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ARTICLE

Interpreting pathways to discover cancer driver
genes with Moonlight
Antonio Colaprico1,2,3,19*, Catharina Olsen1,2,4,5,19, Matthew H. Bailey6,7, Gabriel J. Odom 3,8,

Thilde Terkelsen9, Tiago C. Silva 3,10, André V. Olsen 9, Laura Cantini 11,12,13,14, Andrei Zinovyev 11,12,13,

Emmanuel Barillot 11,12,13, Houtan Noushmehr10,15, Gloria Bertoli 16, Isabella Castiglioni16, Claudia Cava 16,

Gianluca Bontempi1,2,20, Xi Steven Chen3,17,20* & Elena Papaleo9,18,20*

Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor

suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of

their elusive context-dependent behavior. We define oncogenic mediators as genes con-

trolling biological processes. With them, we classify cancer driver genes, unveiling their roles

in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple

-omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+
tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual

roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin

accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular

mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line

datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type

and subtype indicate dual role status. These findings help explain tumor heterogeneity and

could guide therapeutic decisions.
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Cancer is a complex and heterogeneous disease, hallmarked
by the poor regulation of critical functions, such as
growth, proliferation, and cell-death pathways. To better

understand the hallmarks of cancer, such as proliferation and
apoptosis, it is critical to accurately identify cancer driver genes.
Due to a strong dependency on the biological context, cancer
driver genes and their roles in specific tissues are elusive to
annotate, and their discovery is often complicated. In a recent
review, cancer progression was summarized across four different
steps: cancer initiation, tumor propagation, metastasis to distant
organs, and drug resistance to chemotherapy1. Cancer progres-
sion is accelerated by the accumulation of genomic abnormalities
in two different categories of cancer driver genes: oncogenes or
tumor suppressors2. The gain-of-function of oncogenes together
with the loss-of-function of tumor suppressors determine the
processes that control tumor formation and development3.

Certain cancer driver genes can exhibit oncogene or tumor-
suppressor behavior depending on the biological context, which
makes them difficult to identify. We will call such genes dual-role
cancer driver genes4,5. A motivating example for our study is the
dual-role gene NOTCH. This gene is considered a hematopoietic
proto-oncogene in T-cell acute lymphoblastic leukemia, while it
has a tumor-suppressor role in solid tumors—such as basal cell
carcinoma of the skin, hepatocellular carcinoma, and in some
forms of leukemia6. In addition, it has been shown that con-
comitant Notch activation and p53 deletion trigger epithelial-to-
mesenchymal transition and metastasis7.

Recently, TCGA Pan-Cancer Atlas Initiative8 amassed findings
into a suite of 27 studies covering 11,000 tumors from 33 of the
most frequent types of cancers9–11. These studies investigated
cancer complexity from different angles and integrated different
sources of -omics data (i.e., gene, protein, and microRNA
expression, somatic mutations, DNA methylation, copy-number
alterations, and clinical data). In particular, this initiative
employed many computational tools to identify 299 cancer driver
genes and >3400 driver mutations12. Although these methods
were demonstrated to be effective, it remains fundamental to
clarify the role of cancer driver genes, inspect the consequences of
cancer alterations, and link the identified patterns with the
underlying biological effects.

Several approaches have been developed to discover cancer
driver genes and pathways, but these methods did not harness the
power of integrating biological processes and their connection
with gene deregulation to predict cancer driver genes12. Our
approach allows the interpretation of cancer-related pathways to
identify essential cancer driver genes by integrating information
on biological processes from literature with gene–gene interac-
tions in transcriptomic data. This approach unlocks the possibi-
lity of identifying context-dependent cancer genes. We then
prioritize genes discovered by Moonlight according to the ana-
lysis of additional multi-omics data. If the gene exhibits sig-
nificant evidence after additional data integration, we define the
genes that Moonlight discovered as cancer driver genes. More-
over, investigating the intra- and inter-tumor heterogeneity, we
identified dual-role genes within cancer types or subtypes.

Results
Overview of Moonlight. We here present Moonlight: a tool
designed to identify cancer driver genes that moonlight as
opposite roles when observed in the context of transcriptomic
networks. The name refers to (i) the concept of protein moon-
lighting (or gene sharing) is a phenomenon by which a protein
can perform more than one function13, and (ii) casting genes in a
new light can lead to improved treatment regimens and prog-
nostic indicators.

Moonlight can detect cancer driver-gene events specific to the
tumor and tissue of origin, including potential dual-role genes, as
well as elucidate their downstream impact. To accomplish this,
Moonlight integrates information from literature, pathways
databases, and multiple -omics data into a comprehensive
assessment of a gene’s role and function (Fig. 1a). Moonlight is
freely available as an open-source R package within the
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Fig. 1 Moonlight data integration and functionalities. a Data used for
discovery of oncogenic mediators and controlling mechanisms of cancer
driver genes. b Moonlight pipeline for discovery of tumor suppressors,
oncogenes, and dual-role genes.
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Bioconductor project at http://bioconductor.org/packages/
MoonlightR/.

The main concept behind Moonlight relies on the observation
that the classical approach to experimentally validated cancer
driver genes consists in the modulation of their expression in
cellular assays, together with the quantification of process
markers, such as cellular proliferation, apoptosis, and invasion.
We thus selected apoptosis and cell proliferation as main gene
programs to detect cancer driver genes. To accomplish this task,
we manually curated over 100 biological processes linked to
cancer, including proliferation and apoptosis. During this manual
curation, we gave Moonlight information on whether the
activation of each process leads to promotion or reduction of
cancer (Methods; Supplementary Data 1 and 2). Once Moonlight
identifies an oncogenic process altered in tumors using gene
expression data, it detects genes that activate or inhibit this
process. We define such genes as oncogenic mediators. Oncogenic
mediators in bulk-tumor samples and cell-line experiments that
are also co-explained by other factors, such as DNA methylation,
copy number, clinical data, drug–target, or chromatin accessi-
bility, are retained in the analyses.

The rationale behind this two-step process is that gene
expression alone may lead to a large number of candidate genes
that are not necessary driving the cancer phenotype. A second
layer of evidence is necessary for a cancer driver gene to be
activated and promote a cancer phenotype. Therefore, Moonlight
explores the oncogenic mediators detected by gene expression,
and when Moonlight identifies a second evidence (such as hyper-
or hypomethylation), we predict that the oncogenic mediators
can be defined as critical cancer driver genes. Therefore, the
prediction of cancer driver genes can be achieved using the
integration of gene expression and prioritization of biological
process mediators using multiple data types.

Moonlight offers two approaches: expert- and machine
learning. While both of these approaches identify cancer driver
genes using gene expression data as a major source of information
(Fig. 1b; Methods), the expert-based approach offers the potential
to incorporate user expertise to reveal otherwise hidden
molecular mechanisms used by cancer driver genes.

Moonlight identifies oncogenic mediators in breast cancer. In
the first application of Moonlight, we employed the expert-based
approach and selected apoptosis and cell proliferation as the
representative biological processes, studying 18 cancer types
from TCGA (Methods). We compared tumor and normal sam-
ples using sample profiles from multiple -omics data retrieved
from the Genomic Data Commons using the TCGAbiolinks14

package and a workflow that we developed to process cancer
data15,16 (Methods; Supplementary Data 3). Specifically, we
selected breast-invasive carcinoma from TCGA for illustrative
purposes. In this step of the analysis, we found 3390 genes that
were differentially expressed (Methods, Supplementary Data 3)
when comparing normal and tumor breast-cancer tissue sam-
ples. Functional Enrichment Analysis (Methods) revealed that
these genes were significantly enriched in 32 biological processes
(Fig. 2a; Supplementary Data 4). Several biological processes
promoting cancer progression (cell proliferation, invasion of
cells, inflammatory response) were significantly increased. Con-
currently, processes counteracting cancer progression (branching
of cells, apoptosis of tumor cell lines) were significantly
decreased.

One example of a biological process associated with cancer
progression is increased cell proliferation. The cell proliferation
biological process, as defined by Gene Ontology and KEGG
database, has 3938 annotated genes, of which 1172 were

identified by Moonlight to be differentially expressed genes
(Student’s t test FDR-adjusted p= 4.38E-113) (Fig. 2a; Supple-
mentary Data 4, Methods). Another example is apoptosis, which
is generally downregulated in association with cancer progres-
sion. This process had 1284 annotated genes, of which 390 were
found to be differentially expressed (Student’s t test FDR-
adjusted p= 3.15E-34) (Fig. 2a; Supplementary Data 4). Moon-
light identified a significant decrease of apoptosis in the
comparison of tumor versus normal samples. Overall, Moonlight
predicted 776 cancer driver genes (626 oncogenes and 150 tumor
suppressors) in the analyses of breast-invasive carcinoma
(Supplementary Data 5).

We also showed the ability of Moonlight to identify
associations between the aforementioned biological processes
and the specific genes that regulate these processes. To
accomplish this, we performed Pattern Regulation Analysis
(Methods), enabling the identification of genes with two distinct
patterns. These patterns (Fig. 2b) were (i) increased proliferation
and decreased apoptosis (e.g., CDC2017, TIMELESS18, and
CDC619), and (ii) decreased proliferation and increased apoptosis
(e.g., ADAMTS920, DLL421, and SOX722). We supported our
findings by literature searches (Fig. 2b) and hypothesize that
genes with pattern (i) can act as oncogenes while genes with
pattern (ii) can act as tumor suppressors.

Moonlight applied to pan-cancer data. To illustrate its potential,
we applied the Moonlight pipeline to contrast normal and tumor
samples for 18 cancer types (Methods). Moonlight used apoptosis
and cell proliferation as key markers to identify 3123 unique
oncogenic mediators (Supplementary Data 6, Methods). We
classified the genes that concurrently increased apoptosis and
decreased proliferation as tumor-suppressor genes, and vice versa
for oncogenes.

Of the 3123 oncogenic mediators within the comprehensive set
of 18 cancer types, the Moonlight pipeline identified 1076 tumor-
suppressor-like and 1896 oncogene-like mediators (Fig. 2c;
Supplementary Data 6). In addition, 151 driver genes showed a
dual-role effect (Fig. 2d; Supplementary Fig. 1, Supplementary
Data 6). We have characterized the specific molecular changes
associated with all the 3123 oncogenic mediators and cancer
driver genes in the following sections.

Cancer driver genes are associated with cancer heterogeneity.
Moonlight can be used to investigate cancer molecular subtypes,
here illustrated using breast-cancer data. We compared normal
breast tissue samples with samples from different molecular
subtypes of breast cancer, according to the PAM50 classifica-
tion23. This analysis revealed a total of 638 cancer driver genes
specific to individual subtypes: luminal A (221 oncogenes and 180
tumor suppressors); luminal B (51 oncogenes and 73 tumor
suppressors); basal-like (14 oncogenes and 76 tumor sup-
pressors); HER2-enriched (8 oncogenes and 15 tumor sup-
pressors) (Fig. 2e; Supplementary Data 5). In addition, Pattern
Recognition Analysis combined with Dynamic Recognition
Analysis (Supplementary Software 1) revealed several specific
gene programs increased or decreased according to the specific
molecular subtype of the cancer of study (Supplementary Fig. 2;
Methods).

We identified FOXM1 as an oncogene in the luminal A
subtype, a gene known to be a lineage-specific oncogene in this
subtype24. The forkhead box (Fox) A1 and M1 genes belong to a
superfamily of evolutionarily conserved transcriptional factors,
and FOXM1 has been shown to be a promising candidate target
in the treatment of breast cancer25. It is known that the binding of
a transcription factor to the promoter region of a target gene is
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restricted by complex chromatin accessibility26. We looked at
FOXA1 chromatin signal and we observed an association with
open states of chromatin.

DNA methylation controls activity in cancer driver genes. To
further investigate Moonlight findings, we explored additional

patterns using DNA methylation. In the literature, we observe the
existence of two broad classes of CpG-methylated sites: (i) those
with a strong inverse correlation between DNA methylation and
chromatin accessibility across cell types and (ii) those with vari-
able chromatin accessibility but constitutive hypomethylation27.
Therefore, we identified differentially methylated regions between
normal and tumor samples for 18 TCGA cancer types (Methods).
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Using Moonlight’s expert-based approach, we integrated RNA
and epigenetic data to identify critical genes.

Among 3310 oncogenic mediators in 18 cancer types, we saw
that 1176 depicted epigenetic changes (509 oncogene-like, 586
tumor-suppressor like). Moonlight detected 233 genes associated
with hypermethylation (tumor-suppressor critical) and 404 with
hypomethylation (oncogene critical). We considered these genes
to be critical epigenetic cancer driver genes. Among these genes,
18 cancer driver genes showed a dual role associated with
epigenetic changes (Supplementary Data 7), five of which were
considered to be critical: SLC27A6, PDGFRA, GAS7, PLXNC1,
and NRP2. For example, Moonlight identified GAS7 as a
hypermethylated tumor suppressor in lung cancer and as an
hypomethylated oncogene in head-and-neck squamous cell
tumors. These findings were confirmed by data on lung cancer28,
and associated with copy-number changes in head-and-neck
cancer cell lines29, but it has not been validated yet as oncogene
for head-and-neck tumors, suggesting an interesting target for
future studies.

For breast cancer, we found that 231 (30%) of the predicted
oncogenic mediators experienced epigenetic changes. Of these
genes, 54 tumor suppressors showed hypermethylation while 80
oncogenes showed hypomethylation. We considered these 134
genes to be critical epigenetic cancer driver genes for breast
cancer. We inspected the 50 cancer driver genes for breast cancer
with the highest Moonlight Gene Z-scores (Methods), of which
Moonlight identified 14 tumor suppressors (Fig. 2b). Of these,
eight reported hypermethylation in tumor samples (including
ADAMTS9, DLL4, and SOX7, described above), while CYP26B1
and FILIP1 reported hypomethylation (Supplementary Data 7).
ADAMTS9 exhibited promoter hypermethylation and its down-
regulation is associated with decreased cell proliferation and
increased apoptosis. Interestingly, these findings were confirmed
by a recent study20.

Among the cancer driver genes that experienced epigenetic
changes in at least five cancer types, we identified eight genes:
CEP55, PIF1, RRM2, NCAPH, ZEB2, CIT, FLI1, and PCDH17.
Moonlight detected RRM2 as an oncogene. This gene is a critical
epigenetic cancer driver gene (hypomethylated) in six cancer
types, including head-and-neck and lung cancer, and is associated
with multiple other cancers. Recently, it was shown that
knockdown of RRM2 led to intrinsic apoptosis in head-and-
neck squamous cell carcinoma and non-small cell lung cancer cell
lines, confirming our findings30.

In addition, Moonlight identified FLI1 as a tumor suppressor
in multiple cancer types, including lung, breast, uterine, and

colon (Supplementary Data 7). We also found hypermethylation
of colon adenocarcinoma and lung adenocarcinoma, specifically
in two CpG loci associated with FLI1: cg11017065 (colon cancer)
and cg04691908 (lung adenocarcinoma). We hypothesize that
differentially methylated CpG islands, or hypermethylation of the
FLI1 promoter, may also lead to inactivation of FLI1’s tumor-
suppressor ability. FLI1 is known to be downregulated in colon
adenocarcinomas and is associated with colon cancer progres-
sion31. Hypermethylation, especially in tumor suppressors, is a
well-known epigenetic control mechanism that is important for
gene inactivation in cancer cells32. Furthermore, DNA hypo-
methylation can be found early in carcinogenesis, and is often
associated with tumor progression and oncogenes33.

Therefore, Moonlight’s highlighted mechanisms on CpG-
island promoter regions can be summarized as follows: (i)
oncogene activation is associated with DNA hypomethylation at
the promoter sites, and (ii) tumor-suppressor inactivation is
associated with DNA hypermethylation at the promoter sites. In
general, epigenetic changes in promoter regions influence the
activation of oncogenes and inactivation of tumor suppressors,
but genes that have pre-existing sites for initiation of transcrip-
tion with open chromatin are more likely to be activated after
nuclear transfer34. This suggests that the chromatin signature
influences transcriptional reprogramming, in which activated
genes associated with new open chromatin sites—especially in
transcription factors—play an important role.

Cancer driver genes are prioritized at accessible regions.
Because epigenetic changes cooperate with chromatin accessi-
bility to influence transcriptional activities, we also investigated if
cancer driver genes predicted by Moonlight showed molecular
changes at the level of chromatin accessibility. We performed
integrative analysis of gene expression and ATAC-seq data on the
18 TCGA cancer types selected for our study. We detected five
cancer types (breast-invasive carcinoma, glioblastoma multi-
forme, liver hepatocellular carcinoma, lung adenocarcinoma, lung
squamous cell carcinoma) that showed higher chromatin acces-
sibility peak signals in promoter regions for oncogenes than
tumor suppressors, as predicted by Moonlight (Student’s t test
p < 0.05, Fig. 3a). In contrast, the tumor suppressors showed
higher peaks in intron regions compared with the oncogenes in
six cancer types (Student’s t test p < 0.05, Fig. 3b). Interestingly,
these results were mutually exclusive: the six cancer types with
higher peaks at the intron regions for tumor suppressors did not
show significant peaks in the promoter regions for oncogenes
(Supplementary Data 8, Methods).

Fig. 2 Moonlight application within breast-cancer case study. a Barplot from Functional Enrichment Analysis showing the BPs enriched significantly with |
Moonlight Process Z-score| >= 1 and FDR <= 0.01; increased levels are reported in yellow, decreased in purple, and green shows the -logFDR/10. A
negative Moonlight Process Z-score indicates that the process’ activity is decreased, while a positive Moonlight Process Z-score indicates that the process’
activity is increased. Values in parentheses indicate the number of genes in common between the genes annotated in the biological process and the genes
used as input for the functional enrichment. b Heatmap showing the top 50 predicted tumor suppressors and oncogenes in breast cancer and their
associated biological processes. Hierarchical clustering was performed on the Euclidean distance matrix. Biological Processes with increased (decreased)
Moonlight Gene Z-score are marked in red (blue). The number of samples reporting the mutation of specific genes ranges from white to dark purple.
Hypermethylated (hypomethylated) DMR are shown in blue (yellow). Genes with poor Kaplan–Meier survival prognosis are marked in pink. Chromatin
accessibility in the promoter region ranges from white (closed) to orange (open). The upper panel shows boxplots of cell-line expression levels. c Barplot
reporting the number of tumor-suppressor genes (blue) or oncogene (red) predicted in pan-cancer analysis using expert knowledge paired with PRA using
two selected biological processes, such as apoptosis and cell proliferation. d Heatmap showing the top 50 dual-role genes (by Moonlight Gene Z-score)
within cancer types, oncogenes (OCGs) are shown in red and Tumor-Suppressor Genes (TSGs) in blue. TCGA study abbreviations available at https://gdc.
cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations. e Circos plots for molecular subtypes of Moonlight genes predicted using
expert knowledge paired with PRA using two selected BPs, such as apoptosis and cell proliferation. From outer to the inner layer, the color labels are
breast-cancer subtype. In the parentheses, the number of OCGs and TSG for a specific molecular subtype; OCGs (green) and TSGs (yellow); purple and
orange for mutations: inframe deletion, inframe insertion, missense; gene–gene edges between two cancer molecular subtypes are OCG in both (green),
TSG in both (yellow), dual-role genes (red).
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Moonlight identified mutually exclusive peaks in different
regions: open chromatin in the intron region for tumor
suppressors (Fig. 3b) and open chromatin in promoter regions
for oncogenes (Fig. 3a). We also reported overall higher
chromatin peaks signal for oncogenes when compared with
tumor suppressors (Fig. 3c). Notably, LSM1, predicted by
Moonlight as an oncogene and reported as an oncogene in breast
cancer35, showed the highest peak in the promoter region
(followed by ERBB2, PSMD3, and PRR15). Supplementary Fig. 3a
shows the PSMD3 peak signal for a selection of TCGA breast-
invasive carcinoma ATAC-seq samples, while Supplementary
Fig. 3b, c show the peak signals of ERBB2, PRR15, and GATA3.
Moonlight identified the cell cycle kinase CDK4 as an oncogene
in glioblastoma multiforme, with the highest normalized peak
score (1164). Li et al. and Lubanska et al. reported that CDK4

inhibitor therapy was more effective in the glioblastoma
proneural subtype36,37.

In particular, among 151 dual-role genes detected by Moon-
light one interesting gene, ANGPTL4, was predicted to be an
oncogene in kidney cancers with associated promoter peaks as
well as a tumor suppressor in prostate adenocarcinoma with
hypermethylation in the promoter region (Supplementary Data 7,
8; Methods). Thus, Moonlight detected ANGPTL4 as a dual-role
gene, a finding which was confirmed by a recent study38.

A similar behavior was observed for SOX17, which was
predicted as an oncogene in uterine corpus endometrial
carcinoma associated with promoter peaks and as a tumor
suppressor associated with hypermethylation in lung squamous
cell carcinoma (Supplementary Data 7, 8; Methods) These
findings were confirmed by ChipSeq of SOX17 in endometrial
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Fig. 3 Chromatin accessibility landscape of oncogenic mediators. a log2 (chromatin peaks in promoters) for tumor suppressor and oncogenes detected in
Pan-Cancer study, b boxplot showing log2 (chromatin peaks in introns), and c breast cancer log2 (chromatin peaks count).
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cancer39, while SOX17 suppressed cell proliferation and promoter
hypermethylation has been shown in lung cancer40.

Critical cancer driver genes reshapes copy-number landscape.
The relationship between DNA hypomethylation of oncogenes,
hypermethylation of tumor suppressors, and copy-number
amplification or deletion is another well-known mechanism to
modulate cancer driver genes41. We investigated if cancer driver
genes predicted by Moonlight showed molecular changes at the
copy-number level. For the 3123 mediators predicted by Moon-
light within 18 cancer types, 848 showed copy-number changes
and 358 showed critical copy-number cancer driver genes (eg.
observed amplification of oncogenes and deletion of tumor sup-
pressors) (Supplementary Data 9). For example, we observed
amplification of the oncogenes CCND1 (supported by study42)
and CCNE1 in breast cancer. Moreover, we identified deletions in
tumor suppressors, such as DACT2 and TGFBR3 (Fig. 4a). In
addition, Moonlight predicted FOXM1 as an oncogene with
associated amplification in colon adenocarcinoma and lung
squamous cell carcinoma43,44. Among the 151 predicted dual-role
genes, 19 were identified with associated copy-number changes,
while 12 genes were critical copy-number cancer driver genes,
including ADAM6, BCL2, CACNA2D2, CDKN2B, CLEC1A,
DIXDC1, FAM129A, GPSM2, IQGAP2, MAP1B, PALM, and
TSPAN4. Moonlight predicted ADAM6, a dual-role lncRNA, as a
novel tumor suppressor in colon cancer and oncogene in head-
and-neck cancer.

Moonlight also showed that the anti-apoptotic BCL2 is a dual-
role gene. Specifically, Moonlight identified BLC2 as an oncogene
in thyroid carcinoma, through decreasing apoptosis and showing
a peak in the exon region concurrently, confirmed by published
data45. Moonlight also identified BCL2 as a tumor suppressor in
prostate adenocarcinoma with promoter hypermethylation, dele-
tion, and associated with increased apoptosis (Supplementary
Data 7, 9). The BLC2 anti-apoptotic effect is a well-known
mechanism in pancreatic cancer, especially because upregulation
is required for pancreas progression, which implies that down-
regulation can inhibit cancer progression.

Oncogenic mediators exhibit differences in mutations. Fur-
thermore, we extended our study to mutation data. While it has
been shown that highly mutated genes promote cancer progres-
sion12, it is yet unknown if methylation and copy-number
changes to cancer driver genes directly imply that these genes
have been mutated. Therefore, we also investigated which cancer
driver genes exhibited alterations at the mutational level.
Moonlight applied to pan-cancer data revealed mutations in
intron region (Fig. 4b) for tumor suppressors and mutations in
promoter regions for oncogenes. (Fig. 4c). In Fig. 4d, we report
the results of the analysis from different mutation types for the
cancer driver genes predicted by Moonlight in breast cancer.
Moonlight identified three oncogenes, CMYA5, ASPM, and
ERBB2, showing 34, 30, and 29 samples with missense mutations,
respectively (Methods; Supplementary Data 10). ASPM and
CMYA5 are predicted as novel oncogenes in breast cancer, while
ERBB2 is an already well-known oncogene in breast cancer46.
Furthermore, ST6GALNAC3 was predicted by Moonlight to be a
tumor suppressor in breast cancer with 33 samples with intron
mutations. Therefore, we show the mutation site for the
ST6GALNAC3 gene (Supplementary Fig. 4b).

Interestingly, Moonlight detected GATA3 as an oncogene in
breast cancer with several mutated samples: frameshift insertion,
deletion, and splice site. In particular, we observed that
GATA3 showed the highest mutation rate in breast-cancer
samples in splice-site and frameshift insertions. Therefore, we

show the mutation site (x308, D335, p408) for the GATA3 gene
(Supplementary Fig. 4a). GATA3 is known to be an oncogene in
breast cancer47. However, GATA3 has also been recently reported
as a tumor suppressor for breast cancer in certain contexts47,
which intrigued us. In a recent study, we applied Moonlight to
discover several pathways that are differentially expressed
between wild-type GATA3 and GATA3 with frameshift/nonsense
or missense mutations in breast-cancer samples10. GATA3-
mutant cells are known to become more aggressive and exhibited
faster tumor growth in vivo48. In this light, we believe that
Moonlight was not only able to detect the oncogene behavior of
GATA3 in breast cancer with precision but was also able to
elucidate the underlying mechanism and mutation sites (Meth-
ods, Supplementary Fig. 4a).

Oncogenic mediators impair survival outcomes. It is well
known that highly expressed oncogenes in cancer patients are
associated with a worse prognosis49, negatively impacting survival
outcomes, whereas tumor suppressors present better
outcomes50,51. With this in mind, we examined which oncogenic
mediators could be associated with prognosis. Notably, an overall
survival analysis identified 1051 prognostic cancer driver genes
(Methods; Supplementary Data 11). Of these, 521 oncogenes were
associated with poor prognosis, whereas 50 tumor suppressors
with good prognosis. Interestingly, among these cancer driver
genes, ADHFE152, TRPM853, and PGBD554 were not present in
the gold-standard gene set from COSMIC and Vogelstein
(Methods), but were recently validated as oncogenes for breast
cancer52–54. Similarly, genes such as MTHFD255, CHAC156, and
SDC157 were associated with poor prognosis in TCGA breast-
cancer samples by Moonlight, and they were shown in literature
to influence cell migration and proliferation in breast-cancer cell
lines56,58,59 (Supplementary Fig. 4c).

Subsequently, we explored the possibility that dual-role genes
could differentially influence prognosis by cancer type or subtype.
We examined the behavior of ANKRD23 (Ankyrin Repeat
Domain 23). Moonlight predicted this gene to be an oncogene in
renal clear-cell carcinoma associated with poor survival (log-rank
test p= 0.001, Fig. 5a). Interestingly, Moonlight also predicted
this gene to be a tumor suppressor in bladder urothelial
carcinoma with good survival prognosis (log-rank test p=
0.022, Fig. 5b). Moonlight, applied in conjunction with clinical
data, can highlight dual-role genes with variable impact on cancer
survival across cancer types and subtypes.

Moonlight machine-learning approach and tool comparison.
To show the second option of Moonlight, we applied the
machine-learning approach to TCGA Pan-Cancer RNA-seq
samples. We trained a random forest model on a gold-standard
gene set of known cancer driver genes (Methods; Fig. 6a). We
supplied the output of the Moonlight Upstream Regulatory
Analysis (Methods) to this model to score the biological
processes.

The machine-learning approach predicted four genes as
candidate dual-role genes: BCL2, CDKN2A, KIT, and SOCS1
(Methods; Fig. 6b). Recent findings support the dual-role
behavior of these four genes. BCL2’s dual role is related not only
to its expression but also to the localization of its protein
products60. Also, for CDKN2A, the up- or downregulation of this
gene has been described in several types of cancer, suggesting a
dual role of the encoded protein61. Moreover, the cellular
localization of the gene products (p15, p16, and p14ARF) appears
to have different functions in different cancer types62. Further-
more, c-Kit’s dual-role behavior in different contexts has been
already proposed63. Finally, SOCS1 is known to act as a tumor
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suppressor in some cancer types64 and as an oncogene in
others65.

To evaluate the performance of Moonlight, we compared its
machine-learning approach to two state-of-the-art methods for

the detection of cancer driver genes: 20/20+66 and OncodriveR-
ole67. We chose these methods for their popularity, ease of
implementation, and similarity to Moonlight’s machine-learning
approach. We conducted leave-one-out cross-validation for one
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class versus all, and we found comparable results to Moonlight
(Methods; Fig. 6c).

We observed that three cancer types obtained better perfor-
mance (lowest log-loss values), namely esophageal carcinoma,
kidney renal papillary cell carcinoma, and rectum adenocarci-
noma (Fig. 6c), while liver hepatocellular carcinoma and
head–neck squamous cell carcinoma had poorer performance.
The discrepancies could be related to the source of oncogenes and
tumor suppressors that we used to train and validate our model.
The COSMIC and Vogelstein oncogene/tumor-suppressor lists
(Methods) are not designed to be cancer specific. Therefore, it is
likely that some of the oncogenes/tumor suppressors are not
playing an oncogene/tumor-suppressor role in certain cancer
types. For some of the other cancer types, however, a majority of
oncogenes and tumor suppressors might be relevant. This is the
case for rectum adenocarcinoma: its five oncogenes are BCL2,
KIT, KLF4, MET, and PDGFRA. These genes are either linked to
gastrointestinal cancer in the COSMIC database (BCL2, KIT and
PDGFRA) or through literature findings (MET68 and KLF469).

Taking a closer look at the tumor suppressors, we found that at
least two of these genes, CDKN2A70 and SOCS164, have been
linked to colorectal cancer. For the cancer types that performed
the worst, liver hepatocellular carcinoma included none of the
used oncogenes (AR, KLF4, PDGFRA, and RET) or tumor
suppressors (BRCA2, CDKN2A, and TSC1) that were linked to it.
This suggests that when a well-curated, cancer type specific list of
oncogenes and tumor suppressors is present, Moonlight is
successful in using gene expression data to detect the role of
cancer driver genes. For rectum adenocarcinoma (one of the
cancer types with the best performance), the top biological
processes are able to cluster the two classes accurately (Fig. 6c).

Integrating Connectivity Map to guide target therapies. To
capitalize on our discovery of dual-role cancer driver genes, we
next employed Connectivity Map71 to search for candidate
compounds that could target cancer driver genes revealed by
Moonlight (Methods). This tool provides a systematic approach
for discovering associations among genes, chemicals, and

biological conditions. For the 776 biological mediators in breast
cancer, this analysis revealed 365 compounds targeting 77 genes.
We defined these 77 genes as critical drug genes, of which 18 were
tumor suppressors and 59 oncogenes (Supplementary Data 12).
Among the 365 compounds identified, 16 shared 26 mechanisms
of action and targeted six tumor suppressors and 12 oncogenes
(Fig. 7a, b). We observed that six compounds (methylnorlichex-
anthone, AG-879, axitinib, ENMD-2076, orantinib, and SU-1498)
shared the VEGFR-inhibitor mechanism of action. Consequently,
we speculate that a guided therapy of the mentioned drugs will be
beneficial for breast-cancer treatment.

Furthermore, Connectivity Map also identified potential drugs
to target the 151 dual-role genes identified by the expert-based
Moonlight approach. For example, we identified ADRA2A,
predicted as oncogene in breast cancer and tumor suppressor in
bladder urothelial carcinoma, targeted by 62 compounds. In
addition, PDGFRA was predicted to be oncogene in thyroid
carcinoma and tumor suppressor in colon adenocarcinoma,
targeted by 26 (Supplementary Data 12). Combining results from
Moonlight and Connectivity Map potentially could help for drug-
repurposing purposes.

Cancer cell lines experiments validated cancer driver genes. A
major requirement for drug design is to functionally validate the
inhibition potential of targeted cancer driver genes in ex vivo or
in vivo cancer models.

Recently, multiple drugs were shown to act on the same cell
lines in a first-of-its-kind study72. To aid in effective cancer
treatments which concurrently activate tumor suppressors and
inactivate oncogenes, novel drug-combination therapies are
required. For this reason, we validated the predicted cancer
driver genes in silico and further analyzed gene expression data
from 1001 cancer cell lines retrieved from the Genomics of Drug
Sensitivity in Cancer (GDSC) database72. We created a pipeline to
automatically retrieve these data along with the gene expression
matrix for 18 cancer types from GDSC data set (Methods).

Within these GDSC cell lines, we observed that 41% of the
oncogenes upregulated in TCGA’s breast-invasive carcinoma
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tumors had high expression. Simultaneously, 31% of the tumor
suppressors downregulated had low expression (Methods; Fig. 2b,
Fig. 7c; Supplementary Data 13). For example, Moonlight
identified H2AF as a highly expressed oncogene in several
breast-cancer cell lines. In contrast, Moonlight identified SOX7,
CYP26B1, DACT2 as tumor suppressors with low expression in
these same cell lines. These findings were also supported by
literature 22,73–75.

Discussion
In summary, Moonlight provides a platform for multi-omics
integration and utilizes a wealth of prior knowledge (Fig. 1a).
Such knowledge includes gene networks and ontologies unhar-
nessed by many current bioinformatics tools for oncological
discovery. Moonlight combines multiple functionalities to
reproducibly integrate regulatory networks by means of gene
expression, literature information, and evidence from multiple
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bulk-tumor -omics data (mutation, DNA methylation, chromatin
accessibility, cell lines, and clinical data) (Methods; Fig. 1b).
Because of Moonlight’s ability to combine information from
multiple sources, this software has the capability to define critical
events when two or more key alterations appear.

Moonlight highlights cancer driver genes currently unde-
tected by other tools and detects dual-role genes (oncogene in
one cancer type and tumor suppressor in another). As a proof-
of-principle, Moonlight accurately predicted cancer driver
genes in breast-invasive carcinoma and 17 other cancer types,
elucidating their underlying biological mechanisms. Moonlight
successfully identified BCL2, SOX17, and ANGPTL4 as dual-
role genes. These three genes show Moonlight’s ability to detect
complex interactions among biological process mediators,
classifying oncogenes, and tumor suppressors. Analysis with
Moonlight highlights the particular molecular changes asso-
ciated to this dual-role effect. Proper evaluation of dual-role
genes will allow for better comprehension of global tumor
heterogeneity and will provide insights on tumor diagnosis,
prognosis, and resistance to treatment ultimately leading to
better therapeutic decisions.

In addition, we recently demonstrated the flexibility of
Moonlight in pinpointing context-specific gene programs that are
differentially expressed in varied scenarios from the TCGA Pan-
Cancer Atlas Initiative. For instance, Moonlight extracted
mutation-context differences in samples with and without
mutations (somatic or germline) of BRCA1 and/or BRCA2, as
well as in known cancer driver-gene mutations (e.g., missense or
frameshift/nonsense)10. Also, Moonlight detected cell-of-origin
differences based on stemness score associated with oncogenic
dedifferentiation76.

We further hypothesize that applying Moonlight to single-cell
-omics data will reveal pathways and cancer driver genes that
hide residual tumor cells and protect them from eradication by
surgery, radiation, or chemotherapy. Another potential applica-
tion of Moonlight is to gauge the impact of dual-role genes on
tumor samples after polypharmacological treatments, as moti-
vated by recent research76. Moreover, this information enables
oncologists to choose the best personalized therapeutic option for
each patient. Indeed, a therapy that has a positive effect on a
subject could be completely inefficient on another tumor type due
to the opposite behavior of the target protein. Apart from the
inefficacy of the anticancer treatment, the use of off-targeted
therapeutic options could have severe clinical consequences, such
as toxicity or adverse side effects.

Even more critically, the existence of different cancer subtypes
may affect patterns of mutations associated with drug resistance
in rare cases. In addition, it has been reported that mutation of
different amino acid sites are related to antibiotic drug resis-
tance77. Interestingly, Moonlight identified GATA3 with three
different mutation sites and predicted it correctly as an oncogene
in breast cancer. Therefore, we speculate that designing specific
drugs which target multiple amino acids enable more “stable”
gene inactivation during therapy, and can overcome cancer-
related drug resistance.

In addition, regulation of higher-order chromatin structures by
DNA methylation and histone modification is crucial for genome
reprogramming. Moonlight identified hypermethylated tumor
suppressors and hypomethylated oncogenes. Interestingly,
Moonlight detected open chromatin peaks in the intron regions
for tumor suppressors. Also, Moonlight identified more muta-
tions in intron regions than in promoter regions for tumor-
suppressor genes. It is known that intron retention is a wide-
spread mechanism of tumor-suppressor inactivation78, which was
consistent with our observation. This suggests that further
investigation in long-range regulation within the intron region of

tumor suppressors can inform us of the mechanism to re-activate
silent tumor-suppressor genes.

When we explored the epigenetic modifiers or chromatin
accessibility, we observed a global opening of chromatin in the
promoter regions for oncogenes predicted by Moonlight. Con-
currently, chromatin was more closed or had dampened signal for
tumor suppressors. These findings confirmed the hypothesis that
(i) a mechanism of activation for oncogenes is related to open
chromatin in the promoter region, and (ii) distant chromatin
peaks and open chromatin in intron regions are associated with
tumor suppressors79. Therefore, our findings support that dif-
ferential chromatin accessibility is an underlying biological
mechanism of tumor suppressors and oncogenes. Recently, a
Pan-Cancer analysis of 410 tumor samples in 23 cancer types
showed that MYC, a well-known oncogene, had broad open
chromatin in the promoter region80. Moonlight results support
this finding.

Interestingly, a study has probed if it is possible for an onco-
gene to switch to a tumor suppressor81. The study showed that
the epigenetic background of the cell type may only permit cer-
tain oncogenes or tumor suppressors to change roles. This per-
spective also applies to subtypes within a cancer type. For
instance, some mutations are permissive in one subtype, whereas
other alterations only work in other subtype. Their multiple
findings agreed with Moonlight’s findings, highlighting multiple
genes identified as cancer driver genes (e.g., GATA3, CDH1,
BRCA1, ESR1 in breast cancer81) that Moonlight predicted to
drive tumorigenesis in breast and other cancer types.

As we look to the future of driver-gene discovery in cancer,
tools like Moonlight will become essential for the integration of
biological processes across many data molecular substrates. While
our findings remain to be functionally validated, our tool has
provided insights into genes that modulate proliferation, apop-
tosis, migration, and invasiveness. This hypothesis-generating
mechanism provides clues to which gene properties that can be
confirmed using in vivo models such as patient-derived tumors
xenografted in mice, or proliferation assays in cell culture. Guided
by Moonlight’s in silico approach, functional studies will be more
successful in identifying and confirming cancer biomarkers.

Methods
Moonlight workflow. Here we describe the two Moonlight approaches:
Moonlight-EB (expert based) and Moonlight-ML (machine learning) (Fig. 1b).

The EB and ML approaches share the following three initial steps (Fig. 1b;
Methods): (i) Moonlight identifies a set of Differentially Expressed Genes (DEGs)
between two conditions, then (ii) the gene expression data are used to infer a Gene
Regulatory Network (GRN) with the DEGs as vertices, and (iii) using Functional
Enrichment Analysis (FEA), Moonlight considers a DEG in a biological system and
quantifies the DEG-BP (biological process) association with a Moonlight Process
Z-score. Finally, we input DEGs and their GRN to Upstream Regulatory Analysis
(URA), yielding upstream regulators of BPs mediated by the DEG and its targets.

The second part of the pipeline’s tool provides pattern recognition analysis
(PRA) that incorporates two approaches. In the first approach, PRA takes in two
objects: (i) URA’s output, and (ii) selection of a subset of the BP provided by the
end user. In contrast, if the BPs are not provided, their selection is automated by an
ML method (e.g., random forest model) trained on gold-standard oncogenes
(OCG) and tumor-suppressor genes (TSG) in the second approach. In addition,
dynamic recognition analysis (DRA) detects multiple patterns of BPs when
different conditions are selected (Fig. 1b; Methods).

State-of-the-art methods for cancer gene prediction. Recent studies of tools
predicting cancer driver genes using mutation, gene expression, and copy-number
data are reported66,82–84. Table 1 shows a brief comparison of main current tools.
These methods cover different methodological approaches: mutation-level
threshold, mutation functional impact, and mutation and gene expression
influence.

Among the state-of-the-art methods to identify cancer driver genes (CDGs),
three of them have predicted the role of a CDG, such as TSG or OCG including
20/202, 20/20+66, and OncodriveRole67. While these approaches are able to
identify well-known cancer genes, they have difficulties when it comes to the
prediction of new TSG/OCG candidates85.
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The “20/20 rule” was proposed by Vogelstein et al.2 to identify TSGs and OCGs
based on their mutational pattern across tumor samples. If a gene has ≥20%
truncating mutations, it is considered to be a TSG, whereas those with >20%
missense mutations in recurrent positions are considered to be an OCG.

Schroeder et al. implemented OncodriveRole67 to identify 30 features capable of
differentiating between TSGs and OCGs. Successively, Tokheim et al. extended the
original 20/20 rule2 in an ML approach allowing the integration of multiple
ratiometric features of positive selection in 20/20+66 to predict oncogenes and
TSGs from small somatic variants. The features capture mutational clustering,
conservation, mutation in silico pathogenicity scores, mutation consequence types,
protein interaction network connectivity, and other covariates (e.g., replication
timing).

ActiveDriver and e-Driver identify driver genes detecting genes with mutations
that might also have an impact on protein function. ActiveDriver detects driver
genes with significantly higher mutation rates in posttranslationally modified sites
such as phosphorylation-specific regions. e-Driver identifies protein regions
(domains and disordered sites) enriched with somatic modifications that could
influence protein function.

MutSig2CV and DriverNet detect driver genes integrating genomic and
transcriptome data.

Compared with existing tools, Moonlight is able to extract, for each driver gene,
the multilayer profile elucidating the BPs underlying their specific roles and
interactions. Furthermore, the majority of the current methods use only mutation
data to detect cancer drivers, limiting the knowledge of the related molecular
mechanisms. Indeed, mutations can cause different effects such as a loss or
reduction of mRNA transcripts impacting on the protein function. In line with this
scenario to increase functional information and generate new hypotheses of gene
function, transcriptome data have been used.

Data sets and preprocessing. The legacy level-3 data of the Pan-Cancer studies
(18 cancer types), for which there were at least five samples of primary solid tumor
(TP) or solid tissue normal (NT) available, were used in this study and downloaded
in May 2018 from The Cancer Genome Atlas (TCGA) cohort deposited in the
Genomic Data Commons (GDC) Data Portal (Supplementary Data 4).

RNA-seq raw counts of 7962 cases (7240 TP and 722 NT samples) aligned to
the hg19 reference genome were downloaded from GDC’s legacy archive,
normalized, and filtered using the R/Bioconductor package TCGAbiolinks14

version 2.9.5 using GDCquery(), GDCdownload(), and GDCprepare() functions
for tumor types (level 3, and platform “IlluminaHiSeq_RNASeqV2”), as well as
using data.type as “Gene expression quantification” and file.type as “results”. This
allowed for the extraction of the raw expression signal for expression of a gene for
each case following the TCGA pipeline used to create level-3 expression data from
RNA Sequence data. This pipeline used MapSplice86 to do the alignment and
RSEM to perform the quantification87.

DNA methylation beta values of primary solid tumors (TP) and solid tissue
normal (NT) from Pan-Cancer studies (18 cancer types) aligned to the
hg19 reference genome were downloaded from GDC’s legacy archive using the
R/Bioconductor package TCGAbiolinks14 version 2.9.5 using GDCquery(),
GDCdownload(), and GDCprepare() functions for tumor types (level 3, and
platform “Illumina Human Methylation 450”). This allowed for the extraction of
the DNA methylation level-3 data following the TCGA pipeline used to create data
from the Illumina Infinium HumanMethylation450 (HM450) array. This pipeline
measured the level of methylation at known CpG sites as beta values, calculated
from array intensities (level 2 data) as Beta=M/(M+U). Using probe sequence
information provided in the manufacturer’s manifest, HM450 probes were
remapped to the hg19 reference genome88. Preprocessing steps included
background correction, dye-bias normalization, and calculation of beta values. We
used level-3 data. Beta values range from zero to one, with zero indicating no DNA
methylation and one indicating complete DNA methylation.

Integrative analysis using mutation, clinical, and gene expression were
performed following our recent TCGA’s workflow15.

For the intra-tumoral genomic and transcriptomic heterogeneity case study, we
used Breast invasive carcinoma (BRCA) from TCGA as deposited in the GDC Data
Portal. In particular, we downloaded, normalized, and filtered RNA-seq raw counts
of 1211 BRCA cases as a legacy archive, using the reference of hg19, using the R/
Bioconductor package TCGAbiolinks following the above pipeline. Among BRCA
samples, 1097 were TP and 114 NT. The aggregation of the two matrices (tumor
and normal) for both tumor types was then normalized using within-lane
normalization to adjust for GC-content effect on read counts and upper-quantile
between-lane normalization for distributional differences between lanes by
applying the TCGAanalyze_Normalization() function adopting the EDASeq
protocol89,90. Molecular subtypes, mutation data, and clinical data were extracted
using TCGAbiolinks and the following functions: TCGAquery_subtype(),
GDCquery_maf() (for retrieving somatic variants that were called by the MuTect2
pipeline), and GDCquery_clinic(), respectively. BRCA tumors with PAM50
classification23 were stratified into five molecular subtypes: Basal-like (192), HER2-
enriched (82), Luminal A (562), Luminal B (209), and Normal-like (40). We
performed a comparison of each molecular subtype with normal samples excluding
Normal-like subtypes.

Biological processes. To understand the molecular mechanisms that underlie
CDGs, we focused our analysis on a subset of specific BPs.We used the function
TCGAanalyze_DEA from TCGAbiolinks to create a merged list of all DEGs. Genes
were identified as significantly differentially expressed if |logFC| ≥ 1 and FDR < 0.01
in at least one tumor type of the 18 different tumor types, which yielded 13,182
unique genes in total. We ran ingenuity pathway analysis (IPA)91 for the above
13 k DEGs, which identified >500 relevant BPs in total (Supplementary Data 1).
We then manually selected 101 BPs known to be relevant in cancer. A complete list
of the chosen BPs is reported in Supplementary Data 2. For each BP, we provided
the information whether its activation lead to cancer promotion or reduction
according to current knowledge. For each gene/BP combination, we used IPA91 to
obtain the number of times (number of publications in PubMed) the pair was
mentioned together in terms of upregulated, downregulated, or (less specifically)
affected expression. We then employed Beegle92 to allow the end user to update the
mentioned number of times for BP.

Gene programs. To further investigate gene programs enriched by genes differ-
entially expressed between two conditions, we employed Gene Set Enrichment
Analysis (GSEA) for ten collections from the Molecular Signatures Database93 as
follows: H: hallmark gene sets, C2: BIOCARTA pathway database, C2: KEGG
pathway database, C2: REACTOME pathway database, C3 TFT: transcription
factor targets, C5 BP: GO BP, C5 CC: GO cellular component, C5 MF: GO
molecular function, C6: oncogenic signatures, C7: immunologic signatures.

Gold-standard gene set of driver genes. A recent review66 has argued that a
comparative assessment of role prediction methods is not straightforward due to
the lack of a clear gold standard of known OCGs and TSGs. To create the best
currently available training set of known OCGs and TSGs, we used those genes in
our training set that have been verified by at least two sources. We retrieved a first
list of validated OCGs and TSGs from the Catalogue of Somatic Mutations in
Cancer (COSMIC). The list consisted of 84 OCGs, 55 TSGs, 17 dual-role genes,
and 439 genes without validated roles. The list provided additional information
such as the type of mutation, either dominant (448), recessive (134), dominant/
recessive (7), or undeclared (3). We downloaded a second list from Vogelstein
et al.2, where 54 OCGs and 71 TSGs were validated and recorded.

Feature data from state-of-art cancer driver classification. We downloaded
the corresponding feature information from the supplementary material

Table 1 Comparison of tools used to predict cancer driver genes.

Method Data type Description

20/20 Mutation data ≥20% truncating mutations is TSG; >20% missense mutations in recurrent
positions is OCG

Oncodrive Role Mutation and copy-number alteration data Machine-learning approach using 30 features related to the pattern of alterations
across tumors

ActiveDriver Mutation data Detecting cancer drivers based on unexpected mutation sites in phosphorylation
regions

e-Driver Mutation data Identification of proteins with somatic missense mutations using domain based
mutation analysis

MutSig2CV Mutation and gene expression data Identification of significantly mutated genes incorporating expression levels and
replication times of DNA

DriverNet Mutation, copy-number alteration, and gene
expression data

Method that use interaction networks to identify mutated genes associated with the
gene expression alterations of its known interacting genes

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13803-0 ARTICLE

NATURE COMMUNICATIONS |           (2020) 11:69 | https://doi.org/10.1038/s41467-019-13803-0 |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(http://karchinlab.org/data/Protocol/pancan-mutation-set-from-Tokheim-
2016.txt.gz)66. This data set consists of 18,355 genes and 24 features which
describe the mutations (defined in the original 20/20 rule paper2), gene length,
gene degree, and betweenness based on information available from Biogrid94

and the mean gene expression based on Cancer Cell Line Encyclopedia95.

Differential phenotypes analysis (DPA). This function carries out two differ-
ential phenotypes analysis: if dataType is selected as “Gene Expression”, it detects
DEGs wrapping the function TCGAanalyze_DEA() from TCGAbiolinks. If data-
Type is selected as “Methylation”, it detects differentially methylated regions
(DMRs) wrapping the function TCGAanalyze_DMR() from TCGAbiolinks. The
values generated from the differential expression analysis (DEA) analysis were
sorted in ascending order and corrected using the Benjamini–Hochberg (BH)
procedure for multiple-testing correction. We considered DEGs significant if the
log fold change |logFC| >1 and FDR <0.01. The number of DEGs by cancer type for
both OCG/TSG lists is presented in the first column of Table 2.

To identify DMRs, we used the Wilcoxon test followed by multiple testing using
the BH method to estimate the false discovery rate. The default parameters for
DMRs and methylated CpG sites, which are regarded as possible functional regions
involved in gene transcriptional regulation, require a minimum absolute beta
values delta of 0.2 and a false discovery rate (FDR)-adjusted Wilcoxon rank-sum
p < 0.01 for the difference.

Gene regulatory network (GRN). We calculated the pairwise mutual information
between the DEGs and all the genes filtered for each cancer type, considering only
tumor samples. The pairwise mutual information was computed using entropy
estimates from k-nearest neighbor distances (k= 3) with the R-package Parmi-
gene96 using the function GRN from MoonlightR. Afterwards, DEGs’ regulon,
representing the genes regulated by a DEG, are defined by filtering out non-
significant (permutation p > 0.05) interactions using a permutation test (nboot=
100, nGenesPerm= 1000) and thus obtaining a set of regulated genes for
each DEG.

Functional enrichment analysis (FEA). This analysis, using Fisher’s test, allows
for the identification of gene sets (with biological functions linked to cancer stu-
dies) that are significantly enriched in the regulated genes. The steps of FEA involve
(i) evaluating if DEGs are involved in a BP through an assessment of the overlap
between the list of DEGs and genes relevant to this BP determined by literature
mining, and (ii) detecting the BPs mainly enriched by DEGs. A Fisher exact test is
used to calculate the probability of the BP’s enrichment based on the overlapping of
the genes annotated in each BP and the entire list of DEGs. We considered BPs
enriched significantly with |Moonlight-score| >= 1 and FDR <= 0.01.

Upstream regulator analysis (URA). This analysis is carried out for each dif-
ferentially expressed gene i and each BP j. As a first step, genes in the network that
are connected to gene i are selected and form Si. We then carry out a functional
enrichment analysis computing a Moonlight Process Z-score that compares the
literature-based knowledge to the result of the differential expression analysis.

Let Lkj be the result of the IPA-based literature mining for gene k and BP j: Lkj ϵ
{increased, decreased, affected}. Let

ykj ¼ 1 if ðLkj ¼ increased& logFC kð Þ> 0Þ
or ðLkj ¼ decreased& logFC kð Þ< 0Þ; ð1aÞ

ykj ¼ �1 ifðLkj ¼ increased& logFC kð Þ< 0Þ
or ðLkj ¼ decreased& logFC kð Þ> 0Þ ; ð1bÞ

ykj ¼ 0 ifðLkj¼ affected& logFC kð Þ ¼ 0Þ� ð1cÞ
Let n be the number of genes in Si for which the literature mining has support for
either “Decreased” or “Increased” effect in the process BPj. The Moonlight Gene Z-
score for each gene i to BP j pair is computed as

Moonlight Gene Z-scoreij ¼
P

kϵSi
ykj
ffiffiffi
n

p � ð2Þ

Literature phenotype analysis (LPA). As described in the Biological Processes
section, we extracted 101 BPs (reported in Supplementary Data 5) using IPA91 that
were successively used for the downstream analysis. LPA interrogates PubMed to
obtain a table with information for each gene and a particular BP such as apoptosis
or proliferation to understand the number of publications reporting the relation-
ship of a gene-BP (increasing, decreasing, or affected). To filter out false positives
obtained from text co-occurrence, it is possible to integrate Beegle’s92 results
applied on individual BP, considering the overlapping results. Here with the LPA
function, it is possible to extract a BP-genes database from the literature with a
twofold aim: (i) producing updated literature information, and (ii) flexibility for
BPs of relevant interest.

Pattern recognition analysis (PRA). PRA allows for the identification of a list of
TSGs and OCGs when BPs are provided such as apoptosis and proliferation,
otherwise a random Forest-based classifier can be used on new data. We define a
pattern when a group of genes classified as OCGs share similar BP as apoptosis
(DOWN) and proliferation (UP) while genes classified as TSGs share apoptosis
(UP) and proliferation (DOWN).

Dynamic recognition analysis (DRA). This analysis detects multiple patterns of
BPs when different conditions are selected. For the breast-cancer molecular sub-
types application, we used fgsea package with the ten collections from the Mole-
cular Signatures Database93 using the following parameters: minSize= 15,
maxSize= 500, and nperm=1000. Categories were considered significantly enri-
ched with permutation P < 0.05.

ROMA score for pathway activity. For the pathway activity evaluation, Repre-
sentation and quantification Of Module Activity (ROMA) (https://github.com/
sysbio-curie/Roma)97 was also employed as an alternative to the Moonlight Process
Z-score. For each module under analysis, the algorithm applies principal compo-
nent analysis to the sub-matrix composed of the expression values of the signature
genes across samples. ROMA then evaluates the module overdispersion by ver-
ifying if the amount of variance explained by the first principal component of the
expression sub-matrix (L1 value in ROMA) is significantly larger than that of a
random set of genes of the same size. This represents an unsupervised approach
that can be used in combination with the supervised Moonlight Process Z-score to
detect concordant signals. An example of application of ROMA to TCGA breast-
invasive carcinoma is shown in Supplementary Data 14, where the ROMA activity
score of biologically processes potentially modulated by cancer driver genes is
reported.

Machine-learning approach. We used the Moonlight Process Z-score matrix as
input to the random forest procedure, such that the BPs are the features that the
learning method can include in the model. The obtained model can then be used to
predict the role of genes that were not included in model building and obtain a
relevance score for each of the BPs. This model is trained on a gold-standard gene
set of known OCGs and TSGs based on the intersection of two sources: (i) the list
provided by the COSMIC database98,99, and (ii) the cancer genes identified by
Vogelstein et al.2.

Evaluation criteria. We used two different quality measures in our evaluation. The
first one is the multi-class log-loss measure. The lower the log-loss value, the better
the model’s performance. The log loss is defined as:

� 1
m

Xm

i¼1

X3

j¼1

yijlogðpijÞ; ð3Þ

where yij is a binary variable, that is equal to one when i= j and zero otherwise.
The probability of gene i to be in class j is denoted by pij. For each gene, we
compute the logarithm of the probability that gene i belongs to class j according to

Table 2 Summary of TCGA RNA-seq samples and
differentially expressed genes (DEGs), (tumor vs normal
analysis) in 18 cancer types.

TCGA
cancer type

Primary solid
tumor (TP)

Solid tissue
normal (NT)

DEG

BLCA 408 19 2937
BRCA 1097 114 3390
CHOL 36 9 5015
COAD 286 41 3788
ESCA 184 11 2525
GBM 156 5 4828
HNSC 520 44 2973
KICH 66 25 4355
KIRC 533 72 3618
KIRP 290 32 3748
LIHC 371 50 3043
LUAD 515 59 3498
LUSC 503 51 4984
PRAD 497 52 1860
READ 94 10 3628
STAD 415 35 2622
THCA 505 59 1994
UCEC 176 24 4183
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our prediction. We then sum over all classes (three in our case), adding the log
value to the log loss if gene i belongs to class j according to the known truth. Then
we average over all genes (m) and finally take the negative value of the
obtained score.

The logarithm of a high value is considerably lower than the logarithm of a low
probability (log(1)= 0, log(x)→−∞ as x→+0). Therefore, when the prediction
of the model strongly disagrees with the actual class, the impact on the log-loss
measure will be high. This measure penalizes strongly confident misclassifications.
The second measure we use is the area under the ROC curve in a one-versus-all
strategy. We are most interested in the performance of OCGs and TSGs and thus
evaluated the total score as an average over these two classes.

Lastly, we compare the obtained results in each run with a set of random
classifications. We generate the random predictions by randomly assigning gene
names to the data that is used to train the random forest model. We repeat this
procedure 100 times for each of the ten repetitions. The estimate of p for log-loss
evaluation is obtained by computing

P100
i¼1 Ifresloo � resloorandomi

g
100

: ð4Þ
The estimate of p for the AUC evaluation is obtained computing

P100
i¼1 Ifresloo � resloorandomi

g
100

: ð5Þ

Moonlight’s performance. To evaluate Moonlight’s performance, we applied the
same ML approach we used for Moonlight to the data used by 20/20+66, and
OncodriveRole67 carrying out a leave-one-out cross-validation scheme. We repe-
ated the procedure 10 times, each time undersampling the two majority classes
(OCGs and neutral genes). We assessed the results using two different quality
measures, i.e., log loss and AUC (one class versus all). Furthermore, we compared
the results to randomized Moonlight Gene Z-score matrices and to the state-of-
the-art methods 20/20+66 and OncodriveRole67. Finally, we used the complete
training data to predict dual-role genes in different cancer types and compare the
obtained genes to those dual genes already known in the literature.

Mutation analysis. We integrated a publicly available MAF file (syn7824274,
https://gdc.cancer.gov/about-data/publications/mc3-2017) that was recently
compiled by the TCGA MC3 Working Group and is annotated with filter flags
to highlight potential artifacts or discrepancies. This data set represents the
most uniform attempt to systematically provide mutation calls for TCGA
tumors. The MC3 effort provided consensus calls of variants from seven soft-
ware packages: MuTect, MuSE, VarScan2, Radia, Pindel, Somatic Sniper, and
Indelocator100.

We then integrated cancer driver genes, predicted by Moonlight using RNA-
seq’s data. Boxplot was generated using the function ggplot from the ggplot2
package and the function ggpubr. P-values were generated using the function
stat_compare_means from ggpubr with t test method to compare means.

Copy-number analysis. We used TCGAbiolinks to retrieve the performed CNA
analysis using gene level CNA results from GISTIC2.0101 for the 18 cancer types
and the function TCGAvisualize_CN to plot the amplified (top) and deleted genes
(bottom). The genome is oriented horizontally from top to the bottom, and GIS-
TIC q-values at each locus are plotted from the left to right on a log scale. The
orange line represents the significance threshold (q-value= 0.25). We annotated
the gene in the broad peak using the function findOverlaps from the package
GenomicRanges.

Chromatin accessibility analysis. We used TCGAbiolinks to retrieve and ana-
lyze the ATAC-seq bigWig track files for all the TCGA Pan-Cancer types
available. Genome browser screenshots of normalized ATAC-seq sequencing
tracks of ten different breast-cancer samples, shown across the same genes locus,
were generated using UCSC Genome Browser v.376102. We used the function
TCGAquery_subtype from TCGAbiolinks to stratify the BRCA samples in
molecular-subtype samples according to the PAM50 classification and we clas-
sified the basal samples according the Triple-Negative Breast Cancer Lehmann’s
subtypes103 using the tool TNBCtype104. Color code is according to TCGA
BRCA molecular subtypes.

Survival analysis. We used TCGAbiolinks with the clinical data to analyze the
survival curves for the 33% of patients with higher expression of a specific gene
versus the 33% with lower expression using the function TCGAanalyze_divi-
deGroups(). The associations between higher and lower expression of a specific
gene, if predicted as OCG or TCG, in primary tumors were evaluated in Pan-
Cancer data with the function TCGAanalyze_SurvivalKM(). Kaplan–Meier
plots showing the association of a specific gene expression and other clinical
parameters with patient survival were performed using the function TCGAa-
nalyze_survival() reporting the log-rank test ps. If a CDG had a log-rank test p
< 0.05 and high expression was related to better outcome, we reported it in the
table as a good prognosis. If a CDG had a log-rank test p < 0.05 and high

expression was related to worse outcome, we reported it in the table as a poor
prognosis.

Cell-line analysis. RMA normalized expression data for 1001 Cell lines from the
Genomics of Drug Sensitivity in Cancer’s study72, was downloaded from
ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/current_release/
sanger1018_brainarray_ensemblgene_rma.txt.gz. Annotation of cell lines were
considered with TCGA’s classification as reported in ftp://ftp.sanger.ac.uk/pub/
project/cancerrxgene/releases/current_release/Cell_Lines_Details.xlsx. Genes with
a mean expression of less than 25% of the quantile expression distribution were
considered lowly expressed in cell lines while genes with a mean expression of more
than 75% were considered highly expressed.

Connectivity MAP analysis. We used the Broad Institute’s Connectivity Map
build 02105, a public online tool (https://portals.broadinstitute.org/cmap/) (with
registration) that allows users to predict compounds that can activate or inhibit
cancer driver genes based on a gene expression signature. To further investigate the
mechanism of actions and drug targets, we performed specific analysis within
Connectivity Map tools (https://clue.io/)71.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The -omics data sets (gene expression, methylation, copy number, chromatin
accessibility, clinical, and mutation) analyzed during this study are publicly available in
the repository https://portal.gdc.cancer.gov/ and can be downloaded directly by using the
TCGAbiolinks R package as described in the Methods section. The cell lines data set
analyzed during this study are publicly available in the repository https://www.
cancerrxgene.org/downloads. All data generated or analyzed during this study are
included in this published article, its supplementary information files, and in the
publication folder https://github.com/ibsquare/.

Code availability
Updated links to the packages and tutorials related to Moonlight are available within the
Bioconductor project at http://bioconductor.org/packages/MoonlightR/ and in GitHub
https://github.com/ibsquare/MoonlightR. The package vignette with R scripts to
reproduce the results and figures at the time of publication are provided as
Supplementary. Data with intermediate results and code to generate specific analysis are
available from the corresponding author, Dr. Antonio Colaprico, and will be uploaded to
GitHub [https://github.com/torongs82/] upon request.
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