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COMPLETE CMC HYPERSURFACES IN MINKOWSKI (n+ 1)-SPACE

FRANCESCO BONSANTE, ANDREA SEPPI, AND PETER SMILLIE

Abstract. We prove that any regular domain in Minkowski space is uniquely foliated

by spacelike constant mean curvature (CMC) hypersurfaces. This completes the clas-

sification of entire spacelike CMC hypersurfaces in Minkowski space initiated by Choi

and Treibergs. As an application, we prove that any entire surface of constant Gaussian

curvature in 2+1 dimensions is isometric to a straight convex domain in the hyperbolic

plane.

Introduction

The study of spacelike hypersurfaces of constant mean curvature (CMC in short) in

Minkowski space Rn,1 has been widely developed since the 1980s, see for instance [Tre82,

Mil83, BS83, CT88, CT90]. An important motivation is that among spacelike hypersurfaces

in Rn,1, CMC hypersurfaces are precisely those for which the Gauss map, with values in the

hyperbolic space Hn, is harmonic. Employing this idea for n = 2, many interesting results

have been obtained on harmonic maps from C or D to H2 (see [CT88, AN90, Wan92, CT93,

HTTW95, GMM03]). More recently several results appeared on CMC hypersurfaces in Rn,1

admitting a co-compact action, thus giving rise to CMC compact Cauchy hypersurfaces in

certain flat Lorentzian manifolds, in [And02, ABBZ12], for n = 2 in [BBZ03, And05], and for

manifolds with conical singularities in [KS07, CT19]. The generalization of this problem to

general Lorentzian manifolds satisfying some additional conditions is also of importance to

general relativity, for example [Ger83]; see [Bar87] or Section 4.2 of [Ger06] for a summary.

In this paper, we focus our attention on entire spacelike hypersurfaces in Rn,1, that is,

graphs of functions f : Rn → R with |Df | < 1. Entireness is equivalent to being properly

embedded (Proposition 1.1), and thus is invariant by the action of the isometry group of

Rn,1. While the only entire hypersurfaces of vanishing mean curvature are spacelike planes

([CY76], also [Cal70] for n ≤ 4), hypersurfaces of constant mean curvature H 6= 0 have a

much greater flexibility, with many examples produced in [Tre82, CT90]. Still there is some

rigidity: Cheng and Yau, in the same article [CY76], show that entire CMC hypersurfaces

have complete induced metric and are convex (up to applying a time-reversing isometry).

In this paper, we first provide a complete classification of entire CMC hypersurfaces in

Rn,1 (Theorem A). Then we derive several applications of this classification in dimension

three, that is for surfaces in R2,1, concerning surfaces of constant Gaussian curvature and

minimal Lagrangian diffeomorphisms between simply-connected hyperbolic surfaces.

Classification of entire CMC hypersurfaces. Perhaps surprisingly, although partial

results were obtained in [Tre82, CT90], to our knowledge the literature lacks a complete

classification of entire CMC hypersurfaces in Minkowski space.

The fundamental notion for our classification is the domain of dependence D(Σ) of a

spacelike hypersurfaces Σ. Namely, D(Σ) is the set of points p ∈ Rn,1 such that every
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inextensible causal curve though p meets Σ (Definition 1.3). The domain of dependence of

any entire CMC hypersurface is a regular domain (Proposition 1.17), a notion introduced in

[Bon05] (see also [Bar05]) meaning an open domain obtained as the intersection of at least

two future half-spaces bounded by non-parallel null hyperplanes. See Section 1 for further

definitions and explanation. Let us now state our classification result.

Theorem A. Given any regular domain D in Rn,1 and any H > 0, there exists a unique

entire hypersurface Σ ⊂ Rn,1 of constant mean curvature H such that the domain of depen-

dence of Σ is D. Moreover, as H varies in (0,+∞), the entire hypersurfaces of constant

mean curvature H analytically foliate D.

A first simple example of a regular domain is the cone of future timelike directions from

some point p ∈ Rn,1, which is the intersection of all future half-spaces bounded by lightlike

hyperplanes containing p, and is foliated by hyperboloids. A qualitatively opposite example

are wedges (Figure 1), namely those regular domains obtained as the intersection of precisely

two future half-spaces neither of which is contained in the other. These are foliated by

troughs, that is, entire CMC hypersurfaces which are products of a hyperbola and a (n− 1)-

dimensional spacelike affine subspace.

Figure 1. The two dimensional trough T , whose domain of dependence is
a wedge.

There is a 1-to-1 correspondence between regular domains in Rn,1 and lower semicontin-

uous functions ϕ : Sn−1 → R ∪ {+∞} (Proposition 1.7). The correspondence associates to

the function ϕ the regular domain which is obtained as the intersection of the half-spaces

{(x, xn+1) ∈ Rn,1 : xn+1 > x ·y−ϕ(y)}, as y varies in Sn−1. For instance, the hyperboloid

centered at the origin corresponds to ϕ ≡ 0, whereas wedges correspond to functions ϕ

which are finite on exactly two points. From this perspective, our classification of entire

CMC hypersurfaces can be interpreted as follows.

Theorem B. There is a bijective correspondence between the set of entire CMC hypersur-

faces in Rn,1 and the set of lower semicontinuous functions on Sn−1 finite on at least two

points.

In [BSS19] we refer to the lower semicontinous function ϕ as the null support function

of the CMC hypersurface. There are at least two other notions of asymptotics of an entire

surface in Rn,1 in the literature: cuts at future null infinity as in [AI99, Stu81], and blowdown

data (L, f0) as in [CT90, Theorem 6.2]. In Minkowski space, all three of these notions are

equivalent (Propositions 1.19 and 1.18).
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The result of [CT90] is an important predecessor to our theorem. To translate their

result into the language of null support functions, say that a function valued in R∪{+∞} is

nearly continuous if the set on which it is finite is closed and it continuous when restricted

to that set. Then Choi and Treibergs prove that if ϕ is a lower semicontinuous function on

Sn−1 which is nearly continuous and finite on at least two points, then there exists an entire

CMC hypersurface with null support function ϕ. Compared to [CT90], our contribution is

to extend the existence theorem to all lower semicontinuous functions finite on at least two

points (Section 3) and crucially to prove uniqueness (Section 2).

Let us now briefly discuss the ingredients involved, starting with the proof of uniqueness.

Uniqueness. The proof of the uniqueness statement of Theorem A consists in an application

of the Omori-Yau maximum principle. In fact, in Theorem 2.1 we prove a comparison

principle: if Σ1 and Σ2 are two entire CMC hypersurfaces with constant mean curvature

H1 ≥ H2 and Σ2 ⊂ D(Σ1), then Σ2 cannot meet the past of Σ1. The uniqueness statement

then follows immediately, for if Σ1 and Σ2 have the same constant mean curvature and the

same domain of dependence, then they necessarily coincide.

To prove such a comparison result, we consider the Lorentzian distance (Definition 1.10)

to Σ1 as a function u on Σ2. Where u is positive, we derive the estimate (Lemma 2.5)

∆u ≥ nH1H2u

1−H1u
− nH2|∇u|

1−H1u
− |∇u|

2

u
.

This shows immediately that u cannot attain a positive maximum on Σ2. To prove the

stronger result that u can never be positive at all on Σ2, we apply the Omori-Yau argument.

Namely, we observe that u is bounded from above and that Σ2 has an a priori lower bound for

its Ricci curvature. This together with the key result of Cheng and Yau that Σ2 is complete

allows us to construct a supersolution of the same equation in terms of the intrinsic distance

on Σ2 which touches u from above at a point. Since u is a subsolution, this contradicts the

maximum principle, and the contradiction shows that u cannot be positive anywhere.

A general comparison principle. We also include in Section 2 a generalization of the com-

parison result beyond what we need for the proof of Theorem A. Namely, we relax the

assumption of constant mean curvature to merely bounded mean curvature: if Σ1 and Σ2

are entire spacelike hypersurfaces with the mean curvature of Σ1 bounded below by some

positive constant H and the mean curvature of Σ2 bounded above by H, and if furthermore

Σ2 ⊂ D(Σ1), then Σ2 lies weakly in the future of Σ1. The essence of the proof is simply

to show that the entire hypersurface of constant mean curvature H in D(Σ1) lies between

them. The proof of this general comparison principle thus relies on the existence part.

Existence. The ingredients for the proof of the existence of an entire CMC hypersurface

in any domain of dependence are mostly contained in the articles [Tre82, CT90]. In fact,

if we fix a constant H > 0, writing an entire hypersurface as the graph of some function

u : Rn → R, the CMC condition translates to a certain quasi-linear PDE on u. The

fundamental proposition, stated in [CT90, Proposition 6.1], asserts that if one has two

functions v, w ∈ C0,1(Rn) which are respectively a weak sub- and super-solution for such a

quasi-linear equation with v ≤ w, then there exists a solution u which is sandwiched between

v and w. Although stated in [CT90, Proposition 6.1], the cited references [Tre82] and [BS83]

for this proposition do not provide the statement exactly in this form. For this reason, we

decided to include in Section 3.2 a roadmap to the proof for convenience of the reader.
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Applying the above proposition, we use level sets of cosmological time for any regular

domain D as upper and lower barriers to prove the existence part of Theorem A. The cos-

mological time, T , is the function on a regular domain measuring the Lorentzian distance to

its boundary, and its relevant properties were described in [Bon05] (see Proposition 1.11).

This idea was used in the cocompact case in [And05], in which the author use the hyper-

surface T−1(1/H) as a supersolution and T−1(1/nH) as a subsolution. To save some effort,

we use T−1(0), the boundary of the domain of dependence, as a subsolution in our proof of

existence. This is sufficient to produce an entire CMC hypersurface Σ with D(Σ) = D.

Foliation. It remains to discuss the proof of the fact that the hypersurfaces ΣH having con-

stant mean curvature H and domain of dependence D foliate D itself. By the comparison

theorem which we used to prove uniqueness (Theorem 2.1), we obtain that the ΣH are

pairwise disjoint, and moreover ΣH1
is in the past of ΣH2

if H1 > H2. It thus remains to

show that every point p ∈ D belongs to some ΣH , which can be done by rather standard

techniques as in [ABBZ12, BS17, BS18, NS19]. In fact, given any point p ∈ D, by tech-

niques similar to those we used for the existence part, one shows that the two hypersurfaces

defined as the supremum (resp. infimum) of all CMC hypersurfaces in D whose future (resp.

past) contain p are CMC hypersurfaces with the same constant mean curvature, hence by

uniqueness they necessarily coincide and contain p itself. The existence of some such CMC

hypersurfaces having p in their future/past follows in one case from a simple upper bound

on the cosmological time, and in the other from an application of the comparison principle

(Theorem 2.1) using troughs as barriers.

To prove that the foliation is analytic, we apply the analytic inverse function theorem in

Banach spaces. To set this up, we fix a leaf Σ, and consider normal graphs of functions u

over Σ. The mean curvature of the graph of u defines a differential operator on Σ, which we

show by the inverse function theorem is locally invertible near u = 0 as a map between global

Hölder spaces. Consequently, for values of H ′ near the mean curvature H of Σ, there is a

unique bounded function uH′ on Σ whose normal graph has mean curvature H ′. Of course,

we already knew this much from the existence of the foliation and the observation that two

CMC surfaces share a domain of dependence if and only if they are a bounded distance

apart. But since the mean curvature is an analytic differential operator, the analytic inverse

function theorem implies that this family of Hölder functions is analytic in the parameter

H ′. Then it follows from classical results on analytic functions that in fact uH′(x) is jointly

analytic in H ′ and x, and therefore gives an analytic foliation chart.

Applications to hyperbolic surfaces in R2,1. The final section of this paper focuses

on n = 2, and provides a number of applications of Theorem A to surfaces of constant

Gaussian curvature, in other words surfaces such that the determinant of the shape operator

is constant. Taking the constant to be one, by Gauss’ equation these surfaces are hyperbolic,

meaning that the first fundamental form is a hyperbolic metric. The relationship lies in the

classical observation that if Σ has constant intrinsic curvature -1, then the surface which lies

at Lorentzian distance one from Σ to the convex side has constant mean curvature H = 1/2.

Just as CMC hypersurfaces are characterized as those with harmonic Gauss map, among

immersed spacelike surfaces Σ in R2,1 hyperbolic surfaces are exactly those whose Gauss

map G is a minimal Lagrangian local diffeomorphism; that is, the graph of G is a minimal

Lagrangian surface in Σ×H2. If moreover Σ is embedded, then G is a diffeomorphism onto

its image.
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A classification of entire surfaces of constant Gaussian curvature has been completed in

[BSS19], after several partial results had been obtained in [Li95, GJS06, BBZ11, BS17].

In short, in [BSS19] we proved that every regular domain which is the intersection of at

least three pairwise non-parallel future half-spaces contains a unique entire surface Σ of

constant Gaussian curvature K, for any K > 0. However, it has been observed (for instance

in [HN83]) that an entire surface of constant Gaussian curvature K > 0 is not necessarily

complete, thus highlighting a substantial difference with respect to mean curvature. In other

words the first fundamental form of Σ, being hyperbolic, is locally isometric to H2, but in

general not globally isometric.

There are thus several questions which arise naturally. For instance:

i) When is an entire hyperbolic surface Σ in R2,1 complete, in terms of the domain of

dependence of Σ?

ii) When Σ is not complete, to which hyperbolic surface is it intrinsically isometric?

iii) Conversely, which hyperbolic surfaces can be isometrically embedded in R2,1 with

image an entire surface?

Question i) appears to be the most difficult, and is left for future investigation. In this

paper we answer questions ii) and iii).

Entireness and minimal Lagrangian graphs. Let us first introduce a definition. Let (S, h)

and (S′, h′) be simply connected hyperbolic surfaces. We say that a smooth map f : (S, h)→
(S′, h′) is realizable in R2,1 if there exists an isometric immersion σ : (S, h) → R2,1 and a

local isometry d : (S′, h′) → H2 such that d ◦ f = Gσ where Gσ : S → H2 is the Gauss

map of σ. If moreover the immersion is proper, which is equivalent to its image being entire

(Proposition 1.1), we say that f is properly realizable.

It is known that realizability of f is equivalent to being a minimal Lagrangian local dif-

feomorphism. The following theorem gives a characterization of properly realizable minimal

Lagrangian maps, in terms of their graphs in the Riemannian product of (S, h) and (S′, h′).

Theorem C. Let f : (S, h)→ (S′, h′) be a diffeomorphism between simply connected hyper-

bolic surface. Then f is properly realizable in R2,1 if and only if the graph of f is a complete

minimal Lagrangian surface in (S × S′, h ⊕ h′). In this case, both (S, h) and (S′, h′) are

isometric to straight convex domains in H2.

The second part of the statement answers question ii). A straight convex domain in H2

is the interior of the convex hull of a subset of ∂∞H2 consisting of at least 3 points. See also

Corollary E below.

Observe that from the definition, it is easy to see that the inverse of a minimal Lagrangian

diffeomorphism is again minimal Lagrangian. The following is then a straightforward corol-

lary of Theorem C:

Corollary D. Let f : (S, h) → (S′, h′) be a minimal Lagrangian diffeomorphism between

simply connected hyperbolic surface. Then f is properly realizable in R2,1 if and only if f−1

is properly realizable in R2,1.

Outline of the proof. Let us spend a few words here to outline the proof of Theorem C. The

basic observation (Proposition 5.3) is that for any entire hyperbolic surface Σ in R2,1, the

surface Σ+ at Lorentzian distance one with constant mean curvature H = 1/2 is still entire,

and the two have the same domain of dependence. A consequence of the uniqueness of

Theorem A, together with the main result of [BSS19], is that the converse is almost always

true (Corollary 5.5): if Σ+ is any entire CMC-1/2 surface except for the trough, then the
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surface Σ at Lorentzian distance one to the past is still entire (with the same domain of

dependence). To prove the first part of Theorem C, it then suffices to observe that the

first fundamental form of Σ+ is bi-Lipschitz equivalent to the induced metric on the graph

of the minimal Lagrangian map in the Riemannian product, and by the Cheng and Yau

completeness theorem, entireness of the equidistant CMC-1/2 surface Σ+ is equivalent to

completeness of its first fundamental form.

The second part of Theorem C is proved by applying [BSS19, Theorem E], which states

that the image of the Gauss map of any entire hyperbolic surface is a straight convex domain.

Alternatively one can apply a similar statement for entire CMC hypersurfaces given in [CT90,

Theorem 4.8]). The symmetry provided by Corollary D then implies that (S, h) is isometric

to a straight convex domain as well.

Characterizing the intrinsic metrics. Let us now conclude by answering question iii).

Corollary E. A hyperbolic surface can be embedded isometrically and properly in R2,1 if

and only if it is isometric to a straight convex domain.

Being a necessary condition follows from Theorem C. To show that the condition is also

sufficient, [BSS19, Theorem A] implies that one can find an entire hyperbolic surface whose

Gauss map has image any straight convex domain. Applying again Corollary D gives the

desired statement.

As a final comment, the hypothesis of entireness is clearly essential in Corollary E, as

any domain in H2 can be realized without the entireness assumption. But we remark here

that the situation is even subtler, since also hyperbolic surfaces which are not isometric to

a subset of H2 can be embedded as non-entire surfaces. In fact, in [BS17, Appendix A],

an example of non-entire surface in R2,1 intrinsically isometric to the universal cover of the

complement of a point in H2 is constructed.

Organization of the paper. In Section 1 we introduce the necessary background, and in

addition we show the equivalence of several notions of asymptotics. In Section 2 we prove

the uniqueness part of Theorem A, while Section 3 shows the existence part and Section 4

shows the foliation result. Finally, Section 5 gives applications in dimension 2 + 1.

Acknowledgements. The third author would like to thank Jonathan Zhu and Lu Wang

for helpful conversations.

1. Preliminaries

1.1. Causality and Entire hypersurfaces. Minkowski (n + 1)-space is the Lorentzian

manifold Rn,1 = (Rn, dx2
1 + · · ·+dx2

n−dx2
n+1). We say that a vector is spacelike if its square

norm is positive, timelike if its square norm is negative, and null if its square norm is zero.

A subspace of Rn,1 is spacelike, timelike, or null if the restriction of the inner product to it is

Euclidean, Lorentzian, or degenerate respectively. We say a timelike or null vector is future

oriented if its last coordinate is positive, and past oriented if it is negative. If p ∈ Rn,1 we

define the future, I+(p), to be the set of points p+ v for v a future oriented timelike vector,

and similarly for the past, I−(p). If X is a set in Rn,1, define I±(X) = ∪p∈XI±(p). We also

define the causal future J+(p) and J+(X) the same way, except that we allow the vector v

to be timelike or null. Since the zero vector is null, X ⊂ J+(X).

A C0 curve in Rn,1 is causal if each pair of points on it is timelike- or null-separated.

A set is achronal if each pair of points on it is spacelike- or null-separated. An achronal

hypersurface will mean a connected C0 hypersurface which is achronal. Note that a causal
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curve is locally the graph of a 1-Lipschitz function R → Rn, where we decompose Rn+1 =

Rn ⊕ R, and an achronal surface is locally the graph of a 1-Lipschitz function Rn → R.

A causal curve is inextendable if it is globally the graph of a 1-Lipschitz function, and

an achronal surface is entire if it is globally the graph of a 1-Lipschitz function. By a

spacelike hypersurface, we will mean a smooth hypersurface whose tangent space at each

point is spacelike, so that it inherits a Riemannian metric. It is easy to verify that an entire

spacelike hypersurface is achronal.

The following proposition implies that for a spacelike hypersurface, entire, properly em-

bedded, and properly immersed are all equivalent.

Proposition 1.1 ([BSS19, Proposition 1.10]). If a spacelike hypersurface is Rn,1 is properly

immersed, then it is entire.

Another condition that implies entireness is completeness of the induced metric:

Proposition 1.2 ([Bon05, Lemma 3.1]). Let σ : Mn → Rn,1 be a spacelike immersion such

that the first fundamental form is a complete Riemannian metric. Then σ is an embedding

and its image is an entire hypersurface.

As mentioned in the introduction, the converse of this second proposition is not true

without some curvature assumptions; it is easy to construct examples of entire spacelike

hypersurfaces such that the induced metric is not complete.

1.2. Domains of dependence and regular domains. Our tool for understanding the

asymptotics of entire spacelike hypersurfaces will be their domain of dependence. This gives

a fairly coarse notion of asymptotics, but it turns out to be exactly what we need for the

classification of entire CMC hypersurfaces. References for Propositions 1.5 and 1.6 can be

found, with some adaptation, in Section 6.5 of [HE73] or presented in a slightly different

order in [BSS19].

Definition 1.3. For an achronal set Σ in Rn,1, its domain of dependence D(Σ) is the set of

points p ∈ Rn,1 such that every inextendable causal curve through p meets Σ.

Definition 1.4. An achronal set H is a past horizon if for any point p ∈ H, there is a future

directed (hence nonzero) null vector v such that p+ v is still in H.

We note that the empty set is a past horizon. We furthermore define the past horizon

H−(Σ) of an achronal set Σ to be the part of the boundary of the domain of dependence of

Σ which lies in the past of Σ. The compatibility of this terminology is guaranteed by the

following proposition.

Proposition 1.5. The past horizon H−(Σ) of an achronal set Σ is a past horizon. Moreover,

every past horizon is the past horizon of itself.

We define the future horizon H+(Σ) analogously, but we will focus on past horizons in

this paper. If Σ is an entire achronal hypersurface, then its past horizon is either empty or

is itself entire. We state some elementary properties of entire past horizons:

Proposition 1.6. Let H be an entire past horizon. Then

• H is convex.

• If p ∈ H and v is a future null vector such that p+ v ∈ H, then the entire geodesic

ray {p+ tv | t ∈ [0,∞)} is contained in H.

• H is the envelope of its null support planes.
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SinceH is a convex graph, it is determined by its locus of support planes. IfH is the graph

of f , the locus of support planes is described by the Legendre transform f∗ : Rn → R∪{+∞},
defined by f∗(y) = supy∈Rn x · y − f(y). In general, the Legendre transform f∗ is a lower

semicontinuous function which may take the value +∞. The third point of the proposition

says that H is determined by the restriction of f∗ to the unit sphere, which corresponds to

the null support planes. We summarize this as:

Proposition 1.7. Past horizons are in bijection with lower semicontinous functions on the

sphere taking values in R ∪ {+∞}.

This lower semi-continuous function is called the null support function of the past horizon.

In fact, one may speak of the null support function of any entire achronal set, meaning simply

the null support function of its past horizon.

If Σ is a spacelike hypersurface, then the following proposition states that its domain of

dependence is really a domain (i.e. it is open).

Proposition 1.8. [BSS19, Lemma 1.14] If Σ is a spacelike hypersurface, then

• For any p ∈ D(Σ), there is a compact subset K ⊂ Σ such that p ∈ D(K).

• D(Σ) is open.

If Σ is an entire spacelike hypersurface, then H± are entire or empty, and it follows from

the proposition that D(Σ) is the open region between them. A case of particular interest is

when Σ is an entire convex spacelike surface. For us, a convex hypersurface will always mean

one that is the graph of a convex function (in particular, the past connected component of

the two sheeted hyperboloid is not called convex). For a convex hypersurface Σ, it is not hard

to see that its future horizon is empty, so that D(Σ) = I+(H−(Σ)) if H−(Σ) is nonempty,

and D(Σ) = Rn,1 otherwise.

Having broken the time reversal symmetry, we make the following definition.

Definition 1.9. A regular domain is an open domain which is the future of an entire past

horizon with at least one spacelike support plane.

Equivalently, it must have at least two non-parallel null support planes. Under the cor-

respondence between entire past horizons and lower semicontinous functions on the sphere,

this just excludes the function that is identically equal to +∞ and functions which are finite

at a single point.

A regular domain has an important canonical function on it called cosmological time,

which we now discuss.

Definition 1.10. For q in the causal future of p (written q ∈ J+(p)), define the Lorentzian

distance d(p, q) =
√
−〈q − p, q − p〉. More generally, if Σ1 and Σ2 are two achronal sets such

that there exists at least one future directed causal geodesic from a point in Σ1 to a point

in Σ2, define the Lorentzian distance, which may be infinite, by

d(Σ1,Σ2) = sup
p∈Σ1

q∈J+(p)∩Σ2

d(p, q) .

If D is a regular domain with past boundary H, the cosmological time is a function T

defined on D by T (p) = d(H, p). The assumption that H has at least one spacelike support

plane guarantees that T is finite. More generally, we have

Proposition 1.11 ([Bon05, Proposition 4.3 and Corollary 4.4]). Let Σ be a convex entire

achronal hypersurface with at least one spacelike support plane.
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• The function T (p) = d(Σ, p) is a C1 function on I+(Σ).

• The function T tends to zero as p approaches Σ. It is convex and unbounded along

any timelike geodesic.

• The level sets T−1(r) for r > 0 are convex entire spacelike hypersurfaces, each of

which has the same domain of dependence as Σ.

This proposition applies in particular to the case where Σ = H is a past horizon, I+(H)

is a regular domain, and T is the cosmological time.

1.3. CMC hypersurfaces. Any spacelike hypersurface Σ has a future unit normal vector

field which we will call ν. Parallel transporting the vector field ν to the origin gives the

Gauss map G : Σ → Hn, where Hn is identified with the component of the hyperboloid of

future unit timelike vectors.

The shape operator of Σ is denoted B = dν, viewed as an endomorphism of the tangent

bundle, and we define the mean curvature with the convention

H =
1

n
trB .

We will use the notation I, II, III for the first, second, and third fundamental forms: I is the

induced metric, II(·, ·) = I(B·, ·), and III(·, ·) = I(B·, B·).
The following classical theorem holds in Rn,1 just as in Euclidean space:

Theorem 1.12 (see [CT90, Theorem 1.2]). Let Σ be a spacelike hypersurface in Rn,1 and

let I be its first fundamental form. Then the Gauss map G : (Σ, I)→ Hn is harmonic if and

only if Σ has constant mean curvature.

The foundational result about spacelike hypersurfaces with constant mean curvature in

Minkowski space is the following:

Theorem 1.13 ([CY76]). If Σ ⊂ Rn,1 is an entire spacelike hypersurface with constant

mean curvature then Σ is intrinsically complete with non-positive Ricci curvature.

Two comments about this theorem are in order. First, on the question of completeness,

the result of Cheng and Yau is somewhat stronger: if instead of constant mean curvature we

assume only a C1 bound on the mean curvature function, then Σ is still complete. Second,

non-positive Ricci curvature is equivalent to convexity, as we now explain.

The Gauss equation for a spacelike hypersurface in Rn,1 with second fundamental form

II reads

Rabcd = −(IIacIIbd − IIadIIbc) ,

and tracing once, with H = tr(II)/n, gives either of the equivalent equations

Ricab = −(nHIIab − IIIab)

Ricba = −(nHBba −BbcBca) .

This shows that the second fundamental form and the Ricci tensor are simultaneously di-

agonalizable. Moreover, if λ is an eigenvalue of B, the corresponding eigenvalue µ of Ric is

given by

µ = λ2 − nHλ .
We see that the Ricci curvature is nonpositive if and only if every eigenvalue of B is between

0 and nH. Since the sum of the eigenvalues is nH, this is the same as saying that every

eigenvalue is at least 0. Hence, Σ is convex, up to time reversal. Furthermore, going back

to the untraced Gauss equation, we see that nonpositive Ricci curvature implies nonpositive
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sectional curvature. We also observe that with or without the nonpositivity hypothesis, the

smallest µ can be is −n2H2/4. We record these facts for later application.

Proposition 1.14. If Σ is a spacelike hypersurface with mean curvature H at a point p,

then its Ricci curvature at p is bounded below by −n2H2/4 times the metric.

Proposition 1.15. If Σ is a spacelike hypersurface with non-positive Ricci curvature, then

it has non-positive sectional curvature.

We will also need the following splitting theorem.

Theorem 1.16 ([CT93, Theorem 3.1]). Suppose that Σ is an entire hypersurface in Rn,1

with constant mean curvature H, and second fundamental form II. If there is a point p ∈ Σ

and a tangent vector v ∈ TpΣ such that II(v, v) = 0, then Σ splits extrinsically as the product

of a line and an n− 1 dimensional submanifold Σ′. In other words, there is a hypersurface

Σ′ ⊂ v⊥ ∼= Rn−1,1 of constant mean curvature nH
n−1 such that Σ = Σ′ × Rv.

As the only entire CMC hypersurface in R1,1 is the hyperbola, a consequence of this

theorem is that every entire CMC surface in R2,1 which is not a trough has positive definite

second fundamental form everywhere.

Finally, we state here for reference a special case of Corollary 2.4, which we will prove

later.

Proposition 1.17. If Σ is entire with constant mean curvature H, positive with respect to

its future unit normal, then D(Σ) is a regular domain.

1.4. Asymptotics. We end the preliminary section by comparing the null support function

with the other two notions of asymptotics of an entire spacelike hypersurface that appear in

the literature. We start by introducing the data (L, f0) used in [CT90]. Here L is a closed

subset of Sn−1 and f0 is a function on L. Given a entire spacelike hypersurface expressed as

the graph of a function u : Rn → R, define

L = {θ ∈Sn−1| lim
r→+∞

u(rθ)
r = 1} and

f0(θ) = lim
r→+∞

r − u(rθ) for θ ∈ L.

We remark that L is closed: indeed, if we define V (θ) = limr→+∞
u(rθ)
r , then V is the limit

of 1-Lipschitz functions, so it is continuous, and V −1(1) is closed. Also, f0 may in general

take the value +∞.

We now show that the data (L, f0) determines the null support function ϕ, and so long

as the mean curvature is bounded below, ϕ determines (L, f0). Recall that the null support

function is defined on Sn−1 as ϕ(θ) = supy∈Rn〈θ,y〉 − u(y).

Proposition 1.18. Let u be a function on Rn whose graph is entire and spacelike, let f0

and L be defined as above, and let ϕ be the null support function of u. Then

ϕ(θ) =

{
f0(θ) for θ ∈ L
+∞ for θ /∈ L

Moreover, if the graph of u has mean curvature bounded below by a positive constant H, then

L is the closure of the set {θ |ϕ(θ) < +∞}.

Proof. (See also Section 2.3 of [BS17]) First note that since V (x) := limr→+∞
u(rx)
r is 1-

Lipschitz with V (0) = 0, its value is at most 1 at all θ ∈ Sn−1, so we have V (θ) < 1 for
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θ /∈ L. It is harmless to extend the definition of f0 to all θ, in which case by the previous

sentence we see that f0(θ) = +∞ for θ /∈ L. We now show that f0 = ϕ.

Since u is strictly 1-Lipschitz, the function r− u(rθ) is an increasing function of r, so we

can replace the “limit” in the definition of f0 with a supremum over r. Since the function

r − u(rθ) is the restriction of 〈θ,x〉 − u(x) to the ray in the direction θ, we see that the

definition of f0 is analogous to the definition of ϕ except that the supremum is taken over

a smaller set. Hence, f0 ≤ ϕ.

On the other hand, if ` is a null line in the past of the graph of u, then the past of `

must also lie in the past of the graph of u. Since the past of ` is the same as the past

of the unique null plane through `, this plane must also lie in the past of the graph of u.

Applying this observation to the half-line {(rθ0, r−f0(θ0)) ∈ Rn,1 | r ≥ 0}, we conclude that

u(x) ≥ 〈θ0,x〉 − f0(θ0), and hence that f0 ≥ ϕ. This completes the proof of the theorem up

to the final statement.

For the final statement, suppose that the graph of u has mean curvature bounded below

by H and ϕ = +∞ on an open set containing θ0. The linear isometry group SO(n, 1) acts on

the sphere of null directions by conformal transformations, so up to the action of this group,

we may assume that the open set contains an entire hemisphere centered at θ0. Then the

domain of dependence of the graph of u contains a spacelike ray {(rθ0, c) ∈ Rn,1 | r ≥ 0} = 0

for some sufficiently large c. By Lemma 2.3, the function u is bounded above by 1/H along

this ray, so V (θ0) ≤ 0 and in particular θ0 /∈ L. Since we have already seen that L is a closed

set containing {θ |ϕ(θ) < +∞}, this completes the proof. �

The other commonly used notion of the asymptotics of an entire spacelike hypersurface

Σ is its asymptotic cut at future null infinity, which we now define. Introduce coordinates

{t′, ta, θ} on the complement of the xn+1 axis in Rn,1 as follows: if {r > 0, θ ∈ Sn−1} are

spherical coordinates on Rn, then set t′ = xn+1 − r and ta = xn+1 + r. The function t′ is

known as retarded time, and ta advanced time. Fixing θ defines a half-plane in Rn,1, which

meets the hypersurface Σ along a spacelike curve. For ta large enough, this curve is the graph

of a decreasing function t′ = fθ(ta). The asymptotic cut at future null infinity of Σ is defined

to be the graph of the upper semicontinuous function ψ(θ) = limta→+∞ fθ(ta) : Sn−1 → R.

This definition becomes more geometrically intuitive if we identify the cylinder Sn−1×R with

the component I + of the boundary of the Penrose compactification of Rn,1 as described in

[HE73, Section 5.1]; then the closure of Σ in the compactification meets I + in the closure

of the graph of ψ.

We remark that this is a generalization of the traditional notion of a cut at future null

infinity. Traditionally, a cut means the intersection of the closure of the null cone of a

point in Rn,1 with I +, which are just the graphs of affine functions on Sn−1. In [Stu81],

this is generalized to a “BMS super-translated” cut, meaning the graph of a sufficiently

smooth function. According to the following proposition, our further generalization to upper

semicontinuous functions is a very natural one:

Proposition 1.19. Let Σ be an entire spacelike hypersurface in Rn,1 with null support

function ϕ. Then Σ is asymptotic to the cut at future null infinity given by the graph of −ϕ.

Proof. Since t′ = xn+1 − r, the definition of ψ is the same as the definition of f0 above

up to a sign: ψ = −f0. Hence the proposition follows immediately from the first part of

Proposition 1.18. �
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2. Uniqueness

In this section, we prove several comparison principles for entire hypersurfaces with

bounds on their mean curvature. As a corollary, we obtain the uniqueness part of The-

orem A.

Theorem 2.1. Let Σ1 and Σ2 be entire spacelike hypersurfaces in Rn,1. Suppose that Σ1

has mean curvature bounded below by H1 > 0, Σ2 has constant mean curvature H2, and

H1 ≥ H2. Suppose also that Σ2 ⊂ D(Σ1). Then Σ2 ⊂ J+(Σ1).

We recall that J+(Σ1) = Σ1 ∪ I+(Σ1) is the causal future. The uniqueness of solutions

in a regular domain is an immediate corollary:

Corollary (Uniqueness part of Theorem A). For any regular domain D, there is at most

one entire hypersurface of constant mean curvature H whose domain of dependence is D.

The essential point of the proof of Theorem 2.1 is to apply the maximum principle to the

distance between the hypersurfaces, but some care has to be taken because we don’t have

enough a priori control over the hypersurfaces at infinity. In particular, the containment

Σ2 ⊂ D(Σ1), which implies D(Σ2) ⊂ D(Σ1), does not a priori mean that Σ2 is asymptotically

in the future of Σ1. However, it tells us the following:

Lemma 2.2. If Σ is an entire spacelike hypersurface and p is a point in D(Σ), then the

square distance 〈q − p, q − p〉 attains its nonpositive minimum over q ∈ Σ.

Proof. By Proposition 1.8, there is a compact set K ⊂ Σ such that p ∈ D(K). Since any

pair of points in Σ is spacelike separated, K = Σ ∩ D(K). Hence, for points q in Σ but

outside K, there is no causal geodesic from p to q, so the square distance from p to q is

positive. Since p ∈ D(K), there is some point in K which is connected to p by a causal

geodesic, so the square distance to p is nonpositive. Since K is compact and the square

distance is continuous, it attains its nonpositive minimum over Σ at some point of K. �

For two points p and q in Rn,1, we will write z = 〈q − p, q − p〉, where we view z as a

function of p and q. Recall (Definition 1.10) that if q ∈ J+(p), the Lorentzian distance is

defined by d(p, q) =
√
−z, and if Σ is an achronal set with Σ ∩ J+(p) 6= ∅ then

d(p,Σ) = sup
q∈Σ∩J+(p)

d(p, q) .

Now we can state the second lemma we need in the proof of the comparison theorem.

Lemma 2.3. If Σ is an entire spacelike hypersurface with mean curvature bounded below by

a positive constant H0 and p ∈ D(Σ) ∩ I−(Σ), then d(p,Σ) < 1/H0.

Proof. This is a straightforward application of the maximum principle, which we describe

in some detail, as we will build off of the computation in the proof of the next lemma. By

Lemma 2.2, there is a point q0 ∈ Σ at which the square distance to p attains its negative

minimum, and thus the Lorentzian distance attains its positive maximum: d(p, q0) = d(p,Σ).

We compute the intrinsic Laplacian on Σ of the square distance to p at the point q0.

For a hypersurface embedded in Rn,1 by a map q with mean curvature H(q) with respect

to its unit normal ν, the intrinsic Laplacian on the hypersurface of the embedding is given

by

∆q = nH(q)ν. (1)
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If we call the square distance to p, as a function on Σ, by z(q) = 〈q − p, q − p〉, then

∆z = 2〈∆q, q − p〉+ 2〈∇iq,∇iq〉
= 2nH(q)〈ν, q − p〉+ 2n.

(2)

Here the term 〈∇iq,∇iq〉 is the pointwise Dirichlet energy of the embedding, written in

Einstein notation. Since the embedding is isometric, the pointwise Dirichlet energy is equal

to the rank, n.

Since the point q0 is a critical point for z, the future normal vector ν at this point is

parallel to q0 − p. More precisely,

q0 − p = d(p, q0)ν.

Therefore, using that 〈ν, ν〉 = −1, we get

∆z(q0) = 2n(−H(q0)d(p, q0) + 1) (3)

Since q0 is a minimizer for the square distance z, we must have ∆z(q0) ≥ 0, and hence

d(p,Σ) = d(p, q0) ≤ 1/H(q0) ≤ 1/H0.

It remains only to rule out equality. By Proposition 1.8, D(Σ) is open, so for ε small

enough, the point p− ε(q0− p) is still in D(Σ). Running the same argument with p replaced

by p− ε(q0 − p), we conclude that the inequality must be strict. �

This bound has the following important consequence:

Corollary 2.4. If Σ is an entire hypersurface with mean curvature bounded below by a

positive constant, then the domain of dependence of Σ is a regular domain.

Proof. By Proposition 1.6, the past horizon of Σ is either empty, a single null hyperplane,

or the past horizon of a regular domain. We show that in either of the first two cases,

there would exist points p ∈ D(Σ) ∩ I−(Σ) such that d(p,Σ) was arbitrarily large. For any

point q0 ∈ Σ, we have d(p,Σ) ≥ d(p, q0). The level sets of the Lorentzian distance to q0

are hyperboloids asymptotic to its past null cone; if the past horizon is empty or a single

null hyperplane, each of these hyperboloids meets D(Σ), so we can make d(p, q0) arbitrarily

large for p ∈ D(Σ).

Hence, the past horizon H−(Σ) is equal to the past horizon of some regular domain. We

complete the proof by showing that future horizon of Σ is empty. Otherwise, it would be

an entire future horizon lying entirely in the future of H−(Σ). Since H−(Σ) is the past

horizon of a regular domain, it has a spacelike support hyperplane. But by Proposition 1.6

applied to future horizons, every nonempty entire future horizon is in the past of some null

hyperplane. Clearly, no entire hypersurface can be sandwiched between a spacelike plane

and a null plane. Hence, H+(Σ) is empty and D(Σ) = I+(H−(Σ)), which is a regular

domain. �

Now suppose that Σ1 and Σ2 are as in the statement of Theorem 2.1; that is to say, Σ1

and Σ2 are entire spacelike hypersurfaces with Σ2 ⊂ D(Σ1), Σ1 has mean curvature bounded

below by H1, Σ2 has constant mean curvature H2, and H1 ≥ H2 > 0. Suppose for the sake

of contradiction that Σ2 meets the past of Σ1. For p ∈ Σ2 ∩ I−(Σ1), define

u(p) = d(p,Σ1)

Since Σ2 ⊂ D(Σ1), we know by Lemma 2.3 that the function u is bounded above by 1/H1.
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Lemma 2.5. The inequality

∆u ≥ nH1H2u

1−H1u
− nH2|∇u|

1−H1u
− |∇u|

2

u
(4)

holds in the viscosity sense (i.e. u is a viscosity subsolution).

We recall the definition of a viscosity subsolution. Let aij(x, u,Du)Diju = F (x, u,Du)

be an elliptic quasilinear differential equation, in the sense that aij is a positive definite

symmetric matrix. We say a function φ touches u from above at a point p if φ(p) = u(p)

and φ ≥ u in a neighborhood of p.

Definition 2.6. An upper semicontinuous function u is a viscosity subsolution of the equa-

tion aij(x, u,Du)Diju = F (x, u,Du) if for any point p0 and any C2 function φ which touches

u from above at p0, the inequality aij(x, φ,Dφ)Dijφ ≥ F (x, φ,Dφ) holds at the point p0. It

is a strict viscosity subsolution if for any φ as above, strict inequality holds.

Proof of Lemma 2.5. Let p0 be an arbitrary point in Σ2 at which u > 0. By Lemma 2.2,

there is some point q0 ∈ Σ1 for which d(p0, q0) = d(p0,Σ1) (Figure 2). To estimate ∆u from

below in the viscosity sense at p0, we will find a smooth comparison subsolution u which

touches u from below at p0 in the sense that u ≤ u and u(p0) = u(p0). Let q(p) : Σ2 → Σ1,

to be determined, be a smooth map with q(p0) = q0. In this way the function

u(p) = d(p, q(p))

touches u from below at p0. Of course, it will be sufficient to define the germ of q at p0.

Define also

z = −u2 = 〈q − p, q − p〉 .

p0

q0

Σ1

Σ2

Figure 2. The relative positions of p0 and q0.

We first apply the chain rule to compute the Laplacian of z at p0. In Equations (5) and

(6) below, the function z on the left hand side should be interpreted as function on Σ2, and

on the right hand side as a function on Σ2 × Σ1. The second partial derivatives should be

interpreted as covariant derivatives or alternatively in normal coordinates pa on Σ2 and qi

on Σ1 at the points q0 ∈ Σ1 and p0 ∈ Σ2.

dz

dpa
=

∂z

∂pa
+
∂z

∂qi
∂qi

∂pa
(5)

∆z =
∑
a

(
∂2z

∂pa∂pa
+ 2

∂2z

∂pa∂qi
∂qi

∂pa
+

∂2z

∂qi∂qj
∂qi

∂pa
∂qj

∂pa
+
∂z

∂qi
∂2qi

∂pa∂pa

)
(6)
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We now need to choose the function q(p) to give a good upper bound for ∆z. To motivate

this choice, we begin with a couple of observations. First, the only term in Equation (6)

which involves second derivatives of q with respect to p is the final term. Luckily, this

term vanishes at q0 because q0 minimizes the square distance to p0, and so ∂z
∂qi (p0, q0) = 0.

Therefore ∆z(p0) depends only on the one-jet of the map q(p).

Second, by Equation (2), the mean curvature is related to the intrinsic Laplacian of the

square distance function. So, if our estimate for ∆z is to depend on the mean curvature H1

as well as H2, we had better have the operator ∂2

∂qi∂qj
∂qi

∂pa
∂qj

∂pa be a multiple of the Laplacian

on Σ1. In other words, we need the derivative ∂qi

∂pa to be an isometry up to scale.

Finally, given this constraint, we wish to minimize the cross term 2 ∂2z
∂pa∂qi

∂qi

∂pa , to give the

best possible upper bound for ∆z. For a constant µ to be chosen in a minute, we choose the

Tp0Σ2

Tq0Σ1

Figure 3. An isometric boost between two spacelike hyperplanes.

derivative ∂qi

∂qa to be the linear map Tp0Σ2 → Tq0Σ1 which first isometrically boosts Tp0Σ2

onto Tq0Σ1 as in Figure 3 and then scales by a factor of µ. Since this map is in particular

µ times an isometry, the third term in Equation (6) simplifies to∑
a

∂2z

∂qi∂qj
∂qi

∂pa
∂qj

∂pa
= µ2

∑
i

∂2z

∂qi∂qi
.

Moreover we have a good estimate from above for the cross term. Indeed,∑
a

2
∂2z

∂pa∂qi
∂qi

∂pa
=
∑
a

−4

〈
∂

∂pa
,
∂

∂qi

〉
∂qi

∂pa

=
∑
a

−4

〈
∂

∂pa
,
∂qi

∂pa
∂

∂qi

〉
= −4µ(n− 1 + |〈ν1, ν2〉|)
≤ −4nµ

(7)

Here in the third equality, we have used that in n − 1 directions the derivative of q simply

rescales by µ, and in the final direction, the inner product between a unit vector and its

image under the isometric boost of Figure 3 is the same, up to sign, as the inner product of

the normal vectors to the two planes.
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Having chosen the one-jet of the map q(p), we use Equation (2) to write ∆z in terms of

the mean curvatures H1 and H2. Namely, we have at the point (p0, q0),∑
a

∂2z

∂pa∂pa
= −2nH2〈ν2, q0 − p0〉+ 2n

∑
i

∂2z

∂qi∂qi
= 2nH(q0)〈ν1, q0 − p0〉+ 2n

(8)

where H(q0) ≥ H1 is the mean curvature of Σ1 at q0. Keeping in mind that q0 minimizes

distance to p0, so that

q0 − p0 = d(p0, q0)ν1 = u(p0)ν1 = u(p0)ν1,

these become respectively∑
a

∂2z

∂pa∂pa
= 2n(H2u(p0)|〈ν1, ν2〉|+ 1)

∑
i

∂2z

∂qi∂qi
≤ 2n(−H1u(p0) + 1) .

(9)

The last ingredient we need is to express the term |〈ν1, ν2〉| in terms of |∇u|. Since q0

is a minimizer of d(p, q), the partial derivative with respect to q vanishes, and so the total

derivative at p0 of u = d(p, q(p)) is equal to its partial derivative with respect to p. This

partial derivative is the projection onto Tp0Σ2 of the gradient of the distance as a function on

Rn,1, which is the vector (q0−p0)/d(p0, q0), which is just ν1. Writing the length of ν1 as the

difference of its tangential and orthogonal components on Σ2 gives −1 = |∇u|2 − |〈ν1, ν2〉|2,

in other words

|〈ν1, ν2〉| =
√

1 + |∇u|2.
We will just use the naive bound

|〈ν1, ν2〉| ≤ 1 + |∇u|. (10)

Plugging (7), (9), and (10) into Equation (6) gives at the point p0,

∆z ≤ 2n(H2u(1 + |∇u|) + 1)− 4nµ+ 2n(−H1u+ 1)µ2 . (11)

We now choose µ. By Lemma 2.3, −H1u + 1 > 0, so the optimal choice is µ = 1
−H1u+1 ,

which after some algebra gives

∆z ≤ 2n((H2 −H1)u+H2u|∇u| −H1H2u
2)

1−H1u
.

Finally, using H2 ≤ H1 and u(p0) = u(p0) > 0, together with the definition z = −u2, we

arrive at

∆u ≥ nH1H2u

1−H1u
− nH2|∇u|

1−H1u
− |∇u|

2

u
.

If φ is any smooth function that touches u from above, then φ also touches u from above,

and so ∇φ(p0) = ∇u(p0) and ∆φ(p0) ≥ ∆u(p0). Hence Equation (4) holds in the viscosity

sense. �

Proof of Theorem 2.1. We now complete the proof of the comparison theorem. Define u as

above on Σ2 ∩ I−(Σ1), and extend it continuously by 0 to a function on all of Σ2. The
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theorem is proved by showing that u is nowhere positive. Let

F (u, ξ) =
nH1H2u

1−H1u
− nH2|ξ|

1−H1u
− |ξ|

2

u
.

If u attains a positive maximum at some point, then it is touched above by a constant

function m at that point. This contracts Lemma 2.5 since 0 = ∆m but F (m, 0) > 0 if m > 0.

To prove the general case, we will compare u with a function of the form φ = m+ εr2, where

r is the intrinsic distance to some point p0 in Σ2.

Suppose for the sake of contradiction that supΣ2
u = m > 0. Following the argument

of the Omori-Yau maximum principle (see [CY75, Theorem 3]), since u is bounded above,

for any ε we can find a point p0 such that u(p0) > m − ε. Since Σ2 has constant mean

curvature, it is complete by Theorem 1.13, so the ball B of radius one about p0 is properly

contained in Σ2. Let r be the intrinsic distance to p0, and consider the function u− εr2 on

B. By construction, its value at p0 is bigger than its supremum over the boundary of B,

so it attains a maximum at some point p1 in B. Let φ = u(p1) − εr(p1)2 + εr2, so that φ

touches u from above at p1.

Since Σ2 has constant mean curvature, the theorem of Cheng and Yau tells us that φ is

smooth: Σ2 has non-positive sectional curvature (Proposition 1.15), so it has no conjugate

points, so r2 and φ are smooth functions. It remains to establish that for ε small enough, φ

is a strict supersolution of (4).

Recall that by Proposition 1.14, the Ricci curvature of Σ2 is bounded below by −n2H2
2/4

times the metric. Hence by the gradient comparison theorem ([Yau75, Lemma 1]), there

is a constant C(n,H2) such that on the ball B we have ∆r ≤ C(n,H2)/r and so ∆φ ≤
2εC(n,H2). We also have on B that |∇φ| = 2rε ≤ 2ε.

Now let δ = m
2 ≤

1
2H1

, and choose ε small enough that

i) ε < δ, which implies u(p1) ≥ u(p0) > δ;

ii) ε < min
(
H1δ

6 ,
√

nH1H2δ2

12(1−H1δ)

)
, which together with i) and the fact that |∇φ| ≤ 2ε

implies

F (φ(p1),∇φ(p1)) >
nH1H2δ

3(1−H1δ)
;

iii) ε < 1
2C(n,H2) ·

nH1H2δ
3(1−H1δ)

, which together with i) and ii) and the fact that ∆φ ≤
2εC(n,H2) implies

∆φ(p1) < F (φ(p1),∇φ(p1)).

Since u(p1) > 0, it is a viscosity subsolution to the equation ∆u = F (u,∇u) at p1 by

Lemma 2.5, but since φ touches u from above at p1, this gives a contradiction. Hence u

cannot be positive, and Σ2 ⊂ J+(Σ1). �

We have completed the proof of the Comparison Theorem 2.1, and hence also of the

corollary that any two hypersurfaces of the same constant mean curvature sharing the same

domain of dependence must coincide. It also follows that two hypersurfaces with different

constant mean curvatures sharing the same domain of dependence are time-ordered by the

inverse of their mean curvatures. These are the only two consequences of the comparison

theorem that we will need in the remainder of this paper, and hence Theorem 2.1 is sufficient

for our purposes. However, a stronger statement of the comparison theorem is possible, and

in the remainder of this section we will sketch this argument.

Recall that in Theorem 2.1, we assumed that Σ2 had constant mean curvature H2 > 0, but

only that Σ1 had mean curvature bounded below by H1 ≥ H2. In the proof, we considered
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the distance to Σ1 as a function on Σ2. If instead, we consider the distance to Σ2 as a

function on Σ1, we can prove the following:

Theorem 2.7. Let Σ1 and Σ2 be entire spacelike hypersurfaces in Rn,1. Suppose that Σ1

has constant mean curvature H1 > 0, Σ2 has mean curvature bounded above by H2, and

H1 ≥ H2. Suppose also that Σ2 ⊂ D(Σ1). Then Σ1 ⊂ J−(Σ2).

We remark that we do not need to assume H2 ≥ 0.

Proof. Suppose Σ1 ∩ I+(Σ2) were nonempty. For q ∈ Σ1 ∩ I+(Σ2), let

u(q) = d(Σ2, q).

The analog of Lemma 2.5 in this case is that in the viscosity sense,

∆u ≥ nH1H2u

H2u+ 1
− |∇u|

2

u
(12)

where ∆ is the Laplacian on Σ1. The proof parallels the proof of Lemma 2.5, except that

instead of the bound |〈ν1, ν2〉| ≤ 1 + |∇u| in Equation 10, we use the even simpler bound

|〈ν1, ν2〉| ≥ 1. We now spell this out in a little more detail. For any point q0 in Σ1 ∩ I+(Σ2),

we can find a point p0 ∈ Σ2 maximizing the distance: indeed, since Σ2 ⊂ D(Σ1) which

is a regular domain by Corollary 2.4, the hypersurface Σ2 can have no future horizon, so

I+(Σ2) ⊂ D(Σ2); since q0 ∈ I+(Σ2) ⊂ D(Σ2) such a point p0 exists by Lemma 2.2.

To establish the bound (12), define p(q) : Σ1 → Σ2 so that p(q0) = p0 and ∂p/∂q is the

inverse of the boost in Figure 3 followed by dilation by µ, and define u(q) = d(p(q), q) and

z = −u2 = 〈q − p, q − p〉. Then just as in Lemma 2.5 we find

∆z ≤ 2n(−H1u+ 1)− 4nµ+ 2n(H2u+ 1)µ2 (13)

where now we consider z as a function on Σ1. Taking µ = 1
H2u+1 , using H1 ≥ H2, and

rewriting in terms of u, gives the Laplacian bound (12).

The remainder of the proof proceeds exactly as for Theorem 2.1, using the completeness

of Σ1 that follows from its constant mean curvature by the theorem of Cheng and Yau. Note

that we still have the upper bound u ≤ 1
H1

by Lemma 2.3 because p0 ∈ D(Σ1). �

For the most general version of the comparison theorem, we combine Theorems 2.1 and

2.7 with the existence part of Theorem A proved in Section 3. We stress that we do not

need the following theorem in the proof of existence.

Theorem 2.8. Let Σ1 and Σ2 be entire spacelike hypersurfaces in Rn,1. Suppose that Σ1

has mean curvature bounded below by H1 > 0, Σ2 has mean curvature bounded above by H2,

and H1 ≥ H2. Suppose also that Σ2 ⊂ D(Σ1). Then Σ1 ⊂ J−(Σ2).

Proof. By Corollary 2.4, the domain of dependence D(Σ1) is a regular domain. Using

Theorem A, let Σ be the unique hypersurface of constant mean curvature H with domain

of dependence D(Σ1) for any fixed value of H with H1 ≥ H ≥ H2. By Theorem 2.1, since

Σ ⊂ D(Σ1), the hypersurface Σ lies weakly in the future of Σ1. By Theorem 2.7, since

Σ2 ⊂ D(Σ1) = D(Σ), the hypersurface Σ lies weakly in the past of Σ2. Therefore, Σ1 lies

weakly in the past of Σ2. �

3. Existence

In this section we prove the following theorem about the existence of a CMC hypersurface

in any regular domain. Our proof relies on a combination of the techniques of [CT90] and

[ABBZ12].
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Theorem (Existence part of Theorem A). For any regular domain D and any H > 0 there

exists an entire spacelike hypersurface Σ with constant mean curvature H and domain of

dependence D.

This result is a little generalization of Theorem 6.2 of [CT90], and the strategy is es-

sentially the same as in that paper. The new ingredient with respect to [CT90] is the

observation of [ABBZ12] that level sets of cosmological time can be used as good barriers

in any regular domain. The proof is then a direct application of Proposition 6.1 of [CT90].

For completeness in Subsection 3.2 we will give a short overview of the argument of Choi

and Treibergs.

3.1. Barrier argument. Let Σu = {(x, u(x)) ∈ Rn,1 |x ∈ Ω} be a spacelike hypersurface,

for u : Ω → R a differentiable function on a domain Ω with |Du| < 1. We call such u a

spacelike function. If u is smooth, the mean curvature of Σu at a point (x, u(x)) is given

then by the expression

1

n

 1√
1− |Du|2

∑
i

Diiu+
1

(1− |Du|2)3/2

∑
ij

DiuDjuDiju

 (x) .

So spacelike graphs of constant mean curvature H bijectively correspond to solutions of

the problem{
LH(u) = (1− |Du|2)

∑
iDiiu+

∑
ij DiuDjuDiju− nH(1− |Du|2)3/2 = 0 ,

|Du| < 1 .
(CMC)

The operator L is quasi-linear and elliptic on the domain of spacelike functions. In the

following we will normalize H = 1 and we will simply denote L1 by L.

Lemma 3.1. Let D be a regular domain and T : D → (0,+∞) the cosmological time. Let

v0, v1 : Rn → R be the functions whose graphs coincide with ∂D and S1 = T−1(1). Then v0

and v1 are respectively a sub- and super-solution of (CMC) in the viscosity sense.

Proof. Since ∂D is a past horizon, for any x ∈ Rn there is ξ ∈ Rn with |ξ| = 1 such that

v0(x + tξ) = v0(x) + t for small t (in fact, since it is entire, this holds for all t ≥ 0 by

Proposition 1.6). This implies that if v is any spacelike function, then the function v − v0

cannot have local interior minimum. In fact we have that (v − v0)(x + tξ) < (v − v0)(x).

Thus no spacelike function v can touch v0 from above.

In order to prove that v1 is a supersolution in the viscosity sense we will show that for

any x ∈ Rn there exists a function vx, solution of L, touching from above v1 at x. In fact

we claim that for any point p = (x, u1(x)) ∈ S1 there is a hyperboloid H(x) passing through

p and lying above S1. The function which defines H(x), say vx1 , is a solution of L which

satisfies vx1 ≥ v1 and vx1 (x) = v1(x).

In order to prove the claim let r be the point on ∂D such that 〈p− r, p− r〉 = T (p) = 1,

and consider the hyperboloid H(x) = r + Hn. Clearly p ∈ H(x) ⊂ D. Moreover for any

p′ ∈ H(x) we have that 〈p′− r, p′− r〉 = 1 so the cosmological time of points in H(x) cannot

be less than 1, that is H(x) ⊂ J+(S1). �

As the coefficients of the quasi-linear elliptic operator L depend only on the derivatives

of u, the Comparison Principle applies (see [GT01, Theorem 10.1]): if u, v are twice differ-

entiable spacelike functions on a compact domain Ω ⊂ Rn, such that L(u) < L(v) on Ω and

u− v is nonnegative on ∂Ω, then u− v is nonnegative on the whole domain Ω. We remark

here that a comparison principle holds if v is only a viscosity subsolution:
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Lemma 3.2. Let v : Ω → R be a viscosity subsolution of (CMC). For any solution u

defined on Ω′ b Ω, if v ≤ u on ∂Ω′ then v ≤ u on Ω′.

Proof. Let u be a solution of (CMC) on Ω′ with v ≤ u on ∂Ω′. If v > u at some interior

point then, replacing u by u+ c for c > 0, one can arrange that u touches v from above at

some point. If v is a strict viscosity subsolution, this would imply that L(u) > 0 and gives

a contradiction. If v is only a viscosity subsolution, one still gets the same conclusion by a

perturbation argument. �

Clearly the analog discussion holds for supersolutions, by reversing inequalites. The proof

of Theorem A is then consequence of the following proposition stated in [CT90].

Proposition 3.3 ([CT90, Proposition 6.1]). Suppose there exist functions v ≤ v ∈ C0,1(Rn)

which are convex and proper viscosity sub- and super-solutions to the constant mean curva-

ture equation (CMC). Then there exists a smooth solution u of (CMC) whose graph is an

entire spacelike hypersurface of constant mean curvature 1 in Rn,1, which satisfies

v(x) ≤ u(x) ≤ v(x) for all x ∈ Rn .

In Section 3.2 we will provide an outline of the proof of Proposition 3.3. Assuming this

proposition, let us now prove the existence part of Theorem A. The obstacle to directly

applying Proposition 3.3 is the properness assumption for the barriers.

Proof of the existence part of Theorem A. Up to scaling, we can assume H = 1. By Lemma

3.1 the convex functions v0 and v1 whose graphs are ∂D and S1 are a viscosity sub-solution

and super-solution of (CMC) respectively.

Let us consider first the case where the set of ξ ∈ Hn which are orthogonal to some

support plane of ∂D has non-empty interior. Then up to applying an isometry of Minkowski

space we can assume that the vector e = (0, 0, . . . , 0, 1) lies in the interior of this set.

By assumption, there exists ε > 0 such that for every ξ in the closed geodesic ball B

centered at e of radius ε, D admits a spacelike support hyperplane orthogonal to ξ. Since

the points ξ ∈ ∂B can be written as ξ = (cosh ε)e+(sinh ε)θ for θ ∈ Sn−1, such support plane

is of the form Pθ,c = {xn+1 = tanh ε〈θ,x〉 − c} for some constant c = c(θ). By continuity of

the support function in B, we can indeed find a constant c independent of θ such that ∂D
is in the future of Pθ,c for all θ ∈ Sn−1. Now, for every x 6= 0 we can pick θ = x/‖x‖ and

deduce that v1(x) > v0(x) ≥ tanhε‖x‖−c, thus showing that v0 and v1 are proper functions.

A direct application of Proposition 3.3 with v = v0 and v = v1, shows the existence of an

entire spacelike hypersurface Σ of constant mean curvature equal to 1 contained between

∂D and S1. Since D(S1) ⊂ D(Σ) ⊂ D and D(S1) = D by Proposition 1.11, we see that

D(Σ) = D.

Assume now that support directions of D are contained in a hyperplane P of Hn. The

hyperplane P is the intersection of Hn with a timelike hyperplane which we can identify to

Rn−1,1. In this way Rn,1 is identified to R×Rn−1,1. Now by the assumption on the support

directions we have that D splits as R × D0, where D0 is a regular domain of Rn−1,1. In

fact we have that ∂D = R × ∂D0 and S1 = R × (S0)1, where (S0)1 denotes the level set

of the cosmological time of D0. Now by an inductive argument on the dimension we can

assume that there is an entire hypersurface Σ0 in Rn−1,1 of constant mean curvature equal

to n
n−1 and contained in D0 ∩ J−((S0)1). The hypersurface Σ = R×Σ0 has constant mean

curvature equal to 1 and is contained in D ∩ J−(S1). As in the previous case we can then

conclude that D(Σ) = D. �
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3.2. Outline of the proof of Proposition 3.3. Proposition 3.3 is stated in [CT90], while

its proof is referred to [Tre82, BS83]. In fact in the referred papers there are all the steps to

prove that proposition, however it is never stated in the form we need. So in order to help

the reader we give here a brief overview of the proof of Proposition 3.3.

The first step is the existence of solution of the Dirichlet problem, which we do not prove.

Proposition 3.4 ([Tre82, Proposition 6]). Let Ω be a compact convex domain in Rn with

C2,α-boundary, and k ∈ R. There exists a function u ∈ C2,α(Ω̄) solving the Dirichlet problem

L(u) = (1− |Du|2)
∑
iDiiu+

∑
ij DiuDjuDiju− n(1− |Du|2)3/2 = 0 ,

u = k on ∂Ω ,
(14)

such that

|Du| < c(n,H, diamΩ) < 1 .

In fact u is smooth by standard elliptic regularity theory. Now for any k we denote by

Ω+(k) ⊂ Ω−(k) the k-sublevel sets of v and v respectively. They are compact and convex

by the assumption on v and v. Let Ω(k) be a convex subset with C2,α boundary such that

Ω+(k) ⊂ Ω(k) ⊂ Ω−(k). Proposition 3.4 implies the existence of a function uk : Ω(k) → R
solving L(uk) = 0, |Duk| < 1 and uk|∂Ω(k) = k. Moreover we have v ≤ uk ≤ v over Ω(k) by

Lemma 3.2. By construction, the family of domains (Ω(k))k∈N is an exhaustion of Rn. Since

the uk are 1-Lipschitz functions, up to taking a subsequence we can suppose that uk → u∞
uniformly on compact sets, with v ≤ u∞ ≤ v. We will prove that the convergence is in fact

smooth on compact subsets.

Let K be a compact region of Rn. As in Step 6 of [Tre82, Theorem 1], let us prove that

the C3-norm of uk is uniformly bounded over K. Take a point x0 ∈ Rn \K. In Step 5 of

[Tre82, Theorem 1] it is shown that there are constant r1 < r2 such that for k sufficiently

large we have that
dk(x0,x) < r1 ∀x ∈ K ,

dk(x0, ∂Ω(k)) > r2 ,

where dk(x,y) denotes here the intrinsic distance on the graph Σuk
between (x, uk(x)) and

(y, uk(y)). Fix a ∈ (r1, r2). We can then apply [Tre82, Proposition 3, Proposition 4] and

prove a uniform bound of both the norm and the first covariant derivatives of the second

fundamental form of the hypersurface Σuk
over K. The bound on the norm of the second

fundamental form implies that the Gauss maps of Σuk
are uniformly Lipschitz on K. This

implies that either the hypersurfaces Σuk
are uniformly spacelike or the restriction of Σu∞

over K is a portion of a lightlike plane. On the other hand, since u∞ ≥ v, we have that Σu∞

is not a lightlike plane, so taking K sufficiently big the latter case cannot hold. In conclusion

there is a constant c < 1 independent of k such that |Duk|(x) < c for every x ∈ K and

k ∈ N.

Now fix the standard frame e1, . . . , en on Rn and denote by {ẽi = ei + duk(ei)en+1} the

induced frame of Σuk
. Notice that over K, gij = 〈ẽi, ẽj〉 is a uniformly bounded positive

symmetric matrix, in the sense that its eigenvalues are bounded away from 0 and∞. Putting

hij = II(ẽi, ẽj) we have that |II|2 = tr(g−1h2g−1), so that
∑
h2
ij is also uniformly bounded

over K. On the other hand we have

hij =
1√

1− |Duk|2
D2
ijuk +

1

(1− |Duk|2)3/2
fij(Duk) (15)

where fij : Rn → R are given smooth functions independent of k. Thus we deduce that the

Hessian of uk is uniformly bounded over K.
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This implies that Christoffel symbols of the Levi Civita connection of Σuk
are uniformly

bounded over K. On the other hand, we have

∇`hij = ∂`hij − Γsi`his − Γsj`hjs .

So the bound on the first covariant derivative of the second fundamental form gives that

the derivatives of hij are also uniformly bounded on K. Differentiating (15) and using that

‖uk‖C2 is uniformly bounded on K we deduce an estimate for the third derivatives of uk.

So we conclude that ‖uk‖C3 is uniformly bounded and |Duk| < c < 1 over K.

By applying now a standard bootstrap argument we conclude that all the derivatives of

uk are bounded over K, and by the Ascoli-Arzelà Theorem we conclude that uk lies in a

compact subset of C∞(K). Up to taking a subsequence, we can assume that uk converges

C∞ to a limit u∞, which is a solution to (CMC) and satisfies v ≤ u∞ ≤ v.

4. CMC foliations

In this section we prove that the entire CMC hypersurfaces foliate regular domains. That

is, we will prove:

Theorem (Foliation part of Theorem A). Let D be any regular domain. As H varies in

(0,+∞), the entire hypersurfaces with domain of dependence D and constant mean curvature

H analytically foliate D.

We shall first show that the CMC hypersurfaces continuously foliate D, and then the

analytic dependence on H. The proof will be split in Sections 4.1 and 4.2.

4.1. Continuous foliations. To show that each regular domain D is foliated by CMC

hypersurfaces, let us denote by ΣH the unique entire hypersurface of CMC H > 0 such that

D(ΣH) = D.

Lemma 4.1. The hypersurfaces ΣH are pairwise disjoint.

Proof. In fact, by Theorem 2.1, if H1 > H2 then Σ2 does not meet the past of Σ1. By the

strong maximum principle, Σ2 lies strictly in the future of Σ1. �

It thus remains to show that any point of D is in some hypersurface ΣH .

Lemma 4.2. Given every p ∈ D, there exists H such that p ∈ ΣH .

Proof. Again from Theorem 2.1, if uH is the function on Rn defining ΣH , uH1
< uH2

if

H1 > H2. Let p ∈ D, and let

H− := inf{H : p ∈ I+(ΣH)} and H+ := sup{H : p ∈ I−(ΣH)} . (16)

We first claim that both sets of which we take the infimum/supremum in (16) are non-empty,

so that H−, H+ ∈ (0,+∞). Since the point p belongs to at most one ΣH by disjointness

(Lemma 4.1), it will then follow that H− = H+.

For the claim, first let k > 0 be such that p is in the future of Sk, where Sk = T−1(k) are

the level sets of the cosmological time. By Lemma 2.3, for large H̄ the CMC hypersurface ΣH̄
is in the past of Sk, hence p ∈ I+(ΣH̄). Concerning H+, we shall show that p is in the past

of some ΣH̄ . For this purpose, let D0 be a wedge as in Figure 1 — that is a regular domain

which is the intersection of exactly two future half-spaces bounded by non-parallel lightlike

hyperplanes — such that D ⊂ D0. Such a D0 exists because by definition of regular domain

D is the intersection of at least two future half-spaces bounded by non-parallel lightlike

hyperplanes. Since the entire CMC hypersurfaces with domain of dependence D0 (which are
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troughs) foliate D0, there exists H̄ such that p is in the past of the trough having constant

mean curvature H̄. Then by Theorem 2.1, p is also in the past of ΣH̄ , which concludes the

claim.

Now let H0 := H− = H+. Define

u− := sup
H>H0

uH and u+ := inf
H<H0

uH .

Then as H → H−0 , uH converges uniformly on compact sets to u−, and by an argument

similar to that given in Section 3.2, the convergence is indeed smooth on compact sets. (One

uses again the function defining ∂D as a subsolution to ensure that the ΣH are uniformly

spacelike once the uniform boundedness of the second fundamental form is established.)

Hence u− defines an entire hypersurface of constant mean curvature H0 with domain of

dependence D . The same holds for u+. By uniqueness of Theorem A, u− = u+ and thus

p ∈ ΣH0
. �

Lemma 4.1 and 4.2 together show that every regular domain D is continuously foliated

by the CMC hypersurfaces with domain of dependence D.

4.2. Analyticity of the foliation. From standard elliptic regularity theory [GT01, Theo-

rem 6.17] [Hop32], we know that every CMC hypersurface is analytic in the sense that it is

locally the graph of an analytic function on Rn. In particular, the foliation of the previous

section has analytic leaves. In this section, we show that the foliation itself is analytic in

the sense that it can be trivialized by analytic charts.

Fix any regular domain D and H > 0, and let Σ be the leaf of the CMC foliation of D
with mean curvature H. For any τ > 0, let uτ : Σ → R be such that the normal graph

{x+uτ (x)ν(x)|x ∈ Σ} is the unique entire spacelike hypersurface of constant mean curvature

τ whose domain of dependence is D. For example, uH = 0. Also note that for any τ , uτ is

bounded above by Lemma 2.3. We need to show that for τ close to H, the function uτ (x)

is jointly analytic in τ and x and duτ/dτ is nonvanishing, for then (x, τ) 7→ x + uτ (x)ν(x)

analytically trivializes the foliation in a neighborhood of Σ.

By the main theorem of [Sic70], to show that a function of several real variables is jointly

analytic in a region, it is sufficient to show that in that region it is separately real analytic

in each variable with a uniform lower bound on the radius of convergence. To apply this

directly, we should view uτ (x) as a function on Rn × R. This is easily accomplished locally

in x by pulling u back via the exponential map of Σ. Then the elliptic regularity theory of

[Hop32] implies that the functions uτ (x) are real analytic in x, and also gives a lower bound

– uniform for small τ – for the radius of convergence in x. We now show that for each fixed

x, the function uτ (x) is analytic in τ with a lower bound – uniform in x – on its radius of

convergence.

In fact, we will show that τ 7→ uτ defines an analytic path in a certain Hölder space of

functions on Σ. Let r be the radius of convergence of this path at τ = H. Since evaluation

at x is a bounded linear function on the Hölder space, this implies that for each x, uτ (x) is

an analytic function of τ with radius of convergence r at τ = H. We now define the Hölder

space.

For any function u ∈ C∞(Σ), and any nonnegative integer k and α ∈ (0, 1), define the

global (k, α)-Hölder norm of u by

|u|k,α;Σ = max
j≤k

(
sup
x∈Σ
|∇ju(x)|

)
+ sup
x,y∈Σ

(
|∇ku(x)− Py,x∇ku(y)|

dist(x, y)α

)
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where ∇ku is the k-tensor ∇i1 · · · ∇iku, Py,x is the parallel transport along the unique

geodesic from y to x, and dist(x, y) is the intrinsic distance on Σ. The completion of the

subspace of C∞(Σ) on which this norm is finite is the Banach space Ck,α(Σ). We have used

the uniqueness of the geodesic between any two points of Σ only for convenience; if we define

the supremum only over points x and y that are, say, within a distance one of each other,

we get an equivalent norm since if dist(x, y) > 1, then

|∇ku(x)− Py,x∇ku(y)|
dist(x, y)α

≤ 2|u|k,0;Σ. (17)

Fix α ∈ (0, 1). Let Ω ⊂ C2,α(Σ) be an open neighborhood of 0 consisting of functions

u whose normal graph is still a spacelike surface. Such a neighborhood exists because the

second fundamental form of Σ is globally bounded. Define the mean curvature operator

H : Ω→ C0,α(Σ) which sends a function u to the function which gives the mean curvature

of the normal graph of u at a point x in Σ. So for example H(uτ ) = τ and H(0) = H.

Since H is an algebraic function of u, its derivatives, and the (analytic) second fundamental

form of Σ, it is an analytic map between Banach manifolds. By Lemma 4.3 below, it has

an analytic inverse in an open neighborhood of the constant function H in C0,α(Σ). Hence,

for τ close to H, the functions uτ depend analytically on τ . Combined with the preceding

arguments, this implies that uτ (x) is jointly analytic in x and τ for τ close to H. Finally,

by Lemma 4.4 below, duτ/dτ is nonvanishing, which completes the proof of analyticity of

the foliation.

Lemma 4.3. The operator H has an analytic inverse in a neighborhood of the constant

function H.

Proof. This is a consequence of the analytic inverse function theorem once we know that

the linearization of H at 0 is invertible. Let L : C2,α(Σ) → C0,α(Σ) be the linearization of

H at u = 0. It is a standard calculation in differential geometry, equivalent to the second

variation formula for area, that L = ∆− |II|2.

The construction of an inverse for L is analogous to our proof of existence for the full

nonlinear problem. For any bounded domain K ⊂ Σ, and any f ∈ C0,α(K), we can use

Schauder theory to find a solution uK ∈ C2,α(K) to the Dirichlet problem {Lu = f, u|∂K =

0}. Now fix f ∈ C0,α(Σ). Taking a relatively compact exhaustion Ki of Σ, we need to show

that the solutions uKi to the Dirichlet problems {Lu = fKi
, u|∂Ki

= 0} converge along with

their second derivatives to a function u ∈ C2,α(Σ) and that furthermore

|u|2,α;Σ ≤ C|f |0,α;Σ (18)

for a constant C independent of f . Then Lu = f and the bound (18) implies that L is

injective with bounded inverse.

From Treibergs’ bounds on |II| and |∇II|, we conclude as in Section 3.2 that the metric

and Christoffel symbols are uniformly bounded in normal coordinates on every intrinsic ball

of radius two in Σ. This gives uniform bounds on the ellipticity constants of L in normal

coordinates on such balls, and also uniform bounds on the difference between covariant

derivatives and partial derivatives in normal coordinates. By [GT01, Theorem 6.2], for

every ball B2 of radius 2 and every u ∈ C2,α(B2), we have the a priori estimate on the

corresponding ball of radius one

|u|2,α;B1 ≤ C(|u|0;B2 + |Lu|0,α;B2) (19)

for some constant C.
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To deal with the first term on the right hand side of (19), we use the maximum principle.

By Cauchy-Schwarz we have a positive lower bound nH2 ≤ |II|2, so the constant functions

± |f |0nH2 are super- and sub- solutions to the problem Lu = f . These barriers bound |uKi |
independently of i by a multiple of the supremum of f . Hence for the functions uKi , the

bound (19) reduces to

|uKi |2,α;B1 ≤ C|f |0,α;B2 ≤ C|f |0,α;Σ (20)

for each ball B2 ⊂ Ki.

As a consequence, the functions uKi are equicontinuous along with their first two deriva-

tives, so we may extract a subsequence converging in Ckloc to a solution u on Σ of Lu = f .

Furthermore, we retain the bound (20) for each ball B1 ⊂ Σ. By Equation (17) these local

bounds are enough to bound uΣ also in the global Hölder space C2,α(Σ), also by a constant

times |f |0,α;Σ. Hence, we have constructed a bounded inverse to L. �

Lemma 4.4. The derivative duτ (x)/dτ is strictly negative.

Proof. Differentiate the equation H(uτ ) = τ to find that L(duτ (x)/dτ) = 1. The function 0

is a supersolution to this equation, so the solution u produced in the proof of the previous

lemma for f = 1 is nonpositive, and by the strong maximum principle it is strictly negative.

Note that confusingly, the CMC time τ is increasing to the past of Σ. �

Finally, we remark that if we think of τ as a function on D, then it is the same as the

CMC time defined in [ABBZ12]. Our proof clearly implies that the CMC time is analytic.

5. Application in dimension 2 + 1

We will now focus hereafter on the case n = 2, that is, on surfaces in Minkowski 3-space.

In this section we will prove Theorem C and obtain Corollaries D and E as a consequence.

5.1. Hyperbolic surfaces and correspondence by the normal flow. We now recall

the fundamental correspondence between hyperbolic surfaces and CMC surfaces in R2,1,

given by the normal evolution.

Let σ : S → R2,1 be a spacelike immersion and Gσ : S → H2 ⊂ R2,1 its Gauss map. For

t ∈ R, us denote by σt : S → R2,1 the normal flow of σ at time t, namely σt = σ + tGσ.

Lemma 5.1. Given a spacelike immersion σ : S → R2,1, let I be its the first fundamental

form and B its shape operator. Then:

• The first fundamental form of σt is

It = I((1 + tB)·, (1 + tB)·) . (21)

• The shape operator of σt is

Bt = (1 + tB)−1B . (22)

Proof. Equation (21) follows easily from the definition of σt, from which one obtains

dσt = dσ + tdGσ = dσ ◦ (1 + tB) , (23)

and therefore the desired formula. Equation (22) then follows by differentiating Equation

(21) and the fact that the second fundamental form of σt can be computed by the formula

IIt = 1
2

d
ds

∣∣
s=t

Is. �
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Remark 5.2. As an easy consequence of the proof, we see that the Gauss map of the immer-

sion σt coincides with Gσ. In fact, for every point p of S, Gσ(p) is orthogonal to dσt(v) for

all v ∈ TpS by Equation (23).

We say a spacelike surface in R2,1 is hyperbolic if its first fundamental form is a hyper-

bolic metric. Equivalently (by Gauss’ equation), if its shape operator B identically satisfies

detB = 1.

Proposition 5.3. Given any entire hyperbolic surface Σ in R2,1, the surface Σ+ = σ1(Σ)

is an entire convex CMC-1/2 surface with D(Σ+) = D(Σ).

Proof. By convexity of Σ, Σ+ coincides with the level set T−1(1) where T is the function

T (p) = d(Σ, p). By Proposition 1.11 applied to H = Σ, it follows that Σ+ is entire if Σ is

entire, and that the two surfaces have the same domain of dependence. We only need to

show that Σ+ has constant mean curvature 1/2 if Σ is a hyperbolic surface. By Equation

(22) the mean curvature of Σ+ is:

trB1 = tr((1 +B)−1B) =
tr(B−1(1 +B))

det(B−1(1 +B))
=

2 + trB−1

1 + trB−1 + (detB−1)
= 1

if Σ is hyperbolic, for detB = 1 by Gauss’ equation. �

Remark 5.4. Given any spacelike CMC-1/2 immersion σ, one can see that σ−1 is the im-

mersion of a hyperbolic surface under the additional hypothesis that σ has positive definite

second fundamental form. This hypothesis is necessary to show that σ−1 is an immersion.

For example, the past normal flow of the trough Σ = {x2
1 − x2

3 = −1} at time -1 collapses

each hyperbola Σ ∩ {x1 = t0} to the point (t0, 0, 0), and thus the image of σ−1 is not an

immersed surface (actually, it is the line {x2 = x3 = 0}).

The trough is indeed the unique example of entire CMC in R2,1 whose second fundamental

form is not positive definite, by Theorem 1.16. Nevertheless, the construction of Proposition

5.3 a priori cannot be reversed straightforwardly since it is not immediately clear that the

surface obtained by normal flow in the past is still entire. But this fact is true (once the

exception of the trough is ruled out), as a consequence of Theorem A and the main theorem

of [BSS19]:

Corollary 5.5. Given any entire CMC-1/2 surface Σ, either Σ is a trough or it is the surface

obtained by the time 1 normal flow of an entire hyperbolic surface.

Proof. Suppose Σ is not a trough, and let D = D(Σ) be the domain of dependence of Σ.

Since Σ is not a trough, its domain of dependence is not a wedge. (See Figure 1.) Hence

by [BSS19, Theorem A], there exists an entire hyperbolic surface Σ− whose domain of

dependence is D. Then by Proposition 5.3, the surface obtained by the time 1 normal flow

from Σ− is an entire CMC-1/2 surface with domain of dependence D, which must coincide

with Σ by the uniqueness of Theorem A. �

5.2. Minimal Lagrangian maps. The results of this section concern the realization of

maps between surfaces as Gauss maps of spacelike surfaces in R2,1. Let us introduce the

following definition.

Definition 5.6. Given two simply connected Riemannian surfaces (S, g) and (S′, h′), for h′

a hyperbolic metric, a smooth map f : (S, g) → (S′, h′) is realizable in R2,1 if there exists

an isometric immersion σ : (S, g) → R2,1 and a local isometry d : (S′, h′) → H2 such that

d ◦ f = Gσ where Gσ : S → H2 is the Gauss map of σ. Moreover, we say that f is properly

realizable if σ is proper.
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If f is realizable by an immersion σ and local isometry d, then for any η ∈ SO(2, 1), so too

is it realizable by η◦σ and η◦d. Since any two local isometries differ by post-composition with

some η ∈ SO(2, 1) the definition is impervious to the choice of local isometry. By Proposition

1.1, the map f is properly realizable if and only if it is realizable by an embedding σ whose

image is an entire spacelike surface.

When g is a hyperbolic metric, realizable maps are easily characterized in terms of the

minimal Lagrangian condition.

Definition 5.7. Given two hyperbolic surfaces (S, h) and (S′, h′), a local diffeomorphism

f : (S, h)→ (S′, h′) is minimal Lagrangian if its graph is both a Lagrangian and a minimal

surface in (S × S′, h⊕ h′).

Remark 5.8. Here the Lagrangian condition is meant with respect to the symplectic form

π∗dAh − (π′)∗dAh′ , where dAh is the area form of h and π, π′ denote the projections to the

first and second factor. Hence this condition is equivalent to f being area-preserving.

We shall apply the following characterization of minimal Lagrangian local diffeomor-

phisms:

Lemma 5.9 ([Lab92],[Tou15, Proposition 1.2.3]). Let f : (S, h) → (S′, h) be a local diffeo-

morphism. Then f is minimal Lagrangian if and only if the unique positive definite h-self-

adjoint endomorphism B ∈ Γ(End(TS)) such that f∗h′ = h(B·, B·) satisfies detB = 1 and

the Codazzi condition d∇hB = 0, where ∇h is the Levi-Civita connection of h.

The following characterization of realizable maps between hyperbolic surfaces is well-

known. We provide a short proof for convenience of the reader.

Proposition 5.10. A smooth map f : (S, h)→ (S′, h′) between simply connected hyperbolic

surface is realizable in R2,1 if and only if it is a minimal Lagrangian local diffeomorphism.

Proof. If f is realized by an immersion σ so that Gσ = d◦f , then it is a local diffeomorphism

since the differential of the Gauss map, which coincides with B under the correct identifi-

cations, satisfies detB = 1 and is thus non-singular. Moreover f∗h′ = G∗σgH2 = h(B·, B·)
where h coincides with the first fundamental form of σ and B is its shape operator. By

the Gauss-Codazzi equations, detB = 1 and d∇hB = 0, hence by Lemma 5.9 f is minimal

Lagrangian.

Conversely, suppose f is a minimal Lagrangian local diffeomorphism and let B as in

Lemma 5.9. Then the pair (h,B) satisfies the Gauss-Codazzi equations. By the fundamental

theorem of immersed surfaces in R2,1, there exists an isometric immersion σ : (S, h)→ R2,1

with shape operator B. Now if d : (S′, h′) → H2 is any local isometry, then (d ◦ f)∗gH2 =

f∗h′ = h(B·, B·) = G∗σgH2 . Since S is connected, d ◦ f and Gσ differ by post-composition

with an isometry η of H2. Replacing d with η ◦ d concludes the proof. �

5.3. Proofs of the results. The main theorem of this section characterizes properly real-

izable minimal Lagrangian maps. Before that, a little remark to clarify the statement.

Remark 5.11. We observe that if a local diffeomorphism f is properly realized in R2,1, then

it is a diffeomorphism onto its image. In fact the Gauss map Gσ, which by definition equals

d ◦ f , is a diffeomorphism onto its image in H2, hence f is a diffeomorphism onto its image

and d is injective on the image of f . By re-defining S′ is thus harmless to assume that f is

a diffeomorphism, which we will always do in what follows.
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Theorem C. Let f : (S, h) → (S′, h′) be a diffeomorphism between simply connected hy-

perbolic surfaces. Then f is properly realizable in R2,1 if and only if the graph of f is

a complete minimal Lagrangian surface in (S × S′, h ⊕ h′). In this case, both (S, h) and

(S′, h′) are isometric to straight convex domains in H2.

Recall that a straight convex domain in H2 is the interior of the convex hull of a subset

of ∂∞H2 consisting of at least 3 points.

Proof of Theorem C. We showed in Proposition 5.10 that f is realizable if and only if it is

minimal Lagrangian. In light of Proposition 5.3 and Corollary 5.5, f is properly realizable by

an immersion σ if and only if the equidistant immersion σ1 is entire, which by Proposition 1.2

and the Cheng-Yau theorem is equivalent to the completeness of the CMC first fundamental

form. Observe that when applying Corollary 5.5, we used that the equidistant CMC surface

is not a trough, for otherwise it could not be obtained (even locally) as the equidistant

surface from a hyperbolic surface (see Remark 5.4).

Now, by (21) the CMC metric is identified to I + 2II + III, where I, II and III are the

first, second and third fundamental form of σ. We claim that this metric is bi-Lipschitz

to the induced metric on the graph of f in (S × S′, h ⊕ h′). In fact, the latter equals

h + f∗h′, which is to say I + III, when pulled-back by the obvious embedding (id, f) of S

in the product. Young’s inequality implies that 2II ≤ I + III, hence I + 2II + III ≤ 2(I + III),

whereas I + III ≤ I + 2II + III since by convexity II is positive definite. This shows that the

CMC induced metric is complete if and only if h+ f∗h′ is complete, which is the first part

of the theorem.

The fact that (S′, h′) is isometric to a straight convex domain follows from [BSS19, Theo-

rem E], which shows that the image of the Gauss map of an entire hyperbolic surface (or more

generally, of an entire spacelike surface of curvature bounded above and below by negative

constants) is isometric to a straight convex domain. Since f is a diffeomorphism by hypoth-

esis and d is a diffeomorphism onto its image (Remark 5.11), we conclude that d provides an

isometry between (S′, h′) and a straight convex domain. Replacing f with f−1, we then ob-

tain that (S, h) is isometric to a straight convex domain, since h′+(f−1)∗h = (f−1)∗(h+f∗h′)

is complete if and only if h+ f∗h′ is complete. �

Remark 5.12. Alternatively, the second statement of Theorem C can be proved by applying

[CT90, Theorem 4.8] instead of [BSS19, Theorem E]. Namely the statement that the image

of the Gauss map of any entire CMC hypersurface Σ in Rn,1 is either contained in a totally

geodesic subspace of Hn, or the (non-empty) interior of convex hull of a subset of the

boundary of Hn. When n = 2, this means that either Σ is a trough, which is not possible

in our setting, or the image of the Gauss map of Σ is a straight convex domain. Since the

Gauss maps of σ and σ1 coincide (Remark 5.2), one infers again that the image of Gσ is a

straight convex domain and then concludes the proof analogously.

Remark 5.13. The CMC-1/2 metric I + 2II + III is conformal to the induced metric I + III

on the graph of f . Since the graph of f is minimal, the two projections to S and S′ are

each harmonic, with opposite Hopf differential. Since the property of being harmonic is

conformally invariant in the domain, we see that the Gauss map of the CMC surface and

the projection to the corresponding hyperbolic surface are harmonic maps from the CMC

surface, with opposite Hopf differential. Thus, the CMC surface realizes the well-known

decomposition of minimal Lagrangian maps in terms of a pair of harmonic maps.

The last argument of the proof of Theorem C shows:
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Corollary D. Let f : (S, h) → (S′, h′) be a minimal Lagrangian diffeomorphism between

simply connected hyperbolic surfaces. Then f is properly realizable in R2,1 if and only if f−1

is properly realizable in R2,1.

We conclude with the following corollary which characterizes the first fundamental forms

of entire hyperbolic surfaces.

Corollary E. Any entire hyperbolic surface in R2,1 is intrinsically isometric to a straight

convex domain. Conversely any straight convex domain in H2 can be isometrically embedded

in R2,1 with image an entire surface.

Proof. The first statement is contained in Theorem C. To prove the second statement, by

[BSS19, Theorem A, Theorem E], given any straight convex domain Ω ⊆ H2, there exists an

entire hyperbolic surface Σ in R2,1 having Ω as image of the Gauss map. (In fact, there is

one such surface for every choice of a lower-semicontinuous function on ∂∞H2 which is finite

on Ω ∩ ∂∞H2.) Let f : Σ → Ω be the Gauss map of such surface. By Theorem C, f−1 is

realized in R2,1, which implies that there exists an isometric embedding of Ω onto an entire

hyperbolic surface. �
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