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Abstract This paper focuses on the solution, by exact exponential-time al-
gorithms, of just-in-time scheduling problems when jobs have symmetric ear-
liness/tardiness weights and share a non restrictive common due date. For the
single machine problem, a Sort & Search algorithm is proposed with worst-case
time and space complexities in O∗(1.4143n). This algorithm relies on an orig-
inal modeling of the problem. For the case of parallel machines, an algorithm
integrating a dynamic programming algorithm across subsets and machines
and the above Sort & Search algorithm is proposed with worst-case time and
space complexities in O∗(3n). To the best of our knowledge, these are the first
worst-case complexity results obtained for non regular criteria in scheduling.

Keywords Single machine · Parallel machines · Just-in-time · Exponential
time algorithms

1 Introduction

In this paper we revisit two well-known just-in-time scheduling problems un-
der the light of exponential-time algorithms. We are given a set of n jobs,
each job i being defined by a processing time pi and a weight wi, the latter
reflecting the penalty induced by scheduling it early or tardy. All jobs share
the same, non restrictive, common due date d ≥

∑
i pi. The objective is to
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find a schedule s of jobs such that
∑
i wi(Ei(s) + Ti(s)) is minimized, with

Ti(s) = max(Ci(s)−d; 0) and Ei(s) = max(d−Ci(s); 0). Notice that the men-
tion of schedule s may be omitted whenever there is no ambiguity. In the first
tackled problem a single machine is assumed to be available to process the jobs
and, following the standard three-fields notation, this problem can be referred
to as 1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti). The second tackled problem is the ex-

tension to the case where several identical parallel machines are available and
the corresponding problem is referred to as P |di = d ≥

∑
i pi|

∑
i wi(Ei + Ti).

Just-in-Time scheduling problems have been the matter of numerous pub-
lished works and comprehensive surveys have been provided by T’kindt and
Billaut (2006) and Jozefowska (2007), among others. The single machine prob-
lem with a non restrictive common due date and unit weights has been shown
to be polynomially solvable by Kanet (1981). However, for the problem with
symmetric weights considered in this paper, the problem turns out to be NP-
hard as shown by Hall and Posner (1991). Interestingly, several remarkable
properties, summarized in Property 1, have been established along the years
on problem 1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti). They notably induce that the

hardness of the problem comes from deciding for each job if it is better to
schedule it early or tardy.

Property 1 (Baker and Scudder (1989)) There exist optimal solutions to the
1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti) problem satisfying the following properties:

1. there are no machine idle times between two consecutive jobs,
2. the first scheduled job can start at a time greater than 0,
3. there exists a job which exactly completes at time d,
4. the class of V-shape schedules is dominant.

A schedule is said to be V-shaped, for the symmetric weight problem, iff all
early jobs are sequenced by decreasing value of the ratio pi

wi
(WLPT rule)

while all tardy jobs are sequenced by increasing value of the ratio pi
wi

(WSPT
rule). Figure 1 presents a schedule satisfying Property 1.

Fig. 1 A 5-job schedule satisfying Property 1

Several exact algorithms exist for a generalization of the problems tackled
in this paper considering arbitrary weights that can be well applied to the
case of symmetric weigths. These algorithms, however, focus on the solution
of randomly generated instances with the purpose of being efficient in practice.
The problem of scheduling identical parallel machines, denoted by P |di = d ≥
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∑
i wi(Ei+Ti), is also NP-hard. Again, there exist exact algorithms to

solve the more general problem with arbitrary weights but the purpose to be
effective on the average on randomly generated intances.

Purpose of this paper is to revisit these two problems in the light of ex-
act exponential-time algorithms as presented in the seminal book of Fomin
and Kratsch (2010). These algorithms are designed to solve NP-hard prob-
lems with the intent to reach the lowest possible worst-case time complexity.
When dealing with exponential algorithms, we usually make use of the O∗(·)
notation: let T (·) be a super-polynomial and p(·) be a polynomial, both on the
instance size (usually the number of jobs n for scheduling). Then, we express
running-time bounds of the form O(p(n) · T (n))) as O∗(T (n)).
Since the last decades, much effort has been put in the literature into the solu-
tion of graph problems as surveyed by Woeginger (2003, 2004) and Fomin and
Kratsch (2010). Quite recently, a few works on scheduling problems have been
published. For an introduction to exponential-time algorithms for scheduling
we refer to Lenté et al. (2014). Following the early work of Held and Karp
(1962), Woeginger (2003) who proposed a O∗(2n) time and space dynamic
programming across the subsets algorithm to solve the 1|prec|

∑
wiCi prob-

lem. Notably, this algorithm is also valid for a set of scheduling problems whose
optimal solution can be reduced to the recursive solution of subproblems (see
Fomin and Kratsch (2010)). This leads to O∗(2n) time and space dynamic
programming algorithms for the 1|d̃i|

∑
wiCi and the 1|di|

∑
wiTi problems,

and to an O∗(3n) time and space algorithm for the 1|ri, prec|
∑
Ci problem.

Later on, Cygan et al. (2011) provided an O∗((2−10−10)n) time algorithm for
the 1|prec|

∑
Ci problem. For the 1|di|

∑
wiUi problem, Lenté et al. (2014)

proposed a O∗(1.4143n) Sort & Search algorithm. For the 1|di|
∑
Ti problem

an algorithm with O∗((2 + ε)n) time complexity but polynomial space com-
plexity has been proposed by Shang et al. (2018). This algorithm relies on
the exploration of a search tree with a dedicated node merging procedure.
An interesting generic approach for designing exponential-time algorithms has
been proposed by Lente et al. (2013) who provide a generalization of the well-
known Sort & Search algorithm to a general class of problems called multiple
constraints problems. This has induced several Sort & Search algorithms having
time and space complexities in O∗(1.4143n) for the P2||Cmax and F2||Ckmax
problems, in O∗(1.7320n) for the P2|di|

∑
wiUi and P3||Cmax problems, in

O∗((m+1)
n
2 (n2 )m+2) for the P |di|

∑
wiUi problem and in O∗(m

n
2 (n2 )m+1) for

the P ||Cmax problem. We also point out the work of Shang et al. (2017) who
proposed a so-called Pareto dynamic programming and applied it to a set of
flowshop scheduling problems. They notably showed that the F3||Cmax prob-
lem can be solved in O∗(3n) time and space and that two more general prob-
lems referred to as F3||maxi(fi) and F3||

∑
i fi, with the fi’s being increasing

functions of job completion times, can be solved in O∗(5n) time and space.
Also based on dynamic programming, Gromicho et al. (2012) solved the job
shop scheduling problem in O(p2nmax(m+1)n) time, with pmax = maxi=1..n(pi).
Jansen et al. (2013b) developed a framework that is able to solve a number
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of scheduling and packing problems in 2O(n) time. Finally, it is interesting to
notice that Jansen et al. (2013a) provided some results, under the Exponen-
tial Time Hypothesis, on the existence of lower bounds on the worst-case time
complexities of scheduling problems.

To the best of our knowledge, no exponential-time algorithm has been
proposed for scheduling problems involving the minimization of non increasing
functions of job completion times, like the 1|di = d ≥

∑
i pi|

∑
i wi(Ei+Ti) and

P |di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) problems tackled in this paper. In section 2

we provide a Sort & Search algorithm running in O∗(1.4143n) time and space
for the single machine problem. The generalization to the identical parallel
machines setting is considered in section 3 and a O∗(3n) time algorithm is
given. Section 4 concludes this paper and presents potential future research
directions.

2 Single machine scheduling

Among the known techniques to derive exponential-time algorithms (see, e.g.,
Fomin and Kratsch (2010)), there is Sort & Search initially proposed by
Horowitz and Sahni (1974) to solve the knapsack problem in O∗(1.4143n)
time and space and later on extended by Lente et al. (2013) who also applied
it to a set of scheduling problems. Roughly speaking, it consists in separat-
ing an input instance into two equal-size instances, then in enumerating all
partial solutions for each sub-instance and finally find the optimal solution of
the input instance by recombining in a suitable way all those partial solutions
taking each time one from each sub-instance. This “complexity breaking” is
done at the detriment of the space complexity which turns out to be expo-
nential. Before presenting the details of the proposed algorithm, we highlight
the fact that the 1|di = d ≥

∑
i pi|

∑
i wi(Ei + Ti) problem can be solved in

O∗(2n) time and space by a brute-force algorithm that enumerates all possible
assignments of jobs to the sets of early and tardy jobs.

Without loss of generality, assume that n is even and that jobs are indexed
such that p1

w1
≤ p2

w2
≤ . . . ≤ pn

wn
. In the remainder we implicitly make use of the

results in Property 1 to elaborate our Sort & Search algorithm. For any given
instance I of n jobs, let I1 = {1, . . . , n2 } and I2 = {n2 +1, . . . , n} be a decompo-
sition into two equal-size sub-instances. By enumeration, done in O∗(2n

2 ) time,
we can build set S1 = {s1j |j = 1, . . . , 2|I1|} (resp. S2 = {s2k|k = 1, . . . , 2|I2|})
which is the set of all possible solutions built from sub-instance I1 (resp. I2).
We have |S1| = |S2| = 2

n
2 . Figure 3 shows, for an instance I, a complete

schedule s = s1j//s
2
k decomposed into two partial solutions s1j = {ε1j ; τ1j } ∈ S1

and s2k = {ε2k; τ2k} ∈ S2, with εyx (resp. τyx ) referring to a schedule of early jobs
(resp. tardy jobs). Besides, tsj refers to the starting time of the first job in ε1j
or equivalently to the completion time of the last job in ε2k. Symmetrically,
tcj refers to the completion time of the last job in τ1j or equivalently to the
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starting time of the first job in τ2k .

d

τ1jε1j

tsj tcj

ε2k τ2k

Fig. 2 Decomposition of a complete schedule into two sub-schedules s1j and s2k

From this decomposition scheme, it follows that solving the 1|di = d ≥∑
i pi|

∑
i wi(Ei+Ti) problem reduces to finding the best partial schedules s1j ∈

S1 and s2k ∈ S2 such that schedule s = s1j//s
2
k has the minimum

∑
i wi(Ei+Ti)

value. In the remainder, we show that finding such a schedule s can be done
in the worst case with a time complexity not worse than that of building sets
S1 and S2. First, we can show the following result.

Proposition 1 Let us denote by s = s1j//s
2
k a complete schedule, and by

fjk =
∑
i∈s wi(Ei(s) + Ti(s)) its objective function value. We have:

fjk = fj + ck + akt
s
j ,

with ak =
∑
i∈τ2

k
wi −

∑
i∈ε2

k
wi, fj =

∑
i∈s1

j
wi(Ei(s

1
j ) + Ti(s

1
j )) and ck =∑

i∈s2
k
wi(Ei(s

2
k)+Ti(s

2
k))+d(

∑
i∈ε2

k
wi−

∑
i∈τ2

k
wi)+

∑
i∈τ2

k
wi
∑
i∈I1 pi. Notice

that fj and tsj depend only on s1j , while ck and ak depend only on s2k.

Proof Consider Figure 3 and the decomposition of a schedule s = s1j//s
2
k . We

have:
fjk =

∑
i∈s1

j
//s2

k
wi(Ei(s

1
j//s

2
k) + Ti(s

1
j//s

2
k))

=
∑
i∈s1

j
wi(Ei(s

1
j ) + Ti(s

1
j )) +

∑
i∈ε2

k
wiEi(ε

2
k) + (d− tsj)

∑
i∈ε2

k
wi

+
∑
i∈τ2

k
wiTi(τ

2
k ) + (tcj − d)

∑
i∈τ2

k
wi

with Ei(ε
2
k) (resp. Ti(τ

2
k )) the earliness of job i ∈ ε2k (resp. job i ∈ τ2k ) when

partial schedule s2k is scheduled around the common due date d (partial sched-
ule s1j is then omitted). As tcj = tsj +

∑
i∈I1 pi, we can rewrite:

fjk =
∑
i∈s1

j
wi(Ei(s

1
j ) + Ti(s

1
j )) +

∑
i∈s2

k
wi(Ei(s

2
k) + Ti(s

2
k))

+ d(
∑
i∈ε2

k
wi −

∑
i∈τ2

k
wi) +

∑
i∈τ2

k
wi
∑
i∈I1 pi

+ tsj(
∑
i∈τ2

k
wi −

∑
i∈ε2

k
wi)

= fj + ck + akt
s
j

From Proposition 1 it follows that for any given partial schedule s1j , fj
and tsj can be computed in O(n) time. This is also the case for ck and ak
whenever partial schedule s2k is given. In the remainder we assume that these
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values are computed when building sets S1 and S2, thing which does not affect
the O∗(2n

2 ) time complexity required by the Sort & Search algorithm to build
these sets. For a given partial schedule s1j ∈ S1 the algorithm needs to find a

schedule s2k ∈ S2 such that fjk is minimum. The optimal solution associated
to instance I is then given as the best complete solution obtained, starting
from j = 1 to j = |S1|.

Now, let us turn to the search of the best schedule s2k when s1j is fixed.

We separate set S2 into sub-sets S+2 = {s2k ∈ S2|ak ≥ 0} and S−2 = {s2k ∈
S2|ak < 0} and the search for the best partial schedule s2k is done first in S+2
and next in S−2 . We show that the search in S+2 can be done in O∗(2n

2 ) time
knowing that the same result holds for searching in S−2 . First, remark that
whatever is the fixed partial schedule s1j ∈ S1, function fjk is minimized when

ck + akt
s
j = (fjk − fj) is minimum. So, finding the best s2k complementing a

given s1j is equivalent to identifying the minimal function (fjk − fj) for the

value tsj associated to s1j . Figure 3a gives an example of (fjk − fj) functions
for all values of tsj ∈ [d−

∑
i∈I1 pi; d].

(a) Evolution of (fjk − fj) over time (b) Intervals identification

Fig. 3 Contributions of partial schedules s2k ∈ S
+
2

We also re-index partial sequences s2k ∈ S
+
2 by increasing values of αk =

(ck+ak(d−
∑
i∈I1 pi)) =

∑
i∈s2

k
wi(Ei(s

2
k)+Ti(s

2
k))+

∑
i∈ε2

k
wi
∑
i∈I1 pi. Then,

we remove all s2k such that αk ≥ αk−1 and ak ≥ ak−1, since in that case
ck + akt

s
j ≥ ck−1 + ak−1t

s
j holds for any tsj value. This preprocessing step

implies that functions (fkj−fj) and (fk−1,j−fj) intersect. Figure 3b shows an
update of Figure 3a after the preprocessing on S+2 . By means of Algorithm 1 it
is possible to compute couples (T`, s

2
π(`)) with the meaning that whenever tsj ∈

[T`;T`+1[, partial schedule s2π(`) leads to the complete schedule s = s1j//s
2
π(`)

with minimum cost. Here, π(`) is the number of the sequence s2k associated to
the `-th time interval [T`;T`+1[.
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Algorithm 1 Computation of time intervals on S+2
1: T1 = (d−

∑
i∈I1

pi), T2 = d;

2: A+ = {(T1; s21), (T2; ∅)};
3: for k = 2..|S+2 | do
4: Let (T|A+|−1; s2

π(|A+|−1)
) be the couple in position (|A+| − 1) in A+;

5: if (ck + akd < cπ(|A+|−1) + aπ(|A+|−1)d) then

6: Apply a dichotomic search over A+ to identify (T`; s
2
π(`)

) such that:

7:
(
cπ(`) + aπ(`)T`+1 ≥ ck + akT`+1

)
and

(
ck + akT` ≥ cπ(`) + aπ(`)T`

)
;

8: Remove from A+ all couples (Tp; s2
π(p)

), ∀p = `+ 1, ..., |A+|;
9: Add in A+ (at the end) couples (T`+1 =

c`−ck
ak−a`

; s2k) and (T`+2 = d; ∅);
10: end if
11: end for
12: Return A;

Figure 4 illustrates how Algorithm 1 works. The initialization of set A+

consists in determining couples (T1 = (d −
∑
i∈I1 pi); s

2
1) and (T2 = d; ∅).

Next, each partial schedule s2k is iteratively considered in order to update set
A+ (lines 3-11). Two situations may occur (lines 4-5):

1. either function (fjk − fj) intersects in [d −
∑
i∈I1 pi; d] some function

(fjπ(`) − fj) corresponding to partial schedule s2π(`) ∈ A
+,

2. or it does not intersect in [d−
∑
i∈I1 pi; d] any function.

In the first case, by a dichotomic search over A+, the time interval [T`;T`+1]
on which (fjk− fj) intersects (fjπ(`)− fj) is determined (lines 6-7). Then, the
update of set A is done by removing some couples and add two new ones (Fig-
ures 4a and 4b). In the second case (Figure 4c) no modifications are done on A.

Proposition 2 Algorithm 1 runs in the worst-case in O∗(2n
2 ) time and re-

turns at most (2
n
2 + 1) couples (T`; s

2
π(`)).

Proof The worst-case time complexity is given by the number of loops in
Algorithm 1 multiplied by the complexity of doing one loop. First, notice that
lines 8-9 can be done in constant time by making use of appropriate data
structures. The dichotomic search in lines 6-7 is done at most in O(log(|S+2 |))
time. As there are at most 2

n
2 partial schedules s2k in S+2 , the total running

time of the algorithm is in O∗(|S+2 | log(|S+2 |))=O∗(2
n
2 ).

The cardinality of set A+ is at most (2
n
2 +1) which is achieved when all partial

schedules in S+2 lead to an update of A+ (lines 6-9) and when the dichotomic
search systematically returns ` = (|A+| − 1).

For any given s1j ∈ S1, searching the best complement s2k ∈ S
+
2 is then

equivalent to searching in set A+ which is sorted by increasing values of T`:
this relates to the search of the value T` such that T` ≤ tsj ≤ T`+1, and

then s2π(`) is the searched solution. Noteworthy, the search in S−2 requires to

compute the set A− in a way similar to Algorithm 1. The global Sort & Search
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(a) First iteration: set A+ is updated (b) Second iteration: set A+ is updated

(c) Third iteration: set A+ is not updated

Fig. 4 Illustration of Algorithm 1

algorithm for solving the 1|di = d ≥
∑
i pi|

∑
i wi(Ei +Ti) problem is given in

Algorithm 2.

Theorem 1 Algorithm 2 solves the 1|di = d ≥
∑
i pi|

∑
i wi(Ei +Ti) problem

in O∗(2n
2 ) time and space in the worst case.

Proof As each set I1 and I2 has n
2 jobs, the building of sets S1, S+2 and S−2

requires O∗(2n
2 ) time by a brute force enumeration algorithm. Notice that,

for each partial schedule s1j ∈ S1, we compute in polynomial time tsj and

fj =
∑
i∈s1

j
wi(Ei(s

1
j ) + Ti(s

1
j )). Besides, for each s2k ∈ S

+
2 ∪ S

−
2 we compute

in polynomial time ak =
∑
i∈τ2

k
wi −

∑
i∈ε2

k
wi and ck =

∑
i∈s2

k
wi(Ei(s

2
k) +

Ti(s
2
k)) + d(

∑
i∈ε2

k
wi −

∑
i∈τ2

k
wi) +

∑
i∈τ2

k
wi
∑
i∈I1 pi. This also implies that

the space required for storing these three sets is in O∗(2n
2 ). Computation of

sets A+ and A− can also be done in O∗(2n
2 ) time and space.

Let us turn to the search phase of the algorithm. For each s1j ∈ S1 we perform

two dichotomic searches requiring each at most O(log(2
n
2 )) = O(n) time. As

we have |S1| ≤ 2
n
2 , the search phase requires at most O∗(2n

2 ) time.
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Algorithm 2 Solution of the 1|di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) problem

1: {Sort phase}
2: Let I1 = {1, . . . , n

2
} and I2 = {n

2
+ 1, . . . , n};

3: Compute sets S1, S+2 and S−2 ;
4: Compute set A+ (Algorithm 1) and set A−;
5: {Search phase}
6: Let s∗ = ∅ and f∗ = +∞;
7: for s1j ∈ S1 do

8: Apply a dichotomic search over A+ to identify (T`; s
2
π(`)

) such that:

9: T` ≤ tsj ≤ T`+1;

10: if (
∑

i
wi(Ei(s

1
j//s

2
π(`)

) + Ti(s
1
j//s

2
π(`)

) < f∗) then

11: s∗ = s1j//s
2
π(`)

and f∗ =
∑

i
wi(Ei(s

1
j//s

2
π(`)

) + Ti(s
1
j//s

2
π(`)

);

12: end if
13: Apply a dichotomic search over A− to identify (Th; s2

π′(h)) such that:

14: Th ≤ tsj ≤ Th+1;

15: if (
∑

i
wi(Ei(s

1
j//s

2
π′(h)) + Ti(s

1
j//s

2
π′(h)) < f∗) then

16: s∗ = s1j//s
2
π′(h) and f∗ =

∑
i
wi(Ei(s

1
j//s

2
π′(h)) + Ti(s

1
j//s

2
π′(h));

17: end if
18: end for
19: Return s∗ and f∗;

3 Identical parallel machines scheduling

We consider in this section the problem with a set of m identical parallel
machines available to process the jobset. We propose an exponential-time al-
gorithm using the one proposed in section 2 and exploit a machine decomposi-
tion scheme introduced by Lenté et al. (2014) for the minimization of regular
costs functions. The latter is introduced hereafter as a dynamic programming
algorithm across subsets and machines. For the sake of presentation, assume
that there exists an integer value µ such that m = 2µ (in case of m 6= 2µ a
similar dynamic program holds requiring, however, heavier and more tedious
notation). Let (Pt), 1 ≤ t ≤ µ = log2(m), be the scheduling problem ob-
tained by considering only the first 2t machines. As machines are identical,
for any t = 1, ..., µ, scheduling jobset S ⊆ {1, ..., n} on the last 2t machines is
equivalent to schedule them on the first 2t machines.

Let us focus on the dynamic programming scheme which enumerates across
subsets and machines, and we denote by Opt[t, S] the optimal solution value
of problem (Pt) for jobset S ⊆ {1, ..., n}. We have the following recursive
functions:

Opt[t, S] = minS′⊆S(Opt[t− 1, S′] +Opt[t− 1, S\S′]), ∀t = 1, ..., µ,
∀S ⊆ {1, ..., n}, (1)

Opt[t, ∅] = 0, ∀t = 0, ..., µ. (2)

The optimal solution of the P |di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) problem is

obtained by computing Opt[µ, {1, ..., n}]. Besides, notice that Opt[0, S] relates
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to the solution of the 1|di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) with jobset S, which

can be done by means of the Sort & Search algorithm introduced in section 2.

Algorithm 3 Solution of the P |di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) problem

1: for S ⊆ {1, ..., n} do
2: Apply Algorithm 2 on set S and let s∗1 be the optimal solution obtained;

3: Opt[0, S] =
∑

i
wi(Ei(s

∗
1) + Ti(s

∗
1));

4: end for
5: Compute f∗ = Opt[µ, {1, ..., n}] by means of the recursive functions (1, 2) and deduce

the corresponding solution s∗;
6: Return s∗ and f∗;

Theorem 2 Algorithm 3 solves the P |di = d ≥
∑
i pi|

∑
i wi(Ei+Ti) problem

in O∗(3n) time and O∗((1 +
√

2)n) space in the worst case.

Proof The first part of Algorithm 3 consists in solving all possible single ma-
chine problems for any subset S ⊆ {1, ..., n}. Thus, the required time com-
plexity is bounded by: ∑n

k=0

(
n
k

)
(
√

2)k = (1 +
√

2)n,

by Newton’s binomial theorem. Then, the first part of Algorithm 3 runs in
O∗((1 +

√
2)n) time. The space requirement is also in O∗((1 +

√
2)n).

The second part consists in computing recursively the value of Opt[µ, {1, ..., n}]
through an enumeration of all subsets S on all problems (Pt). For a given value
t, we count the number of problems Opt[t− 1, S′] that have to be solved. For
a given k we have

(
n
k

)
possible sets S of size k, and so

(
n
k

)
2k subsets S′ ⊆ S.

Then, for a given t value, the number of problems Opt[t− 1, S′] to consider is
equal to: ∑n

k=0

(
n
k

)
2k = 3n

by Newton’s binomial theorem. As there are log2(m) values of t, the worst-case
time complexity of the dynamic programming phase is in O∗(3n) time. As we
need to store in memory the values of Opt[t, S], the space requirement is in
O∗(2n).

To conclude this section, notice that Algorithm 3 can be slightly adapted to
solve the problem with uniform parallel machines and unrelated parallel ma-
chines. Consider the more general problem with unrelated parallel machines,
then pi,j refers to the processing time of job i when processed by machine j.
The dynamic programming phase is still valid but needs to be rewritten as
follows:

Opt[tmin, tmax, S] =
minS′⊆S(Opt[tmin, b tmin+tmax

2 c, S′] +Opt[d tmin+tmax

2 e, tmax, S\S′]),
∀1 ≤ tmin ≤ tmax ≤ µ, ∀S ⊆ {1, ..., n},

Opt[tmin, tmax, ∅] = 0, ∀0 ≤ tmin ≤ tmax ≤ µ,
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with Opt[tmin, tmax, S] the problem of scheduling jobset S on the set of ma-
chines {2tmin ; ....; 2tmax}. Then, the single machine problems appear whenever
tmin = tmax. The first phase of Algorithm 3 has to be adjusted by applying
the Sort & Search algorithm on instances with processing times corresponding
to the considered machine. Correspondingly, the following corollary holds.

Corollary 1 The R|di = d ≥
∑
i pi|

∑
i wi(Ei + Ti) problem can be solved in

O∗(3n) time and O∗((1 +
√

2)n) space in the worst case.

4 Conclusions and future directions

This paper focuses on the solution, by exact exponential-time algorithms, of
just-in-time scheduling problems when jobs have symmetric earliness/tardiness
weights and share a non restrictive common due date. For the single machine
problem, a Sort & Search algorithm is proposed with worst-case time complex-
ity in O∗(1.4143n). For the case of parallel machines, an algorithm integrating
a dynamic programming algorithm across subsets and machines and the above
Sort & Search algorithm is proposed with worst case time and space complex-
ities in O∗(3n). To the best of our knowledge, these are the first worst-case
complexity results obtained for non regular criteria in scheduling. Usually,
minimizing such criteria implies the solution of an optimal timing problem
(calculation of optimal job starting times) in addition to the problem of as-
signing and sequencing jobs to machines. However, we show that due to the
structure induced by the common due date and the presence of symmetric
weights, the optimal timing problem can be taken into account in the Sort &
Search approach by building data structures integrating a temporal dimension.
This is unconventional with respect to the classic Sort & Search approach of
Horowitz and Sahni (1974).
Just-in-time scheduling problems seem to be very challenging problems, in the
context of exact exponential-time algorithms. The presence of optimal timing
problems creates an extra complexity which is not easy to take into account.
It could be then very interesting to investigate the existence of worst-case time
and space complexity results for problems with arbitrary weights and/or due
dates.

Acknowledgement This work has been partially supported by ”Ministero
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