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Abstract
In this paper we address the construction of time and frequency domain Reduced Order Models
for the Navier-Stokes equations. A classical basis obtained by the Proper Orthogonal Decompo-
sition is used for the Galerkin projection of the governing equations and additional interpolation
techniques based on the Discrete Empirical Interpolation Method are considered to evaluate ef-
ficiently the nonlinear terms. The applicability of this kind of ROMs for aeroelastic applications
is first investigated in the time domain to reproduce the flow field around an oscillating cylinder
at low Reynolds number. Then a second type of reduced order model dedicated to periodic
flows is developed on the basis of the Time Spectral Method. Numerical tests demonstrate the
potentiality of the proposed technique on the test case of an oscillating airfoil in subsonic and
transonic regimes.

Keyword: Reduced Order Model, Proper Orthogonal Decomposition, Time Spectral Method,
Discrete Empirical Interpolation Method

1 Introduction

Reduced-Order Models (ROMs) have been developed for decades in fluid dynamics as a way to
decrease the cost of evaluating high fidelity solutions from a Full Order Model (FOM). Indeed,
applications like parametric studies, optimization or control involving many queries to the FOM
need fast evaluations which should be as accurate as possible. Projection based ROMs can be
classically constructed using a basis built from a set of solutions snapshots whose meaningful
content is extracted via a Proper Orthogonal Decomposition. Such projections lead to an
explicit reduced operator in the linear or polynomial case (Hall et al. 1999; Placzek et al. 2011)
but no explicit form can be obtained in general for nonlinear operators.

Flow non-linearities however arise commonly in aeronautical applications because of shock
interaction, flow separation,... but also because of aeroelastic phenomena involving for example
limit-cycle oscillations. High fidelity FOMs are therefore required to determine accurately the
flow field but the large number of degrees of freedom involved in such models leads to unaf-
fordable computational costs whose reduction represents one of the main motivation of this
work. The projection based ROMs lacks efficiency when non-linearities are involved since in the
general case the non-linear term has to be evaluated at the FOM level for each iteration.
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To tackle this problem, the solution considered in the present paper is first to approximate
the non-linear residual term using masked projection approaches like the Discrete Empirical
Interpolation Method and its variants (Chaturantabut et al. 2010; Drmač et al. 2016). The
non-linear term is thus interpolated (or fitted) on a small set of judiciously selected mesh
points using an additional Proper Orthogonal Decomposition (POD) basis for the residual term.
Interpolation techniques that preserve the basis structure are then implemented to update the
basis content for new parameter values. An alternative solution proposed by Thomas et al.
2010 is to derive a Taylor series expansion of the reduced non-linear residual FOM solver which
solves Euler or Navier-Stokes equations with the Time Spectral Method (TSM) (Hall et al.
2002; Gopinath et al. 2005). The resulting reduced operators are evaluated with automatic
differentiation tools.

In the context of aeroelasticity, the FOM considered in the present paper is based on the
Arbitrary Lagrangian Eulerian (ALE) formulation (Donea et al. 2004) and the problem of mesh
deformation has to be taken into consideration, also at the ROM level. Following Anttonen
et al. 2003 the POD basis for the snapshots of the solution and residual term can still be
computed without explicitly taking care of the mesh deformation: the resulting POD modes are
thus associated to the mesh connectivities in an “index” based framework and their usual spatial
correlation meaning is no longer obvious. The mesh deformation is then taken into account in
the approximated non-linear residual term of the ROM where the metric is updated with respect
to the structural motion. This type of POD modes have been successfully used by Freno et al.
2014 in the time domain to address subsonic and transonic flows around airfoils subject to
forced oscillations but the nonlinear term was treated at the FOM level. Other formulations
considering a change of reference frame or small perturbations (Placzek et al. 2011; Bourguet
et al. 2011) or the use of fictitious domains (Liberge et al. 2010) to keep the spatial correlations
of the POD modes have also been derived for fluid-structure interaction problems.

The present methodology developed by Di Donfrancesco 2019 is first applied to build a
ROM in the time domain on an apparently simple test case to highlight the difficulties of such
time-domain ROMs to provide stable solutions on long term when masked projection approches
are used to approximate the non-linear term. The TSM formulation of the ROM is investigated
on the same test case and show better robustness even with respect to parameter changes. The
long term stability of the solution is no longer a problem since a periodic solution is sought.

2 Governing equations for the full and reduced order models

2.1 Full Order Model in the time domain

The high fidelity FOM considered in the present paper is defined by the compressible Navier-
Stokes equations. The ALE formulation is required to deal with aeroelastic problems involving
possibly a non inertial and deformable spatial domain. Once discretized with hexahedral Finite
Volumes, the semi-discrete form of the equations for a control cell Ωi (t) reads:

d

dt
(V(Ωi )wi ) = −

6∑
j=1

Fi (wi , wj , si ) nj + V(Ωi )Ti = −Ri (wi , wj , si ) (1)

where wi = [ρi , (ρu)i , (ρe)i ] is the vector of the numerical approximation of the conservative
variables in the control cell Ωi (t) and wj with j 6= i is the approximation in neighbor control
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cells involved in the spatial discretization scheme used to define the numerical fluxes Fi through
the cell faces with normals nj . The ALE formulation introduces the mesh grid velocity si to
take into account the grid deformation and the source term Ti may include additional terms
due to a change of reference frame or some particular boundary conditions.

The spatial domain discretization Ω =
⋃N

i=1 Ωi usually involves a large number of control
cells N . The collection of the vectors of conservative variables wi in each control cell may be
assembled in a single vector W ∈ RNv with Nv = N · nv and nv the number of conservative
variables. The semi-discrete Navier-Stokes equations may then be formally written as an initial
value problem defined by the nonlinear system of equations d/dt(VW) = R̃(W, S) or similarly:

dW

dt
=

R̃(W, S)

V − dV
dt

W

V = R(W, S) (2)

with V a diagonal matrix with all the control cell volumes V(Ωi ) and S a vector containing
all the mesh grid velocities si . The previous equations are solved in the time domain with a
high-order finite volume code (Chassaing et al. 2013) and will serve in the following as a basis
to build the ROM and as a numerical reference to compare results from the ROM.

2.2 Projection based Reduced Order Model in the time domain

The first step of construction of the ROM consists in looking for an approximation of the
conservative field W as the sum of a base solution Wb and a linear combination of appropriate
spatial modes gathered in a basis Φ:

W(t) ≈Wb + Φ a(t) (3)

In this work, the spatial modes are computed with the Proper Orthogonal Decomposition
(POD) of a set of representative solutions, or “snapshots”, of the FOM. The POD is indeed
the most widely used approximation basis for fluid dynamics reduced-order modeling because of
its optimal properties in a certain sense and its straightforward computation with the Singular
Value Decomposition (SVD).

Assuming that the snapshots are centered with respect to a base solution Wb (steady,
time-averaged or initial solution for example) and collected in a matrix Wb = [W(t1) −
Wb, ... , W(tNt )−Wb] ∈ RNv×Nt with Nt the number of collected snapshots, the set of snapshot
may be decomposed with the SVD as:

Wb = Φ Σ VT = Φ A (4)

where the matrix Φ ∈ RNv×Nr is an orthonormal matrix containing the left singular vectors
corresponding to the POD mode vectors, with Nr = rank(Wb) ≤ min(Nv , Nt). The diagonal
matrix Σ ∈ RNr×Nr contains the singular values of Wb listed in order of decreasing magnitude.
Finally the matrix V ∈ RNt×Nr contains right singular vectors and the product A = Σ VT may
be viewed as coordinates associated to the POD modes so that a snapshot from the set Wb

can be recomputed exactly as W(ti ) = Wb + Φa(ti ) with a(ti ) ∈ RNr the i -th column of A.
The previous expression has finally the expected form of Eq. (3).

In the first step of reduction, only the first POD modes are kept in the basis Φ since they
contain most of the data to approximate the snapshots. A common measure of the basis
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truncation is given by the relative information content defined by ENq =
∑Nq

i=1 σ
2
i /
∑Nr

i=1 σ
2
i

with Nq ≤ Nr . In the second step of reduction, the snapshots approximation Eq. (3) with the
truncated basis Φ = [φ1, ... ,φNq

] with Nq � Nv is substituted in the FOM Eq. (2) and the
Galerkin projection leads to the reduced set of Nq equations for the modal coordinate vector a:

da(t)

dt
= ΦTR (Wb + Φ a(t), S) (5)

The previous system of equations is a small dynamical system whose solution is the modal
coordinate vector a which, combined to the POD basis Φ, provides the full flow field vector W
any time instant t, possibly not included in the snapshots database Wb. The reduced order
model should also be able to provide a solution for other parameter values typical of the studied
system provided that the spatial basis is updated.

The residual term R for the compressible Navier-Stokes equations is non-linear and cannot
be expressed explicitly in terms of the coordinates a(t) unless specific approximations are in-
troduced. Without any additional work, the evaluation of this term at each time step has to
be performed at the FOM level but the gain in computational time, if any, is very limited since
numerical operations are performed on large vectors of dimension Nv . To tackle this issue, the
non-linear term may be approximated in the same way as the snapshots:

R(W(t)) ≈ R(Wb) + Ψ c(t) (6)

where the matrix Ψ ∈ RNv×Np is obtained from a POD of the set of residual snapshots Rb =
[R(W(t1))−R(Wb), ... , R(W(Nt))−R(Wb)] and the vector c(t) ∈ RNp gathers the coordinates
associated to the POD modes of the residual term. The evaluation of this vector from the FOM
residual with c(t) ≈ ΨT[R(W(t))−R(Wb)] would still involve costly operations sizing with Nv .
We thus resort to masked projection techniques like the Discrete Empirical Interpolation Method
(DEIM) (Chaturantabut et al. 2010) or its QDEIM variant (Drmač et al. 2016) to evaluate the
unsteady term of the residual only on a small subset Nf � Nv of control cells. The masked
projection matrix P = [e℘1 , ... , e℘Nf

] ∈ RNv×Nf with e℘i
the i -th column of the identity matrix

of size Nv corresponds to the cell selection operation and has to be expanded to neighbor cells
so that the residual term can be evaluated locally as PTR(W) = RP(P̃TW) where RP is the
residual operator evaluated only in the Nf cells and P̃ ∈ RNv×(Nf +Ns) is the expanded masked
matrix with Ns the number of required neighbor cells depending on the spatial discretization
scheme. The application of the masked matrix to Eq. (6) then provides the approximation
c(t) ≈ Θ[RP(P̃TW(t))− PTR(Wb)] for the modal coordinates with the matrix Θ depending
on the invertibility of the matrix PTΨ:

Θ =

{
(PTΨ)−1 if Nf = Np

(ΨTPPTΨ)−1ΨTP if Nf > Np
(7)

These usual (Q)DEIM approximations provide as many interpolation points as the number
of residual POD modes (Nf = Np), but oversampling (Nf > Np) is sometimes beneficial to
improve the accuracy as sucessfully shown by Di Donfrancesco 2019 using a Block QDEIM
approach. Finally the ROM with the approximation of the non-linear term is obtained after the
substitution of the residual term approximation Eq. (6) in Eq. (5) and the replacement of the
modal coordinate c by its approximation with the masked projection and reads:

da(t)

dt
= ΦT(I−ΨΘPT) R(Wb) + ΦTΨΘRP(P̃T(Wb + Φ a(t))) (8)
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2.3 Full Order Model formulated with the Time Spectral Method

Provided that the FOM solution is periodic with period T = 2π/ω, the conservative field
vector and the residual term may be approximated by their truncated Fourier series W ≈∑Nh

k=−Nh
Ŵke kωt and R ≈

∑Nh

k=−Nh
R̂ke kωt with Ñh = 2Nh + 1 coefficients. The Fourier coef-

ficients Ŵk are associated to their temporal counterpart W(tn) at different time instants via the
Discrete Fourier Transform (DFT). The matrix of Fourier coefficients Ŵ = [Ŵ−Nh

, ... , Ŵ+Nh
]T

is then derived from the temporal snapshots matrix W = [W(t0), ... , W(t2Nh
)]T with tn =

nT/Ñh via the weight matrix E with general term Ek,n = Ñ−1
h e−2πkn/Ñh such that Ŵ = EW .

Since the Fourier basis with the exponential functions {e kωt}Nh
k=−Nh

is orthonormal, the
truncated Fourier series of eq.(2) with Nh harmonics reduces to a set of Ñh equations which
can be recast in the condensed matrix form: DŴ = R̂(W) with R̂ the matrix of Fourier
coefficients for the residual term andD = diag(−ωNh, ... , ωNh). The explicit derivation of the
residual term with respect to the Fourier coefficients of the conservative variables R̂(E−1Ŵ)
may be cumbersome and the Time Spectral Method (Hall et al. 2002; Gopinath et al. 2005)
recasts the problem in the time domain while keeping the truncated Fourier approximation for
the conservative variables and the residual term. The equations then read E−1DEW = R(W)
where the left hand size is the spectral approximation of the time derivative operator with Nh

harmonics. For each time instant, the spectral derivative operator which couples all the time
instants may be expressed analytically (Gopinath et al. 2005) and the problem is solved with
a pseudo-time stepping technique. In practice the TSM problem uses the residual vector and
Jacobian matrix provided by ONERA’s code elsA (Cambier et al. 2013; Blondeau et al. 2019):

dW(tn)

dτ
= Dt(W(tn))− R(W(tn)) = RTSM(W(tn)) ∀ 0 ≤ n < 2Nh + 1 (9)

2.4 Projection based Reduced Order Model with the Time Spectral Method

In this section we introduce a Reduced Order Time Spectral Method (ROTSM) which reduces
the computational cost and exhibits better convergence properties than the Full Order TSM
(FOTSM). The snapshot database W contains the different time instants and is approximated
by a POD such that W(tn) = Φa(tn). Note that unlike the POD for the time domain Eq. (3),
the snapshots are not centered around a base field and the basis is not truncated since the rank
Nr = Ñh is already very small.

The residual RTSM in Eq. (9) can be rewritten with the POD for each time instant as
Dt(Φ)a(tn)−R(Φa(tn)) and depends on the vector a = [a(t0), ... , a(t2Nh

)] since the evaluation
of the derivative operator couples all the time instants. The Ñh equations for all time instants
can be gathered in a single residual term RTSM(a) and the system of equations is solved
iteratively with Newton’s method so that the increment ∆a(m) for the iteration m is given by:

J (m)∆a(m) = −RTSM(a(m)) (10)

with J (m) = J(m)ΦD , where the residual Jacobian is J(m)
i ,j = ∂RTSM(Φa(ti ))/∂(Φa(tj )) and

ΦD is a block diagonal matrix with the POD basis, see (Di Donfrancesco 2019) for further
details. The system Eq. (11) can finally be projected on the basis ΦD to obtain a very small
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system of Ñh equations such that:[
ΦT

DJ (m)
]

∆a(m) = −ΦT
DRTSM(a(m)) (11)

This last formulation is apparently attractive since the projected Jacobian and residual
terms in Eq. (11) scale with Ñh. However since the residual is nonlinear, it has to be first
evaluated with the FOTSM and then projected, unless an additional approximation is introduced.
The masked projection approaches used in the time domain could as well be considered to
approximate the residual and the Jacobian of the ROTSM and further work has to be conducted
to evaluate this approach. Note that although Eq. (10) is not projected, the computational
cost for the resolution is still reduced since the Jacobian J has only Ñ2

h columns instead of
Ñh · Nv with the FOTSM. The convergence is also accelerated with respect to the FOM since
the initial guess for a comes from the projection of an initial field W0 on the POD basis which
is presumably a good representation of the solution.

2.5 POD basis adaptation for parametrized ROMs

The ROMs detailed in previous sections have to provide accurate solutions in a certain range of
a parameter λ. A global POD basis can be computed from a set of snapshots including different
time instants and different parameter values: W = [W(t1,λ1), ... , W(tM ,λP)]. However the
resulting POD modes are no longer optimal for any parameter value and many modes have to
be considered since the first modes represent average fields common to all parameter values
(Amsallem 2010; Di Donfrancesco 2019). Another solution is to compute several POD bases
Φλp from the snapshots sets Wλp = [W(t1,λp), ... , W(tM ,λp)] for p = 1, ... , P . In this case
the POD bases are optimal for each parameter λp. Then the POD basis for a new parameter
value λ? /∈ Λ = {λp}P

p=1 is interpolated on the tangent space of the Grassmann manifold
associated to the set of POD bases (Amsallem 2010). Such a procedure has been successfully
used by Freno et al. 2014 for example on similar aeroelastic problems. Once in the tangent
space, the interpolation can be performed with any classical interpolation method and the
interpolated point is then sent back to the Grassmann manifold to obtain a representative
subspace for the new parameter value.

3 Numerical applications

3.1 Time domain ROM for the flow around an oscillating cylinder at low Reynolds number

The accuracy of the time domain ROM is investigated on the example of an oscillating cylinder
in a laminar cross-flow at Re = 185. The vertical motion of the cylinder is prescribed with
the function y(t) = A sin(2πft) and different values of the normalized amplitude Ar = A/d
and frequency fr = f /fS with d the cylinder diameter and fS the vortex shedding frequency
are investigated by Di Donfrancesco 2019. Numerical simulations have been conducted for
(Ar , fr ) = (0.2, 0.8) and (0.5, 1.2) where secondary frequencies are observed in the flow field.

The Navier-Stokes equations are solved first with the FOM on a deforming grid to generate
a set a snapshots selected after the transient phase. The relative information content of the
POD modes is plotted in Fig. 1a and the first POD modes for (Ar , fr ) = (0.2, 0.8) are shown
in Fig. 1b. The time integration of the ROM is performed with a 4 steps Runge-Kutta method
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Figure 1 – POD analysis of the oscillating cylinder at Re = 185.

for a single period of vortex shedding corresponding to the sampling time interval to compute
the POD. Only Nq = 12 modes are sufficient to reproduce accurately the vortex shedding.
Several tests have been conducted to check the robustness of the masked projection methods
to approximate the nonlinear residual term.

The solution time histories of the first 3 modal coordinates ai (t) are plotted in Fig. 2a and
2b. Then the nonlinear term is approximated with the BQDEIM using Np nonlinear residual
POD modes and Nf = b · Np interpolation points with b = nv = 4 and Np = 14 for (Ar , fr ) =
(0.2, 0.8) and b = 20 and Np = 40 for (Ar , fr ) = (0.5, 1.2). The results plotted in Fig. 2a
and 2b are also satisfactory in both cases (see the difference plotted on the right axis) and the
relative error for the density field at the last time instant plotted in Fig.2c is lower than 3%
(less than 1.2% for (Ar , fr ) = (0.2, 0.8)).
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Figure 2 – Comparison of the first three modal coordinates time histories ( FOM, ROM)
and density field error at Re = 185.

Additional test cases have been investigated in (Di Donfrancesco 2019) and a parametric
investigation of the ROM with respect to the amplitude and frequency variation has also been
conducted. Satisfactory results are obtained but the long term stability of the ROM is not
always ensured for a new parameter value, even for this low Reynolds number test case. Note
that the number of interpolation cells has to be increased up to 6% of the total number of cells
in the second case (Ar , fr ) = (0.5, 1.2) presented here. Special care has therefore to be taken
for parametric investigations in order to ensure that a sufficient number of cells is used for the
interpolation, whatever the value of the considered parameter.

3.2 ROTSM for the transonic flow around an oscillating airfoil

The second test case considered here is a transonic pitching NACA64A010 airfoil. Di Don-
francesco (2019) has shown that simulations with the time domain ROM fail to converge on
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long term even in subsonic regime at Ma = 0.50 without masked projection and the robust-
ness of the ROTSM is therefore demonstrated here. A reference simulation is first run for
Ma = 0.796 with the Euler FOTSM implemented in (Blondeau et al. 2019) with Nh = 1 har-
monic only The prescribed harmonic pitch motion is defined by α(t) = α0 + α̂ sin(2πft) with
α0 = −0.22◦, α̂ = 1.01◦ and the frequency is set to f = 34.4 Hz.

The 3 TSM snapshots and the corresponding POD modes are plotted in Fig. 3. The POD
basis is not truncated since the size is already very small. The convergence of the ROTSM is
much faster than the one of the FOTSM since the initial uniform freestream solution is projected
on the POD basis and provides a good guess for the modal coordinates. As shown in Fig. 4a
the residual is close to the one of the FOM solution in about 20 iterations; it does not decrease
further since the ROTSM solution (which is necessarily in the subspace spanned by the POD
basis) can not be better than the FOTSM solution. The skin pressure is perfectly reproduced,
as well as the lift and drag forces whose time history can be evaluated over a complete cycle
of oscillation from its Fourier series as shown in Fig. 4b.

(a) TSM snapshots of Mach field at {tn}2Nh
n=0

(b) Proper orthogonal modes of density {Φ(ρ)
i }

2Nh

i=0

Figure 3 – TSM snapshots and POD modes for the pitching airfoil at Ma = 0.796 with Nh = 1.
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Figure 4 – ROTSM vs FOTSM results (a), (b) and database of skin pressure at t0.

A database of reference simulations is then run at different Mach numbers Ma ∈ [0.50; 0.84]
from subsonic to transonic regime. The range of variation for the skin pressure is illustrated in
Fig. 4c. A strong pressure gradient develops for Ma ≥ 0.76. A set of POD bases is first con-
structed with a regular sampling for Ma ∈ {0.52, 0.56, 0.60, 0.64, 0.68, 0.72, 0.76, 0.80, 0.84}
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and the ROTSM is evaluated for new values of the Mach number Ma? ∈ {0.58, 0.74, 0.79, 0.81}.
Different interpolation methods on the tangent plane of the Grassmann manifold are compared
in Tab. 1 for the average and maximal value of the relative error between the skin pressure
computed by the ROTSM with respect to the FOTSM for the 2Nh + 1 time instants.
Table 1 – Relative error in percentage for the skin pressure at all time instants between the
FOM and the ROM for several interpolated Mach numbers with the first database.

Mean error Max. error

Linear Spline Lagrange Linear Spline Lagrange

Ma = 0.58 8,15 ·10−2 4,06 ·10−2 1,07 ·10−1 8,38 ·10+1 4,58 ·10+1 2,18 ·10+1

Ma = 0.74 2,95 ·10−1 4,30 ·10−1 2,39 ·10−1 5,50 ·10+1 1,09 ·10+2 5,00 ·10+1

Ma = 0.79 7,29 ·10−1 6,70 ·10−1 7,59 ·10−1 1,78 ·10+2 1,59 ·10+2 2,10 ·10+2

Ma = 0.81 7,55 ·10−1 8,21 ·10−1 1,71 ·10+0 1,79 ·10+2 2,94 ·10+2 8,97 ·10+2

The relative mean error for the airfoil skin pressure is overall under 1% and increases with
the Mach number. The maximal relative error is however much higher and increases signifi-
cantly when the flow becomes transonic. The spline or Lagrange interpolation methods provide
accurate results in subsonic regime but should be avoided when the flow becomes transonic
because spurious oscillations in the interpolation lead to inaccurate results.

A second database for Ma ∈ {0.50, .6, .70, .74, .76, 0.77, .78, .8, .82, .84} is considered with
a finer sampling in the transonic regime and less points in the subsonic one. Results in Table 2
indicate that the error can be substantially descreased in the transonic regime for Ma = 0.79 and
0.81 but the integration sometimes fails with Lagrange interpolation. The error in the subsonic
regime is larger than with the first database since the sampling is now coarser. Accurate results
in subsonic and transonic regimes thus require a fine sampling in both regimes.
Table 2 – Relative error in percentage for the skin pressure at all time instants between the
FOM and the ROM for several interpolated Mach numbers with the second database.

Mean error Max. error

Linear Spline Lagrange Linear Spline Lagrange

Ma = 0.58 1,75 ·10−1 1,34 ·10−1 — 1,06 ·10+2 1,29 ·10+2 —
Ma = 0.74 3,03 ·10+0 3,03 ·10+0 3,03 ·10+0 2,98 ·10+2 2,98 ·10+2 2,99 ·10+2

Ma = 0.79 3,41 ·10−1 3,56 ·10−1 5,91 ·10−1 3,69 ·10+1 2,73 ·10+1 8,71 ·10+1

Ma = 0.81 3,92 ·10−1 3,75 ·10−1 — 3,39 ·10+1 2,24 ·10+1 —

4 Conclusions

ROMs in the time and frequency domains have been developed and used for aeroelastic ap-
plications in subsonic and transonic regime. For low Mach numbers, time domain ROMs with
masked projection techniques provide accurate results, at least for short term time integration.
An original BQDEIM approach was implemented to enable oversampling for the nonlinear term
approximation and to improve the accuracy of the time domain ROM. When the Mach number
increases, time domain ROMs lack robustness and the ROTSM formulation proved to be more
robust. The parametric response has been investigated with several interpolations methods and
database of POD bases. The database has to be refined to capture accurately the shock in the
transonic regime and linear or spline interpolations are more stable than Lagrange interpolation.
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