
HAL Id: hal-03001027
https://hal.science/hal-03001027

Submitted on 10 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving a time-indexed formulation for an unrelated
parallel machine scheduling problem by preprocessing

and cutting planes
Lotte Berghman, Frits Spieksma, Vincent t’Kindt

To cite this version:
Lotte Berghman, Frits Spieksma, Vincent t’Kindt. Solving a time-indexed formulation for an unre-
lated parallel machine scheduling problem by preprocessing and cutting planes. RAIRO - Operations
Research, 2020, �10.1051/ro/2020031�. �hal-03001027�

https://hal.science/hal-03001027
https://hal.archives-ouvertes.fr

RAIRO-Oper. Res. 55 (2021) S1747–S1765 RAIRO Operations Research
https://doi.org/10.1051/ro/2020031 www.rairo-ro.org

SOLVING A TIME-INDEXED FORMULATION FOR AN UNRELATED
PARALLEL MACHINE SCHEDULING PROBLEM BY PREPROCESSING AND

CUTTING PLANES

Lotte Berghman1,∗, Frits C.R. Spieksma2 and Vincent T’kindt3

Abstract. We consider a time-indexed formulation for the unrelated parallel machine scheduling
problem. We show that all polyhedral knowledge known from the single machine problem (in particular,
valid inequalities) is applicable to this formulation. We present new facet-inducing valid inequalities
and a preprocessing technique involving fixing variables based on reduced costs. We combine both
techniques in a basic cutting-plane algorithm and test the performance of the resulting algorithm by
running it on randomly generated instances.

Mathematics Subject Classification. 90B35.

Received June 14, 2019. Accepted March 18, 2020.

1. Introduction

Time-indexed formulations for single machine scheduling problems are well studied in the literature. Seminal
works of Dyer and Wolsey [8] and Sousa and Wolsey [13], and further works by Crama and Spieksma [5], van
den Akker et al. [17] and Berghman and Spieksma [3] have resulted in a large body of polyhedral results for
time-indexed formulations. Generally speaking, the major advantage of a time-indexed formulation is the tight
LP-bound, while the greatest disadvantage are the large number of variables, especially when processing times
are large. One possible avenue to overcome, at least partially, this difficulty is using column generation, as
was done in van den Akker et al. [19] and Bigras et al. [4]. An arc-time indexed formulation is an extended
formulation that yields strictly better bounds than the time-indexed formulation at the cost of an even larger
number of variables, one for each pair of jobs and each possible completion time (see, e.g., [12, 14]).

As far as we are aware, all this polyhedral knowledge has not been applied to time-indexed formulations
of scheduling problems with multiple machines, in particular unrelated parallel machine scheduling problems.
This is confirmed by Unlu and Mason [16] who evaluate integer programming formulations for parallel machine
scheduling and recommend to use a time-indexed formulation when job processing times are small. Moreover,
they explicitly suggest to develop valid inequalities.

Keywords. Unrelated machine scheduling, time-indexed formulation, valid inequalities, cutting plane algorithm, variable fixing.

1 TBS Business School, 20 BD Lascrosses BP 7010, 31068 Toulouse Cedex 7, France.
2 Department of Mathematics and Computer Science, TU Eindhoven, 5600 MB Eindhoven, The Netherlands.
3 Université de Tours, Laboratoire d’Informatique Fondamentale et Appliquée (EA 6300), ERL CNRS 7002 ROOT,
64 Avenue Jean Portalis, 37200 Tours, France.
∗Corresponding author: l.berghman@tbs-education.fr

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2021

https://doi.org/10.1051/ro/2020031
https://www.rairo-ro.org
mailto:l.berghman@tbs-education.fr
https://www.edpsciences.org

S1748 L. BERGHMAN ET AL.

This paper deals with the time-indexed formulation of the unrelated parallel machine scheduling problem,
where the processing cost of a job is an arbitrary function of its starting time. Notice that this allows to model
many objective functions such as (weighted) sum of completion times or total lateness, tardiness or flow time
and to incorporate features such as release times and precedence relations. Our goal is (1) to point out that all
polyhedral knowledge existing for single-machine problems can be extended to multi-machine problems, (2) to
describe a new class of facet-inducing inequalities for the time-indexed formulation for multiple machines, (3)
to implement a preprocessing technique that uses variable fixing based on reduced costs, and (4) to show the
computational performance of an algorithm that combines valid inequalities and variable fixing by testing this
algorithm on randomly generated instances.

The remainder is organized as follows. The problem statement and a well-known time-indexed single machine
scheduling formulation are presented in Section 2. We show in Section 3 that existing valid inequalities can be
applied to our formulation. In Section 4, we present a new class of facet-inducing valid inequalities and Section 5
describes the preprocessing technique based on variable fixing. Section 6 presents our final algorithms and the
outcome of running them on randomly generated instances, while Section 7 contains the conclusions.

2. Integer programming formulations

Consider the problem of scheduling n jobs on a single machine within a given timespan. The timespan [0, T]
is discretized into T time periods of length one. Period t refers to the time slot [t − 1, t]; t = 1, . . . , T . The
processing time of job j equals pj . The machine can handle at most one job at a time and preemption is not
allowed. When job j starts in time period t, a known cost of cjt is incurred. The problem is to find a schedule
that minimizes total cost.

This problem can be modeled as follows: for each job j and for each time period t = 1, . . . , T , we define

xjt =

{
1 if the processing of job j starts in time periodt,
0 otherwise.

The well-known time-indexed formulation for the single machine scheduling problem (as presented in [13,17])
is the following:

min
n∑

j=1

T∑
t=1

cjtxjt (2.1)

subject to

T∑
t=1

xjt = 1 ∀j = 1, . . . , n, (2.2)

n∑
j=1

t∑
s=max{0;t−pj+1}

xjs ≤ 1 ∀t = 1, . . . , T, (2.3)

xjt ∈ {0, 1} ∀j = 1, . . . , n; ∀t = 1, . . . , T. (2.4)

The objective function (2.1) minimizes the total cost. Constraints (2.2) state that each job has to be scheduled
exactly once and constraints (2.3) express that during each time period t, only one job can be executed; we refer
to (2.3) as the capacity constraints. This formulation is often called pseudo-polynomial because the number of
variables and the number of constraints depend on the length of the time horizon. Thus, indeed if processing
times are large, the number of variables grows. However, notice that (1) the problem is already strongly NP-hard
if pj = 2 for all j [5] and (2) there exist applications where the cost of starting a job is “truly” arbitrary, see
e.g., the assignment of feeders to a component placement machine [6] or the assignment of ships to berths in
container terminals [10], leading to an input of O(nT) numbers.

SOLVING A TIME-INDEXED FORMULATION S1749

When one wants to generalize this formulation to the identical parallel machine scheduling problem, the
right-hand side of constraints (2.3) can be set to m, the number of machines. However, when the machines are
not identical, i.e., when a job’s processing time depends on the machines, such a trick is no longer possible.

We now consider the problem of scheduling n jobs on m unrelated parallel machines within a given timespan.
Again, each machine can handle at most one job at a time and preemption is not allowed. The processing time of
a job now depends on the machine: the processing time of job i on machine k is denoted by pik. The processing
cost of a job depends both on the machine and the time period in which the job is started: the processing cost
of job i when executed at machine k and started at time period t is denoted by cikt. Again, we are interested
in a feasible schedule minimizing total cost.

Unrelated parallel machine scheduling has received quite some attention in literature, especially the special
case where one wants to minimize total weighted completion time. We will not review this literature, we simply
mention Lenstra et al. [11] and Gairing et al. [9] and the references contained in those papers.

We will model this unrelated parallel machine scheduling problem by reducing to a single machine problem
in the following way: by copying each job m times, to obtain nm tasks j. We define J as the set containing
all tasks. This set can be partitioned in two different ways. First of all, we consider the subsets Ji ⊆ J with
i = 1, . . . , n containing all tasks related to job i. Secondly, we consider the subsets Jk ⊆ J with k = 1, . . . ,m
containing all tasks related to machine k. Every subset Ji ∩ Jk consists of a single task j. The processing time
of task j = Ji ∩ Jk equals pj = pik. We denote by cjt = cikt the cost of starting task j = Ji ∩ Jk in time
period t. Notice that specifying the task (index j), implies specifying the job and the machine, and vice versa.

For each task j and for each time period t = 1, . . . , T − pj + 1, we define the decision variables

xjt =

{
1 if task j starts in time periodt,
0 otherwise.

An IP-model for this machine scheduling problem is the following:

min
nm∑
j=1

T−pj+1∑
t=1

cjtxjt (2.5)

subject to

∑
j∈Ji

T−pj+1∑
t=1

xjt = 1 ∀i = 1, . . . , n, (2.6)

∑
j∈Jk

t∑
s=max{0;t−pj+1}

xjs ≤ 1 ∀k = 1, . . . ,m; ∀t = minj∈Jk
pj , . . . , T, (2.7)

xjt ∈ {0, 1} ∀j = 1, . . . , nm; ∀t = 1, . . . , T − pj + 1. (2.8)

The objective function (2.5) minimizes the total cost. Constraints (2.6) state that out of the tasks related to
job i, i.e., Ji, exactly one task has to be scheduled. The capacity constraints are formulated using con-
straints (2.7): for each time period t, only one task out of the tasks related to machine k, i.e., Jk, can be
executed. We obtain the LP-relaxation of this formulation by replacing constraints (2.8) by the following one:
∀j = 1, . . . , nm;∀t = 1, . . . , T − pj + 1 : 0 ≤ xjt ≤ 1. In the case of a single machine, i.e., when m = 1,
formulation (2.5) to (2.8) becomes (2.1) to (2.4).

Notice that there is a polytope for each m, n, T and p (where p represents a vector of processing times).
With some abuse of notation, we denote by Pm the convex hull of feasible solutions of (2.6) to (2.8).

S1750 L. BERGHMAN ET AL.

3. Known valid inequalities

In this section, we review the known valid inequalities for P1. Notice that an inequality for P1 can be extended
to an inequality for Pm (m > 1) by setting all coefficients that correspond to variables that involve tasks not
related to some specific machine k (1 ≤ k ≤ m) to 0. Then, it is not difficult to observe that in this way, any
inequality valid for P1 can be extended to an inequality valid for Pm. We record this observation formally.

Fact 3.1. Any inequality valid for Pr is valid for Pm, for each r ≤ m.

Fact 3.1 motivates us to formulate the known inequalities in terms of Pm. To do so, we need the following
notation. For each j = 1, . . . , nm, we define T (j) as the set of tasks that are related to the same machine as
task j. Note that T (j) does not include task j. Moreover, we define p∗j = maxl∈T (j) pl; thus p∗j is the largest
processing time of the tasks in T (j).

Sousa and Wolsey [13] give the following inequalities. For each time period t = 1, . . . , T , for each task
j = 1, . . . , nm and for each ∆ ∈ {2, . . . , p∗j}:

t+∆−1∑
s=t−pj+1

xjs +
∑

l∈T (j)

t∑
s=max{0,t−pl+∆}

xls ≤ 1. (3.1)

In inequality (3.1), task j is sometimes called the “special” task. These inequalities are known to be facet-
defining for P1 [13], and in fact they constitute all facet-defining inequalities for P1 with integral coefficients
and right-hand side 1 (see [18]).

To give a pictorial description of this inequality, we will use a similar notation as van den Akker et al. [18]. The
index-set of variables with nonzero coefficients in an inequality is denoted by V . The set of nonzero coefficients
in an inequality associated with task j defines a set of time periods Vj = {t|(j, t) ∈ V }. Thus the union over all
j of all Vj equals V . We define an interval [a, b] as the set of periods {a, a + 1, . . . , b}. If a > b, then [a, b] = ∅.
We shall represent inequalities by diagrams. A diagram contains a line for each task. The blocks on the line
associated with task j indicate the time periods t for which xjt occurs in the inequality.

Inequalities (3.1) of Sousa and Wolsey [13] use the following time periods:

for task j : Vj = [t− pj + 1, t+ ∆− 1] ,
for each task l ∈ T (j) : Vl = [t− pl + ∆, t] ,

where ∆ ∈ {2, . . . , p∗j}.
These inequalities can be represented by the following diagram.

Using this diagram, it is relatively easy to see that inequalities (3.1) are valid. Indeed, notice that if some
task l ∈ T (j) starts at some time in Vl, no other task from T (j) can start in Vl (since both tasks would be
active at time t). Also task j cannot start in Vj , since starting task j directly after the completion of task l is
impossible: task l is active until t+ ∆− 1; starting task j before the beginning of task l is equally impossible,
since even starting task j at t− pj + 1 means that task j is active at time t. This implies validity of (3.1).

A lot more is known concerning the facial structure of P1. Sousa and Wolsey [13] already give other classes
of facet-defining inequalities, Berghman and Spieksma [3] generalize the inequalities (3.1) for the case with
time-dependant processing times pjt, Crama and Spieksma [5] find classes of facet-defining inequalities that
apply to the case of equal processing times, and van den Akker et al. [18] present three classes of facet-defining
inequalities that collectively constitute all facet-defining inequalities with integral coefficients that have right-
hand side 2. We will not give an explicit description of these inequalities, however, let us emphasize here that

SOLVING A TIME-INDEXED FORMULATION S1751

Table 1. The coefficients cjt for the example instance.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 2 2 1 2 2 2 2 2 2 2 2 2
2 1 1 1 1 1 1 1 0 1 1 1 1 1
3 1 1 1 1 1 1 0 1 1 1 1 1 1
4 2 2 2 2 1 2 2 2 2 2 2 2 2
5 0 1 1 1 1 1 1 1 1 1 1 1 1
6 1 1 1 1 1 1 1 1 1 1 1 1 1

any facet-defining inequalities for P1 other than an inequality from Sousa and Wolsey [13] has right-hand side
2 or more. Moreover note that all these inequalities deal with a single machine. In the next section, we exhibit
a class of valid inequalities that specifically focus on the presence of multiple machines. Indeed, this is the first
description of a class of valid inequalities that contains variables corresponding to different machines.

4. A new class of valid inequalities

In this section, we introduce a new class of valid inequalities that contains variables corresponding to different
machines.

4.1. Example

We first specify an instance. Let n = 3, m = 2, T = 14, J1 = {1, 2, 3}, J2 = {4, 5, 6}, J1 = {1, 4}, J2 = {2, 5},
J3 = {3, 6}, p1 = 4, p2 = 3, p3 = 5, p4 = 1, p5 = 5 and p6 = 2, Further, the cjt coefficients are given in Table 1
where a row corresponds to a task, and a column corresponds to a time period.

When solving the LP-relaxation (2.5) to (2.8) of this instance, we find the fractional solution x1,4 = x2,8 =
x3,7 = x4,5 = x5,1 = x6,2 = 1

2 · We claim that this solution is not cut off by any known facet-defining inequality.
Indeed, observe that the sum of the variables corresponding to jobs on machine 1, i.e., the variables corresponding
to jobs 1, 2, 3, sum up to 3

2 · Hence, this partial solution cannot be eliminated by any known facet-defining
inequality other than an inequality from (3.1), since all available facet-defining inequalities other than (3.1)
have right-hand side 2 or more. In addition, we leave to the reader to verify that inequalities (3.1) also do not
cut away this particular solution. A similar argument holds for the jobs corresponding to machine 2.

4.2. A new class of valid inequalities

For each pair of jobs {i1, i2} ∈ {1, . . . , n}, and for each pair of machines {k1, k2} ∈ {1, . . . ,m}, let j = Ji1∩Jk1 ,
q = Ji2 ∩ Jk1 , a = Ji1 ∩ Jk2 and b = Ji2 ∩ Jk2 . Define p∗jq = maxl∈T (j)∩T (q) pl. For each quadruple of such four
tasks, for all time periods t1, t2 = 1, . . . , T , for all ∆1 ∈ {2, . . . , p∗jq} and for all ∆2 ∈ {1, . . . , p∗a}, we have the
following inequalities:

t1+∆1−1∑
s=max{t1−pj+1;0}

xjs +
t1+∆1−1∑

s=max{t1−pq+1;0}

xqs +
∑

l∈T (j)\{q}

t1∑
s=max{t1−pl+∆1;0}

xls

+
t2+∆2−1∑

s=max{t2−pa+1;0}

xas +
t2∑

s=max{t2−pb+∆2;0}

xbs ≤ 2. (4.1)

These inequalities can be represented by the diagram presented in Figure 1.
Remark that if we have p∗jq = 1, we do not have any possible value for ∆1 and we do not have a new valid

inequality. We would obtain the sum of a constraint of type (2.7) for k1 and t1 and part of an inequality of
type (3.1) for k2, t2 and ∆2.

S1752 L. BERGHMAN ET AL.

Figure 1. The diagram representing the valid inequalities (4.1).

Theorem 4.1. Inequalities (4.1) are valid inequalities for Pm, for each m ≥ 2.

Proof. Observe that the two jobs i1, i2, and the two machines k1, k2, as well as t1, t2, ∆1, ∆2 are given.
We use integer rounding as follows. Consider two inequalities from type (2.6), one for job i1, and one for job
i2, each with weight 1 − 1

∆1
· Next, consider inequalities of type (2.7) for machine k1, and for t = t1, . . . , t1 +

∆1 − 1, each with weight 1
∆1
· Finally, we consider an inequality of type (3.1) for machine k2, period t2, job

i1 and ∆2 ∈ {1, . . . , p∗a} with weight 1
∆1
· (Remark that this inequality becomes another one of type (2.7)

if we choose ∆2 = 1.) If we apply integer rounding on both sides of the resulting inequality, we obtain the
inequality (4.1). �

Notice that the Chvatal rank of these inequalities does not exceed 2; further, there are O
(
n2m2T 2p2

max

)
inequalities in the new class. The inequalities cannot be strengthened, as witnessed by our next result.

Theorem 4.2. Inequalities (4.1) are facet-defining inequalities for Pm, for each m ≥ 2.

We give a proof of this result in the Appendix A.

4.3. Example continued

With j = 1, q = 2, a = 4, b = 5, t1 = 7, ∆1 = 2, t2 = 1 and ∆2 = 5, inequality (4.1) boils down to

x1,4 + x1,5 + x1,6 + x1,7 + x1,8 + x2,5 + x2,6 + x2,7 + x2,8 + x3,4

+ x3,5 + x3,6 + x3,7 + x4,1 + x4,2 + x4,3 + x4,4 + x4,5 + x5,1 ≤ 2.

It is displayed by the squared blocks in the figure below, and cuts off the fractional solution.

SOLVING A TIME-INDEXED FORMULATION S1753

5. Preprocessing the IP formulation

Variable fixing is a preprocessing technique that is able to reduce the number of 0–1 variables in formulation
(2.5) to (2.8), and it is expected that the reduced IP formulation will be solved faster than the initial formulation.
In addition, variable fixing allows to find stronger LP-bounds. Variable fixing is a technique based on simple
links between an IP formulation and its linear relaxation. More recent applications of this technique can be
found in Baptiste et al. [1] and T’kindt et al. [15].

We write xLP for the optimal values of the x-variables of the LP-relaxation of (2.5) to (2.8), and we write
xIP for the optimal values of the x-variables of the IP-formulation (2.5) to (2.8). Let z∗LP (resp z∗IP) be the value
of the corresponding optima and let B∗ be the associated basis.

For non-basic variables xIP
jt /∈ B∗, it is well known that, applied to our model, we have:

z∗IP = z∗LP +
∑

xIP
jt /∈B∗

rjtx
IP
jt , (5.1)

with rjt the reduced cost associated to variable xIP
jt . Let UB be an upper bound to z∗IP. Then, we can write:∑

xIP
jt /∈B∗

rjtx
IP
jt ≤ UB− z∗LP. (5.2)

From inequality (5.2) we can deduce the following fixing rule: ∀xIP
jt /∈ B∗, if rjt > UB − z∗LP then in any

optimal solution of the IP formulation, xIP
jt = 0. By reasoning on the slack variables sjt associated to the

constraints xjt ≤ 1, we can deduce when xIP
jt = 1: if a non-basic slack variable sjt has to be fixed to 0, then the

associated variable xIP
jt is fixed to 1. Remark that this technique is implemented at some node of the search tree

in mathematical programming solvers like CPLEX, using the upper bound in the search tree, calculated by the
solver as value for UB.

For basic variables xIP
jt ∈ B∗, we use penalties ljt and ujt computed by means of Driebeek’s penalties (also

called Beale and Small penalties, see [2] and [7] for more details). The meaning of these penalties is the following:
ljt (resp. ujt) is a unitary lower estimate on the increase of z∗LP if xIP

jt is set to 0 (resp. 1). We have:

(1) ∀xIP
jt ∈ B∗, if (ljtx

LP
jt) > (UB− z∗LP) then xIP

jt = 1,
(2) ∀xIP

jt ∈ B∗, if (ujt(1− xLP
jt)) > (UB− z∗LP) then xIP

jt = 0.

Remark that, to the best of our knowledge, this technique is not implemented in solvers as CPLEX.
The efficiency of these two variable fixing techniques is strongly influenced by the gap between UB and z∗LP,

and the value of the reduced costs. To strengthen these techniques we can use valid inequalities like the ones
presented in Section 4. The choice of the included valid inequalities and of the upper bound UB are reported
in Section 6.

The preprocessing algorithm works as described in Algorithm 1. Ideally, the preprocessing is done at each
node of a branch-and-price tree, as the branching decision limits the set of feasible solutions and for that
reason (1) one can find additional valid inequalities and (2) one can fix additional basic and non-basic variables.
Unfortunately, commercial solvers like CPLEX do not allow to interact at each particular node.

Remark that we can reduce the m-machine problem to a single machine problem by concatenating the
timespan of the m machines to obtain a large timespan spanning mT periods. The processing times now
become dependent upon the particular period: for each of the first T periods, the processing time of job j equals
pj1, then pj2 for the next T periods, and so on. All results of this paper are also valid for the single machine
case with arbitrary period-dependent processing times as the presented m-machine problem is a special case of
this single machine problem.

S1754 L. BERGHMAN ET AL.

Algorithm 1. Preprocessing algorithm;
inputs: a set of valid inequalities and an upper bound UB on z∗IP.

Add the valid inequalities to the LP relaxation.
Solve the LP relaxation: let z0

LP be the optimal solution value.
Fix basic and non-basic variables with UB.
Solve the LP relaxation: let z1

LP be the optimal solution value.
while (z0

LP < z1
LP) do

Fix basic and non-basic variables with UB.
z0
LP = z1

LP.
Solve the LP relaxation: let z1

LP be the optimal solution value.
end while
return z1

LP and the associated variable values x1
LP

6. Computational evaluations

A series of computational evaluations have conducted in order to evaluate the impacts of the valid inequalities
and the preprocessing algorithm on: (1) the linear relaxation LP of the IP formulation; (2) the solution of the
IP formulation. We first provide details about the generation of our instances (Sect. 6.1), before discussing the
obtained results on the LP (Sect. 6.3) and on the IP (Sect. 6.4). Notice that, as far as the solution of an IP or
an LP fomulation is involved, we use the CPLEX solver.

6.1. Generation of the instances

The IP formulation of instances that are generated according to Sousa and Wolsey [13] and van den Akker
et al. [18] are almost always easy to solve by CPLEX, especially as the number of machines increase. For
this reason, we introduce another generation scheme which leads to harder instances for the parallel machine
problem. The idea of such a scheme is to increase the number of resource conflicts when trying to minimize the
objective function.

The number of jobs n is taken in the set {100, 150, 200} and the number of machines m in the set {1, 2, 3, 5, 10}.
The time horizon is defined as |T | = 1.25× pmax+1

2 × n
m , with pmax = 20, the maximal processing time value. The

processing times on machines are uniformly distributed in [1, pmax]. Remark that as a consequence, the number of
variables is 13.125×n2 and the number of constraints is 14.125×n. The difficulty of the instances comes from the
generation of the processing costs cjt: we have set up a complex generation scheme for the cjt’s in order to create
conflicts between jobs. The scheduling horizon [0;T] is split into

√
n equal-size intervals [Ti;Ti+1] and

√
n jobs

take their minimum cjt values in each interval. So, all these time intervals have the same number of conflicting
jobs. The size of each interval, denoted by SizeInt, is equal to d T√

n
e except the last one which can be slightly

smaller due to the rounding. Then, cjt are drawn at random in the interval [0; 10 ∗ T −G(µjt, σ)] with G(µ, σ)
referring to a normal distribution of mean µjt and variance σ. We experimentally set µjt = 9∗T

|t%SizeInt−j%
√

n|+1

and σ = 1.3 ∗ SizeInt with % referring to the modulo operator. The underlying idea is that
√
n jobs will have

similar costs cjt in each time interval and they achieve their minimum value in the same time interval. So,
minimizing the problem objective function implies scheduling

√
n conflicting jobs on the m machines in each

time interval. An illustration of the distribution of the G(µjt, σ)’s distributions are given in Figure 2. For each
combination of n and m, 20 instances were created, yielding 300 instances in total4.

6.1.1. Testing environment

All algorithms are encoded in C using the Microsoft Visual Studio programming environment, and executed on
a PC computer with an Intel Core i5 CPU 4 Core 2.6 GHz processor and 8 GB RAM, equipped with Windows 7.
CPLEX version 12.2 is used to solve the IP and LP models, and is configured to use only 1 thread. When solving

4The instances can be found at https://hal.archives-ouvertes.fr/view/index/docid/1685398

https://hal.archives-ouvertes.fr/view/index/docid/1685398

SOLVING A TIME-INDEXED FORMULATION S1755

Figure 2. Example of the distribution of the processing costs with n = 9 and T = 15.

the IP model, a time limit of 3600 s is imposed: whenever that limit is reached before the end of the solution,
then the solver is assumed to have failed to solve the corresponding instance.

6.2. Separation

Notice that the LP-solution xLP will be sparse; this fact is used in the separation. We describe a vector x
by a list of those xjt variables that have a positive value and call this list the support of x. Thus, given some x,
we view the support of x as a set of all pairs of indices (j, t) such that xjt > 0. We describe in the next fact
some necessary conditions with respect to the support of a solution x that violates an inequality of type (4.1).
This can be used to accelarate the separation.

Proposition 6.1. If x violates an inequality of type (4.1) and satisfies inequalities (2.7) and (3.1), then there
exists a violated inequality of type (4.1) defined by parameters {i1, i2} ∈ {1, . . . , n}, {k1, k2} ∈ {1, . . . ,m} (with
j = Ji1 ∩ Jk1 , q = Ji2 ∩ Jk1 , a = Ji1 ∩ Jk2 and b = Ji2 ∩ Jk2), t1, t2 = 1, . . . , T , ∆1 ∈ {2, . . . , p∗jq} and
∆2 ∈ {1, . . . , p∗a} such that the support of x contains (i) and (ii) or (iii) and (iv)) and (v) and (vi) or (vii) and
(viii), with

(i) xLP
j,t1−pj+1 or xLP

q,t1−pq+1

(ii) xLP
j,t1+∆1−1 or xLP

q,t1+∆1−1

(iii) xLP
l,t1−pl+∆1

for some l ∈ T (j) \ {q}

S1756 L. BERGHMAN ET AL.

(iv) xLP
l,t1

for some l ∈ T (j) \ {q}
(v) xLP

a,t2−pa+1

(vi) xLP
a,t2+∆2−1

(vii) xLP
b,t2−pb+∆2

(viii) xLP
b,t2

.

Proof. We argue by contradiction. Each time, we suppose that x violates a specific inequality (4.1), deter-
mined by parameters i1, i2, k1, k2, t1, t2,∆1,∆2 and that the support of x does not contain the considered
variables. First, deal with (i). There are two cases: either ∆1 = 2 or ∆1 > 2. In the first case, since
xLP

j,t1−pj+1 + xLP
q,t1−pq+1 = 0, it follows that each variable related to machine k1 in the violated inequality is

active at period t1 +1, and hence this violated inequality is implied by an inequality (2.7) with t = t1 +1. In the
second case, we claim that the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1+1, t2,∆1−1,∆2

(called the “new” inequality) also corresponds to a violated inequality of type (4.1). This follows from the obser-
vation that the only variables that appear in the former inequality and not in the “new” one are xLP

j,t1−pj+1 and
xLP

q,t1−pq+1 both equal to 0.
Consider now (ii). There are two cases: either ∆1 = 2 or ∆1 > 2. In the first case, since xLP

j,t1+∆1−1 +
xLP

q,t1+∆1−1 = 0, it follows that each variable related to machine k1 in the violated inequality is active at period
t1, and hence this violated inequality is implied by an inequality (2.7) with t = t1. In the second case, we claim
that the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1, t2,∆1 − 1,∆2 also corresponds to
a violated inequality of type (4.1).

Considering (iii), we claim that the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1, t2,∆1 +
1,∆2 (called the “new” inequality) also corresponds to a violated inequality of type (4.1). And considering
(iv), we claim that the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1 − 1, t2,∆1 + 1,∆2 also
corresponds to a violated inequality of type (4.1).

Consider now (v). There are two cases: either ∆2 = 1 or ∆2 > 1. In the first case, we claim that the
inequality of type (4.1) determined by parameters i2, i1, k1, k2, t1, t2,∆1,∆2 = 2 also corresponds to a violated
inequality of type (4.1). In the second case, we claim that the inequality of type (4.1) determined by parameters
i1, i2, k1, k2, t1, t2 + 1,∆1,∆2 − 1 also corresponds to a violated inequality of type (4.1).

Consider now (vi). There are two cases: either ∆2 = 1 or ∆2 > 1. In the first case, we claim that the inequality
of type (4.1) determined by parameters i2, i1, k1, k2, t1, t2−1,∆1,∆2 = 2 also corresponds to a violated inequality
of type (4.1). In the second case, we claim the same for parameters i1, i2, k1, k2, t1, t2,∆1,∆2 − 1.

Considering (vii), we claim that the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1, t2,∆1,
∆2 + 1 also corresponds to a violated inequality of type (4.1). And finally, considering (viii), we claim that
the inequality of type (4.1) determined by parameters i1, i2, k1, k2, t1, t2 − 1,∆1,∆2 + 1 also corresponds to
a violated inequality of type (4.1). �

6.3. Improving the LP relaxation

To see the effect of the valid inequalities, we have implemented a basic cutting-plane algorithm. Its working
is illustrated in Figure 3. As the separation of the inequalities of van den Akker et al. [18] takes too much
computation time for the generation instances, we do not consider these inequalities in the computational
experiments.

Table 2 provides statistics on this algorithm. Remark that preprocessing is not yet included in the algorithm
here. We present the average total computation time to execute the cutting-plane algorithm as time, the average
value of the LP solution as z∗LP and the average value of the IP solution as z∗IP. Recall that each row corresponds
to 20 instances. Moreover, we provide statistics on the frequency with which optimal solutions are found. More
precisely, we report the number of instances for which the optimal solution of the LP-relaxation is integral, nLP,
the number of instances for which the solution is integral after the addition of cuts (3.1), n(3.1), and after addition
of cuts (4.1), n(4.1). For the instances whose LP-relaxation is fractional, the percentage of the gap (zIP − zLP)

SOLVING A TIME-INDEXED FORMULATION S1757

Figure 3. The basic cutting-plane algorithm.

that is closed after adding valid inequalities is displayed. The percentage is computed as 100 × z(xLP)−z∗LP
z∗IP−z∗LP

where z(xLP) is the value found after adding the corresponding inequalities. When, in an extreme case, the LP
solution and the IP solution have the same value, although the LP solution is fractional, we say that the gap
is closed with 0% if the solution stays fractional after adding cuts and the gap is closed with 100% when the
solution becomes integral. We also report the number of valid inequalities that were added (VI(3.1) and VI(4.1)

respectively). zIP is found by giving CPLEX one hour of computation time to find an IP solution.
We see that a small portion of the instances has an integral LP-solution, to be precise 5%. This percentage

seems to grow mildly with the size of an instance (more concretely with the number of machines m). Adding
inequalities (3.1) helps in producing integral solutions: another 4 out of the 300 instances become integral
and inequalities (4.1) yield another 4 additional instances. We conclude that both classes have a contribution in
closing (part of) the gap. Inequalities (3.1) are quite powerful, bridging on average 5.32% of the gap. Inequalities
(4.1) are also quite effective, bridging an additional 5.28% of the gap although this is mostly true for instances
with large m.

Next, we implement the same cutting-plane algorithm, but we now use variable fixing in each iteration. To
obtain an upper bound on the optimal solution, we run CPLEX to find a feasible solution with a GAP smaller
than 3%. If no such feasible solution is found within the time limit of one minute, we rerun CPLEX until one
is found.

Table 3 provides statistics on the implementation. We see that adding preprocessing helps further in producing
integral solutions and in closing the gap. Adding inequalities (3.1) makes that another 11 out of the 300 instances
become integral and bridge on average 7.76% of the gap. Inequalities (4.1) yield another 7 integral instances
and bridge on average 5.15% of the gap.

6.4. Exact solution of the problem

In this section we focus on the exact solution of the IP formulation. A first approach consists in directly
solving the IP formulation by CPLEX with a time limit of one hour (referred to as InitIP). The second
approach (referred to as Alg2) consists in applying the preprocessing technique inside a cutting-plane algorithm,
as described in Algorithm 2, before solving by CPLEX the modified instance. The latter may have fixed variables
xjt and added valid inequalities. We implemented two variants to asses the impact of the tightness of the upper
bound on the performance of the algorithm. In Alg2(0), we use the best objective value found by CPLEX within
one hour of computation time as an upper bound for the proprocessing. The performance of this variant will

S1758 L. BERGHMAN ET AL.

Table 2. Impact of the valid inequalities (3.1) and (4.1).

(m× n) Time LP LP + (3.1) LP + (3.1), (4.1) IP
z∗LP nLP GAP(3.1) n(3.1) VI(3.1) GAP(4.1) n(4.1) VI(4.1) z∗IP

1 × 100 2.35 774 598.42 0 5.52% 0 6.00 Not applicable 774 884.65

1 × 150 8.67 1 797 688.70 0 4.07% 0 6.65 Not applicable 1 798 358.50
1 × 200 19.61 3 287 610.99 0 2.55% 0 6.25 Not applicable 3 288 583.75

2 × 100 107.15 232 060.62 0 2.11% 0 1.20 2.60% 0 317.90 232 110.20
2 × 150 329.87 575 452.75 0 2.51% 0 3.60 2.67% 0 346.50 575 646.10

2 × 200 613.17 1 039 188.77 0 1.22% 0 2.80 1.44% 0 392.05 1 039 433.30

3 × 100 62.30 77 873.45 0 3.28% 0 0.20 3.58% 0 189.25 77 892.05

3 × 150 174.64 197 899.01 1 1.14% 1 0.37 1.85% 1 196.63 197 972.50
3 × 200 396.12 388 240.13 0 3.74% 0 1.80 3.95% 0 234.35 388 400.85

5 × 100 14.54 6907.19 1 0.00% 1 0.00 18.82% 2 300.16 6909.00

5 × 150 72.29 21 615.12 0 0.00% 0 0.00 2.94% 0 225.05 21 620.50

5 × 200 200.40 47 849.28 1 0.00% 1 0.00 1.18% 1 729.89 47 861.15

10 × 100 10.52 2804.70 7 25.13% 9 0.31 48.03% 11 29.00 2805.25
10 × 150 74.69 10 044.04 3 23.91% 5 0.53 31.45% 5 540.41 10 045.20

10 × 200 83.21 22 839.14 2 4.55% 2 0.11 12.45% 3 230.06 22 839.90

Table 3. Impact of preprocessing with the objective value for the heuristic procedure as an
upper bound.

(m× n) Time LP LP + pre + (3.1) LP + pre + (3.1), (4.1) IP

zLP nLP GAP(3.1) n(3.1) VI(3.1) GAP(4.1) n(4.1) VI(4.1) zIP

1 × 100 68.98 774 598.42 0 5.65% 0 6.20 Not applicable 774 884.65

1 × 150 180.75 1 797 688.70 0 4.07% 0 6.65 Not applicable 1 798 358.50

1 × 200 290.88 3 287 610.99 0 2.55% 0 6.25 Not applicable 3 288 583.75

2 × 100 105.09 232 060.62 0 2.11% 0 1.20 2.82% 0 250.90 232 110.20

2 × 150 308.35 575 452.75 0 2.51% 0 3.55 2.67% 0 346.50 575 646.10

2 × 200 487.69 1 039 188.77 0 1.22% 0 2.75 1.44% 0 392.05 1 039 433.30

3 × 100 53.65 77 873.45 0 3.34% 0 0.20 3.64% 0 162.05 77 892.05

3 × 150 178.61 197 899.01 1 1.15% 1 0.37 1.85% 1 0.00 197 972.50

3 × 200 415.38 388 240.13 0 3.74% 0 1.80 3.95% 0 234.20 388 400.85

5 × 100 14.83 6907.19 1 7.02% 2 0.00 23.64% 5 216.32 6909.00

5 × 150 77.35 21 615.12 0 5.00% 1 0.00 7.94% 1 225.05 21 620.50

5 × 200 347.54 47 849.28 1 0.01% 1 0.00 1.18% 1 255.79 47 861.15

10 × 100 10.31 2804.70 7 38.46% 12 0.31 58.79% 14 15.62 2805.25

10 × 150 191.09 10 044.04 3 23.91% 5 0.53 33.66% 6 146.06 10 045.20

10 × 200 286.27 22 839.14 2 15.66% 4 0.11 24.37% 5 86.11 22 839.90

give us an idea about the effectiveness of the algorithm in case we are able to find a very tight upper bound
within a small computation time, and can be seen as some best case scenario. In Alg2(1), this upper bound is
obtained by the same heuristic procedure as described in Section 6.3. The processing time of the heuristic is
here included in the total computation time of the algorithm. For experimentation, we only consider instances
with one, two or three machines since the generated instances start to be easily solvable (in a few seconds) by
CPLEX as the number of machines increases.

In Table 4, we present the number of instances (out of 20) that were solved to optimally in column # for all
algorithms. We also mention the average objectif values. The average computation time and the average number

SOLVING A TIME-INDEXED FORMULATION S1759

Table 4. Exact solution of the problem.

InitIP Alg2(0) Alg2(1)

(m× n) # Objectif Time #Nodes # Objectif Time #Nodes Fixed # Objectif Time #Nodes Fixed

1 × 100 19 774 884.65 498.31 3076.05 19 774 883.30 436.80 3239.85 68.99 19 774 882.25 536.95 3056.85 53.13

1 × 150 14 1 798 358.50 2096.69 4610.45 12 1 798 342.65 2092.70 5518.70 56.02 11 1 798 341.50 2573.16 6450.25 24.59

1 × 200 0 3 288 583.75 3600.00 1667.75 0 3 288 592.70 3728.64 1918.75 42.07 0 3 288 574.25 3600.00 1726.45 17.88

2 × 100 20 232 110.20 35.48 350.10 20 232 110.20 168.52 378.40 96.11 20 232 110.20 194.86 291.20 95.86

2 × 150 19 575 646.10 1047.84 6242.25 19 575 647.40 1223.35 7363.95 83.38 18 575 646.10 1478.15 7040.20 27.04

2 × 200 12 1 039 433.30 2639.28 6632.80 14 1 039 435.20 2708.34 7819.15 83.65 10 1 039 453.10 2724.27 5906.60 29.88

3 × 100 20 77 892.05 14.36 62.00 20 77 892.05 97.36 48.15 99.03 20 77 892.05 54.62 48.15 99.03

3 × 150 20 197 972.50 96.81 1183.70 20 197 972.50 349.92 1271.15 97.47 20 197 972.50 199.58 702.80 94.27

3 × 200 20 388 400.85 571.00 2274.25 20 388 400.85 982.68 2568.65 94.48 20 388 401.15 883.00 2814.75 65.57

Algorithm 2. Exact solution with an initial preprocessing; input: an upper bound UB on z∗MIP.
Run Algorithm 1 with UB and no valid inequalities: x∗LP denotes the returned variable values.
if (x∗LP is not integral) then

Iterate=true.
end if
while (Iterate=true) do

Starting with x∗LP, let VI be the set of violated inequalities (3.1).
if (|VI| 6= ∅) then

Run Algorithm 1 with UB and VI: x∗LP denotes the returned variable values.
else

Iterate=false.
end if

end while
Convert the LP with added valid inequalities and fixed variables into an IP model.
Solve the resulting IP: z∗IP is the computed optimal solution value.
return z∗IP.

of nodes that CPLEX explores, are displayed in columns time and #nodes for all algorithms. For Alg2(0) and
Alg2(1) we also provide in column fixed the average percentage of variables that are fixed by the preprocessing.

Looking at the results of InitIP , we notice that the instances seem to be easier for CPLEX as the number
of machines increase. Remark that the cutting-plane algorithm with preprocessing may penalize the solution by
CPLEX: effort is spent in generating valid inequalities and fixing variables in Alg2(0) and Alg2(1) while InitIP
is efficient. To illustrate that, look at the instances with 3 machines and 100 jobs. On average, these instances
are solved by CPLEX in only 14.36 s, so we cannot expect a large gain in solution time. Indeed, generating valid
inequalities and fixing variables lead to an increased overall CPU time even if the number of explored nodes is
reduced and more than 99% of the variables are fixed by preprocessing.

In general, we can state that InitIP performs rather well and that the cutting-plane algorithm with prepro-
cessing does not really outperform it. However, to solve difficult instances, it turns out that the the cutting-plane
algorithm with preprocessing yields better results. The efficiency of the cutting-plane algorithm with prepro-
cessing decreases as the upper bound becomes weaker. For that reason, Table 4 highlights an interesting possible
future research: improving the quality of the heuristic algorithm to obtain better final solutions for the problem.
Notice that we have not been able to do preprocessing at each node of the branch-and-cut algorithm of CPLEX
due to a lack of interactions with the mathematical solver. This would also drastically improve the results of
Alg2(1).

S1760 L. BERGHMAN ET AL.

7. Conclusion

We modeled the unrelated parallel machine scheduling problem where the processing cost of each job is an
arbitrary function of its starting time as a single machine scheduling problem using a time-indexed formulation.
We have shown that valid inequalities from literature for single-machine problems can be applied to multi-
machine problems. A new set of facet-inducing inequalities has been presented, and a cutting-plane algorithm
has been proposed. We have also implemented a preprocessing technique within that algorithm to try to reduce
the size of the instances to solve. Computational experiments have been conducted and show that the valid
inequalities lead to strengthen the linear relaxation of the time-indexed formulation. These experiments also
show that the proposed cutting-plane algorithm with preprocessing may help to solve the instances which are
difficult to solve for the mathematical solver more efficiently.

As future research directions, it would be interesting to implement a faster separation algorithm for the
inequalities of van den Akker et al. [18] to improve the exact solution of the problem by the cutting-plane
algorithm with preprocessing. It would also be interesting to provide a very fast and good heuristic algorithm to
get a good preprocessing. This might considerably improve the computational results for both the LP relaxation
and the IP formulation. At last, the possibly most promising research line from an experimental point of view
is certainly to integrate the preprocessing at each node of the branch-and-cut algorithm used to solve the
time-indexed formulation.

Appendix A.

Theorem A.1. Inequalities (4.1) are facet-defining inequalities for Pm, for each m ≥ 2.

Proof. Let us first establish the dimension of the corresponding polytope Pm.

Lemma A.2. dim(Pm) = n(mT +m− 1)−
∑nm

j=1 pj.

Proof. The total number of variables in (2.5)–(2.8) equals:
∑nm

j=1(T − pj + 1) = n(mT + m) −
∑nm

j=1 pj . Since
we have n linearly independent inequalities (2.6) it easily follows that dim(Pm) ≤ n(mT +m)−

∑nm
j=1 pj .

We will now show that, in fact, equality holds. For ease of notation in the second part of this proof, we change
the indices for p and x in the following way: ∀j = Ji ∩ Jk, pj = pik and xjt = xi,k,t.

Consider some equality that is valid for all feasible solutions x:

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t = π0. (A.1)

We now identify a particular feasible solution, denoted by solution S, as follows. Let some job i (1 ≤ i ≤ n)
start on machine k (1 ≤ k ≤ m) at time s (1 ≤ s ≤ T − pik + 1); all other jobs start on machine `, ` 6= k,
in a way that no job on machine ` overlaps the moments {s, s + 1, . . . , s + pi` − 1} (notice that this is always
possible, if T is large enough, say T ≥ 2×maxk

∑
i pik).

Consider now a feasible solution that is identical to S except that job i starts on machine k at time t, t 6= s.
Since equality (A.1) holds for all feasible solutions, it follows that

πi,k,s = πi,k,t ∀i = 1, . . . , n; ∀k = 1, . . . ,m; ∀s, t ∈ {1, . . . , T − pik + 1} . (A.2)

Consider now another feasible solution that is identical to S except that job i starts also on machine ` at
time s. Again, since equality (A.1) holds for all feasible solutions, it follows that

πi,k,s = πi,`,s ∀i = 1, . . . , n; ∀k, ` ∈ {1, . . . ,m}; ∀s = 1, . . . , T − pik + 1. (A.3)

Using (A.2) and (A.3), we conclude that there exist multipliers πi such that

πi = πi,k,t ∀i = 1, . . . , n; ∀k = 1, . . . ,m; ∀t = 1, . . . , T − pik + 1.

SOLVING A TIME-INDEXED FORMULATION S1761

Thus, we can rewrite equality (A.1) as follows:

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t =
n∑

i=1

πi

m∑
k=1

T−pik+1∑
t=1

xi,k,t = π0,

thereby showing that equality (A.1) is a linear combination of equalities (2.6). This proves the lemma. �

We now proceed to prove that inequalities (4.1) are facet-defining. In order to facilitate the description of the
proof, we define the following intervals of time-units. Given jobs i1, i2, machines k1, k2, time-units t1, t2, and
parameters ∆1,∆2, we define:

A = [t1 − pi1,k1 + 1, . . . , t1 + ∆1 − 1] ,
B = [t1 − pi2,k1 + 1, . . . , t1 + ∆1 − 1] ,
Ci = [t1 − pi,k1 + ∆1, . . . , t1] (i 6= i1, i 6= i2),
D = [t2 − pi1,k2 + 1, . . . , t2 + ∆2 − 1] ,
E = [t2 − pi2,k2 + ∆2, . . . , t2] .

This allows us to rewrite inequality (4.1) as follows:∑
s∈A

xi1,k1,s +
∑
s∈B

xi2,k1,s +
∑

i:i6=i1,i6=i2

∑
s∈Ci

xi,k1,s +
∑
s∈D

xi1,k2,s +
∑
s∈E

xi2,k2,s ≤ 2. (A.4)

Let F = {x ∈ Pm: x satisfies (A.4) with equality}, and consider some equality that is valid for all x ∈ F :

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t = π0.

We will show that there exist multipliers ρi (1 ≤ i ≤ n), and α such that:

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t =
n∑

i=1

ρi

m∑
k=1

T−pik+1∑
t=1

xi,k,t + α

(∑
s∈A

xi1,k1,s +
∑
s∈B

xi2,k1,s

+
∑

i:i 6=i1,i6=i2

∑
s∈Ci

xi,k1,s +
∑
s∈D

xi1,k2,s +
∑
s∈E

xi2,k2,s

)
= π0.

This shows that any equality valid for all feasible solutions, is a linear combination of the equalities (2.6) and the
equality corresponding to (A.4). In our proof we will denote by F the set of feasible solutions. We will schedule
jobs for which the starting time and the affected machine is not important for the proof “in some feasible way
on some machine k”. Our assumption that T is large enough guarantees that there is indeed always some way
to place those jobs on that machine.

Consider now a solution called S1, where job i1 starts on machine k1 at time t1 − pi1,k1 + 1, where job i2
starts on machine k1 at time t1 + 1, where some job i, (i 6= i1, i 6= i2) starts on some machine k (k 6= k1) at
time s, with 1 ≤ s ≤ T −pik +1, and where all other jobs start, in some feasible way, on machine k1. We modify
solution S1 by starting job i on machine k at time t, t 6= s. Clearly, both solution S1, and the modified solution
are in F . It follows that

πi,k,s = πi,k,t ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀k = 1, . . . ,m; k 6= k1; ∀s, t ∈ {1, . . . , T − pik + 1}. (A.5)

Also, we can modify S1 by shifting job i to machine `, ` 6= k, ` 6= k1 at time s, to arrive at:

πi,k,s = πi,`,s ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀k, ` ∈ {1, . . . ,m} \ {k1}; ∀s = 1, . . . , T − pik + 1. (A.6)

S1762 L. BERGHMAN ET AL.

Together, equalities (A.5) and (A.6) imply:

πi,k,t = ρi ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀k = 1, . . . ,m; k 6= k1; ∀t = 1, . . . , T − pik + 1. (A.7)

We will now proceed to argue that (A.7) is in fact also valid for machine k1 when t /∈ Ci, 1 ≤ i ≤ n, i.e.,
we will show that:

πi,k1,t = ρi ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀t /∈ Ci. (A.8)

Consider now solution S2, where job i1 starts on machine k1 at time t1−pi1,k1 +1, with pi,k1 ≤ t1 ≤ T −pi,k1

for all i, where job i2 starts on machine k2 at time t2 − pi2,k2 + ∆2, where some job i starts on machine k1 at
time s, s ≥ t1 + 1, and where all other jobs are placed in some feasible way on machine k2 leaving free the time
units [s, . . . , s+ pi,k2 − 1]. We modify solution S2 by starting job i on machine k1 at time t = 1. Clearly, both
solution S2, and the modified solution are in F . It follows that:

πi,k1,s = πi,k1,1 ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀s = t1 + 1, . . . , T − pi,k1 + 1. (A.9)

We can also modify S2 by shifting job i to some machine k (k 6= k1) at time s, implying (using (A.7)):

πi,k1,s = πi,k,s = ρi ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀k = 1, . . . ,m; k 6= k1; ∀s = 1, . . . , T − pi,k1 + 1. (A.10)

Consider now solution S3, where job i1 starts on machine k1 at time t1 + ∆1 − 1, where job i2 starts on
machine k2 at time t2 − pi2,k2 + ∆2, where some job i starts on machine k1 at time s, s ≤ t1 − pi,k1 + ∆1 − 1,
and where all other jobs are placed in some feasible way on machine k2. We modify solution S3 by starting
job i on machine k1 at time t = 1. Clearly, both solution S3, and the modified solution are in F . It follows that:

πi,k1,s = πi,k1,1 ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀s = 1, . . . , t1 − pi,k1 + ∆1 − 1. (A.11)

Together, the conditions (A.9) to (A.11) imply (A.8).
Consider now solution S4 where job i1 starts on machine k2 at time t2 − pi1,k2 + 1, where job i, i 6= i1, i 6= i2

starts on machine k1 at time t1 − pi,k1 + ∆1, where job i2 starts on some machine k, k 6= k1, k 6= k2 at some
time s, and where all other jobs are placed in a feasible way on machine k1. We modify solution S4 by starting
job i2 on machine k at time t (t 6= s). Clearly, both solution S4, and the modified solution are in F . We get:

πi2,k,s = πi2,k,t ∀k ∈ {1, . . . ,m} \ {k1, k2}; ∀s, t ∈ {1, . . . , T − pi2,k + 1}. (A.12)

We can also modify S4 by shifting job i2 to some other machine ` (` 6= k1, ` 6= k2) at time s, implying:

πi2,k,s = πi2,`,s ∀k, ` ∈ {1, . . . ,m} \ {k1, k2}; ∀s = 1, . . . , T − pi2,k + 1. (A.13)

Together, the conditions (A.12) and (A.13) imply:

πi2,k,t = ρi2 ∀k ∈ {1, . . . ,m} \ {k1, k2}; ∀t = 1, . . . , T − pi2,k + 1. (A.14)

A similar construction can be used to infer:

πi1,k,t = ρi1 ∀k ∈ {1, . . . ,m} \ {k1, k2}; ∀t = 1, . . . , T − pi1,k + 1. (A.15)

Consider solution S5 where job i1 starts on machine k1 at time s, s /∈ A, where job i2 starts on machine k2

at time t2, where job i starts on k1 at time t1− pi,k1 + ∆1, and where all other jobs are placed in a feasible way
on machine k2. We modify solution S5 by starting job i1 on machine k1 at time t (t /∈ A). Clearly, both solution
S5, and the modified solution are in F . Using constructions like these, we get:

πi1,k1,s = πi1,k1,t ∀s, t /∈ A. (A.16)

SOLVING A TIME-INDEXED FORMULATION S1763

We can also modify S5 by shifting job i1 to some other machine k (k 6= k1) at time s, implying:

πi1,k1,s = πi1,k,s ∀k = 1, . . . ,m; k 6= k1; ∀s = 1, . . . , T − pi1,k1 + 1. (A.17)

Together, the conditions (A.16), and (A.17) imply:

πi1,k1,t = ρi1 ∀t /∈ A. (A.18)

Similar constructions can be used to infer:

πi1,k2,t = ρi1 ∀t /∈ D, (A.19)

πi2,k1,t = ρi2 ∀t /∈ B, (A.20)

and
πi2,k2,t = ρi2 ∀t /∈ E. (A.21)

Consider solution S6 where job i1 starts on machine k1 at time s, s ∈ A, where job i2 starts on machine k2 at
time t2 − pi2,k2 + ∆2, and where all other jobs are placed in a feasible way on machine k2. We modify solution
S6 by starting job i1 on machine k1 at time t (t 6= s, t ∈ A). Clearly, both solution S6, and the modified solution
are in F . We get:

πi1,k1,s = πi1,k1,t ∀s, t ∈ A. (A.22)

In a similar fashion, we can derive:

πi1,k2,s = πi1,k2,t ∀s, t ∈ D. (A.23)

Moreover, consider solution S7 where job i1 starts on machine k1 at time t1 − pi1,k1 + 1, where job i2 starts on
machine k1 at time t1 + ∆1 − 1, and where all other jobs are placed in a feasible way on machine k2, leaving
free the time units [t2 − pi1,k2 + 1, . . . , t2]. We modify solution S7 by starting job i1 on machine k2 at time
t2 − pi1,k2 + 1. Clearly, both solution S7, and the modified solution are in F . We get:

πi1,k1,t1−pi1,k1+1 = πi1,k2,t2−pi1,k2+1. (A.24)

Using conditions (A.22) to (A.24), we find:

πi1,k1,t = πi1,k2,s ≡ πin
i1 ∀t ∈ A; ∀s ∈ D. (A.25)

In a similar fashion, we can derive:

πi2,k1,t = πi2,k2,s ≡ πin
i2 ∀t ∈ B; ∀s ∈ E, (A.26)

and:
πi,k1,t = πin

i ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀t ∈ Ci. (A.27)

Consider solution S8 where job i1 starts on machine k2 at time t2 − pi1,k2 + 1, where job i3 (i3 6= i2) starts
on machine k1 at time t1 (notice that t1 ∈ Ci3), where job i4 (i4 6= i2, i4 6= i3) starts on machine k1 at time
s with s ≥ t1 + pi3,k1 + pi4,k1 , and where all other jobs are somewhere on machine k2. We modify solution S8

by interchanging jobs i3 and i4, ie, by starting job i3 on machine k1 at time s, and job i4 on machine k1 at
time t1. Clearly, both solution S8, and the modified solution are in F . Then, we find that:

πi3,k1,t1 + πi4,k1,s = πi3,k1,s + πi4,k1,t1 .

Using (A.8), this is equivalent to:

πi3,k1,t1 − ρi3 = πi4,k1,t1 − ρi4 ≡ α,

S1764 L. BERGHMAN ET AL.

or, by extending the construction for any time t ∈ Ci

πi,k1,t − ρi = α ∀i ∈ {1, . . . , n} \ {i1, i2}; ∀t ∈ Ci. (A.28)

Consider a solution S9 where job i1 starts on machine k1 at time t1, where job i2 starts on machine k2 at
time t2 (notice that t2 ∈ E), where some job i (i 6= i1, i 6= i2) starts on machine k1 at time s with s ≥
t1+pi1,k1 +pi,k1 , and where all other jobs are somewhere on machine k2. We modify solution S9 by interchanging
jobs i1 and i, i.e., by starting job i on machine k1 at time t1, and job i1 on machine k1 at time s. Clearly, both
solution S9, and the modified solution are in F . Then, we find that:

πi1,k1,t1 + πi,k1,s = πi1,k1,s + πi,k1,t1 .

Using (A.8) and (A.18), this is equivalent to:

πi1,k1,t1 − ρi1 = πi,k1,t1 − ρi = α,

or, in fact:
πi1,k1,t − ρi1 = πi1,k2,s − ρi1 = α ∀t ∈ A; ∀s ∈ D. (A.29)

A similar construction allows us to conclude:

πi2,k1,t − ρi2 = πi2,k2,s − ρi2 = α ∀t ∈ B; ∀s ∈ E. (A.30)

We are now finally able to derive the result:

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t =
∑

i:i 6=i1,i6=i2

∑
k 6=k1

(
T−pik+1∑

t=1

πi,k,txi,k,t

)
+
∑
t/∈Ci

πi,k1,txi,k1,t +
∑
t∈Ci

πi,k1,txi,k1,t

+
∑

k 6=k1,k 6=k2

T−pi1,k+1∑
t=1

πi1,k,txi1,k,t +
T−pi2,k+1∑

t=1

πi2,k,txi2,k,t

×∑
t∈A

πi1,k1,txi1,k1,t

+
∑
t∈D

πi1,k2,txi1,k2,t +
∑
t/∈A

πi1,k1,txi1,k1,t +
∑
t/∈D

πi1,k2,txi1,k2,t

+
∑
t∈B

πi2,k1,txi2,k1,t +
∑
t∈E

πi2,k2,txi2,k2,t

+
∑
t/∈B

πi2,k1,txi2,k1,t +
∑
t/∈E

πi2,k2,txi2,k2,t.

By plugging in the values we found for the πi,k,t coefficients derived in the conditions respectively (A.7), (A.8),
(A.28), (A.15), (A.14), (A.29), (A.18), (A.19), (A.30), (A.20) and (A.21), we find:

n∑
i=1

m∑
k=1

T−pik+1∑
t=1

πi,k,txi,k,t =
n∑

i=1

ρi

m∑
k=1

T−pik+1∑
t=1

xi,k,t + α

(∑
s∈A

xi1,k1,s +
∑
s∈B

xi2,k1,s

+
∑

i:i 6=i1,i6=i2

∑
s∈Ci

xi,k1,s +
∑
s∈D

xi1,k2,s +
∑
s∈E

xi2,k2,s

)
= π0,

thereby proving our result. �

Acknowledgements. This work is supported by the Interuniversity Attraction Poles Programme initiated by the Belgian
Science Policy Office, and by FWO grant G.0729.13. Frits Spieksma is supported by NETWORKS (Grant
No. 024.002.003).

SOLVING A TIME-INDEXED FORMULATION S1765

References

[1] P. Baptiste, F. Della Croce, A. Grosso and V. T’Kindt, Sequencing a single machine with due dates and deadlines: an ILP-based
approach to solve very large instances. J. Scheduling 13 (2010) 39–47.

[2] E. Beale and R. Small, Mixed integer programming by a branch-and-bound technique. Proc. Third IFIP Cong. 2 (1965)
450–451.

[3] L. Berghman and F.C.R. Spieksma, Valid inequalities for a time-indexed formulation. Oper. Res. Lett. 43 (2015) 268–272.

[4] L. Bigras, M. Gamache and G. Savard, Time-indexed formulations and the total weighted tardiness problem. INFORMS J.
Comput. 20 (2008) 133–142.

[5] Y. Crama and F.C.R. Spieksma, Scheduling jobs of equal length: complexity, facets and computational results. Math. Prog.
72 (1996) 207–227.

[6] Y. Crama, A.W.J. Kolen, A.G. Oerlemans and F.C.R. Spieksma, Throughput rate optimization in the automated assembly of
printed circuit boards. Ann. Oper. Res. 26 (1990) 455–480.

[7] N.J. Driebeek, An algorithm for the solution of mixed integer programming problems. Manage. Sci. 12 (1966) 576–587.

[8] M.E. Dyer and L.A. Wolsey, Formulating the single machine sequencing problem with release dates as a mixed integer problem.
Disc. Appl. Math. 26 (1990) 255–270.

[9] M. Gairing, B. Monien and A. Woclaw, A faster combinatorial approximation algorithm for scheduling unrelated parallel
machines. Theor. Comput. Sci. 380 (2007) 87–99.

[10] P. Hansen, C. Oğuz and N. Mladenović, Variable neighborhood search for minimum cost berth allocation. Eur. J. Oper. Res.
191 (2008) 636–649.

[11] J.K. Lenstra, D.B. Shmoys and E. Tardos, Approximation algorithms for scheduling unrelated parallel machines. Math. Prog.
46 (1990) 259–271.

[12] F. Sourd, New exact algorithms for one-machine earliness-tardiness scheduling. INFORMS J. Comput. 21 (2009) 167–175.

[13] J.P. Sousa and L.A. Wolsey, A time indexed formulation of non-preemptive single machine scheduling problems. Math. Prog.
54 (1992) 353–367.

[14] S. Tanaka, S. Fujikuma and M. Araki, An exact algorithm for single-machine scheduling without machine idle time. J. Schedul-
ing 12 (2009) 575–593.

[15] V. T’kindt, F. Della Croce and J.L. Bouquard, Enumeration of Pareto optima for a flowshop scheduling problem with two
criteria. INFORMS J. Comput. 19 (2007) 64–72.

[16] Y. Unlu and S.J. Mason, Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling
problems. Comput. Ind. Eng. 58 (2010) 785–800.

[17] J.M. van den Akker, J.A. Hoogeveen and S.L. van de Velde, Parallel machine scheduling by column generation. Oper. Res. 47
(1999) 862–872.

[18] J.M. van den Akker, C.P.M. Van Hoesel and M.W.P. Savelsbergh, A polyhedral approach to single-machine scheduling prob-
lems. Math. Prog. 85 (1999) 541–572.

[19] J.M. van den Akker, C.A.J. Hurkens and M.W.P. Savelsbergh, Time-indexed formulations for machine scheduling problems:
column generation. INFORMS J. Comput. 12 (2000) 111–124.

	Introduction
	Integer programming formulations
	Known valid inequalities
	A new class of valid inequalities
	Example
	A new class of valid inequalities
	Example continued

	Preprocessing the IP formulation
	Computational evaluations
	Generation of the instances
	Testing environment

	Separation
	Improving the LP relaxation
	Exact solution of the problem

	Conclusion
	
	References

