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Abstract

This paper focuses on the Sort & Search method to solve a particular class
of single criterion optimization problems called Multiple Constraints Prob-
lems. This general method enables to derive exponential-time algorithms for
NP-hard optimization problems. In this paper this method is further ex-
tended to the class of Multicriteria Multiple Constraints Problems for which
the set of Pareto optima is enumerated. Then, the application of this new
method on some multicriteria scheduling problems is proposed leading to new
exponential-time algorithms for those problems.

Keywords. Multicriteria optimization, Exponential-time algorithms, Scheduling,
Sort & Search

1 Introduction

This paper deals with multicriteria optimization and exponential-time algorithms
with a special application focus to scheduling theory. Typically, scheduling prob-
lems consist in determining the optimal allocation of a set of jobs (or tasks) to
machines (or resources) over time. Since the mid 1950’s, scheduling problems have
been the matter of numerous researches leading today to a well-defined theory at
the crossroad of several research fields like operations research and combinatorial
optimization, computer science and industrial engineering. Many of the scheduling
problems dealt with in the literature are intractable problems, i.e. NP-hard as
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defined in complexity theory. Consequently, an optimal solution of such problems
can only be achieved by super-polynomial time algorithms (unless P = NP), the
design of which has been the matter of an important part of the literature over the
last decades. These algorithms are often referred to as exact exponential algorithms
whose worst-case time complexity can be expressed as O∗(cn) with c a constant, n
is the measure of input size, and the O∗ notation suppresses multiplicative factors
in the complexity, i.e., O∗(cn) = O(p(n)cn) where p(n) is a polynomial on n. The
interest in exponential-time algorithms relies on the desire of evaluating the com-
plexity of computing optimal solutions by answering to the question: “What is the
time I have to pay in the worst-case scenario?”.

As met in the literature, the solution of scheduling problems often involves the
minimization of a single criterion to optimize. However, in industrial scenarios, it
is very natural to have multiple criteria to optimize. The optimization of several
conflicting criteria relates to the general field of multicriteria optimization (Ehrgott,
2006). A comprehensive survey of multicriteria scheduling problems has been pro-
posed by T’kindt and Billaut (2006).

To the best of the authors’ knowledge, few studies on the existence of exact
exponential-time algorithms for scheduling problems can be found in the litera-
ture. For single criterion problems, the exceptions are due to the pioneering work
of Woeginger (2003) (also presented in the book of Fomin and Kratsch (2010)) who
presented some preliminary results on single machine scheduling problems. More
recently, Cygan et al. (2011), Lenté et al. (2011) and Lenté et al. (2014) have pro-
posed several exponential-time algorithms for a set of classic scheduling problems.
Some results on flowshop scheduling and single machine scheduling have been pro-
posed by Shang (2017), Shang et al. (2017) and by Garraffa et al. (2018). Jansen
et al. (2013) provided some results, under the Exponential Time Hypothesis, on the
existence of lower bounds on the worst-case time complexities of some scheduling
problems. Also notice that fixed-parameter algorithms, whose worst-case complex-
ity are dependent on additional parameters, are closely related to exponential-time
algorithms. Some recent results for scheduling problems have been proposed by
Mnich and Wiese (2015), Knop et al. (2017), Knop and Koutecky (2018) and Mnich
and van Bevern (2017). For multicriteria scheduling problems, very few results can
be found. Carraway et al. (1990) generalized dynamic programming to solve mul-
ticriteria problems. The Pareto solutions are constructed from Pareto solutions of
subpoblems. For an extended review of techniques related to exponential-time al-
gorithms, we refer the reader to the book of Fomin and Kratsch (2010). Apart from
the field of scheduling, exponential-time algorithms have been largely considered for
graph or decision problems, but at most when a single criterion is optimized. To the
best of our knowledge, no results are known for multicriteria optimization problems.

Lenté et al. (2013) extended the classic Sort & Search method to solve a class
of problems referred to as Multiple Constraints Problems (MCP ). They illustrated
the application of the extended method to a set of scheduling problems with a single
machine, parallel machines or in a flowshop environment. We further extend the
Sort & Search method to multicriteria optimization and we illustrate its application
to some multicriteria scheduling problems. Since more than one objective function
is given, the algorithm enumerates all Pareto optimal solutions and return them all.
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The complexity of the algorithm is therefore naturally dependent on the number of
such solutions also referred to as the number of solutions in the Pareto front, denoted
by P . For NP-hard scheduling problems, the instance size is usually measured by
the number of jobs, denoted by n. The objective of this theoretical work is therefore
to have an algorithm whose complexity is in the form of O∗(|P| · cn) with c as small
as possible. By the way, we provide an exact exponential-time algorithm applicable
to some multicriteria optimization problems, and which worst-case time complexity
is lower than that of a brute force approach. Notice that T’kindt et al. (2007)
proposed complexity classes for qualifying the complexity of enumerating the set of
Pareto optimal solutions. This works opens interesting research directions on the
way of “quantifying” the complexity of enumerating Pareto optimal solutions.

The remainder is organized as follows. Section 2 describes the extension to
Multicriteria Multiple Constraint Problems (MMCP ), whilst section 3 is devoted
to its application to some multicriteria scheduling problems. Conclusions and future
research lines are provided at the end.

2 The Sort & Search method to solve (MMCP )

We propose a version of the Sort & Search method to Multicriteria Multiple Con-
straint Problems (MMCP ) that can be formally introduced as follows.

Let A = (a1, a2, . . .anA
) be a table of nA vectors of dimension dA, B =

(b1, b2, . . . bnB
) be a table of nB vectors bk = (b1k, . . . , b

K
k , b

K+1
k , . . . , bK+dB

k ) of di-
mension (dB + K), fh (1 ≤ h ≤ K) and g` (1 ≤ ` ≤ dB) be (dB + K) functions
from RdA+1 to R which are non-decreasing with respect to their last variable. The
(MMCP ) can be defined as follows.

Min f1(aj , b
1
k)

...
Min fK(aj , b

K
k )

s.t. g`(aj , b
K+`
k ) ≥ 0, (1 ≤ ` ≤ dB)

aj ∈ A, bk ∈ B.

Notice that functions fh and g` can also be assumed to be non-increasing, which
implies small changes in the presentation below but does not change fundamentally
the proposed method.

Solving (MMCP ) consists in computing all strict Pareto optimal solutions for
criteria fh.

Definition 1 A solution (aj, bk) is a strict Pareto optimum if there does not exist
another solution (aj′ , bk′) such that fh(aj′ , b

h
k′) ≤ fh(aj, b

h
k), 1 ≤ h ≤ K, with at

least one strict inequality. We denote by P the minimal set of strict Pareto optima,
i.e., the set of strict Pareto optima such that no two solutions in P have exactly the
same criteria values.

The computation of set P can be done by several approaches (T’kindt and Bil-
laut, 2006), a well-known one being the ε-constraint approach. Assume a given
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bound vector ε = [ε2; . . . ; εK ] ∈ RK−1 is given. We denote by (MMCP ε) the
associated ε-constraint problem, which is defined below.

Min f1(aj , b
1
k)

s.t. g`(aj , b
K+`
k ) ≥ 0, (1 ≤ ` ≤ dB)

fh(aj , b
h
k) ≤ εh, (2 ≤ h ≤ K)

aj ∈ A, bk ∈ B

(1)

Solving (MMCP ε) for all vectors ε enables to compute set P since for any strict
Pareto optimum there exists a vector ε such that the optimum is an optimal solution
of the associated (MMCP ε). For a given ε, the above problem can be reformulated
as an (MCP ) as follows:

Min f1(aj , b
1
k)

s.t. g`(aj , b
K+`
k ) ≥ 0, (1 ≤ ` ≤ dB)

gdB+`(aj , b
`+1
k ) ≥ 0, (1 ≤ ` ≤ K − 1)

aj ∈ A, bk ∈ B.

The new functions gdB+` are defined by gdB+` = ε`+1 − f`+1(aj, b
`+1
k ) and are non-

increasing with respect to their last variable. As a consequence, (MMCP ε) can be
solved by the algorithm SolveMCP proposed by Lenté et al. (2013).

Now let us deal with the whole enumeration of set P . This can be achieved by
solving as many (MMCP ε) as there are Pareto optima in P . We first extend the
definition of (MMCP ε).

Definition 2 Let εL and εU be two bound vectors of (K−1) values: εL = [εL2 ; ..; εLK ]
and εU = [εU2 ; ..; εUK ]. Then, (MMCP εL,εU ) defines the following ε-constraint prob-
lem:

Min f1(aj , b
1
k)

s.t. g`(aj , b
K+`
k ) ≥ 0, (1 ≤ ` ≤ dB)

εLh ≤ fh(aj , b
h
k) < εUh , (2 ≤ h ≤ K)

aj ∈ A, bk ∈ B

(2)

In other words, with respect to the (MMCP ε) problem defined in (1), we now
also define lower bounds in ε−constraints. Notice that the constraints in the ini-
tial definition of (MCP ) only take the form of upper bounds, but it can be easily
adapted to handle constraints of lower bounds since range trees naturally support
range queries with both lower bounds and upper bounds. (MMCP εL,εU ) is an in-
strumental problem which is solved by the algorithm EnumMMCP, presented in Figure
1, to enumerate set P . The vector εL should be initialized with lower bounds of the
criteria. For instance, by Definition 2 and assuming all objective function values are
positive, (MMCP ε) can be represented as a (MMCP εL,εU ) with εL = [0; ..; 0] and
εU = [ε2; ..; εK ].
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Given an optimization problem with K objective functions to minimize, as de-
fined at the beginning of this section, it is sufficient to reformulate the problem
as an (MMCPεL,εU ), then call the algorithm EnumMMCP(MMCPεL,εU ) to enumer-
ate all solutions in the Pareto front. The algorithm starts by calling the SolveMCP

method (Step 1), to find the first Pareto optimum x with the first objective function
minimized. Depending on the actual implementation of the SolveMCP method, it is
possible that x corresponds to a weak Pareto optimum (T’kindt and Billaut, 2006)
in multicriteria space, i.e., there may exist another solution whose first criterion
is as good as x but with smaller values on the other criteria. In order to reach
a strict Pareto optimum starting from x, a tightening procedure is applied. This
corresponds to the Tighten() function called at Step 3. The idea is to formulate a
series of ε-constraint problems where the criterion to minimize is the second one,
the third one,..., until the K-th. For each reformulated problem, we tighten the
constraints to search for strict Pareto optima. The definition of this function is
provided in Figure 2.

Next we can add x as the first strict Pareto optimum (Step 4). In order to find
the next one, constraints are updated such that all candidate solutions in the search
space must be better than x on at least one criterion. This is done by the loop
starting at Step 5. For each possible subset of criteria, we generate a new problem
whose ε-constraints on these criteria are tightened to force the search towards so-
lutions not dominated by x. It is also important to notice that the search space
of subproblems generated at Step 12 does not overlap, i.e., there is no dominance
relation, in the sense of Pareto, between the solutions of these subproblems. This
guarantees that the solutions of these problems can be directly joined to obtain the
Pareto optima of the initial problem. This also ensures that the global number of
calls to SolveMCP is bounded by the number of strict Pareto optima, denoted by |P|,
of the initial problem. This is essential for the complexity analysis.

In the worst-case, the call to SolveMCP has a time complexity in
O(nB logdB+2

2 (nB)) whilst the space requirement is in O(nB logdB−12 (nB)), as es-
tablished by Lenté et al. (2013). The complexity of the Tighten() function
is mainly determined by (K − 1) calls to the SolveMCP procedure (Step 7 in
Figure 2). The two loops at Step 5 and Step 8 yield an overall time complexity
in O(K ·2K), without considering the recursive cost at Step 12. Therefore, when the
number of criteria K is fixed, the time and space complexity of EnumMMCP for a single
run are mainly determined by the complexity of SolveMCP (K calls in total). Now,
considering the fact that the number of calls to EnumMMCP is bounded by |P|, the over-
all time complexity of the algorithm EnumMMCP is then in O(|P| ·(KnB logdB+2

2 (nB)+
K2K)) and the space requirement is in O(nB logdB−12 (nB) + |P|).

To conclude this section, we would like to emphasize the fact that all the results
obtained here can be straightforwardly adapted for the cases in which functions f ,
and g` are non-increasing with respect to their last variable and for a maximiza-
tion problem. In addition, for some multicriteria problems that cannot be directly
formulated as an (MMCP ) the following corollary may apply. It follows from the
construction of algorithm EnumMMCP.

Corollary 1 Multicriteria optimization problems that can be modeled as an
(MMCP ε) can still be solved by algorithm EnumMMCP.
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3 Application to scheduling problems

In this section we present the application of the extended Sort & Search ap-
proach to two multicriteria scheduling problems referred to as P |di|Cmax, Lmax and
P |di|Cmax,

∑
wiUi according to the standard three-field notation of Graham et al.

(1979). The first problem cannot be formulated directly as an (MMCP ), but can
be easily expressed as an (MMCP ε). In contrast, we formulate the second problem
directly as an (MMCP ).

3.1 The P |di|Cmax, Lmax problem

In this section we focus on the solution of a parallel machine scheduling problem with
minimization of the makespan and the maximum lateness. This problem, referred to
as P |di|Cmax, Lmax, can be defined as follows. A set J of n jobs has to be scheduled
on m identical parallel machines and each job i has to be processed by one of the
machines. Each job i is defined by a processing time pi and a due date di by which
job i has to be completed. A schedule is an assignment of jobs to machines over
time. Let Ci be the completion time of job i in a given schedule. Two objective
functions are to be minimized: Cmax and Lmax, where Cmax = maxi(Ci) denotes the
makespan and Lmax = maxi(Ci − di) denotes the maximum lateness. This problem
is NP-hard since the problem P ||Cmax is so (Garey and Johnson, 1979).

3.1.1 Preliminary results

In order to apply EnumMMCP on this problem, we show that it admits an (MMCP ε)
formulation. We consider the case where function f1 is the Cmax criterion and f2
is the Lmax criterion. We first focus on the Cmax criterion which is modeled in a
similar way as for solving the P ||Cmax problem (see Lenté et al. (2013)).

A schedule s can be seen as a set of m sequences which correspond to the set of
jobs processed consecutively on the machines. Let P`(s) be the sum of processing
times of the jobs on machine ` in schedule s, 1 ≤ ` ≤ m, and let P (s) be the sum of
processing times of all jobs scheduled in s. We define by δ`(s) = Pm(s)− P`(s) the
differences between the workload of the last machine and that of the `th machine.

As machines are identical we can assume, without loss of optimality, that the
makespan is given by the set of jobs assigned on machine m: if this is not the case,
then machines can be re-indexed accordingly. We denote by Om the set of schedules
such that the makespan is given by machine m.

Now, assume that two distinct partial schedules s and σ are given. Then,
the makespan of the concatenated schedule sσ is simply defined by Cmax(sσ) =
max1≤`≤m (P`(s) + P`(σ)).

Property 1 (Lenté et al., 2013) The makespan of a concatenated sequence sσ is
given by the jobs scheduled on machine m, if and only if the following conditions
hold

δ`(s) + δ`(σ) ≥ 0, 1 ≤ ` ≤ m− 1.
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Then, it follows that Cmax(sσ) = Pm(s) + Pm(σ) which can be rewritten as

Cmax(sσ) =
1

m

(
P (s) + P (σ) +

m−1∑
`=1

(δ`(s) + δ`(σ))

)
. (3)

This decomposition scheme enables to reduce the P ||Cmax problem to an (MCP ).
Property 2 provides some known facts on the Lmax criterion.

Property 2 Assume that a set of jobs has been assigned to a given machine and
let s be any schedule of these jobs. We have the following properties:

1. Let Lmax(s|t) be the maximum lateness of sequence s if it starts exactly at
date t. Then, Lmax(s) = Lmax(s|0) and Lmax(s|t) = t+ Lmax(s).

2. Assume that schedule s can be decomposed into two sequences s1 and s2 such
that s = s1s2. Then, we have
Lmax(s1s2) = max {Lmax(s1) , Cmax(s1) + Lmax(s2)}.

3. If s = s1s2 and all jobs in s1 are early, then we have
(Lmax(s1s2) ≤ 0 ⇐⇒ Lmax(s2) ≤ −Cmax(s1)).

In the next section, we show that under the decomposition scheme of Property 1.
It is possible to express the constraint Lmax ≤ ε so that the P |di|Cmax, Lmax problem
admits an (MMCP ε) formulation.

3.1.2 The Sort & Search method for the P |di|Cmax, Lmax problem

Before entering into the details of the method, we introduce additional instrumental
notations. For any set I of jobs, we can partition it into m disjoint subsets E`
(1 ≤ ` ≤ m) such that

⋃m
`=1E` = I. We refer to E = (E1, E2, . . . , Em) as an

m-partition of I.

We assume that jobs in J are numbered according to the Earliest Due Date
(EDD) order, i.e by non-decreasing value of di. Let us define by I1 = {1, . . . ,

⌊
n
2

⌋
}

the subset made up of the
⌊
n
2

⌋
first jobs of J and let I2 = {

⌊
n
2

⌋
+ 1, . . . , n} be the

subset of the
⌈
n
2

⌉
last jobs of J .

To each m-partition E j1 = (Ej
1,1, E

j
1,2, . . . , E

j
1,m) of I1 (1 ≤ j ≤ m|I1|) we associate

a schedule sj1 which contains the sequence of jobs in Ej
1,1 on machine 1, the

sequence of jobs in Ej
1,2 on machine 2 and more generally the sequence of jobs

in Ej
1,` on machine ` (1 ≤ ` ≤ m). Similarly, we associate to each m-partition Ek2

of I2 a schedule sk2 (see Figure 3 for a simple illustration in the three-machine
case). Besides, it is assumed that in each partition Ej

1,` (resp. Ek
2,`) jobs are

sorted by increasing value of their index. At last, to each couple (E j1 , Ek2 ) we

associate f1(aj , b
1
k) =

1

m

(
P +

m−1∑
`=1

δ`(s
j
1) +

m−1∑
`=1

δ`(s
k
2)

)
, with P =

∑n
i=1 pi the

sum of processing times of all jobs, a`j = δ`(s
j
1) and b1k =

∑m−1
`=1 δ`(s

k
2). Function
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f1(aj , b
1
k) is the makespan of the concatenated schedule sj1s

k
2, which is also the

function to minimize.

Note that when a set of jobs is assigned to a machine, the Lmax criterion is
minimized by scheduling these jobs in EDD order (Jackson, 1955). Due to the initial
sorting of jobs according to the EDD rule, jobs in any concatenated schedule sj1s

k
2

on any machine also follow the EDD order. Therefore, Lmax(s
j
1s
k
2) can be expressed

as follows:

Lmax(s
j
1s
k
2) = max(Lmax(s

j
1); max1≤`≤m(P`(s

j
1) + Lmax(s

k,`
2 ))).

Given an upper bound ε on Lmax(s
j
1s
k
2), the relation between ε and Lmax(s

j
1s
k
2) can

be formulated into several constraints, according to the above equation. These
constraints correspond to g′`(aj , b

m+`−1
k ) in the following formulation.

Min f1(aj , b
1
k) = 1

m

(
P +

∑m−1
`=1 δ`(s

j
1) +

∑m−1
`=1 δ`(s

k
2)
)

s.t. g`(aj, b
`
k) = δ`(s

j
1) + δ`(s

k
2)

g′`(aj, b
m+`−1
k ) = ε− (Pm(sj1)− δ`(s

j
1) + Lmax(s

k,`
2 ))

with
1 ≤ j ≤ mb

m
2
c, 1 ≤ k ≤ mb

m
2
c and 1 ≤ ` ≤ m− 1

aj = (δ1(s
j
1), δ2(s

j
1), ..., δm−1(s

j
1), Pm(sj1), Lmax(s

j
1))

bk = (
m−1∑
`=1

δ`(s
k
2), δ1(s

k
2), ..., δm−1(s

k
2), Lmax(s

k,1
2 ), ..., Lmax(s

k,m−1
2 ))

The above formulation corresponds to an (MMCP ε) formulation and, hence,
the EnumMMCP can be called to solve the bicriteria problem.

It can be easily checked that functions f and g` (1 ≤ ` ≤ m − 1) are non-
decreasing functions with respect to their last variable.

According to the complexity analysis at the end of section 2, by taking K = 2,
dB = (2m−1), nA = nB = m

n
2 , the complexity of the Sort & Search method runs in

O(|P|·mn
2 log2m+1

2 (m
n
2 )) or simply O∗(|P|·mn

2 (n
2
)2m+2) in time and O∗(m

n
2 (n

2
)2m−2+

|P|) in space. Whenever the number of machines m ≥ 2 is fixed, we can rewrite the
time and space complexities as O∗(|P| · mn

2 ) and O∗(m
n
2 + |P|). For m = 2, the

time complexity is O∗(|P| · 1.42n) and the space complexity is O∗(1.42n + |P|). An
upper bound on these complexities can be obtained considering the fact that |P| is
bounded by 2n which is the number of two partitions of all jobs. In this case, the
time complexity is O∗(2.83n) and the space complexity is at most O∗(2n).

3.2 The P |di|Cmax,
∑
wiUi problem

The scheduling problem considered in this section, referred to as
P |di|Cmax,

∑
wiUi, can be defined as follows. A set J of n jobs have to be

scheduled on m identical parallel machines, each job being processed by one
machine. Each job i is defined by a processing time pi, a due date di and a
tardiness weight wi. A schedule is an assignment of jobs to machines over time.
Two criteria have to be minimized to compute an optimal schedule. The first
one denoted by Cmax, is the makespan of all jobs, and the second one, denoted

8
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by
∑
wiUi, is the weighted number of tardy jobs. We set Ui = 1 if Ci > di in

a given schedule, otherwise Ui = 0. The problem with only the second criterion,
referred to as P |di|

∑
wiUi, is NP-hard (Brucker, 2007), which implies that the

bicriteria problem is also NP-hard.

3.2.1 Preliminary results

We first focus on the modeling of the P |di|
∑
wiUi to elaborate an (MMCP )

formulation for the bicriteria problem. First notice that, as soon as jobs are assigned
to the machines, then m single machine problems have to be solved independently
to minimize criterion

∑
wiUi. Besides, this criterion does not take account of the

amount of tardiness of jobs: either a job i is tardy in a schedule (i.e., Ci > di), and
it implies a cost of wi, either it is early (i.e., Ci ≤ di). This feature yields useful
properties.

First, let us remind that criterion Lmax = max1≤i≤n(Ci−di) and criterion
∑
wiUi

criteria have strong links. As recalled in section 3.1.2, the problem of minimizing
the Lmax criterion for a set of jobs on a single machine can be solved to optimality
in polynomial time by the well-known EDD rule (Earliest Due Date first): jobs are
sequenced by non-decreasing order of their due date di (Jackson, 1955). Property 2
remains valid here, in addition to which we add Property 3.

Property 3 Assume that a set of jobs has been assigned to a given machine and
let s be any schedule of these jobs. We have the following properties:

1. Lmax(s) ≤ 0⇐⇒
∑
wiUi = 0.

2. There exists an optimal schedule s∗ in which all early jobs are scheduled before
the tardy jobs. Besides, all early jobs are sequenced according to the EDD rule.

Now, let us turn to the m-machine problem for which the following property can
be established.

Property 4 (Lenté et al., 2013) There exists an optimal schedule in which all tardy
jobs are assigned to the last machine and all early jobs assigned on the last machine
are sequenced before the tardy jobs. The early jobs on each machine are sequenced
according to the EDD rule.

Note that properties 3 and 4 have been already used for designing an exact
pseudopolynomial algorithm for the 1|di|

∑
iwiUi problem by Lawler and Moore

(1969). Property 4 is illustrated in Figure 4 in the case of a two-machine problem.

3.2.2 The Sort & Search method for the P |di|Cmax,
∑
wiUi problem

Without loss of generality, assume that jobs are indexed in non-decreasing order of
their due date. Let be I1 = {1, . . . ,

⌊
n
2

⌋
} the subset of the

⌊
n
2

⌋
first jobs of J and

let be I2 = {
⌊
n
2

⌋
+ 1, . . . , n} the subset of the

⌈
n
2

⌉
last jobs of J .
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Considering
∑
wiUi as the only objective function, the problem can be de-

composed as follows. To any (m + 1)-partition E j1 = (Ej
1,1, E

j
1,2, . . . , E

j
1,m+1) of I1

(1 ≤ j ≤(m+1)|I1|) we associate a schedule sj1 made up of (m + 1) sequences
(sj,11 , s

j,2
1 , . . . , s

j,m+1
1 ). Each sequence sj,`1 contains jobs from set Ej,`

1 ordered
according to the EDD rule (1 ≤ ` ≤ m + 1). Sequences sj,11 to sj,m1 contain jobs
that are completed early on machines 1 to m whilst sequence sj,m+1

1 contains jobs
that are completed tardy and, thus, assigned to machine m. We proceed similarly
with any (m + 1)-partition Ek2 of I2. Besides, to each couple (E j1 , Ek2 ) is associated
a schedule ojk made up of the concatenation, on machine ` (1 ≤ ` ≤ m − 1), of
sequences sj,`1 and sk,`2 , and of the concatenation, on machine m, of sequences sj,m1 ,
sk,m2 , sj,m+1

1 and sk,m+1
2 (see Figure 4).

At last, for any couple (E j1 , Ek2 ), we define f1(aj , b
1
k) = W (sj,m+1

1 ) +W (sk,m+1
2 ) with

W (σ) the sum of weights wi of jobs in σ (W (σ) =
∑
i∈σ

wi), aj contains W (sj,m+1
1 )

and b1k = W (sk,m+1
2 ). Function f1(aj , b

1
k) is the

∑
wiUi value for schedule sj1s

k
2.

We denote by G the set of couples defined by G = {(j, k) ∈ J1, (m + 1)|I1|K ×
J1, (m + 1)|I2|K | ∀` ∈ J1,mK, Lmax(s

j,`
1 s

k,`
2 ) ≤ 0}. Consequently, G is the set of

couples for which the concatenation of sequences sj,`1 and sk,`2 , 1 ≤ ` ≤ m, contains
no tardy job. This can be ensured, according to Property 2, by adding constraints
Lmax(s

j
1) ≤ 0 and Cmax(s

j,`
1 ) +Lmax(s

k,`
2 ) ≤ 0, 1 ≤ ` ≤ m. Notice that each schedule

sj,`1 s
k,`
2 follows the EDD order.
We now focus on the modeling of Cmax criterion according to Property 1. We first

add constraints to ensure that the Cmax is given on machine m following Property 1.
Then, we get

f2(aj , b
2m
k ) =

1

m
(P +

m−1∑
i=1

δi(s
j
1) +

m−1∑
i=1

δi(s
k
2))

with aj contains δ`(s
j
1), 1 ≤ ` ≤ m− 1, and b2mk =

m−1∑
i=1

δi(s
k
2).

Consequently, the P |di|Cmax,
∑
wiUi problem can be formulated as the following

(MMCP ).

Min f1(aj , b
1
k) = W (sj,m+1

1 ) +W (sk,m+1
2 )

Min f2(aj , b
2
k) = 1

m
(P +

m−1∑
i=1

δi(s
j
1) +

m−1∑
i=1

δi(s
k
2))

s.t. g`(aj, b
`+m+1
k ) = −Lmax(s

`,k
2 )− (Pm(sj1)− δ`(s

j
1)), 1 ≤ ` ≤ m

g′`(aj, b
`+2
k ) = δ`(s

j
1) + δ`(s

k
2), 1 ≤ ` ≤ m− 1

with

1 ≤ j ≤ mb
n
2 c, 1 ≤ k ≤ md

n
2 e

aj = (W (sj,m+1
1 ), δ1(s

j
1), .., δm−1(s

j
1), Pm(sj1), Lmax(s

j
1))

bk = (W (sk,m+1
2 ),

m−1∑
i=1

δi(s
k
2), δ1(s

k
2), .., δm−1(s

k
2), Lmax(s

k,1
2 ), .., Lmax(s

k,m
2 ))

The constraint Lmax(s
j
1) ≤ 0 is not formulated above because this constraint

10
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only depends on aj and, hence, can be easily checked when generating E j1 . Start-
ing from this formulation, we can then proceed as described in section 2 and finally
solve the problem by calling EnumMMCP. Regarding worst-case complexities, the over-
all time complexity of the algorithm EnumMMCP applied to the above (MMCP )
is then in O(|P| · (KnB logdB+2

2 (nB) + K2K)) and the space requirement is in
O(nB logdB−12 (nB)). Therefore, as K = 2, nB = nA = (m + 1)

n
2 , dB = 3m − 2,

the time complexity is in O∗(|P| · (m + 1)
n
2

(
n
2

)3m
). The space requirement is in

O∗((m + 1)
n
2

(
n
2

)3m−3
+ |P|). For fixed m, the time complexity can be written as

O∗(|P| · (m+ 1)
n
2 ) and the space complexity as O∗((m+ 1)

n
2 + |P|). As an example,

the two-machine case, i.e., m = 2, the time complexity is in O∗(|P| · 1.74n) and
the space complexity in O∗(1.74n + |P|). Considering a simple upper bound of |P|,
which is 2n, the time complexity becomes O∗(3.42n) and the space complexity be-
comes O∗(2n).

4 Conclusions

In this paper we have presented an extension of the Sort & Search method, initially
introduced by Horowitz and Sahni (1974), to solve the class of Multicriteria
Multiple Constraint Problem. The proposed method enumerates the set of strict
Pareto optima by solving a series of single criterion problems. The strength of this
approach is that it enables easily to derive exponential time algorithms for a large
class of multicriteria problems. The worst-case complexity of these algorithms is
shown to be defined by a polynomial of the worst-case time complexity of solving
a single criterion problem and by the number of strict Pareto optima. The Sort
& Search method is then applied to two multicriteria parallel machine scheduling
problems, referred to as P |di|Cmax, Lmax and P |di|Cmax,

∑
iwiUi. The time and

space complexities are analyzed.

The contribution of this paper is two-fold. First, we provide the first known
results for NP-hard multicriteria scheduling problems when worst-case behaviors
of exact methods is of interest. Second, we propose a generic exact method with
worst-case guarantee for enumerating the set of strict Pareto optima for a large class
of multicriteria optimization problems. Notice that even though this paper provides
applications to some scheduling problems, the method can clearly be applied to more
general multicriteria optimization problems as, for instance, Multicriteria Knapsack
problems. Finally, this paper raises an interesting research direction related to the
quantification of the difficulty of enumerating the set of Pareto optimal solutions
of NP-hard multicriteria optimization problems. We believe that this research
direction is worthy to be investigated in the future.
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Lenté, C., Liedloff, M., Soukhal, A., T’kindt, V. (2013). On an extension of the sort
& search method with application to scheduling theory. Theoretical Computer
Science, 511, 13–22.
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Algorithm EnumMMCP(MMCPεL,εU )

1. Apply SolveMCP to solve (MMCPεL,εU )

2. Let x = (x1, ..., xK) be the objective values obtained

3. x←− Tighten(MMCPεL,εU ,x)

4. P ←− {x}

5. For all S ⊂ {2, ..., K} with 0 < |S| ≤ K − 1

6. Let εl ←− εL

7. Let εu ←− εU

8. For i = 2, ..., K

9. If i ∈ S Then εui ←− xi

10. Else εli ←− xi

11. End If

12. P ←− P ∪ EnumMMCP(MMCPεl,εu)

13. End For

14. End For

15. Return P

Figure 1: Algorithm for enumerating Pareto optima
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Algorithm Tighten(MMCPεL,εU ,x)

1. For j = 2, ..., K

2. For i = j, ..., K

3. If xi < εUi Then εUi ←− xi

4. End If

5. End For

6. Reformulate (MMCPεL,εU ) to (MMCP j

εL
′
,εU

′ ) such that the func-

tion to minimize is now the j-th criterion. The first criterion is put as an
ε-constraint with a upper bound of x1

7. Apply SolveMCP to solve (MMCP j

εL
′
,εU

′ )

8. x←− the objective values obtained

9. End For

10. Return x

Figure 2: Removing the non-strict Pareto optima

Figure 3: Decomposition of the 3-machines scheduling problem
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Figure 4: Decomposition of the 2-machines scheduling problem
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