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Une théorie de poutre d'ordre supérieur construite sur la solution 3D de Saint-Venant est présentée pour l'analyse des vibrations propres d'une poutre de section composite quelconque. Au delà du mouvement de section, le modèle de déplacement introduit des modes de déplacement qui représentent la déformabilité de la section, dans son plan et hors de son plan. Les modes qui reflètent les gauchissements et les effets de Poisson sont extraits de la solution 3D de Saint-Venant et pour les modes de distorsions, nécessaires au traitement des sections minces, ce sont les premiers modes de vibrations propres de la section qui sont retenus. L'application de cette théorie se décline en deux étapes : l'analyse préalable de la Mécanique de la section pour en déterminer les modes, puis leur utilisation pour formuler la cinématique et résoudre le problème de poutre. Pour illustrer les capacités de cette théorie 1D à rendre compte des principaux effets 3D tels que les couplages structuraux, les résultats numériques sont comparées à ceux de la littérature ainsi qu'aux calculs menés par éléménts finis 3D. Ces résultats montrent un bon accord pour les (≈10) premières fréquences et une forte consistance pour les déformées 3D modales.

Introduction

Beam-like structures are one of the most used elements in structural engineering. High performance requirements make an increasing use of composite materials and the design of non-conventional crosssections. However, these optimized structures exhibit a complexe mechanical behaviour. Detailed structural models are then essential in order to understand and predict such specific effects due to the cross-section shape and the material anisotrpies. One may need to obtain higher precision to analyze composite beam structures for which the classical beam theory assumptions are no longer valid such as for beam vibration with composite couplings. To avoid the cost of 3D finite element computation, especially during the design phase when a lot of analyses have to be carried out, many advanced beam theories have been developed. One should point out that the key feature for such modeling is a good compromise between simplicity and exactness. Also, from a practical standpoint, the application of such advanced beam theories, which tend to provide 3D detailed results for arbitrary cross-sectional beams, has to be inevitably performed through a numerical way. Thus their development should be accompanied by software or numerical tools to enable their use. The present beam theory fits in this approach : proposing a detailed 1D structural model suitable for the analysis of an arbitrary cross-sectional composite beam, and a numerical tool in order to use it ; and hence an effective help to design such structures and analyse their mechanical behaviour.

2.

The refined beam theory

Kinematical modeling

Fig. 1. Composite beam and cross-section

We consider a composite beam with an arbitrary cross-section S (Fig. 1) occupying a prismatic domain Ω = S × L, where L is the beam length. Taking z as the beam axis, the proposed refined beam theory [START_REF] Fatmi | A refined 1D beam theory built on 3D Saint-Venant's solution to compute homogeneous and composite beams[END_REF] is based on the following displacement field model :

ξ (x, y, z) = u (z) + ω (z) ∧ X cross-sectional rigid motion + η k (z)M k (x, y) cross-sectional deformation (Eq. 1)
where boldface notation is used for vectors and tensors quantities. u and ω represent cross-sectional translation and rotation respectively, X is in-section position vector and η k are the additional kinematical parameters associated to the cross-sectional displacement modes M k . These displacement modes M k are composed of two sets : -the first main set involves the six sectional modes M i sv , i = 1 : 6 extracted from the correspondent 3D Saint-Venant's solution and related to the six classical internal forces (the axial and shear forces and the bending and torsional moments) ; these sectional modes reflect the Poisson's effects and the out-of plane warpings.

-and the second complementary set involves the m first free-vibration modes shapes M j v , j = 1 : m of the cross-section S where m is usually taken between 5 and 10 ; these mode, which reflect the sectional distortions, have to be added when a thin-walled section is considered.

In (Eq. 1), the sectional modes M k have to be known. To do so and for a given cross-section (shape and materials), they are first derived from a cross-sectional analysis for which some additional details are given in the next paragrah 2.2. Consequently, the proposed beam theory proceeds in two steps : the first step to compute the sectional modes and the second step to solve the beam problem ; both steps are implemented through finite element method.

Cross-sectional analysis

The first main set involves the six sectional modes M i sv related to the six classical internal forces (the axial (N) and shear forces (T x , T y ) and the bending (M x , M y ) and torsional moments (M t )) which are extracted from the 3D Saint-Venant's solution extended to composite cross-sections [START_REF] Ieşan | Saint-Venant's problem for inhomogeneous and anisotropic elastic bodies[END_REF] ; Poisson's effects are the in-plane components and warpings effects are the out-of-plane components. The numerical method to compute these sectional modes M i sv is given by [START_REF] Fatmi | On the structural behavior and the Saint Venant solution in the exact beam theory : application to laminated composite beams[END_REF]. As illusration, (Fig. 2) The second complementary set of sectional modes are the m first free-vibration modes shapes M j v of the cross-section S where m is usually taken between 5 and 10. Fig. 3 shows 10 distortional modes for the same cross-section.

For any given section (shape and materials), all displacement modes can be computed once for all, and then used to solve the related beam with arbitrary boundary conditions.

Beam analysis

The equations of the beam theory corresponding to the displacement model Eq. 1 can be derived thanks to variational principles (one can find details in [START_REF] Fatmi | A refined 1D beam theory built on 3D Saint-Venant's solution to compute homogeneous and composite beams[END_REF] ). The beam problem, being intended to be solved by finite element, only the 1D weak formulation will be specified in this paper : starting from the 3D-weak formulation related to the beam displacement model (Eq. 1) and after integrating over the cross-section S, one gets a problem whose unkowns are only dependant over beam axis (see paragrpah 3.2). However, for the moment, it is important to point out that this refined beam theory is strictely built on the displacement field model (Eq. 1), and no other assumption or correction is added to the formulation such as plane-stress (when laminated beams are involved) or any other hypothesis. Thus, it is a systematic way to deal with an arbitrary cross-sectional composite beam subjected to any boundary conditions.

Implementation and tools

A software package named CSB (Cross-Sectional and Beam analysis) is developed to implement the proposed beam theory. Provided with a friendly user interface, CSB is composed of two numerical tools called CSection and CBeam : -CSection [START_REF] Fatmi | A Matlab tool to compute the mechanical characteristics of any composite section[END_REF] is dedicated to the cross-sectional analysis. Starting from the cross-section data (shape and materials), it provides, an important set of mechanical characteristics for the cross-section. The set of sectional modes M k is part of these characteristics. For a given section, this is achieved once for all through 2D-FEM according to numerical method established by [START_REF] Fatmi | On the structural behavior and the Saint Venant solution in the exact beam theory : application to laminated composite beams[END_REF] ; -CBeam is dedicated to solve beam problems. This is achieved through 1D-FEM and regardless of the number of cross-sectional modes provided by CSection.

3.

Free vibration of a composite beam

The 3D formulation

In the framework of linearized elasticity, the Hamilton principle writes after simplifications

∫ t 2 t 1 ∫ Ω δε : C : ε dv dt = - ∫ t 2 t 1 ∫ Ω ρ.δξ t . ξ t dv dt (Eq. 2)
where ε is the strain tensor, ξ is the acceleration vector, C is the tensor of elactic stiffness, ρ is the material density, δ is the variational operator , t stands for time coordiante and t 1 and t 2 are arbitrary fixed times. Assuming time harmonic motion solutions in the form of ξ t (x, y, z, t) = ξ (x, y, z) e îλt (Eq. 3)

where λ is an arbitrary scalar representing the natural frequency and î is the imaginary number ; Eq. 2 yields to the following free vibration problem

∫ Ω δε : C : ε dv = λ 2 ∫ Ω ρ.δξ .ξ dv (Eq. 4)

The 1D formulation

For the sake of convenience, the displacement field (Eq. 1) and its variation can be rewritten

ξ (x, y, z) = A (x, y) .U (z) , δξ (x, y, z) = A (x, y) .δU (z) (Eq. 5)
where A is a known matrix whose columns are sectional displacement modes as it is

A (x, y) =       1 0 0 0 0 -y M 1 x • • • M 6+m x 0 1 0 0 0 x M 1 y • • • M 6+m y 0 0 1 y -x 0 M 1 z • • • M 6+m z       and U (z) = u x , u y , u z , ω x , ω y , ω z , η 1 , • • • , η 6+m
t is a vector of the 1D unkown generalized kinematical parameters.

In the same way, the displacement field (Eq. 1) leads to a strain field ε written in Voigt notation

ε (x, y, z) = B (x, y) . U (z) U (z) (Eq. 6)
where B is also a known matrix such

B (x, y) =             A x,x [0] A y,y [0] [0] A z,z A z,y A y,z A z,x A x,z A x,y + A y,x [0]             and U = ∂U
∂z . Using (Eq. 5) and (Eq. 6) in (Eq. 4) and integrating over the cross-section S yield to the following 1D free vibration problem

∫ L 0 δ U U t .Γ. U U dz = λ 2 ∫ L 0 δU.M.U dz (Eq. 7)
where the 1D operators Γ and M are identified as :

-structural (stiffness) operator Γ = ∫ S B t .K .B dxdy ; -structural inertial operator M = ∫ S A t .ρ.A dxdy. and here K is the matrix representation (6 × 6) of the elasticity tensor C. In order to extract the 1D differential equations system equivalent to (Eq. 7), on may use Euler-Lagrange equations.

4.

Numerical applications and results

Rectangular graphite/epoxy layered beam

The first example consists on a cantilever rectangular grpahite/epoxy laminated beam taken from [START_REF] Abarcar | The vibration of cantilever beams of fiber reinforced material[END_REF] where experimental results are provided. The cross-section has a 12.7mm width and a 3. As pointed out in [START_REF] Stemple | Large deflection static and dynamic finite element analyses of composite beams with arbitrary cross-sectional warping[END_REF], the material is quite unusual because of variation in G 12 and G 13 constants. Also, it should be noted that materials properties very slightly differ from one reference to another. Even though, the global behaviour still quite the same so that comparison remains valid. The Modal Assurance Criterion (MAC [START_REF] Allemang | A correlation coefficient for modal vector analysis[END_REF]) values are presented in (Fig. 5) between this present work (RBT) and solid model (3D-FEM) and the detected mode shapes are shown in (Fig. 6)-(Fig. 9). It is worth noting the appearance of distortional mode shapes for [0,90,90,0] in 9 th position (Fig. 6), and in 7 th position (Fig. 8) for the clamped-free and clamped-clamped cases respectively, and in 9 th position (Fig. 9) for [45-45,-45,45] in clamped-clamped case.

Frequencies are presented in (Tab (3). One can see that the highlited frequencies for torsional and distorsional mode shapes show somehow high errors when compared to solid model results. Specifically for torsional mode shapes, it is worth noting that these errors happen only for [45-45,-45,45] stacking sequence, while frequencies are accurately predicted for [0,90,90,0] stacking sequence. 

Conclusion

The present refined beam theory is free from all classical beam assumptions and corrections and it is able to deal with an arbitrary composite cross-section. It is based on a kinematical modeling that includes the own 3D displacement modes of the cross-section which represents Poisson's effects, out-of-plane warping and distortions. Thus, the beam theory can deal with an arbitrary cross-section without intervention.

In order to evaluate RBT model to predict free vibration characteristics of a composite beam, two significant examples from litterature are presented. Results show agreement in frequency and good consistancy in mode shapes when compared to solid model. The present refined beam theory is able to catch the main 3D effects such as coupling effects and both local/global mode shapes. An easy to use software package named CSB (Cross-Sectional and Beam analysis) has been developed to implement the presented theory to provide an effective help to understand mechanical behaviour of an arbitrary cross-sectional composite beam. This might avoid, at least as a firs step, costly 3D-FEM computations.
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 23 Fig. 2. The six Saint-venant's sectional deformation modes related to the six classical internal forces for the open thin-walled [45,-45,-45,45] layered section : (a) in-plane components (b) out-of-plane component

  175mm height made of four plies having same fiber angle orientation (15°and 30°). The beam length is L = 190.5 mm. The material properties are E 1 = 129.138 GPa, E 2 = E 3 = 9.404 GPa, G 12 = 5.157 GPa, G 13 = 4.304 GPa, G 23 = 2.541 GPa, ν 12 = ν 13 = ν 23 = 0.3 and ρ = 1550.07 kg/m 3 .
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 2 Open thin-walled graphite/epoxy layered beam This example combines different difficulties at once when dealing with composite beams : it is an open thin walled profile made of an orthotropic material and different angle ply orientations are considered. The cross-section is a doubly symmetric I-profile presented in (Fig. 4) where dimensions are in mm. It is made of graphite/epoxy (AS4/3501) whose properties are E 1 = 144 GPa, E 2 = E 3 = 9.65 GPa, G 12 = G 13 = 4.14 GPa, G 23 = 3.45 GPa, ν 12 = ν 13 = 0.3, ν 23 = 0.5 and ρ = 1389 kg/m 3 . The beam length is L = 12m. The problem data are taken from [12], however, in this work, only two stacking sequences ([0,90,90,0] ; [45,-45,-45,45]) are considered and the beam is subjected to clamped-free and clamped-clamped boundary conditions. We compare the present beam theory results (frequencies and 3D modes shapes) with those provided by solid model for the first 10 modes.
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 4 Fig. 4. Open thin-walled composite section
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 356789 Fig. 5. MAC matrices between RBT and solids models for open thin-walled layered beam
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