Introduction1

Density-driven flows are ubiquitous in nature and examples are dense oceanic currents, sand2

storms or avalanches (Simpson, 1999). The dynamics of lock release gravity currents have been3

widely studied in the past, by means of laboratory experiments, high resolution numerical sim-4

ulations and theoretical models on horizontal (Benjamin, 1968; Inghilesi et al., 2018; Kyrousi5

et al., 2018; Pelmard et al., 2018; Rottman and Simpson, 1983; Stancanelli et al., 2018a,b; Wil-6

son et al., 2018, 2019; Zordan et al., 2018, 2019) and downsloping boundaries (Beghin et al.,7

1981; Dai, 2013a, 2014, 2015; Martin et al., 2019; Negretti et al., 2017; Ottolenghi et al., 2017b).8
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Deterministic predictions of the speed of partial depth release gravity currents have been given9

by Benjamin (1968), and its analysis has been extended by Shin et al. (2004).10

Only few studies have been conducted on gravity currents propagating up-slope (Cuthbertson11

et al., 2011; Jones et al., 2015; Laanearu et al., 2014; Ottolenghi et al., 2016, 2017a), although12

these flows occur frequently in nature. Salt wedges for example, are dense currents propagating13

up-slope along the river bottom and travelling upstream over long distances with implications14

on the coastal ecosystems. Avalanches have been observed to flow up a facing hill (Hopfinger,15

1983). Internal solitary waves breaking at the continental shelf can develop gravity currents16

propagating up-slope (Helfrich, 1992; La Forgia et al., 2018a,b) affecting entrainment, mixing17

and sediment transport (La Forgia et al., 2020a,b). In stratified lakes and canyons, the geomet-18

ric features of the sloping boundary, can affect the up-welling of dense deep waters induced by19

the strong impulses of wind (Cossu and Wells, 2013; Le Souëf and Allen, 2014; Shintani et al.,20

2010). Furthermore, sea breeze fronts can propagate inland and interact with an upsloping topog-21

raphy, affecting their dynamics and playing a key role on pollutants advection (Fernando, 2010).22

While the previous studies conducted on up-slope gravity currents focused on gravity currents23

propagating in a tilted channel with very small slope angles θ, experiments on gravity currents24

propagating first on a horizontal bottom and then flowing up a slope (0.25 < S < 1.15, with25

S = tan θ) have been conducted by Marleau et al. (2014) using full and partial depth config-26

urations for the initial lock conditions. They proposed a theoretical model using a WKB-like27

approach (Wentzel-Kramers-Brillouin) as Jones et al. (2015), who considered the front decel-28

eration of a gravity current propagating up a V-shaped channel of small slope angle (S up to29

0.14). In particular, Marleau et al. (2014) assumed that the front deceleration is caused only by30

the decreasing ambient fluid depth and neglected the effect of the along slope component of the31

gravity. Their experiments show that this assumption is reasonable when the ratio of current to32

ambient fluid depth is larger than 0.5, indicating that for lower depth ratios, the effect of the grav-33

ity component along the slope cannot be neglected. Furthermore, a constant Froude number has34

been assumed while the current propagates up-slope in a decreasing ambient fluid depth Hs(x),35

which is equivalent to hypothesize that the ratio h/Hs, with h being the current depth, remains36

constant throughout the up-slope propagation. In a recent paper Zemach et al. (2019) used the37

Shallow Water (SW) model to simulate down-slope and up-slope gravity currents. This is a time38

dependent approach including also the dam-break process. De Falco et al. (2020) investigated39

the bulk entrainment in gravity currents flowing on horizontal boundary and then up a slope. It is40

shown that the contribution of the up-slope part of the current to bulk entrainment is negligible.41

In the present study, new experiments on lock-release gravity currents, in a configuration similar42

to Marleau et al. (2014) and De Falco et al. (2020), have been conducted with the current flowing43

first on a horizontal bottom and then up a slope where it comes to a stop. We expect the slow44

down of the current to depend on the gravitational term, and not only on the change in fluid depth.45

The theory developed here, is based on the depth averaged momentum equation (section 2) and46

is entirely different from that of Marleau et al. (2014). It provides new physical insight into the47

importance of the different forces acting on the current and accounts for the gravity component48

along the slope. This gravitational term is expected to be the main retarding force when the ratio49

of ambient fluid to current depth is large. In addition, the developed theory predicts the location50

x′F at which the current stops, i.e. U(x′F) = 0 provided the spatial variation of current height is51

known, and allows to calculate velocities along the slope. In section 4 we compare experimental52

results with the theoretical predictions, presented in section 2. The experimental details are given53

in section 3 and concluding remarks in section 5.54
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Figure 1: Sketch of the experimental apparatus and notations.

2. Theoretical model55

The (x̃, z) Cartesian coordinate system in Fig. 1 is oriented as the horizontal and vertical56

direction, while (x′, z′) represents the coordinate system with respect to the inclined boundary,57

with origin at the toe of the slope. The coordinate x is defined as x = x̃ − (x0 + L0) and x = 058

at the toe of the slope. The height of the current on the horizontal bottom is h0, while on the59

inclined bottom is denoted by h (Fig. 1). To be consistent with the coordinates used, the current60

height should be denoted h′ to distinguish it from the vertical height. Since the vertical height is61

never used here, we drop the prime as is clear from Fig. 1. We start with the general governing62

(x̃, z) equations using continuity and the Boussinesq approximation. Furthermore, making use of63

the boundary layer approximation (w � u), the momentum equations reduce to:64

∂u
∂t

+
∂u2

∂x̃
+
∂uw
∂z

= −
∂

∂x̃
[
g′(h − z) cos θ

]
− g′ sin θ +

∂

∂z

(
τ

ρ2

)
(1)

where (u,w) are, respectively, the velocity components in the streamwise direction and perpen-65

dicular to the boundary, θ the slope angle (see Fig. 1), τ the shear stress, g′ = g∆ρ/ρ is the66

reduced gravity, with g the gravity acceleration and ∆ρ = ρ1 − ρ2, with ρ2 the density of the67

ambient fluid and ρ1 the density of the current.68

For clarity the flow structure of the gravity current and the key phases of the interaction with the69

inclined bottom are shown in Fig. 2. When the gravity current reaches the inclined boundary,70

the dynamics of the current is strongly affected by the slope S , especially when S ≥ 0.58. In71

general, while moving up the slope, the dense current decelerates due to changing ambient fluid72

depth and the along-slope gravity component, which acts against the motion (Fig. 2a), and comes73

to a stop at x′F (time tF). When S < 0.58 the head of the current is clearly visible and the current74

thickness decreases linearly with up-slope distance up to t = tF . Afterwards (t > tF) the current75

thickness decreases in time with an increase of the return flow causing an increase of current76

thickness at the beginning of the slope (Fig. 2b). The steeper is the slope, the larger is the part77

of the current that detaches from the main body travelling back and becoming part of the return78

flow (Fig. 2b). When S ≥ 0.58, an increase at the toe of the slope is observed and it is caused79

by a reflection of part of the gravity current on the inclined boundary that acts like a barrier. We80

denote this process as splashing of dense current. In such cases the deceleration of the current81

is more rapid, the current thickness still decreases with up-slope distance, but an increase of the82

current thickness at the toe is found. In the following, the limit of the theory will be discussed83
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with regard to S ≥ 0.58.84

The upsloping flow, until it comes to a stop, is predominantly spatially developing (Fig. 2a), i.e.85

the time-derivative term can be neglected with respect to the convective term. This assumption86

is supported by comparison of experiments with the theoretical results, notably the change in87

up-slope velocity, and by an evaluation of the time-derivative term with respect to the convective88

terms in Eq. (1). The time-derivative term is ∂u/∂t ∼ U2/x′F , the time scale being t ∼ x′F/U89

and the convective terms is ∂u2/∂x̃ ∼ U2/∆x′, whereU is a characteristic velocity. The ratio of90

time-derivative to convective terms is thus of order ∆x′/x′F , where ∆x′ ≤ x′f is the distance over91

which the pressure changes. As indicated in Fig. 2, when the front comes to a stop, x′f /x′F → 192

a temporal change in the current shape occurs. Neglecting the time-derivative term as long as93

x′f < x′F implies that at position x′ = x′f the velocity is constant or practically constant until the94

current comes to a stop. Experiments indicate that the change from spatial dependency of the95

flow to a time dependency is rather abrupt as sketched in Fig. 2. When the slope S = 0, the96

ratio of time-derivative to convective terms is zero [velocity is constant provided the current is97

in the slumping phase, occurring up to 5.1 x0 when φ = 0.3 and 10x0 from the gate when φ = 198

as in Rottman and Simpson (1983)] and it is small for moderate slope angles. On the contrary,99

when S � 1 convective terms become negligible. The limit of validity of the quasi-steady state100

assumption will be determined by comparison with experiments.101

Eq. (1) can be integrated (Turner, 1973) over the full depth (0 − H) leading to102

d
dx̃

[
U2

2(H − h) + U2
1h

]
= −

1
2

d
dx̃

(
g′h2 cos θ

)
− g′h sin θ −

τ0

ρ2
. (2)

where U1 and U2 denote the depth integrated velocities of the lower dense and upper fresh layers,103

respectively. From the volume flux conservation we have U2
2(H − h) = U2

1h2/(H − h), which can104

be used in Eq. (2) to give for the current velocity (dropping subscript 1)105

d
dx̃

[
U2hH/(H − h)

]
= −

1
2

d
dx̃

(
g′h2 cos θ

)
− g′h sin θ −CDU2. (3)

where CD = τ0/ρ2U2. As it is seen in Eq. (3) the main retarding mechanism is the back flow in106

the upper layer together with the along-slope gravity component. When h/H → 0 (H → ∞), the107

back flow contribution goes to 0. The ratio of the bottom drag to the retarding gravity force is108

CDU2/(g′h sin θ) ∼ CD/ sin θ. The drag coefficient for the Reynolds numbers of the experiments109

(Re & 3.3 · 103, see Table 1), is CD ≈ 10−3. Thus, the bottom drag is an order of magnitude110

less than the along slope gravity force, especially at larger slope angles; it can therefore be111

neglected. Following Rottman and Simpson (1983), dissipation effects are nevertheless included112

through a pre-factor β. It may be noted that if the gravity currents propagate in the form of a113

cloud, entrainment of ambient fluid into the current may become a major retarding mechanism114

as shown by Dai (2013b). Here for the current flowing up the slope, interfacial instabilities are115

suppressed and the entrainment can be considered negligible (De Falco et al., 2020).116

On the horizontal boundary (x̃ ≤ x0 + L0), θ = 0 and dh/dx̃ = dh0/dx̃ = 0 (when the bottom drag117

is neglected), thus Eq. (3) can be simplified to118 (
U2h

) H
H − h

=
(
U2

0h0

) H
H − h0

= const. (4)

The constant (front condition) can be obtained from momentum conservation on a control volume119

including the head of the current that implies a balance between the pressure at the front of the120
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current and ahead of it (location B in Fig. 1), ∆p/ρ2 = p0 − pB/ρ2, i.e. the Froude condition of121

the nose. For partial depth-release this gives (Rottman and Simpson, 1983):122

U2
0 = g′h0

(
1 −

φ

2

) 2 − φ
2

1 +
φ
2

 , (5)

where φ = D/H is the depth ratio and h0 = D/2 = φH/2 (Shin et al., 2004). Rottman and123

Simpson (1983) introduce a pre-factor β2/2 ≤ 1 in Eq. (5), with β2 ranging from about 1 to124

1.6, to account for viscous dissipation at the front and possible entrainment on the horizontal125

boundary, to adjust the front velocity to experiments.126

On the inclined bottom (x̃→ x′ and H → Hs), we can rewrite Eq. (3) as127

d
dx′

[
U2hHs/(Hs − h)

]
= −

1
2

d
dx′

(
g′h2 cos θ

)
− g′h sin θ, (6)

where Hs is the total water depth above the inclined bottom boundary, decreasing linearly with128

x, i.e. Hs = H − S x, with x = x′ cos θ (see Fig. 1). Integrating Eq. (6) with respect to x from129

x′ = 0 to x′ gives:130

U2 =

1
2

g′ h2
0 − h2

h
cos θ

 +
g′

h
sin θ

∫ x′

0
hdx′ −

β2

2
g′h2

0

h

2 − φ
2

1 +
φ
2

 ( h
Hs
− 1

)
(7)

where for U2
0 , the Eq. (5) has been substituted, including a pre-factor β2/2 which will be deter-131

mined from the experimental results.132

To solve the remaining integral in Eq. (7), it is necessary to assume a dependence on x′ of the cur-133

rent depth h. When the current propagates up the inclined bottom, the current thickness, which134

at the toe is constant and equal to h0, is assumed to decreases linearly with up-slope distance (see135

Fig. 2) in the form:136

h = (h0 −C′x′) = (h0 −Cx) (8)

where the current shape parameter C = C′/ cos θ. As previously discussed, return flow of dense137

current causes an increase of current height at the toe of the slope, which could cause a change in138

h0 and determine a limit in the validity of h0 = const. For small slope, the contribution to return139

flow is small, while since splashing is more pronounced, its contribution increases, for larger S ,140

especially when S ≥ 0.58. Nevertheless, for larger S , the deceleration of the front on the slope141

is more rapid, such that x′f → x′F , when the reflection takes place (Fig.2), and the increase of142

h0 at the toe of the slope becomes significant when t > tF . The limit of this assumption will be143

discussed further in the results Sec.4 .144

Using Eq.(8), in Eq. (7) gives145

U2 =

(
h

Hs
− 1

)
·

(
1

h0 −C′x′

)
(9)1

2
C′x′g′ cos θ

(
C′x′ − 2h0

)
+ g′x′ sin θ

(
h0 −

C′x′

2

)
−
β2

2
g′h2

0

2 − φ
2

1 +
φ
2

 .
At the location x′ = x′F the front velocity U = 0 and we can determine x′F from the following146

quadratic relation147
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Figure 2: Schematic representation of the interaction with the inclined bottom and snapshots of the experiment with
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current front comes to a stop at x′f = x′F . The dashed line in (b) represents the interface of the dense current shown in (a).

x′2F
2

(C′2 cos θ −C′ sin θ) + x′F(h0 sin θ −C′h0 cos θ) −
β2

2
h2

0

2 − φ
2

1 +
φ
2

 = 0 (10)

provided the constant C′ is known. The assumption (8) gives148

h
Hs

=
h0

H

(
1 − Cx

h0

)(
1 − S x

H

) . (11)

Marleau et al. (2014) assumed that the ratio of vertical current height to ambient fluid depth149

hv/Hs = h0/H for all φ. Since hv ≈ h this implies, from Eq. (11), that C ≡ CS ≈ Sφ/2. In150

section 4 a comparison between C and CS is shown to determine whether hv/Hs is constant.151

Therefore the current shape parameter C′ = −dh/dx′, is determined from measurements of x′F ,152

using Eq. (10). As long as the assumption of stationary flow holds we can write U = dx′/dt and153

integrate Eq. (9), using C′ to determine x′f . Comparing the solution with the experimental nose154

position gives an indication of the limits of validity of stationary flow assumption.155

3. Laboratory Experiments156

The laboratory experiments were performed at the Hydraulics Laboratory of Roma Tre Uni-157

versity. A schematic representation of the tank used for each experimental run is shown in Fig.158

1. The rectangular tank had a length L = 3.0 m, width W = 0.2 m and depth Bd = 0.3 m, with159

transparent Perspex walls and was uniformly back-lighted. The gravity current was produced by160

the lock-exchange technique applied to a saline mixture of initial density ρ1. A vertical sliding161

gate was placed at the distance x0 = 0.2 m from the left side wall to separate the lock region of162

the dense salty water from the ambient freshwater of density ρ2 in the tank. The reduced gravity163

g′ was the same in all experimental runs, i.e. g′ = 0.3 m/s2. The densities were measured by a164

density meter (Anton Paar DMA 4100 M), with an accuracy of 10−4 g/cm3. A controlled quantity165

of dye was added to the lock salty water in order to visualize the flow and apply image analysis166

techniques. For each experiment, the tank was filled up to a total water depth of ambient fluid167

6



Label S = tan(θ) φ = D/H h0 (m) Re

1 0.18 1 0.1 1.21·104

2 0.27 1 0.1 1.21·104

3 0.36 1 0.1 1.21·104

4 0.58 1 0.1 1.21·104

5 0.84 1 0.1 1.21·104

6 1.0 1 0.1 1.21·104

7 0.36 0.7 0.07 8.95·103

8 0.18 0.5 0.05 6.21·103

9 0.36 0.5 0.05 6.21·103

10 0.58 0.5 0.05 6.21·103

11 0.84 0.5 0.05 6.21·103

12 0.18 0.3 0.03 3.30·103

13 0.36 0.3 0.03 3.30·103

Table 1: Main parameters varied in the experiments. φ = D/H; Re = ρh0U0/µ; H = 0.2 m; L0 = 0.53 m; g′ = 0.3m/s2.

H = 0.2 m. The depth-ratio φ = D/H, with D the depth of the salty water in the lock, was varied168

with φ = 1, φ = 0.7, φ = 0.5 and φ = 0.3, so that both, full and partial depth gravity currents169

were produced. A CCD camera, with a frequency of 25 Hz and space resolution of 1024 x 668170

pixels, was used to acquire experimental images and the instantaneous density field ρ(x, z, t) was171

evaluated by a light attenuation technique as in Nogueira et al. (2013). The dimensionless density172

field ρ∗(x, z, t) is defined as:173

ρ∗(x, z, t) =
ρ(x, z, t) − ρ2

ρ1 − ρ2
. (12)

At the sudden removal of the gate, the dense water collapses under the freshwater and flows over174

the horizontal bottom before reaching the sloping boundary. The toe of the slope was placed at a175

distance L0 = 0.53 m from the vertical gate in order to have a gravity current propagating in the176

slumping phase. The slope angle θ ranged between 10◦ and 45◦, i.e. 0.18 ≤ S ≤ 1. In Table 1177

the main parameters varied in the experiments performed are summarized.178

4. Results179

4.1. The normalized thickness180

In this section, a comparison between theoretical predictions of the current shape and experi-181

mental results obtained from the density field is presented. In particular, the assumption, made182

by Marleau et al. (2014), that rh = hv/Hs(x) constant (hv ≈ h), while the current develops, on183

both the horizontal and the sloping bottom, is herein discussed. Note that the analysis presented184

in Sec. 2, is based on the velocity thickness of the current over which the velocity is nearly uni-185

form and has approximately the same speed as the front. At the outer edge the velocity decreases186

rapidly and reverses so that the velocity thickness threshold would correspond to about the 5% of187

the maximum dense current velocity. Differently, the density thickness of the current is defined188

by the interface between the dense and the light fluids, depending on the selected dimensionless189

density threshold. Since the velocity and density thicknesses are not identical we denote the190

density thickness by hρ.191
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The space-time evolution of the normalized thickness rh/φ = hρ/(φHs) for the experiment with192

φ = 1 and S = 0.27, for different dimensionless density thresholds, i.e. 2%, 20%, 50%, used for193

the determination of the current thickness hρ, is presented in Fig. 3. Moreover, the integral thick-194

ness of Shin et al. (2004) is considered. The head of the gravity current is the raised region just195

behind the front, represented by the line which marks the transition from the white background196

to the color map area.197

The black lines are the contours corresponding to different levels of rh/φ while the vertical198

black line represents the toe of the slope. For a low threshold (i.e. 2%, Fig. 3a), in the head199

region rh/φ ' 0.5, in agreement with the energy-conserving theory of Benjamin (1968), both on200

the horizontal and the sloping boundary. For higher thresholds, i.e. 20% (Fig. 3b) and 50% (Fig.201

3c), the normalized thickness rh/φ of the head decreases and is about 0.4 and 0.3, respectively.202

In Fig. 3d where rh/φ is evaluated by considering the integral thickness of Shin et al. (2004), the203

current interface is lower and rh/φ ' 0.3 and is comparable to the 50% density threshold (Fig.204

3c). Therefore, when a high dimensionless density threshold is considered, the dense current is205

defined by a sharp interface between dense and light fluids and it does not include the mixing206

layer. This is also shown by subplots 1 and 2 corresponding to two different times in the space-207

time evolution of rh/φ marked by red dashed lines: (1) when the current reaches the toe of the208

up-slope and (2) when the current propagates on the inclined bottom. Different colors represent209

the threshold used for the definition of the interface of the dense current. As the threshold in-210

creases, the thickness decreases. The 50% density threshold and the integral height of Shin et al.211

(2004), give similar values for the normalized thickness rh/φ.212

The space-time evolution of rh/φ is discussed for different S and φ considering the 50% dimen-213

sionless density threshold for the definition of the interface of the dense current (Fig. 4).214

For full-depth release experiments (i.e. φ = 1) in the head region rh/φ ' 0.3 during the whole215

propagation on the horizontal bed (S = 0, Fig. 4a). In the up-slope experiments (S = 0.36 in216

Fig. 4b and S = 1 in Fig. 4c), rh/φ ' 0.3 on the horizontal part (x̃ < 0.73) but an increase is217

observed near the toe of the slope, i.e. x̃ ' 0.73 . In particular for S = 1 (Fig. 4c) the increase218

of rh/φ at the toe of the slope is significant and is caused by a reflection of part of the gravity219

current on the inclined bottom boundary that acts like a barrier (see Fig. 2a).220

For different depth-ratios (Fig. 4d-f), rh/φ ' 0.3 ÷ 0.4 both on the horizontal and the sloping221

boundary, here for S = 0.36. An increase of rh/φ is observed right after the toe of the slope222

in the head region, subsequently the height of the current decreases with x′, i.e. x̃ > 0.73. In223

particular, for φ = 0.70, in Fig.4d, the mean value of rh/φ = 0.41 in the head region with a224

standard deviation σ = 0.15 and a maximum rh/φmax = 0.7 at x̃ = 0.8 m. For φ = 0.5 in225

Fig.4e, rh/φ = 0.41 in the head region with a standard deviation σ = 0.12 and rh/φmax = 0.73 at226

x̃ = 0.75 m. Finally for φ = 0.3 in Fig.4f, rh/φ = 0.46 in the head region with a standard deviation227

σ = 0.12 and rh/φmax = 0.75 at x̃ = 0.76 m. Further, a comparison between the experimental228

front position, which is represented by the foremost point which marks the transition from the229

white background to the color-map area and the theoretical prediction is shown in Fig. 4. The230

red solid line represents the prediction of Eq. (5), on the horizontal bottom (i.e. on the left of231

the vertical black line which marks the toe of the slope) and Eq. (9) using C′ on the inclined232

bottom (i.e. on the right of the vertical black line in Fig. 4). The latter has been integrated233

considering as initial position the beginning of the slope, and as initial time when the current234

starts to flow up the slope. For this reason a discontinuity in the red line occurs, close to the235

toe of the slope. The use of Eq. (5) when φ = 1 and S = 0, reduces to the solution derived by236

Benjamin (1968), which is valid in the steady propagation of the front of the current, denoted237

x̃ f , up to x̃ f (t) ∼ 10x̃0 (x̃ f ∼ 2 m), when the self-similar regime starts (Fig. 4a). The pre-factor238
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1

 Shin et al. 
(2004)

Figure 3: Space-time evolution of the normalized thickness rh/φ for the experiment with φ = 1 and S = 0.27 and for
different thresholds: (a) 2%, (b) 20%,(c) 50%, (d) the integral height of Shin et al. (2004). The vertical black solid line
represents the toe of the slope while red dashed lines marks the time at which the normalized thickness with the four
different density thresholds is evaluated: (1), when the current reaches the upslope and (2), when the current propagates
on the upslope.
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(c)
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Figure 4: Space-time evolution of rh/φ for φ = 1 (left panels) with (a) S = 0, (b) S = 0.36 and (c) S = 1 and for S = 0.36
(right panel) with (d) φ = 0.7, (e) φ = 0.5 and (f) φ = 0.3. The vertical black lines represent the toe of the slope and
the red line represents the integration of Eq. (5), on the horizontal bottom and Eq. (9) on the inclined bottom using C′

calculated from Eq. (10) using the measured x′F .
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S=1.00
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0.36

0.58

0.27

, =1
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, =0.3

(b)

(a)

x'/x'F

ρ
ρ

-x/x'F

-x/x'F x'/x'F

S=0.18

Figure 5: Dimensionless mean height hρ f /Hs of the front vs. dimensionless front position −x/x′F and x′/x′F : (a) φ = 1
and different S (S = 0.18, S = 0.36, S = 0.58, S = 0.84, S = 1); (b) S = 0.36 and different φ (φ = 0.7, 0.5, 0.3). Dashed
black line marks the toe of the up-slope.

β2/2 has been determined for each experiment, to adjust the front velocity to the experimental239

front. The pre-factor β2/2 ranges between 0.55 and 0.65 for φ = 0.3 and φ = 0.5, and lies240

between 0.7 and 0.8 for φ = 0.7 and φ = 1. For each φ, the front position predicted by Eq. (5) on241

the horizontal boundary is consistent with the experimental results. On the inclined bottom, the242

predicted x f (t) in red is in good agreement with the experimental front position, when φ = 1 and243

S = 1 (Fig. 4c) and when S = 0.36 for φ = 0.7 and φ = 0.5 (Fig. 4d-e). When S = 0.36, φ = 1244

and φ = 0.3 the predicted final length x′F is slightly lower than the one observed experimentally,245

but corresponds to the length reached by the bulk of the current (Fig. 4b,f). When the return flow246

increases, a decrease of h in time (Fig. 2b) occurs and the current loses its typical shape. In this247

condition, the main part of the current comes to a stop, but a possible slight increase in the front248

position x′f > x′F as the front thickness collapses to zero, can be observed.249

The current thickness is also determined from the space-time density fields as a function of x′,250

considering the mean thickness hρ f of the current in the head region, 3 cm behind the nose251

of the current, determined by the 50% density threshold. Thus hρ f is the density thickness,252

corresponding to h0 on the horizontal and h on the inclined bottom. In Fig. 5a, hρ f /Hs is shown253

versus the non-dimensional front position −x/x′F and x′/x′F for φ = 1 and different S and in Fig.254

5b for S = 0.36 and different φ. The toe of the slope is represented by the dashed vertical black255

line. For φ = 1, hρ f /Hs ' 0.3 on the horizontal bottom, i.e. x′ < 0, but it varies on the slope,256
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i.e. x′ > 0 (Fig. 5a) as a function of S . For fixed S = 0.36, hρ f /Hs varies with φ on both the257

horizontal bottom and the up-slope (Fig. 5b). The variation with x′ of the current thickness hρ f258

will be used in the following section, to compare the current shape parameter of the density field259

−dhρ f /dx′ with C′. It has to be noted that the definition of a certain region for the evaluation of260

the mean height of the current, adds a degree of uncertainty which is indicated by the error-bars261

in Fig. 5 so that the shape parameter obtained from the density fields is not very reliable.262

4.2. Final length and current shape parameter263

The dimensionless final height zF/h0 = x′F sin θ/h0 reached by the gravity current front is264

shown for each φ and S investigated in Fig. 6a. Results are compared with the predictions265

of Marleau et al. (2014) (the slope ranged between 0.25 < S < 1.15) who observed that the266

measured maximal height zF reached by the currents is constant varying S and zF/D ' γ, where267

γ = 0.86, 0.99 and 1.15 for respectively φ = 1, 0.75 and φ = 0.5. The error-bars in these plots268

have been omitted because these are of size similar to the markers. The red line represents the269

height zF = D, i.e. zF/h0 = 2. When φ < 1, zF is higher than the initial lock height D, zF/h0270

increases with increasing φ and varies with S especially for φ = 0.5.271

The non-dimensional horizontal length xF reached by the current versus S is shown in Fig. 6b272

and it is compared with the predictions of Marleau et al. (2014) (xF = zF/S = γD/S ) in black273

and a fairly good agreement is found. When S is small, the final length reached by the dense274

current strongly depends on φ, while as S increases the influence of the depth ratio is lower and275

xF reaches a nearly constant value, not depending on φ. Indeed, when S ≥ 0.58, the current is276

more affected by the inclined bottom and the influence of φ becomes negligible. The positions277

x′F measured in each experiment are used to calculate the current shape parameter C′ = −dh/dx′,278

from Eq. (10). What emerges is that the current shape parameter C = C′/ cos θ, depends on S279

and not on φ and increases as the slope angle increases. The best fit is C ' 0.4S .280

Fig. 6d displays the ratio xFC/h0 as a function of S that appears in Eq. (8) when re-written in281

the form:282

h
h0

= 1 −
(

xFC
h0

)
x

xF
(13)

The factor xFC/h0 is representative of the self-similar shape of the current as considered by283

Marleau et al. (2014). When xFC/h0 = 1, the current height h = 0 at x = xF and when xFC/h0 <284

1 the current height is finite when the current comes to a stop at x = xF . In some cases, as285

S ≤ 0.36 and φ = 0.3, xFC/h0 is slightly larger than one, which means that the theoretical286

locations at which h = 0 and U = 0, appear for x < xF , as seen in the velocity plots in Fig.287

9b. Indeed, as observed in section 4.1, when the return flow is observed, only a portion of the288

current continues to flow up-slope, while the bulk of the current stops (see Fig. 4f). As discussed289

by Marleau et al. (2014), on steep slopes the deceleration time of the current is short and no290

noticeable return flow occurs before the current reaches x′F . On the contrary, on small slopes the291

current takes a longer time to decelerate and return flow behind the front is possible, breaking292

the self-similar shape. However, even on the small slopes self-similarity is maintained to nearly293

0.8tF , where tF is the time when the front comes to a complete stop.294

The current shape parameter has been also computed as the slope of the best fit of hρ f (x′), i.e.295

−dhρ f /dx′, and it is compared in Fig. 7 with C′, obtained from Eq. (10) (Fig. 6). There296

is good agreement between the shape parameter C′ and −dhρ f /dx′, when S ≤ 0.36, whereas297

when S > 0.58, C′ is larger than −dhρ f /dx′. The possible reason for the difference between298

−dhρ f /dx′ and C′ is that −dhρ f /dx′ represents and is determined from the density field, while299
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S=0.18
S=0.27
S=0.36
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S=0.84
S=1.00

Figure 6: (a)Dimensionless final height zF/h0 versus slope S . The red line represents the height zF = D; (b) xF/h0 vs
S ; (c) C determined from Eq. (10) using the measured x′F versus S . The slope of the gray solid line is 0.4; (d) the factor
xFC/h0 vs S .
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Figure 7: Comparison of −dhρ f /dx′, obtained as the slope of the best fit line of hρ f (x′) with C′ = C cos θ determined
from Eq. (10) by considering the measured x′F .

C′ is the change in velocity thickness, as previously discussed. Because of the return flow of300

dense current at the toe of the inclined bottom, the density interface slope −dhρ f /dx′ is lower301

than the change in velocity thickness expressed by C′. Since the return flow increases for larger302

slopes, when S > 0.58 the difference increases. Moreover, for larger S , the definition of the303

head of the current on the inclined bottom is affected by the reflection and splashing, being more304

pronounced, which could further increase the difference. In addition, in such cases, due to return305

flow and reflection, the assumption h0 is constant at the toe of the slope has limitation, which306

may also contribute to the discrepancy.307

However, the important result is that the experiments confirmed that the current shape parameter308

has negligible dependency on φ and that dhρ f /dx′ depends on the slope S only. This is further309

confirmed by the ratio hρ f /h0 that is shown in Fig. 8, together with the corresponding best fit310

lines determined for all data between x′/x′F = 0 and 1. In particular, for φ = 1 (Fig. 8a) and311

φ = 0.5 (Fig. 8c), the variation of hρ f /h0 with x′/x′F and the slope of the best fit lines depend312

clearly on the slope S , while for a fixed S , the slope of the best fit lines weakly depends on φ and313

it is ' 0.80− 0.90 for S = 0.36 (Fig. 8b) and ' 0.35 for S = 0.84 (Fig. 8d). This is in agreement314

with the behaviour of the shape parameter C′, which, as shown in Fig. 6, depends on S and and315

can be considered independent of φ.316

The coefficient of determination R2 of the best-fit of hρ f /h0, has been determined and it is found317

to be also dependent on S and varies between 0.89 and 0.70 for S < 0.84 and decreases below318

0.70 for S > 0.84. It is worth to note that low R2 are found for larger S , which as shown in319

Fig.7 gives −dhρ f /dx′, deviating from the values determined from equation (10) using measured320

xF
′. Two factors are expected to influence R2. Because for larger S the deceleration is more321

rapid and the distance of propagation on the inclined bottom is smaller, as shown in Fig.6b, such322

that a small number of data is available for the linear regression model and consequently a weak323

correlation is expected between the linear regression and hρ f /h0. Moreover, low R2 of the linear324
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Figure 8: hρ f (x′)/h0 vs. x′/x′F : (a) φ = 1 and different θ (S = 0.36, S = 0.58, S = 0.84, S = 1); (b) S = 0.36 and
different φ (φ = 1, 0.7, 0.5, 0.3);(c) φ = 0.5 and different θ (S = 0.18, S = 0.368, S = 0.58, S = 0.84); (d) S = 0.84 and
different φ (φ = 1, 0.5)

regression are also due to the difficulty in the clear definition of the dense current head for larger325

slopes, as previously discussed.326

4.3. Front velocity of the current flowing up the slope327

When the gravity current flows up the slope, it decelerates and stops when x′f = x′F . The328

experimental non-dimensional front velocity U f /U0 and U/U0 predicted by Eq. (9), are plotted329

as a function of non-dimensional position x′/h0 (Fig. 9). By the assumption of steady current it330

is implicitly assumed that U and h at x′ are equal to U f and h f at x′ = x′f , where h f is the front331

velocity thickness. The symbols in Fig. 9 represent the experimental non-dimensional front332

velocity, while the solid line is the mean velocity U/U0, solution of Eq. (9), using C′ obtained333

from Eq. (10) with the experimental values of x′F . The dimensionless velocities are compared for334

full-depth release experiments, φ = 1 by varying S in Fig. 9a. As S increases, the deceleration335

of the gravity current is larger and the run-up distance x′F is lower. The effect of φ is shown for336

S = 0.36 in Fig. 9b. It is seen that both, the experimental and the predicted dimensionless front337

velocity nearly overlap on one curve and are closely spaced for all φ. This is supported by the338
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Figure 9: Dimensionless front velocity as a function of x′/h0. (a) φ = 1 varying θ (S = 0.18, S = 0.36, S = 0.58, S = 1).
(b) S = 0.36 varying φ (φ = 0.7, 0.5, 0.3).

observations (see Fig. 6b of section 4.2), that the final length reached by the current depends on339

S only, i.e. it is independent of φ. There is fair to good agreement between the experimental340

dimensionless velocities and those predicted by Eq. (9) for all S and φ investigated, especially341

at larger slopes when the time of deceleration is short. On shallower slopes deceleration times342

are longer so that return flow may increase (see Fig. 2b) before the current front comes to a343

stop. Nevertheless, as shown in Appendix A, at small angles, predicted velocities are also very344

sensitive to slight changes (error) in C′.345

Eq. (9) and (10) are valid for any φ, including φ = 0, i.e. an infinite ambient fluid depth. For this346

case, a solution exists for C′ ≤ sin θ
2β2+cos θ which gives x′F/h0 ≤ 25 for S = 0.18.347

5. Conclusions348

The dynamics of quasi-steady gravity currents propagating up a slope has been investigated349

by a novel theoretical analysis and laboratory experiments. Full- and partial-depth lock release350

experiments were conducted by varying the current to ambient fluid depth-ratio proportional to351

φ and the slope S from 0.18 up to 1. The experiments focused on evaluating, from the density352

fields, the thickness of the dense current and the up-slope distance reached, using a light attenu-353

ation technique as well as on the change in up-slope front velocity.354

The theory developed herein, using the depth averaged momentum equation, provides new phys-355

ical insight into the importance of the different driving and retarding forces. It accounts for356

the gravity component along the slope, whose importance increases with slope angle, especially357

when the ambient fluid depth is very large, such that φ → 0. The space-time evolution of358

rh = hρ/Hs depends on the threshold of the dimensionless density field used to define the height359

of the dense current. As the threshold increases, rh in the head region decreases. An important360

result is that the decrease in height of the current up the slope, expressed by the shape parameter361

C′ = −dh/dx′, that is determined from the theory, using the measured distance x′F at which the362

current stops, depends on slope only. The best fit is C′ ' 0.4 sin θ or C ' 0.4S ; the effect of φ363

is negligible. This behaviour is confirmed by the thickness variation obtained from the density364
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fields noting however that the slope of density thickness dhρ f /dx′ is lower than the slope of ve-365

locity thickness dh/dx′ with the difference increasing with increasing S . However, the functional366

dependencies on S and φ are the same. The front velocity is well predicted by the theory for all367

experiments conducted, indicating that the theory can be applied up to slopes S ≈ 1 although,368

as shown by the density plots, some splashing occurs already for slopes S ≥ 0.58. The theory369

also predicts well the velocities on shallow slopes, although part of the dense fluid behind the370

head begins to reverse direction before the current comes to a complete stop. Furthermore, Eq.371

(9) and (10) remain valid for any φ, including φ = 0, i.e. an infinite ambient fluid depth often372

encountered in nature. For this case, a solution exists for C = S
2β2+cos θ which is close to the value373

of C given in Fig. 6c and gives x′F/h0 ' 25 for S = 0.18 for example.374

The final length x′F was defined as the foremost point reached by the current on the slope. The375

experimental results show that x′F depends on φ for smaller inclinations of the bottom, while376

when S increases, x′F reaches a constant value and does not depend on φ nor S . The measured x′F377

corresponds to a final height zF = x′F sin θ reached by the gravity currents for each S and φ. The378

results show that zF is predominantly dependent on φ. In particular when φ = 1, zF ' H, while379

when φ < 1, zF > D for any S . The lower φ is, the larger is the non-dimensional ratio zF/h0.380

The non-dimensional ratio xFC/h0 was also considered as a parameter to define the shape of the381

current up-slope. When φ = 1, xFC/h0 < 1 and h , 0 when the current stops, whereas when382

φ < 1, xFC/h0 ' 1 and the current height h ' 0 when the current stops at x′f = x′F .383

In summary, the theory is able to capture the experimental results, confirming the validity of384

treating the gravity current development as a space dependent problem up to S ≈ 1 and time385

t ≤ tF . The current shape parameter C ' 0.4S determined here allows to calculate the current386

velocity and the run-up distance for slopes S < 1 and any φ provided the oncoming flow at the387

toe remains constant during the run-up time.388

Appendix A. Sensitivity of up-slope front velocity to C’=-dh/dx’389

The sensitivity of U/U0, Eq. (9), on C′ is shown in Appendix A.1 for the case of S = 0.36.390

The solutions of Eq. (9) considering the shape parameter C′, obtained from Eq. (10) using the391

experimental final length reached by the current on the upslope x′F , is displayed (solid lines)392

together with solutions of Eq. (9) considering C′S = Sφ/2 from Eq. (11) that assumes h/Hs393

constant and h0 = Hφ/2 (dashed lines). Moreover the solutions of Eq. (9) are shown considering394

a decrease and an increase of 1% on C′ (solid lines with circles and solid lines with crosses395

respectively). The comparison with the non-dimensional velocity evaluated by assuming C′S396

reveals high dependence of Eq. (9) on the shape parameter C′ since the predicted velocity from397

Eq. (9) with C′S does not reproduce the experimental data and completely fails to predict x′F .398

More importantly, a decrease by 1% of the nominal value C′ in Eq. (10), results in a decrease by399

8% of the final length x′F for the case with φ = 0.7 and 3% for φ = 0.3. An increase by 1% of C′400

in Eq. (10) causes: for φ = 0.7 the velocity to diverge, while for φ = 0.3 an increase of 13% on401

the final length x′F , which is close to the measured value of x′F . Finally, for φ = 0.3 an increase402

by 1.5% of C′ in Eq. (10) causes the velocity to diverge.403
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Negretti, M.E., Flòr, J.B., Hopfinger, E.J., 2017. Development of gravity currents on rapidly changing slopes. J. Fluid448

Mech. 833, 70–97.449

Nogueira, H.I.S., Adduce, C., Alves, E., Franca, M.J., 2013. Image analysis technique applied to lock-exchange gravity450

currents. Meas. Sci. Technol. 24, 047001.451

Ottolenghi, L., Adduce, C., Inghilesi, R., Roman, F., Armenio, V., 2016. Mixing in lock-release gravity currents propa-452

gating up a slope. Phys. Fluids 28, 056604.453

Ottolenghi, L., Adduce, C., Roman, F., Armenio, V., 2017a. Analysis of the flow in gravity currents propagating up a454

slope. Ocean Model. 115, 1–13.455

Ottolenghi, L., Cenedese, C., Adduce, C., 2017b. Entrainment in a dense current flowing down a rough sloping bottom456

in a rotating fluid. J. of Phys. Oceanogr. 47, 485–498.457

Pelmard, J., Norris, S., Friedrich, H., 2018. Les grid resolution requirements for the modelling of gravity currents.458

Computers & Fluids 174, 256–270.459

Rottman, J.W., Simpson, J.E., 1983. Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular460

channel. J. Fluid. Mech. 135, 95–110.461

19



Shin, J.O., Dalziel, S.B., Linden, P.F., 2004. Gravity currents produced by lock exchange. J. Fluid. Mech. 521.462

Shintani, T., de la Fuente, A., de la Fuente, A., Niño, Y., Imberger, J., 2010. Generalizations of the Wedderburn number:463

Parameterizing upwelling in stratified lakes. Limnol. Oceanogr. 55, 1377–1389.464

Simpson, J.E., 1999. Gravity currents: In the environment and the laboratory. Cambridge university press.465

Stancanelli, L.M., Musumeci, R.E., Foti, E., 2018a. Computational fluid dynamics for modeling gravity currents in the466

presence of oscillatory ambient flow. Water 10, 635.467

Stancanelli, L.M., Musumeci, R.E., Foti, E., 2018b. Dynamics of gravity currents in the presence of surface waves.468

J. Geophys. Research: Oceans 123, 2254–2273.469

Turner, J.S., 1973. Buoyancy effects in fluids. Cambridge university press.470

Wilson, R.I., Friedrich, H., Stevens, C., 2018. Flow structure of unconfined turbidity currents interacting with an obstacle.471

Environ. Fluid Mech. 18, 1571–1594.472

Wilson, R.I., Friedrich, H., Stevens, C., 2019. Quantifying propagation characteristics of unconfined turbidity currents473

interacting with an obstacle within the slumping regime. J. Hydraul. Res 57, 498–516.474

Zemach, T., Ungarish, M., Martin, A., Negretti, M.E., 2019. On gravity currents of fixed volume that encounter a475

down-slope or up-slope bottom. Phys. Fluids 31, 096604.476

Zordan, J., Juez, C., Schleiss, A.J., Franca, M.J., 2018. Entrainment, transport and deposition of sediment by saline477

gravity currents. Adv. Water Resour. 115, 17–32.478

Zordan, J., Schleiss, A., Franca, M.J., 2019. Potential erosion capacity of gravity currents created by changing initial479

conditions. Earth Surf. Dyns 7, 377–391.480

20


