
HAL Id: hal-03001059
https://hal.science/hal-03001059

Submitted on 7 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A tight linear time13/12 13 12 -approximation algorithm
for the P 2 | | C max problem

Federico Della Croce, Rosario Scatamacchia, Vincent t’Kindt

To cite this version:
Federico Della Croce, Rosario Scatamacchia, Vincent t’Kindt. A tight linear time13/12 13 12 -
approximation algorithm for the P 2 | | C max problem. Journal of Combinatorial Optimization,
2019, 38 (2), pp.608-617. �10.1007/s10878-019-00399-w�. �hal-03001059�

https://hal.science/hal-03001059
https://hal.archives-ouvertes.fr

A tight linear time 13
12-approximation algorithm

for the P2||Cmax problem

Federico Della Croce∗ † Rosario Scatamacchia ‡

Vincent T’kindt §

Abstract

We consider problem P2||Cmax where the goal is to schedule n
jobs on two identical parallel machines to minimize the makespan.
We focus on constant factor approximation algorithms with complex-
ity independent from the required accuracy. We exploit the famous
Longest Processing Time (LPT) rule that requires to sort jobs in non-
ascending order of processing times and then to assign one job at a
time to the machine whose load is smallest so far. We propose an
approximation algorithm that applies LPT to a subset of 2k jobs,
then considers a single step of local search on the obtained subsched-
ule and finally applies list scheduling to the remaining jobs. This
algorithm, when applied for k = 5, reaches a tight 13

12 -approximation
ratio improving the ratio of 12

11 proposed by He et al. in 2000. We use
Mathematical Programming to analyze the approximation ratio of our
approach. As a byproduct, we also show how to improve the FPTAS
of Sahni for any n > 1/ε so as to reach an approximation ratio (1 + ε)
with time complexity O(n+ 1

ε3
).

Keywords: Two Identical Parallel Machines Scheduling; Makespan; LPT
rule; Mathematical Programming; Approximation.

1 Introduction

We consider the problem of scheduling n jobs on 2 identical parallel ma-
chines M1 and M2 to minimize the makespan Cmax. Each job j is defined by

∗DIGEP, Politecnico di Torino, Italy, federico.dellacroce@polito.it
†CNR, IEIIT, Torino, Italy
‡DIGEP, Politecnico di Torino, Italy, rosario.scatamacchia@polito.it
§Université Francois-Rabelais, Laboratoire d’Informatique Fondamentale et Appliquée

(EA 6300), ERL CNRS 7002, Tours, France, tkindt@univ-tours.fr

1

a processing time pj and is required to be executed by one of the machines.
We denote by cj the completion time of job j in any given schedule and we
have Cmax = max

1≤j≤n
(cj). Using the standard three–field notation ([12]) this

problem is denoted by P2||Cmax. It is NP-hard in the ordinary sense.

We tackle problem P2||Cmax from the approximation point of view. For
any problem instance, we denote by C∗max the optimal makespan and by CX

max

the makespan provided by a generic algorithm X. We say that algorithm X
has approximation ratio ρ ≥ 1, if CX

max ≤ ρ · C∗max for every instance of
P2||Cmax.

A pioneering approximation algorithm for this problem is the Longest Pro-
cessing Time (LPT) rule proposed by Graham ([11]) for the more general
P ||Cmax problem with m machines. It requires to sort the jobs in non-
ascending order of their processing times pj (j = 1, . . . , n) and then to assign
one job at a time to the machine whose load is smallest so far. This assign-
ment of jobs to machines is also known as List Scheduling (LS). LPT has
time complexity of O(n log n) due to the initial sorting of the jobs. Several
properties have been established for LPT in the last decades [3, 5, 8, 11].
LPT generally exhibits much better performance in practice than the ex-
pected theoretical approximation ratios, especially as the number of jobs
gets larger. Due to its simplicity and practical effectiveness, LPT became
a cornerstone for the design of more involving exact or heuristic algorithms
for problem P ||Cmax. Very recently, a revisiting of the LPT rule has been
proposed in [10].

We mention other popular approximation algorithms which exploit connec-
tions of P ||Cmax with bin packing: Multifit [7], Combine [20] and Listfit [13].
Such algorithms provide better worst case performance than LPT but at the
cost of higher running times. Also, Polynomial Time Approximation Schemes
(PTASs) were derived for the problem. The first PTAS was given Hochbaum
and Shmoys ([16]). PTASs with improved running times were then provided
in [2], [15], [17] and in [18]. In [22], a Fully Polynomial Time Approxima-
tion Scheme (FPTAS) was devised for P2||Cmax (and for the more general
Pm||Cmax, if the number of machines is fixed) which solves the problem with
accuracy (1 + ε) in time O(n2/ε). Such algorithms provide better worst case
performance than LPT but at the cost of higher running times. The cur-
rent best performing algorithm for P2||Cmax running with polynomial time
complexity independent from the accuracy and providing a constant approx-
imation ratio of 12

11
was presented in [14], while an approximation algorithm

2

with ratio limited to 9
8

was given in [10].

In this paper, we propose an approximation algorithm with a constant ratio
that first applies LPT to a subset of 2k jobs, then considers a single step of
local search on the obtained subschedule and finally applies list scheduling
to the remaining jobs. This algorithm, when applied for k = 5, reaches a
tight 13

12
-approximation ratio improving the ratio of 12

11
established in [14]. We

use Mathematical Programming (MP) to analyze the approximation ratio of
our approach. In a sense, the proposed approach resembles the reasoning
employed in [21], where several LPs were used to determine the worst case
approximation ratio of LPT rule on two uniform machines, and the reasoning
in [10] where theoretical results were derived by means of Mathematical Pro-
gramming techniques. Also, recently a growing attention has been given to
Mathematical Programming as an alternative to mainstream proof systems
based on analytical derivation (see, e.g., [1], [6], [9]). Finally, in Section 3, we
show how to improve the running time of the FPTAS of Sahni ([22]) under
mild restrictions.

2 A linear time 13
12-approximation algorithm

2.1 Preliminaries

We consider the jobs are sorted by non-ascending values of their processing
time, i.e. pj ≥ pj+1, j = 1, . . . , n − 1. We denote by critical the job that
provides the makespan of a given schedule. The following proposition holds.

Proposition 1. Consider a given algorithm H that assigns jobs 1, ..., 2k to
the machines according to some policy and then applies LS to the remaining
jobs 2k + 1, ..., n. If the critical job j is such that j ≥ 2k + 1, then

CH
max

C∗max

≤ 1 +
1

2(k + 1)
= ρ

.

Proof. Assume w.l.o.g. that j is assigned to machine M1 and denote by t2 the
completion time of machine M2 before processing jobs j, ..., n. Then, as j is
scheduled according to LS, we have CH

max−pj ≤ t2 and CH
max+t2 =

∑j
i=1 pi ≤∑n

i=1 pi ≤ 2C∗max. Correspondingly, we have 2CH
max−pj ≤ CH

max+t2 ≤ 2C∗max,

that is CH
max ≤ C∗max +

pj
2

. Hence, we have CH
max

C∗max
≤ C∗max+

pj
2

C∗max
= 1 +

pj
2C∗max

.
Besides, as j ≥ 2k + 1, in the optimal solution, one of the machines will be

3

assigned at least (k + 1) jobs with processing time not inferior to pj, that is
C∗max ≥ (k + 1)pj. But then

CH
max

C∗max

≤ 1 +
pj

2C∗max

≤ 1 +
pj

2(k + 1)pj
= 1 +

1

2(k + 1)
= ρ.

The following corollary immediately follows.

Corollary 1. Given a problem P1 with n jobs, consider the subproblem Pred
with the first 2k jobs only. If problem Pred is solved by an algorithm with
approximation ratio 1 + 1

2(k+1)
, then the same approximation ratio holds for

P1 by applying LS to the remaining subset of jobs.

Proof. Indeed, if the critical job in P1 ∈ {1, ..., 2k}, the approximation ratio
cannot be superior to (1 + 1

2(k+1)
). Besides, if the critical job in P1 ∈ {2k +

1, ..., n}, then the result of Proposition 1 holds.

Remark 1. In [11], a somewhat similar result was proved (and generalized
to m machines) stating that, if problem Pred is solved to optimality, then the
approximation ratio 1 + 1

2(k+1)
holds for P1 by applying LS to the remaining

subset of jobs. We remark, however, that requiring to solve problem Pred to
optimality makes such algorithm inapplicable as soon as k becomes non neg-
ligible. For this reason, it has always been considered of interest, well after
the publication of the findings in [11], to determine low complexity polyno-
mial time algorithms providing constant time approximation ratio (see, for
instance, the work in [14]).

2.2 The approximation algorithm

We now turn to the presentation of a 13
12

-approximation algorithm (Algorithm
A1) which combines the LPT rule with a simple local search.

Algorithm A1

1: Input: An instance I with n jobs and 2 machines, a parameter k.
2: Select the 2k largest processing time jobs of instance I inducing a reduced

instance I ′ and apply LPT to I ′ obtaining schedule S ′.
3: Search for the best swap SW 1

i,j (if any) between any job i on machine
M1 and any job j on machine M2 that improves the makespan of S ′.

4: Search for the best swap SW 2
i,j,k (if any) between any job i on machine

M1 and any pair of jobs j, k on machine M2 that improves the makespan
of S ′.

4

5: Search for the best swap SW 3
i,j,k (if any) between any job i on machine

M2 and any pair of jobs j, k on machine M1 that improves the makespan
of S ′.

6: Apply the best swap (among SW 1
i,j, SW

2
i,j,k, SW

3
i,j,k) to S ′ reaching sched-

ule S
′′
.

7: Given S
′′
, apply LS to the remaining (n−2k) jobs and return the complete

schedule.

In practice, Algorithm A1 applies first LPT to the reduced instance I ′ com-
posed by the 2k largest jobs yelding subschedule S ′. Then, a single step of
local search between pairs or triples of jobs is applied to I ′ yelding subsched-
ule S

′′
. Finally, starting from S

′′
, LS is applied to the remaining (n − 2k)

jobs.

Proposition 2. Algorithm A1 runs with complexity O(k2 log k + n).

Proof. We proceed by analyzing the execution time of each step of the al-
gorithm. It is well known that finding the k − th element in a vector of
n elements can be done in linear time by adapting the median algorithm
in [4]. Correspondingly, determining the largest 2k processing times can be
done in O(n) time. Step 2 requires then O(n+ k log k) due to the additional
application of LPT to instance I ′. Computing the best swap between two
jobs in Step 3 can be done in O(k) by means of the following procedure.
Denote by δ the difference between the completion times of the critical and
non-critical machine and by di,j the difference in processing time produced
by SW 1

i,j for any jobs i and j. Notice also that jobs are ordered by non-
ascending processing time on both machines due to the application of LPT
at Step 2. We first seek for swaps with di,j as close as possible to δ

2
by cou-

pling the first job i (= 1) on the critical machine with jobs j = 1, 2, . . . on
the non-critical machine as long as 0 ≤ di,j ≤ δ

2
. This determines the best

job j, say job j′, for the first job i. Then, we analyze the next possible swap
by considering the second largest job on the critical machine (i = 2) and
jobs j ≥ j′ + 1 on the non critical machine. After processing all jobs on the
non-critical machine, we then re-apply the same procedure where, for a given
candidate i, we look for the first job j such that di,j >

δ
2
. Overall, the best

swap SW 1
i,j is found in O(k). In Step 4, we first compute and sort by non-

ascending order of processing times all pairs (j, k) of jobs on the non-critical
machine in O(k2 log k). Then, we can apply the same procedure of Step 3 by
comparing jobs on the critical machine with the array of O(k2) processing
time entries of the ordered pairs of jobs (j, k). Therefore, the execution time
of Step 4 is in O(k2 log k). A similar reasoning also applies in Step 5. In
Step 7, LS runs with complexity O(n). The overall time complexity is hence
O(k2 log k + n).

5

Theorem 1. Algorithm A1 applied to the largest jobs 1, 2, ..., 10 (where dummy
jobs with null processing times are added if n < 10), i.e. with parameter
k = 5, reaches a tight 13

12
-approximation ratio.

Proof. If n < 10, it is immediate to see that an equivalent instance with
10 jobs exists by adding 10 − n dummy jobs with null processing times. If
n > 10, then, due to Corollary 1, it is sufficient to show that steps 2 − 6
of Algorithm A1 applied to the largest 2k = 10 jobs provide approximation
ratio not superior to 1 + 1

2(k+1)
= 13

12
. To this extent, we rely on Mathemati-

cal Programming to evaluate the worst-case performance ratio of Algorithm
A1 on any instance with up to 10 jobs. We propose a complete enumera-
tion approach that considers all possible LPT sequences, denoted by SLPTi ,
where by construction job 1 is assigned to machine M1, while jobs 2 and
3 are assigned to M2. Correspondingly, LPT rule may generate 27 = 128
possible different SLPTi sequences depending on the processing times values,
where the makespan may be either on M1 or on M2. Similarly, we consider
all possible optimal SOPTj sequences where, without loss of generality, we
assume job 1 is assigned to M1. Correspondingly, 29 = 512 possible different
sequences may be optimal. Actually, this value can be reduced to 260 by
eliminating all dominated jobs assignments. For instance, the assignment of
jobs 1, . . . , 5 to M1 and jobs 6, . . . , 10 to M2 is always dominated by the as-
signment of jobs 1, . . . , 4, 6 to M1 and jobs 5, 7, . . . , 10 to M2 as in both cases
the makespan is on machine M1 and p1+p2+p3+p4+p5 ≥ p1+p2+p3+p4+p6.

For every pair SLPTi , SOPTj of candidate solutions (for a total of 260x128
pairs), we generate two LP models (taking into account whether the makespan
of LPT is either on M1 or on M2) that search for the jobs processing times
that maximize the makespan determined by Algorithm A1 provided that the
optimal makespan is not superior to a given constant value denoted by C∗

where, without loss of generality, we may arbitrarily set C∗ = 1: any other
assignment C∗ = α would simply scale by a factor α the related process-
ing times values and correspondingly the objective function value without
affecting the approximation ratio.

More precisely, we consider an MP formulation with non-negative variables
pj (j = 1, . . . , 10) denoting the processing times, non-negative variables CM1

max

and CM2
max representing the completion time of M1 and M2, respectively, in

the LPT schedule and a non-negative variable δ representing the difference
between the above completion times. Finally, we introduce a non-negative
variable δ̂ representing the maximum among the improvements reachable by
the best possible swaps SW 1

i,j, SW
2
i,j,k and SW 3

i,j,k, respectively, determined
in steps 3− 5 of Algorithm A1.

6

The processing times must satisfy the list scheduling constraints of the LPT
solution and the requirement that the optimal makespan cannot exceed the
constant parameter. Further constraints connecting variables pj and δ̂ are
also induced by the swaps considered in Steps 3-5 of Algorithm A1. We
consider here the case where LPT gives the makespan on M1. Hence, the
objective function value is given by the difference (CM1

max− δ̂) to be maximized
as we search for the worst-case. Let us denote by wk,` a 0/1 coefficient
indicating if job ` is assigned to machine Mk in sequence SLPTi . Similarly, let
us denote by w∗k,` a 0/1 coefficient indicating if job ` is assigned to machine

Mk in the optimal sequence SOPTj . The following model is implied:

Maximize (CM1
max − δ̂) (1)

pj ≥ pj+1 j = 1, . . . , 9 (2)

`−1∑
j=1

w1,jpj ≤
`−1∑
j=1

w2,jpj , ∀2 ≤ ` ≤ 10 | w1,` = 1 (3)

`−1∑
j=1

w2,jpj ≤
`−1∑
j=1

w1,jpj , ∀2 ≤ ` ≤ 10 | w2,` = 1 (4)

10∑
j=1

w∗1,jpj ≤ C∗ (5)

10∑
j=1

w∗2,jpj ≤ C∗ (6)

CM1
max =

10∑
j=1

w1,jpj (7)

CM2
max =

10∑
j=1

w2,jpj (8)

δ = CM1
max − CM2

max (9)

δ̂ ≥ min{pi − pj , δ − pi + pj}, ∀i < j | w1,i = w2,j = 1 (10)

δ̂ ≥ min{pi − pj − pk, δ − pi + pj + pk}, ∀i, j < k | w1,i = w2,j = w2,k = 1 (11)

δ̂ ≥ min{pi + pj − pk, δ − pi − pj + pk} ∀i < j, k | w1,i = w1,j = w2,k = 1 (12)

pj ≥ 0 j = 1, . . . , 10 (13)

δ, δ̂, CM1
max, C

M2
max ≥ 0 (14)

Here constraints (2) ensure that jobs are ordered by non-increasing process-
ing times. Constraints (3) and (4) impose to the pj variables the fulfillment
of the List Scheduling requirement. Also, constraints (5) and (6) require
that the completion times of both machines in the optimal solution is not
superior to the optimal makespan C∗max. Then, constraint (7) indicates that
the completion time of the critical machine is given by the sum of the pro-
cessing times of the jobs assigned to that machine. Similarly, constraint

7

(8) provides the same information for the non-critical machine. Constraint
(9) indicates that δ is the difference between the completion times of the
two machines. Constraints (10)–(12) indicate that δ̂ must be not inferior to
the value of the largest possible improvement reachable by the best possible
swaps SW 1

i,j, SW
2
i,j,k and SW 3

i,j,k, respectively. Notice that for conciseness
we kept in constraints (10)–(12) a non-linear min notation that can be easily
transformed into sets of linear constraints by means of big-M coefficients and
the introduction of dedicated 0/1 variables. We report in Appendix 5 the
explosion of constraint (10). A similar reasoning is employed in the modeling
of constraints (11)–(12) which is omitted in the paper for sake of conciseness.

Finally, constraints (13) and (14) indicate that all variables are non-
negative. Thus, the MP model to be solved turns out to be a MILP for-
mulation.

Then, by iterating (twice, in order to handle the makespan of LPT either on
M1 or on M2) the solution of the MILP model on all possible pairs SLPTi ,
SOPTj and taking the maximum value, we get the worst-case instance with
up to 10 jobs.

After solving 2 x 260 x 128 = 66560 MILP models1, we found that the worst-
case is reached by the following example with vector of processing times
{7/12, 5/12, 1/6, 1/6, 1/6, 1/6, 1/6, 1/6, 0, 0}. An LPT solution assigns jobs
1, 4, 6, 8 to M1 and jobs 2, 3, 5, 7, 9, 10 to M2 and has makespan = 13/12.
Any swap of the type indicated in Steps 2-6 of A1 does not lead to improve-
ment. The optimal solution assigns jobs 1 and 2 to one machine and jobs
3, ..., 10 to the other machine reaching makespan =1. Correspondingly, the
approximation ratio is 13

12
.

We can also state the following side result for algorithm A1 applied to problem
P2||

∑2
i=1(CMi

)2 where CMi
refers to the completion time of the last job

processed on Mi and the goal is to minimize the sum of the squares of the
machine completion times.

Corollary 2. For any P2||
∑2

i=1C
2
Mi

instance, algorithm A1 has a tight
145
144

-approximation ratio.

1All LPTs with related optimal sequences, the generation code of model (1)-
(14) embedding the extended linear formulation of constraints (10)–(12) and tak-
ing in input a given pair SLPT

i , SOPT
j and the MILP model to which corre-

sponds the worst-case instance are available at: https://drive.google.com/open?id=

1IdII7LoSHhYPbmupRCTpThnmuSt-35gi.

8

Proof. As indicated in [23], problems P2||Cmax and P2||
∑2

i=1C
2
Mi

are equiva-
lent. Correspondingly, the tight instance provided above for problem P2||Cmax

constitutes also a worst-case instance for problem P2||
∑2

i=1C
2
Mi

. Since
for this instance we have CM1 = 13

12
, CM2 = 11

12
in the LPT schedule and

CM1 = CM2 = 1 in the optimal solution, the approximation ratio of Algo-

rithm A1 is
(13
12

)2+(11
12

)2

1+1
= 145

144
.

We remark that the result of Corollary 2 improves upon the approximation
ratio of 50

49
derived in [19].

3 Improving the FPTAS of Sahni

By exploiting Proposition 1 and Corollary 1, it is possible to improve upon the
time complexity of O(n2/ε) of the FPTAS proposed by Sahni ([22]). Consider
a simple procedure that first runs the FPTAS in [22] to the subinstance only
composed by the largest 2k jobs, with k = d 1

2ε
− 1e. Then, LS is applied to

the remaining subset of jobs. The following proposition holds.

Proposition 3. Given a P2||Cmax instance with n jobs, an approximation
ratio (1 + ε) can be reached with complexity O(1

ε3
+ n) for all n > 1/ε.

Proof. As the proposed procedure sets k = d 1
2ε
−1e, the results of Proposition

1 and Corollary 1 guarantee an approximation ratio 1 + 1
2(k+1)

≤ 1 + ε. To
bound the running time, notice that the FPTAS is applied to the subset of 2k

jobs, with k = d 1
2ε
− 1e, thus yielding a time complexity of O((2k)

2

ε
) = O(1

ε3
).

The additional linear contribution of n to the time complexity is due to the
running of LS.

We remark that the difference in terms of complexity of the proposed proce-
dure, with respect to the FPTAS in [22], can be extremely large if n >> 1

ε
.

For instance, with n = 10000 and ε = 0.01, while the FPTAS in [22] runs in
O(n

2

ε
) = O(1010), we get a time complexity of O(1

ε3
+n) = O(106 + 104) that

represents a difference of more than 4 orders of magnitude.

4 Conclusions

We considered problem P2||Cmax and showed that the well-known LPT rule
followed by a single step of local search reaches in linear time a tight 13

12
-

approximation ratio. As a byproduct, we also showed that for any n > 1/ε
an approximation ratio (1 + ε) can be reached by means of an algorithm
running with complexity O(n+ 1

ε3
).

9

In our analysis we deployed an approach relying on Mixed Integer Linear
Programming modeling. The proposed MILP reasoning could be considered
a valid alternative to techniques based on analytical derivation. An attempt
in this direction has been recently proposed in [9] for a multiperiod variant
of the knapsack problem. Due to the implications of Proposition 1, a gener-
alization of the proposed approach for larger values of k, possibly combining
LPT and other basic greedy rules such as, for instance, Multifit followed by
a single step of local search, may possibly induce further improvement of the
current result and is, therefore, definitely worthy of future investigation.

Acknowledgement This work has been partially supported by ”Ministero
dell’Istruzione, dell’Università e della Ricerca” Award ”TESUN-83486178370409
finanziamento dipartimenti di eccellenza CAP. 1694 TIT. 232 ART. 6”.

References

[1] M. Abolhassani, T. -H Hubert. Chan, F. Chen, H. Esfandiari, M. Haji-
aghayi, M. Hamid, and X. Wu. Beating Ratio 0.5 for Weighted Obliv-
ious Matching Problems. In Piotr Sankowski and Christos Zaroliagis,
editors, 24th Annual European Symposium on Algorithms (ESA 2016),
volume 57, pages 3:1–3:18. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2016.

[2] N. Alon, Y. Azar, G. J. Woeginger, and Y. Yadid. Approximation
schemes for scheduling on parallel machines. Journal of Scheduling,
1:55–66, 1998.

[3] J. D. Blocher and D. Sevastyanov. A note on the Coffman–Sethi bound
for LPT scheduling. Journal of Scheduling, 18:325–327, 2015.

[4] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7:448–
461, 1973.

[5] B. Chen. A note on LPT scheduling. Operation Research Letters, 14:139–
142, 1993.

[6] M. Chimani and T. Wiedera. An ILP-based Proof System for the Cross-
ing Number Problem. In Piotr Sankowski and Christos Zaroliagis, ed-
itors, 24th Annual European Symposium on Algorithms (ESA 2016),
volume 57, pages 29:1–29:13. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2016.

10

[7] E. G. Coffman(Jr.), M. R. Garey, and D. S. Johnson. An application of
bin-packing to multiprocessor scheduling. SIAM Journal on Computing,
7:1–17, 1978.

[8] E. G. Coffman(Jr.) and Ravi Sethi. A generalized bound on LPT se-
quencing. Revue Francaise d’Automatique Informatique, Recherche Op-
erationelle Supplement, 10:17–25, 1976.

[9] F. Della Croce, U. Pferschy, and R. Scatamacchia. Approximation re-
sults for the incremental knapsack problem. In Combinatorial Algo-
rithms: 28th International Workshop, IWOCA 2017, volume 10765 of
Springer Lecture Notes in Computer Science, pages 75–87, 2018.

[10] F. Della Croce and R. Scatamacchia. The Longest Processing Time
rule for identical parallel machines revisited. Journal of Scheduling,
(forthcoming). DOI: 10.1007/s10951-018-0597-6.

[11] R. L. Graham. Bounds on multiprocessors timing anomalies. SIAM
Journal on Applied Mathematics, 17:416–429, 1969.

[12] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan. Optimization and approximation in deterministic sequencing and
scheduling: a survey. In P. L. Hammer, E. L. Johnson, and B. H.
Korte, editors, Discrete Optimization II, volume 5 of Annals of Discrete
Mathematics, pages 287 – 326. 1979.

[13] J. N. D. Gupta and A. J. Ruiz-Torres. A listfit heuristic for minimiz-
ing makespan on identical parallel machines. Production Planning &
Control, 12(1):28–36, 2001.

[14] Y. He, H. Kellerer, and V. Koto. Linear compound algorithms for the
partitioning problems. Naval Research Logistics, 47:593–601, 2000.

[15] D. S. Hochbaum, editor. Approximation Algorithms for NP-hard Prob-
lems. PWS Publishing Co., 1997.

[16] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algo-
rithms for scheduling problems theoretical and practical results. Journal
of the ACM, 34:144–162, 1987.

[17] K. Jansen. An eptas for scheduling jobs on uniform processors: using
an milp relaxation with a constant number of integral variables. SIAM
Journal on Discrete Mathematics, 24:457–485, 2010.

11

[18] K. Jansen, K. M. Klein, and J. Verschae. Improved efficient approxima-
tion schemes for scheduling jobs on identical and uniform machines. In
Proceedings of the 13th Workshop on Models and Algorithms for Plan-
ning and Scheduling Problems (MAPSP 2017), Seeon Abbey, Germany,
2017.

[19] C. Koulamas and G. J. Kyparisis. An improved delayed-start LPT al-
gorithm for a partition problem on two identical parallel machines. Eu-
ropean Journal of Operational Research, 187:660–666, 2008.

[20] C. Y. Lee and J. D. Massey. Multiprocessor scheduling: combining LPT
and MULTIFIT. Discrete Applied Mathematics, 20(3):233–242, 1988.

[21] P. Mireault, J. B. Orlin, and R. V. Vohra. A parametric worst-case anal-
ysis of the lpt heuristic for two uniform machines. Operations Research,
45(1):116–125, 1997.

[22] S. Sahni. Algorithms for scheduling independent tasks. Journal of the
ACM, 23:116–127, 1976.

[23] R. Walter. A note on minimizing the sum of squares of machine comple-
tion times on two identical parallel machines. Central European Journal
of Operations Research, 25:139–144, 2017.

5 Appendix: Extended linear formulation of

constraint (10)

A linear formulation of constraint 10 can be expressed by introducing for
each pair of jobs i, j the binary variables v′ij, v

′′
ij and v′′′ij . Variable v′ij is equal

to 1 iff pi − pj ≤ δ
2
, variable v′′ij is equal to 1 iff δ

2
< pi − pj ≤ δ and variable

v′′′ij is equal to 1 iff δ < pi − pj. Correspondingly, ∀i < j | w1,i = w2,j = 1,
the following set of big-M constraints (for a reasonable large value of M , e.g.
M = 1000) are introduced.

12

v′ij + v′′ij + v′′′ij = 1; (15)

δ

2
− pi + pj ≤Mv′ij (16)

−δ
2

+ pi − pj ≤M(1− v′ij) (17)

δ − pi + pj ≤M(v′ij + v′′ij) (18)

−δ + pi − pj ≤Mv′′′ij (19)

δ̂ ≥ pi − pj −M(1− v′ij) (20)

δ̂ ≥ δ − pi + pj −M(1− v′′ij) (21)

Indeed, constraint (15) indicates that either v′ij = 1, or v′′ij = 1 or v′′′ij = 1.

Then, if v′ij = 1, constraint (17) implies that pi − pj ≤ δ
2
. Correspondingly,

constraints (16, 18, 21) are inactive, while constraint (19) that implies that
pi − pj ≤ δ is dominated by constraint (17). Hence, the swap induces the

makespan reduction δ̂ = pi− pj through constraint (20) in combination with
the objective function (1).
Else, if v′′ij = 1, constraint (16) implies that pi−pj ≥ δ

2
, while constraint (19)

implies that pi − pj ≤ δ. Also, constraints (17, 18, 20) are inactive. Hence,
the binding constraint is in this case constraint (21) that is satisfied as an
equality, that is δ̂ = δ − pi + pj. Correspondingly, due to constraint (9), the
new makespan will be on machine M2 and its value in the objective function
(1) will be CM2

max + pi − pj.
Else, v′′′ij = 1. In this case, constraint (16) induces pi−pj ≥ δ

2
, and constraint

(18) induces pi−pj ≥ δ, that is swap will not occur as it can only worsen the
objective function value. Besides, constraints (17, 18, 20, 21) are inactive.
Correspondingly, as δ̂ must be positive or null, it has negative coefficient in
the objective function and is not further constrained, we have δ̂ = 0.

13

