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The flow with low shear inside a bladeless mixer is characterized experimentally. This
soft mixer inspired by the precession of the Earth consists of a cylindrical container rotat-
ing around its axis and tilted from the vertical. For low Froude numbers, the free surface
remains horizontal, thus generating a forcing on the tilted rotating fluid. As in the case
of a precessing cylinder, this forcing excites global inertial modes (Kelvin modes) which
become resonant when the height of fluid is equal to a multiple of a half-wavelength. Ek-
man pumping saturates the amplitude of the mode at a value proportional to the square
root of the Reynolds number. For sufficiently large tilt angles and Reynolds numbers,
the global mode destabilizes via a parametric triadic instability involving two additional
Kelvin modes. The viscous threshold of the instability can be predicted analytically with
no fitting parameter and is in excellent agreement with the experimental results. This
instability generates a strong mixing which is as efficient as the one achieved using a clas-
sical Rushton turbine, but with a shear 20 times smaller. This simple bladeless mixer is
thus an excellent candidate for large scale bioreactors where mixing is needed to enhance
gas exchanges but where shear is harmful for fragile cells. Preliminary results obtained
for the growth of microalgae (dinoflagellates) in such photobioreactors suggest that it
could be a technological breakthrough in biotechnologies.

1. Introduction

A strong limitation of biotechnologies comes from the slow growth of cells in large scale
bioreactors (Garcia-Ochoa & Gomez 2009). Indeed, diffusion of oxygen is not sufficient to
transport these gases deep inside the bioreactor. An additional convective mixing is thus
done by introducing bubbles or using rotating blades. However, it creates a strong shear
which inhibits the growth of many cells and can even be lethal for fragile cells (Doran
1999; Cherry & Papoutsakis 1986). For example, the shear around millimetric rising
bubbles is of the order of 100 s−1 (see Guet & Ooms 2006). Likewise, a blade rotating
at one round per second generates vortices with a vorticity of the order of 10 to 100 s−1

(see Van’t Riet & Smith (1975) and Wu et al. (2006)). A bladeless bioreactor with
a large mixing rate and a low shear would thus solve a crucial scientific challenge in
biotechnologies by increasing the production capacity without damaging the cells.

In the industry, a new generation of bladeless mixers (gyroscopic mixers of Collomix
company, of Corob company, of Radia company, speedmixers of Flacktek Inc...) has
been recently introduced for viscous fluids such as paint. These bladeless mixers (called
gyroscopic, bi-axial or planetary mixers) create a complex spinning of the container:
the pot spins around its axis, the latter being also rotating in a vertical plane. This
precessing motion has been largely studied in geophysical fluid dynamics due to the slow
precession of the Earth around the north ecliptic pole (Le Bars et al. 2015). This motion
generates a direct mechanical forcing of the liquid iron in the outer core of the Earth
and may be a source of energy for the terrestrial magnetic field (Malkus 1968; Kerswell
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1996; Tilgner 2007). The flow is very sensitive to precession: it has even been observed
for a rotating sphere due to the presence of the rotation of the Earth (Boisson et al.
2012). For a precessing cylinder, the flow is even more energetic due to the resonance
of inertial modes at specific aspect ratios (McEwan 1970; Manasseh 1992, 1994, 1996).
The viscous saturation can be well predicted analytically by calculating the flow inside
the Ekman layers (Gans 1970; Meunier et al. 2008). However, the nonlinear saturation,
which is due to the detuning by a mean axisymmetric flow (Meunier et al. 2008), is
more difficult to quantify theoretically because geostrophic flows cannot be forced by an
inviscid interaction of a mode with itself (Greenspan 1969).

In a rotating cylinder, nonlinear interactions can trigger triadic instabilities (Kerswell
1999) : an existing inertial mode can couple the simultaneous growth of two free inertial
modes. This mechanism has been observed experimentally in a precessing plane (Mason &
Kerswell 2002), in a precessing cylinder (Lagrange et al. 2008) and a precessing annulus
(Lin et al. 2014). The viscous growth rate can be predicted theoretically, in excellent
agreement with the experimental results (Lagrange et al. 2011). Numerical simulations
have confirmed that triadic resonances are responsible for the destabilization of the flow
in a precessing cylinder, even for large tilt angles (Albrecht et al. 2015, 2018; Lopez &
Marques 2018).

Surprisingly, there has been very little attention on the flow inside a rotating cylinder
with a fixed axis tilted with respect to the gravity. Yet, Thompson (1970) showed that
the free surface generates a flow similar to the one inside a precessing cylinder. The goal
of this paper is to characterize this flow and its mixing properties. First, the laminar flow
(section 3) and its destabilization (section 4) are measured experimentally and described
theoretically. In section 5, the mixing properties (at high Schmidt number) of the flow
are measured and compared to those obtained in a classical mixer with blades. The shear
is finally measured and compared to that of a mixer with blades in section 6.

2. Materials and methods

2.1. Experimental set-up for a soft mixer

The bladeless mixer under consideration in this paper consists of a circular cylinder
rotating around its axis at the angular velocity Ω (see Fig 1). The radius R of the
cylinder ranges from 3 cm to 9 cm. The cylinder is filled with water up to a height H,
which is defined for a vertical cylinder. The kinematic viscosity ν is deduced from the
temperature measurement with an accuracy of 1%. The axis of the cylinder, defined as
the z-axis, is then slightly tilted by an angle α with respect to the gravity g. The bottom
of the cylinder is defined as z = 0 and the vectors x and y rotate with the cylinder at Ω.

2.2. Non-dimensional parameters

The fluid problem is governed by four non-dimensional parameters. The aspect ratio
h = H/R is varied from 0.6 to 2.5 in order to capture the three main resonances of the
flow. The Reynolds number Re = ΩR2/ν is varied from 103 to 105. The tilt angle α is
varied from 0.5 to 20 degrees in order to get a sufficient forcing for the instability to
occur while maintaining a small amplitude of the forced Kelvin mode for the asymptotic
theories to remain valid. The Froude number Fr = Ω2R/g is smaller than 0.13. Finally,
when a passive scalar is injected, an additional parameter arises : the Schmidt number
Sc = ν/κ (κ being the molecular diffusivity of the scalar) which is equal to 2500 in our
experiments.
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(a) (b)

Figure 1. Experimental set-up for the study of (a) a rotating cylinder tilted at an angle α with
respect to the gravity (soft mixer) and (b) a Rushton turbine rotating in a fixed cylinder with
4 counter-blades.

2.3. Measurement techniques

Particle visualizations are obtained using a vertical laser sheet and introducing flat mica
particles (of average diameter 50 µm) covered by titane oxyde for a better reflexion of
light. This technique is well known to highlight qualitatively the coherent structures of
the flow (Gauthier et al. 1998). It allows measuring the wavelength and the frequency of
the 3D instabilities.

Particle Image Velocimetry (PIV) measurements are obtained using a double pulsed
yttrium- aluminum-garner (YAG) laser of 150 mJ per pulse at 532 nm. The camera is
located below the cylinder (which has a transparent PMMA bottom) rather than above
the cylinder in order to prevent distortions of the images by the free surface. The images
are rotated numerically in order to remove the mean solid body rotation of the flow. The
perturbations of the flow due to the tilt angle can thus be magnified by incrasing the time
interval between the two frames to about 0.1/Ω (which leads to a rotation of the cylinder
of about 5 degrees between the two frames). The 4 Megapixel image pairs acquired at
about 1 to 2 Hz are then treated by a homemade cross-correlation algorithm optimised
for large velocity gradients (Meunier & Leweke (2003)) with window sizes equal to 322

pixels. The velocity and axial vorticity fields are obtained in two different sections of the
cylinder (z = H/2 and z = H/4). The uncertainty on the vorticity is found to be about
1% in the nearly laminar regime.

A third measurement technique was used in order to quantify the mixing efficiency
of the flow. A blob of fluorescent dye (Fluoresceine) is introduced just below the free
surface and illuminated by a continuous laser sheet from a 400mW laser at 488nm. The
emitted intensity I is calibrated after each experiment by introducing inside the cylinder
small tubes containing calibrated concentrations of Fluoresceine. The calibration curve
plotted in Fig. 2 indicates that the concentration c is well fitted by a law of the form

c

c0
= α

I − I0
I − Isat

(2.1)

over more than 2 decades in concentration and with an accuracy of at least 10%. The
term I0 corresponds to the intensity of the background of the images and the term Isat

takes into account the saturation of the dye emission and the nonlinearity of the camera
sensor. This calibration allows measuring the concentration in a vertical and meridional
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Figure 2. Calibration curve between the intensity of the pixels on the images and the
concentration c in Fluoresceine

section during the mixing process with about 1 million pixels in each image at a rate of
25 frames per second.

2.4. Experimental set-up for a Rushton turbine

The mixing properties of the soft mixer are compared to the mixing properties of a
classical Rushton turbine in a cylinder of radius R = 9 cm filled at a height H = 2R
(see Fig. 1b). The turbine consists of 6 vertical square blades of size lR = H/9 fixed
on a horizontal rotating disk of radius RR = H/3 at a height HR = H/3. Four vertical
counter-blades of side LR = H/6 are fixed to the cylinder in order to block the solid body
rotation of the fluid. As in the case of the soft mixer, the Reynolds number is based on the
cylinder’s radius Re = ΩR2/ν. It is varied between 1000 and 20000. Dye visualizations
are done in a vertical section and PIV measurements in a horizontal section 1 mm above
the rotating disk.

3. Resonant forcing of inertial modes

For small Froude numbers, the free surface remains horizontal. In the frame of reference
of the cylinder, it is thus located at

z = H + η(r, θ) with η(r, θ) = −αr cos(θ + Ωt)

It means that the free surface has a rotating sloshing at −Ω around the (tilted) axis
of the cylinder. It is very similar to the experiment done by McEwan (1970) where the
forcing was done by a rigid plate rather than the free surface. This motion with respect
to the fluid excites inertial waves in the bulk of the rotating fluid. These waves interfere
constructively to form global Kelvin modes (Kelvin 1880). Following the calculations of
Thompson (1970) for small tilt angles and small Froude number, the velocity must be
solution of the linearized Navier-Stokes equations in the frame rotating with the cylinder

∂u

∂t
+ 2Ω ẑ× u = −∇p

ρ0
+ ν∇2u (3.1)

together with the incompressibility

∇ · u = 0 (3.2)

Here, the reduced pressure is defined as p = P − ρgz + ρr2Ω2/2 where P is the total
pressure. This allows for removing the buoyancy force and the centrifugal force from the
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Figure 3. Visualizations (a,d,g) and PIV measurements (b,c,e,f,h,i) of the 2D velocity and axial
vorticity ζ in the cross-section. The cylinder of radius R = 4.6 cm is filled with water up to a
height H = 9.2 cm= 2R to excite the first resonance of the first mode. The angular velocity
Ω of the cylinder increases from 0.47 rad/s (a-c) to 2 rad/s (d-f) and then 4.7 rad/s (g-i). The
cylinder’s axis is tilted at an angle α = 1◦ with respect to the gravity. In (e-f) measurements
have been obtained during the growth of the instability and the mean flow has been subtracted.
Movies corresponding to Figs 3(e) and 3(f) are available as supplementary files.

Navier-Stokes equations. In the limit of large Reynolds numbers, the velocity is searched
as a sum of Kelvin modes (which are solutions of the linearized Euler equations). Using
cylindrical coordinates, this can be written :

u =

 ur

uθ

uz

 =

∞∑
i=1

ai
kiR
<

 uri (r) cos(kiz)
uθi (r) cos(kiz)
uzi (r) sin(kiz)

 ej(θ+Ωt)

 (3.3)

with

ui =

 uri (r)
uθi (r)
uzi (r)

 =

 kiRJ
′
1(
√

3kir)/
√

3 + 2J1(
√

3kir)R/(3r)

2jkiRJ
′
1(
√

3kir)/
√

3 + jJ1(
√

3kir)R/(3r)

−jkiRJ1(
√

3kir)

 (3.4)
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where J1 is the Bessel function of the first kind, < is the real part and j =
√
−1. The

pressure is given by

p =

∞∑
i=1

aiρ0Ω

ki
<
[
pi(r) cos(kiz)e

j(θ+Ωt)
]

(3.5)

with pi(r) = J1(
√

3kir).

The boundary conditions of vanishing radial velocity uri (r) at r = R sets the value of
the wavenumber of each Kelvin mode:

k1R = 1.579, k2R = 3.286, k3R = 5.062... (3.6)

Figs 3(b,c) show the cross-cut velocity fields when the height of fluid H is equal to
2R. The cross-cut velocity at a quarter of height (z = H/4) exhibits a strong jet created
by two counter-rotating vortices facing each other along the diameter. This structure
corresponds to the first Kelvin mode since the axial vorticity, given by

ζ = 2kiai cos(kiz) sin(θ + Ωt)J1(
√

3kir) (3.7)

has an azimuthal wavenumber m = 1 and contains only one lobe between r = 0 and
r = R for the first mode (since k1 = 1.579/R). By contrast, at mid-height (z = H/2),
the velocity field is very small because it corresponds to a node of the axial vorticity at
this axial position and for this specific aspect ratio H/R = 2.

The amplitude ai of the i-th mode is governed by the boundary condition at the free
surface. The axial velocity must be equal at z = H + η(r, θ) to

uz = αΩr sin(θ + Ωt) (3.8)

For small tilt angles, this boundary condition can be applied at z = H since the difference
between the velocity at z = H and at z = H + η scales as α2. The boundary condition
(3.8) can be satisfied at z = H in the inviscid limit if the coefficients ai sin(kiH)/ki cor-
respond to the coefficients of the Dini series of the function αΩr. The quantitative value
of these coefficients can be found by introducing (3.3) and (3.4) into (3.8), multiplying
by rJ1(

√
3kir) and by integrating over r (see Thompson 1970). It leads to

ai =

∫ R
0
r2J1(

√
3kir)dr∫ R

0
rJ2

1 (
√

3kir)drR sin(kiH)
αΩR (3.9)

Numerically it gives a simple expression for mode 1:

a1 =
1.330αΩR

sin(k1H)
(3.10)

It is clear from this expression that the amplitude of the i-th mode diverges when
sin(kiH) vanishes, i.e. when the height of fluid H is equal to a multiple of a half-
wavelength π/ki. This resonant situation corresponds to the case when the free surface
is located at a node of axial velocity of the i-th mode. The amplitude of the forced
mode must thus become very large in order to create a finite axial velocity of the free
surface as required by the boundary condition (3.8). The resonances of the i-th mode
are thus obtained for kiH = nπ with n integer. For example, the resonances of the first
mode are found for H/R = 1.990, H/R = 3.980, H/R = 5.970... However, in this paper,
we will restrict our attention to the first resonance of this mode. Other Kelvin modes
(corresponding to k2, k3...) can also be observed. In this paper, we will also study the



Geoinspired soft mixers 7

first resonance (i.e. n = 1) of the second mode (obtained for H/R = 0.956) and the first
resonance of the third mode (obtained for H/R = 0.621).

Obviously, the amplitude ai of the global inertial mode at the resonance is saturated by
viscous effects. Ekman pumping creates a normal flow at order Re−1/2 which compensates
the vanishing normal velocity of the mode at the resonance. This effect can be calculated
analytically (see appendix) using a solvability condition which takes into account both
Ekman and volumic damping as in Gans (1970). It leads to the amplitude around the
resonance

ai =
F/T

− sin(kiH) + (B + C)/(T
√

Re) + V/(TRe)
αΩR (3.11)

where the coefficients F , T , B, C and V are given analytically in the appendix. Neglecting
the volumic attenuation (scaling as Re−1) in front of the Ekman damping (scaling as

Re−1/2), the amplitude at the resonance can be written :

ai =
F

B + C
αΩR Re1/2 (3.12)

where the coefficient |F |/|B + C| is equal to 0.309, 0.0815 and 0.0318 for the 3 first
modes. Because of the resonance of the inertial waves, this amplitude can be large even
for small tilt angles. For example, Fig 3(a-c) shows that even 1 degree of tilt is sufficient
to create a vorticity ζ equal to 20% of the angular velocity Ω at r ≈ 0.65R. This is
in excellent agreeement with the theoretical prediction (3.7) which predicts that the
maximum vorticity is equal to 0.221Ω at r = 0.673R. This strong flow can possibly
destabilise the flow, as will be shown in the next section.

4. Parametric instability by tradic resonance

4.1. Experimental observations

When the Reynolds number increases from 1000 to 4300, the flow becomes unstable and
ceases to be stationary. Qualitative flake visualizations of Fig 3(a,d) indicate that the
axis of rotation visible at Re = 1000 disappears. It is replaced by columns located at
the periphery of the cylinder. If the Reynolds number is increased up to Re = 10, 000,
the instability becomes more and more energetic and generates small-scale structures, as
shown in Fig 3(g).

This instability is very similar to the instabilities observed in a precessing flow where
it is due to a triadic resonance between the forced Kelvin mode and two other free
modes. Such an instability has been found inside a precessing plane (Mason & Kerswell
2002), inside a precessing cylinder (Lagrange et al. 2008, 2011; Albrecht et al. 2015) and
inside a precessing annulus (Lin et al. 2014). This mechanism, also called parametric
instability, is classical for surface waves, where a harmonic wave can excite two sets of
waves with different wavelengths (Miles & Henderson 1990; Craik & Leibovich 1976;
Francois et al. 2013). This process is also found for internal waves in stratified flows
(Staquet & Sommeria 2002; Dauxois et al. 2018; Thomas & Yamada 2019) and for inertial
waves in rotating flows (Yarom & Sharon 2014), where it generates wave turbulence. For a
precessing cylinder, Lagrange et al. (2011) predicted theoretically that the most unstable
free modes have azimuthal wavenumbers m′ = 5 and m′′ = 6 for a large range of aspect
ratios. It is also the case in this experiment for the first resonance of the first mode (i.e.
at H/R = 2), as shown in Fig 3(e,f). At mid-height, the instability exhibits a ring of
6 positive and 6 negatives vortices. By contrast, at a quarter of height, the instability
contains 5 positive and 5 negative vortices.
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It indicates that the mode 5 has a node of vorticity at mid-height (i.e. ζ ∼ cos(k′z) with
k′ = π/H) whereas the mode 6 has two nodes of vorticity at a quarter and 3 quarters
of height (i.e. ζ ∼ cos(k′′z) with k′′ = 2π/H). This is consistent with the theory which
requires the triadic resonance condition

k′′ − k′ = k1 (4.1)

where k1 = π/H is the axial wavenumber of the forced mode. The same resonance
condition

m′′ −m′ = m1 (4.2)

is obviously fulfilled for the azimuthal wavenumbers m′ = 5 and m′′ = 6 since the forced
mode has an azimuthal wavenumber m1 = 1. The last necessary condition concerns the
frequencies of the modes

ω′′ − ω′ = Ω (4.3)

This relation is respected only for modes m′ = 5 and m′′ = 6 (since the frequencies are
determined by the dispersion relations ω′(k′,m′) and ω′′(k′′,m′′) of the Kelvin modes).
To conclude, these experimental observations clearly prove that this instability is due to
a triadic resonance between two free Kelvin modes with wavenumbers (k′,m′), (k′′,m′′)
and the forced Kelvin mode with wavenumbers (ki, 1).

4.2. Linear stability analysis

A linear stability analysis is performed assuming that the flow is the sum of a forced
Kelvin mode ui of amplitude ai and two free Kelvin modes u′ and u′′. The velocity field
is searched as

u =
ai

4kiR
uie

j(±kiz+θ+Ωt) + a′u′ej(±k
′z+m′θ+ω′t) + a′′u′′ej(±k

′′z+m′′θ+ω′′t) + c.c. (4.4)

where c.c. corresponds to the complex conjugate and where ±k indicates that the term
with a positive wavenumber must be added to the same term with a negative wavenum-
ber. The first term corresponds to the resonant Kelvin mode defined in Eq.(3.3). The
wavenumbers k′ and k′′ of the free modes must be multiples of π/H in order for the free
modes to respect the boundary conditions uz = 0 at the top and bottom. The radial
structure of the free modes u′ and u′′ are given in the appendix.

If the three resonance conditions are satisfied, the nonlinear interaction of the forced
mode ui and the free mode u′ can force the temporal derivative of the second free mode
u′′. Assuming that the amplitude a′ is slowly varying in time, the amplitude equation
for the first mode can be calculated (see appendix) leading to :

∂a′

∂t
= N ′a′′

ai
4kiR2Ω

−D′a′ (4.5)

where · is the complex conjugate. The same mechanism occurs for the temporal derivative
of the first free mode u′. A similar amplitude equation can be found for mode u′′:

∂a′′

∂t
= N ′′a′

ai
4kiR2Ω

−D′′a′′. (4.6)

All coefficients can be calculated analytically. They are given in the appendix. The coeffi-
cients N ′ and N ′′ come from the nonlinear coupling of the forced mode with a free Kelvin
mode. The second terms on the right hand side correspond to detuning and dissipation
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terms. Their coefficients are given by

D′ = S′√
Re

+ V ′

Re + jQ′∆k′,

D′′ = S′′√
Re

+ V ′′

Re + jQ′′∆k′′.
(4.7)

where the first terms correspond to surface Ekman pumping, the second terms correspond
to volumic dissipation and the third terms correspond to detuning. All the coefficients
are given analytically in the appendix. For example, the nonlinear coefficients are equal
to N ′ = −1.216 and N ′′ = −1.94 for modes m′ = 5 and m′′ = 6 at H/R = 2.

In the absence of detuning/dissipation terms, a′ and a′′ grow exponentially as eσt,
which leads to an exact prediction for the inviscid growth rate:

σ =
√
N ′N ′′

|ai|
4k1R2

. (4.8)

When dissipation/detuning effects are taken into account the growth rate σ becomes
complex and solution of a second order equation (see appendix). The real part of the
growth rate vanishes when the amplitude of the forced Kelvin mode is equal to

|ai| = 4kiR

{
<(D′)<(D′′)

N ′N ′′

[
1 +
=(D′ −D′′)2

<(D′ +D′′)2

]}1/2

ΩR (4.9)

where = is the imaginary part. Equating this formula with the amplitude ai of the Kelvin
mode forced by the tilted free surface (3.11) gives the value of the critical angle α at which
the flow becomes unstable:

α =
4kiR

|F |

{
<(D′)<(D′′)

N ′N ′′

[
1 +
=(D′ −D′′)2

<(D′ +D′′)2

]}1/2 ∣∣∣∣−T sin(kiH) +
B + C√

Re
+

V

Re

∣∣∣∣ .
(4.10)

This theoretical prediction is plotted as solid lines in Fig 4(a) as a function of the tilt
angle. It is in excellent agreement with the experimental measurement of the instability
threshold (plotted as symbols) for angles smaller than 10 degrees despite the absence of
fitting parameter in the model. It should be mentioned that this critical Reynolds number
is determined experimentally for each angle as the value for which the onset time of the
instability tonset becomes infinite (determined from a linear fit of t−1

onset as a function of
Reas in Fig 4b).

Around the resonance, the amplitude ai of the forced Kelvin mode decreases. The
instability is less powerful and thus requires a larger tilt angle to remain larger than
the dissipation/detuning terms. Figure 5(a) indeed indicates that the instability is only
present in a band of aspect ratios around H/R = 2. This unstable band gets larger
for larger tilt angles, in very good agreement with the theory. It should be noted that
increasing the aspect ratio H/R permits to excite modes 4 and 5 (magenta thin line),
then modes 3 and 4 (orange thin line). By contrast, decreasing the aspect ratio permits
to excite modes 6 and 7 (cyan thin line), then 7 and 8 (green thin line) and so on.

Finally, Fig 5(b) indicates that the optimal aspect ratio is almost independent of the
tilt angle α. However, there is a very small shift toward larger aspect ratios when α
increases. This shift seems to scale as α2 and it remains smaller than 8% for tilt angles
up to 20 degrees.

As noted by Lagrange et al. (2011) in the case of a precessing cylinder, the saturation
of the instability is mainly due to the presence of a mean retrograde axisymmetric flow.
This is visible in the movies at the end of the linear instability when the vortices with
negative (dimensionless) vorticity move toward the centre of the cylinder. The non-linear
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Re = 5000. (b) Optimal aspect ratio at which the flow is the most unstable as a function of the
tilt angle for mode 1 ( ◦) and mode 2 (�). Symbols correspond to experimental measurements of
the threshold. In (a) solid lines correspond to theoretical predictions with no fitting parameter.
In (b), the dashed line corresponds to a parabolic fit.

model of Lagrange et al. (2011) in a precessing cylinder shows that this axisymmetric
mode detunes the resonance of the forced Kelvin mode, thus decreasing its amplitude.
It leads to a smaller invsicid growth rate which may become smaller than the damping
term. This mechanism creates a saturation of the instability close to the threshold and
an intermittency of the unstable modes far from the threshold as in the movies of the
instability. This intermittency becomes turbulent very far from the threshold.

To conclude, the unsteady flow generated by the instability creates a disorder which
increases with the angular velocity and the tilt angle. In the next section, we will show
how this chaotic flow can create an efficient mixing.
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Figure 6. Dye visualizations (a) without tilt and (b) with a tilt angle of 3◦ at Ωt = 100 and
Re = 10000 in a vertical plane.

5. An efficient mixing flow

Fig 6(a) shows a visualization of the dye 16 rotation periods after injection for a
vertical cylinder (α = 0◦). The dye exhibits Taylor columns which are parallel to the axis
of rotation of the fluid. These columns remain motionless in the fluid, maintaining strong
heterogeneities of dye concentration even at late times. By contrast, Fig 6(b) shows the
visualization of the dye at the same time for a tilt angle of 3 degrees. The dye streaks
have been advected by the flow and spread in a much larger portion of the cylinder.
The dye streaks are stretched and folded by the instability which is known to create an
efficient chaotic mixing. It should be noted that this chaotic advection is only visible in
the presence of the instability. Indeed, in the absence of instability, the forced Kelvin
mode alone does not generate a strong transport : it simply creates a weak Stokes drift
of the dye.

The degree of mixing can be measured quantitatively by plotting the root-mean-square
deviation of the concentration field as a function of time. Figure 7 shows that the variance
is initially large due to the localized streaks of high concentration (after an initial injection
stage which has been partly removed by the temporal filtering of the data). By contrast,
when the dye is completely mixed the image is uniform and the variance is thus equal
to zero. Figure 7 shows the temporal evolution of the variance for a vertical cylinder
compared to tilted cylinders. The variance decreases much faster with a tilt of 10 degrees
(red symbols) compared to a vertical cylinder. It proves quantitatively that the mixing
is much more efficient for a tilted cylinder.

Furthermore, it can be noted that the variance decays exponentially. It can be easily
fitted before the saturation (which is due to noise in the images) by e−t/τ where the
fitting parameter τ corresponds to the characteristic mixing time. An exponential decay
of the variance is classical for exponentially stretched layers of dye (Villermaux 2019).
Indeed, if the streak’s length increases exponentially as eγt (with γ the stretching rate),
the incompressibility imposes initially that its thickness must decrease exponentially as
e−γt (in the absence of diffusion). This stirring stage does not lead to the decrease of the
variance because the maximum of the dye concentration remains unchanged. However,
when the thickness reaches the Batchelor scale

√
D/γ (where D is the diffusivity of the

dye), the normal diffusion of dye compensates the convective compression, which leads
to a constant thickness of the streak. Consequently, the maximum of concentration must
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Figure 7. Variance of the concentration of the dye as a function of time for a tilt angle equal
to 0◦ (•), to 1◦ ( ©), to 3◦ (�) and to 10◦ (4). Solid lines correspond to exponential fit.
Re = 10000, H/R = 2.

decrease exponentially to conserve the total quantity of dye (Batchelor 1959). This leads
to an exponential decay of the variance.

The characteristic mixing times τ have been measured for three tilt angles and for
Reynolds numbers between 1000 and 105. All the experimental results are plotted in
Fig 8(a) for mode 1 (H/R = 2) and in Fig 8(b) for mode 2 (H/R = 1). For small
Reynolds numbers, the mixing time τ is very large : it is close to 300/Ω, which corresponds
to approximately 50 rotation periods. In this regime, the mixing is weak because the
forced Kelvin mode is simply a rotating wave. The particles are almost motionless on
average, except for a small Stokes drift. Numerical simulations of Lagrangian tracking
in a single Kelvin mode (not shown here) have revealed that two particles remain at the
same separation distance because they experience the same laminar Stokes drift.

When the Reynolds number increases, the mixing time suddenly drops by a factor 10
and saturates around 5 rotation periods (plotted as a black solid line in Fig 8a). This
sudden decrease is due to the instability which creates a complex flow and thus accelerates
the mixing of the dye. Indeed, the mixing time starts to decrease when the Reynolds
number is about 3 times larger than the Reynolds number at which the instability appears
(plotted as color solid lines in Fig 8a). At large Reynolds numbers, the mixing time of
the soft mixer saturates at a value close to 20/Ω. It means that the variance decreases
by a factor e in about 3 rotation periods.

A model may be derived using the mixing length theory to predict this sudden decrease
of the mixing time. Above the threshold, the characteristic turbulent velocity ut of the
free Kelvin modes increases from 0 up to a value scaling as α1/4ΩR (see Lagrange et al.
2011, figure 13b). Empirically, this turbulent velocity varies between 0.1 ΩR and 0.2 ΩR
for a tilt angle between 1 and 10 degrees at large Reynolds number. The vorticity is of
the order of 0.5 Ω, which indicates that the size lt of the turbulent structures is of the
order of 0.3R. The turbulent diffusivity Dt = ut lt is thus expected to increase from 0 at
the threshold to 0.045 ΩR2 far from the threshold. Assuming that the diffusive time is
of order R2/Dt leads to a characteristic time which decreases from infinity at threshold
downto 20/Ω. This is in excellent agreement with the experimental result.

However, this mixing length model should not be used in the stable regime since
the forced Kelvin mode alone does not lead to a turbulent diffusivity. If the turbulent



Geoinspired soft mixers 13

a b

103 104 105

Re

10

100

1000

Ω
 τ

Stable Unstable

H/R = 2
α = 1°
α = 3°
α = 10°

103 104 105

Re

10

100

1000

Ω
 τ

Stable Unstable

α = 3°

H/R = 1

Figure 8. Mixing times τ measured for mode 1 (a) and for mode 2 (b) as a function of the
Reynolds number. In (a), the tilt angle is equal to 1◦ (©), to 3◦ (�) and to 10◦ (4). In (b), the
tilt angle is equal to 3◦. Color solid lines correspond to the threshold at which the flow becomes
unstable.

velocity and lengthscales were assumed to be given by ut ∼ a1u1 ∼ α
√

Re and lt ∼ R,
the characteristic diffusive time R2/(ltut) would decrease as Re−1/2 and reach a value
τ ∼ 1/Ω for α = 3◦ and Re ∼ 3000. This is clearly not the case in the experiments : the
mixing time τ is two orders of magnitude larger in the stable regime. As noted above,
this is due to the fact that the forced Kelvin mode is a simple rotating wave which creates
a very weak and laminar transport of the scalar.

The mixing speed of the soft mixer is now compared to the mixing speed of a classical
Rushton turbine. A blob of dye is injected in the cylinder with the Rushton turbine and
the variance is measured as function of time. Figure 9(a) indicates that the variance
decreases exponentially during one decade until saturation due to the inhomogeneities
of the laser sheet. Fitting this decay with a law of the form e−t/τ gives the mixing time
for each experiment. The mixing time is plotted as a function of the Reynolds number
in Fig. 9(b) over more than a decade. It seems to be nearly independent of the Reynolds
number in the range 10/Ω to 20/Ω. It means that the variance decreases by e in about 2
to 3 rotation periods. This is in good agreement with the result given by Nagata (1975)
who found that the mixing time is close to 5 rotation periods at large Reynolds number.
A mixing length model may be used with a charateristic turbulent velocity ut ∼ ΩR and
a characteristic lengthscale lt ∼ 0.1R leading to a characteristic mixing time of the order
of 10/Ω.

6. A low-shear flow

In the previous section, we have shown that the flow inside the soft mixer is as efficient
as a Rushton turbine to mix a passive scalar for the same rotation speed. In this section,
we will compare the velocity gradients obtained in a soft mixer and in a Rushton turbine
flow. The vorticity measured at mid-height of the soft-mixer is shown in Fig 10(a) for
a large Reynolds number (Re = 20, 000) and a tilt angle of 3◦, i.e. in the fast mixing
regime. It exhibits several positive and negative vortices of moderate size (with radii lt
equal to about R/3). The axial vorticity is of the order of the angular velocity Ω. By
contrast, Fig 10(d) shows the vorticity created by a Rushton turbine. The vorticity is 10
times larger than in the soft mixer (note the change in the color scale). The vortices are
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Figure 9. (a) Variance of the dye concentration as a function of time for a Rushton turbine
at a Reynolds number (based on the cylinder’s radius) equal to Re = 15000. Experimental

measurements (symbols) are fitted by an exponential law of the form e−t/τ (solid line). (b)
Mixing times τ as a function of the Reynolds number.

smaller (radii lt of the order of R/10) which partly explains why the vorticity is larger
(since it scales as u′/l).

The horizontal divergence of the flow λ = ∂u/∂x+ ∂v/∂y has also been measured for
the soft mixer (Fig 10b) and the Rushton turbine (Fig 10e). The contrast between the
two flows is even more pronounced. The Rushton turbine creates a divergence λ which
is about 20 times larger than for the soft mixer. This strong divergence is emitted at the
tip of the rotating blades (plotted in black). It is of the order of ten times the angular
velocity Ω. By contrast, the divergence in the soft mixer is only equal to half the angular
velocity Ω.

Finally, the shear is also measured and compared between the two flows (Fig 10c,f). It
is quantified by the strain s, defined as the largest eigenvalue of the symmetric velocity
gradient tensor. As mentioned before, the strain is much larger in the Rushton turbine
mixer than for in the soft mixer. It is of the order of 30% of the angular velocity Ω for
the soft mixer whereas it is equal to about 10Ω for the Rushton turbine.

It means that for the same mixing time (equal to about 15/Ω for both set-ups), the
soft mixer has a strain about 30 times smaller than the Rushton turbine. Alternatively, it
means that for a flow with the same strain (and thus an angular velocity 30 times larger
for the soft mixer), the mixing time is 30 times faster than for the Rushton turbine.

The low shear found in the soft mixer is a direct consequence of the presence of large
scale structures which create a strong mixing while minimizing the velocity gradients.
Indeed, the mixing length model indicates that the characteristic mixing time scales as
τ ∼ R2/(ltut) ∼ (R/lt)

2/st where st corresponds to the shear of the turbulent structures.
For equivalent mixing times, the shear is thus 9 times larger if the turbulent eddies are
3 times smaller.

The low shear flow observed in a soft mixer is thus of high interest for biological
applications since many cells and micro organisms are very sensitive to the strain. Such
a high mixing and low shear flow is thus an ideal candidate for a bioreactor.

7. Conclusions

The flow inside a soft mixer has been characterized by means of visualizations and
velocity measurements. The set-up consists in a cylinder rotating around its axis which
is tilted at a small angle with respect to the vertical. The free surface, which remains
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Figure 10. Comparison of the flow created by a soft mixer (rotating outer cylinder) and by
a Rushton turbine (motionless outer cylinder and inner disk of radius R with vertical blades
rotating at Ω). The velocity fields are measured by PIV at mid-height for the soft mixer and
at the altitude of the disk for the Rushton turbine. For the soft mixer, the Reynolds num-
ber is equal to Re = ΩR2/ν = 20000 and the tilt angle is equal to 3◦ which corresponds
to the efficient mixing regime. For the Rushton turbine, the cylinder’s based Reynolds num-
ber is equal to Re = ΩR2/ν = 15000 and the turbine’s based Reynolds number is equal to
ReR = ΩR2

R/ν = 5000. Note the change in color scale between the two flows.

horizontal, excites inertial modes in the bulk of the fluid. The first inertial mode becomes
resonant when the height of fluid is equal to twice the radius, leading to a turbulent flow
via a parametric instability (also called triadic resonance) at larger Reynolds numbers.
The viscous threshold of the instability predicted analytically with no adjustable param-
eter is in excellent agreement with the experimental results. This unstable flow strongly
accelerates the mixing of a passive scalar, as measured quantitatively using laser induced
fluorescence. The characteristic mixing time is equal to about 5 rotation periods of the
cylinder at large Reynolds numbers. This value is very close to the value measured in a
mixer with a Rushton turbine. Nevertheless, the shear measured in a soft mixer is 20 to
30 times smaller than in a mixer with a Rushton turbine.

The low shear and the efficient mixing of the flow inside the soft mixer is extremely
interesting for different applications. First, it can help designing geoinspired bioreactors
for the growth of fragile cells such as stem cells. Our preliminary results have been
obtained with micro algae sensitive to the shear (dinoflagellates). The duplication growth
rate was found to be an order of magnitude larger than in the absence of motion. It proves
that the mixing is sufficiently effective to provide the algae with enough carbon dioxide,
while maintaining a low shear rate. Further applications with different cells are required
in order to verify that this set-up can be used as an efficient bioreactor. Second, this
soft mixer can be useful to mix large volumes of viscous fluids. Indeed, the mixing in a
soft mixer is very homogeneous within the container. It does not create unmixed zones
which are often observed while using a Rushton turbine. Furthermore, the power required
to rotate the soft mixer is much smaller than the power needed for a Rushton turbine.
Indeed, the energy is injected at large scale rather than at small scale (i.e. behind the
blades of the Rushton turbine). The viscous dissipation is thus much smaller. All these
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aspects indicate that this patented soft mixer (Meunier & Manasseh 2017) could lead to
a new generation of mixers for biological and industrial applications.

Finally, this simple set-up is also very interesting for fundamental studies on precessing
flows. Indeed, the simplicity of the mechanical device would make it possible to reach
very large Reynolds numbers (i.e. very small Ekman numbers) with a very small forcing.
Measuring turbulent velocity fields and spectra is also easier for this flow than inside a
precessing cylinder since there is a single axis of rotation instead of two. This experiment
thus seems to provide a good idealized flow for the study or rotating turbulence.
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Appendix

Viscous base flow at the resonance

As shown in section 3, the inviscid amplitude ai of a Kelvin mode diverges when the
height of fluid corresponds to a multiple of its half wavelength π/ki due to the vanishing
denominator sin(kih) in Eq.(3.9). Viscous effects saturate the inviscid amplitude such
that Ekman pumping and volumic attenuation must be taken into account. The viscous
amplitude can be obtained for example by deriving a solubility condition. This condition
is obtained by multiplying the Navier Stokes equations by the complex conjugate of the

Kelvin mode [uri cos(kiz), uθi cos(kiz), uzi sin(kiz)] and by integrating over the volume of
the cylinder excluding the Ekman boundary layers, which leads to∫∫

piu · n dS +

∫∫
pui · n dS + ν

∫∫∫
ui ·∆u dV = 0 (7.1)

where · is the complex conjugate. This equation is then divided by Ω2R4 in order to
reach non-dimensional coefficients. At the free surface, the true velocity u is given by the
boundary condition (3.8) such that the first term integrated over the free surface leads
to the forcing term −αΩRF with

F = 2jπ cos(kiH)
1

R3

∫ R

0

r2J1(
√

3kir)dr (7.2)

The integral of the second term over the free surface can be calculated by replacing the
true velocity u from (3.3), leading to a term ai sin(kiH)T with

T = 2jπ cos(kiH)
1

R2

∫ R

0

J2
1 (
√

3kir)rdr (7.3)

The integral of the second term at the bottom and at the periphery vanish at the res-
onance because the Kelvin modes have no normal velocity. But the surface integral of
the first term does not vanish at the bottom and at the periphery because the surface
integrals are taken outside of the Ekman layers. The true normal velocity u is thus equal
to the Ekman pumping, which can be calculated using a classical boundary layer analysis
(see Meunier et al. 2008). Assuming that the horizontal velocity ũ‖ = (ũr, ũθ) depends

on a rescaled vertical coordinate z̃ = z
√

Re, the Navier-Stokes equations become inside
the Ekman layer

j ũ‖ + 2Ωẑ× ũ‖ −
∂2ũ‖

∂z̃2
= 0 (7.4)

subject to the boundary conditions

ũ‖(z̃ = +∞) =
ai
ki

(
uri (r)
uθi (r)

)
ej(θ+Ωt), (7.5)

ũ‖(z̃ = 0) = 0. (7.6)

where uri (r) and uθi (r) are given in Eq. (3.4). The solution is given by

ũr‖ = [jS(r)e−κS z̃ − jD(r)e−κD z̃ + uri ]
ai
ki
ej(θ+Ωt) (7.7)

ũθ‖ = [S(r)e−κS z̃ +D(r)e−κD z̃ + uθi ]
ai
ki
ej(θ+Ωt) (7.8)

with

κS = (1 + j)
√

3/2,
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κD = (1− j)/
√

2,

S(r) = (iuri − uθi )/2,

D(r) = −(iuri + uθi )/2.

Integration of the incompressibility from z̃ = 0 to +∞ gives the value of the normal
velocity outside of the Ekman layer (at z̃ = +∞):

ũz = Re−1/2

[
−jD′(r)
κD

+
j(S′(r) + 2S(r)/r)

κS

]
ai
ki

ej(θ+Ωt)

Integrating this formula over the bottom leads to a term aiB/
√

Re in Eq.(7.1) with

B =
6πki
R

(
1− j
2
√

2
+

1 + j

6
√

6

)∫ R

0

J2
1 (
√

3kir)rdr (7.9)

for the bottom Ekman layer. A similar calculation at the periphery of the cylinder gives
a term aiC/

√
Re with

C =
πH

kiR2

1 + j√
2

(1 + k2
iR

2)J2
1 (
√

3kiR)

[
1− sin(2kiH)

2kiH

]
(7.10)

for the Ekman layer on the side of the cylinder. Finally, the triple integral over the volume
corresponds to the volumic viscous effects and lead to a term aiV/Re with

V =
8πHki

3
J2

1 (
√

3kiR)

[
1 + 2k2

iR
2 +

sin(kiH)

2kiH
(1− k2

iR
2)

]
Assuming that the sum of these five terms vanishes leads to the viscous amplitude of

the forced Kelvin mode:

ai =
F/T

− sin(kiH) + (B + C)/(T
√

Re) + V/(TRe)
αΩR (7.11)

Outside of the resonance, the terms containing Re are negligible at large Reynolds number
such that this equation simplifies into Eq.(3.9). At the resonance, sin(kiH) vanishes such
that the viscous terms become dominant. The amplitude ai is thus given by Eq.(3.12) if
the volumic viscous term is neglected.

Parametric instability by triadic resonance

At the resonance of the i − th forced Kelvin mode ui, the amplitude ai is larger than
the amplitudes of the other forced Kelvin modes because its amplitude scales as α

√
Re

whereas the non-resonant forced mode’s amplitudes scale as α. For tilt angles smaller
than 1/

√
Re the amplitude ai constitutes a small parameter. Two free Kelvin modes are

added with a small amplitude growing slowly in time (Lagrange et al. 2011). The velocity
is thus searched as

u =
ai

4kiR
uie

j(±kiz+θ+Ωt) + a′u′ej(±k
′z+m′θ+ω′t) + a′′u′′ej(±k

′′z+m′′θ+ω′′t) + c.c. (7.12)

where c.c. corresponds to the complex conjugate and where ±k indicates that the term
with a positive wavenumber must be added to the same term with a negative wavenum-
ber. The first term corresponds to the resonant Kelvin mode given in Eq.(3.3). The
wavenumbers k′ and k′′ of the second and third terms must be multiples of π/H in order
for the free modes to respect the boundary conditions at the top and bottom. The radial
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structure of the free mode u′ is given by

u′ =


Ω2

4Ω2−ω′2

(
ω′δ′RJ

′

m′ (δ′r) /Ω + 2m
′R
r Jm′ (δ′r)

)
jΩ2

4Ω2−ω′2

(
2δ′RJ

′

m′ (δ′r) + ω′m′R
Ωr Jm′ (δ′r)

)
−j k

′RΩ
ω′ Jm′ (δ′r)

 (7.13)

with the radial wavenumber given by δ′ = |k′|
√

4Ω2/ω′2 − 1. The frequency ω′ is given
by the dispersion relation of the Kelvin modes u′ (to respect the boundary conditions
ur = 0 at r = R):

ω′

Ω
δ′J

′

m′ (δ′) + 2m′Jm′ (δ′) = 0 (7.14)

The radial structure of mode u′′ and its corresponding dispersion relation are given by
the same equations replacing ′ by ′′.

If the three resonance conditions

|k′′ − k′| = ki
m′′ −m′ = 1
ω′′ − ω′ = Ω

(7.15)

are satisfied, the nonlinear interaction of the forced mode ui and the free mode u′ can
force the temporal derivative of the second free mode u′′ because they have the same
Fourier component. Due to the presence of the complex conjugates, the same mechanism
occurs for the temporal derivative of the first free mode u′. Assuming that the amplitude
a′ is slowly varying in time, the amplitude equation for the first mode can be calculated
by introducing the decomposition (7.12) into the Navier-Stokes equation, by multiplying
with the complex conjugate of ru′ej(k

′z+m′θ+ω′t) and by integrating over the volume of
the cylinder, leading to :

∂a′

∂t
= N ′a′′

ai
4kiR2Ω

− S′a′√
Re
− V ′a′

Re
− jQ′∆k′a′. (7.16)

A similar amplitude equation can be found for mode u′′:

∂a′′

∂t
= N ′′a′

ai
4kiR2Ω

− S′′a′′√
Re
− V ′′a′′

Re
− jQ′′∆k′′a′′. (7.17)

The coefficients are given analytically (see appendix B of Lagrange et al. (2011)):

N ′ = −2R

(
±ki − k′′

Ω

ω′′

) ∫ R
0

∣∣ui, u′, u′′
∣∣ rdr∫ R

0
|u′|2rdr

, (7.18)

N ′′ = 2R

(
±ki − k′

Ω

ω′

) ∫ R
0

∣∣ui, u′, u′′
∣∣ rdr∫ R

0
|u′′|2rdr

, (7.19)

where the operator |·, ·, ·| is the determinant. The ± sign is equal to + if k′′ − k′ = k
and equal to - if k′ − k′′ = k. For example, for H/R = 1.94, the resonance conditions
are exactly met for m′ = 5 and m′′ = 6. Indeed, for a wavenumber equal to k′ = π/H,
the frequency given by the dispersion relation (7.14) is equal to ω′ = −0.35Ω. If the
wavenumber k′′ is equal to 2π/H, the frequency ω′′ is equal to 0.65Ω, such that the
difference ω′′−ω′ is equal to Ω. In that case, the nonlinear coefficients can be calculated
to be N ′ = −1.28 and N ′′ = −1.96.

The surface viscous coefficients are adapted from Lagrange et al. (2011) by assuming
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that the free surface does not create any Ekman pumping. The coefficient I ′z correspond-
ing to Ekman pumping at the bottom is not taken into account twice as in the case of
precession. This leads to :

S′ = R3 2I ′r + I ′z

4πH
∫ R

0
|u′|2rdr

(7.20)

with

I ′r =

√
8πHJm′(δ′R)

√
|Ω/ω′|

R[sign(ω′/Ω)− j]

[(
Ωk′2R2

ω′
− m′2ω′Ω

4Ω2 − ω′2

)
Jm′(δ′R)− 2m′δ′RΩ2

4Ω2 − ω′2
J ′m′(δ′R)

]

I ′z =

√
2π(1− j)J2

m′(δ′R)

(ω′/Ω)2

[
(δ′2R2 −m′2)ω′2

Ω2
+ 4m′2

] [
1

(2− ω′/Ω)3/2
+

j

(2 + ω′/Ω)3/2

]
The surface dissipation coefficient S′′ is simply obtained by replacing primes by double
primes. For example, for m′ = 5 and m′′ = 6, the viscous coefficients are found to be
S′ = 0.89− 0.26j and S′′ = 1.06 + 0.29j.

The volume viscous coefficient is simply given by

V ′ = (k′2 + δ′2)R2 (7.21)

Numerically, for m′ = 5 and m′′ = 6, it is found that V ′ = 85 and V ′′ = 99.

The detuning parameter Q′R∆k′ is obtained from

Q′ =
−2k′RΩ

∫ R
0
J2
m′(δ′R)rdr

ω′
∫ R

0
|u′|2rdr

(7.22)

and ∆k′ given by the opposite of the difference between the wavenumber k′ and the
nearest multiple of π/H (see Eq.(4.10) of Lagrange et al. (2011)). Numerically, it is
found for m′ = 5 and m′′ = 6 that Q′ = 0.204 and Q′′ = −0.187.

The two amplitude equations (7.16) and (7.17) can be solved, leading to an exponential
growth of both modes as eσt with a growth rate σ solution of( σ

Ω
+D′

)( σ
Ω

+D′′
)

=
N ′N ′′|ai|2

16k2
iR

4Ω2
(7.23)

where the dissipation/detuning terms D′ and D′′ are defined as:

D′ = S′√
Re

+ V ′

Re + jQ′∆k′,

D′′ = S′′√
Re

+ V ′′

Re + jQ′′∆k′′.
(7.24)

For large Reynolds numbers and in the absence of detuning, the inviscid growth rate
simplifies into Eq.(4.8). In the presence of all dissipation/detuning terms, the critical
amplitude ai at which the flow destabilises can be calculated by assuming that the real
part of the growth rate vanishes, i.e. that the growth rate is purely imaginary, leading
to(Lagrange et al. 2011)

|ai| = 4kiR

{
<(D′)<(D′′)

N ′N ′′

[
1 +
=(D′ −D′′)2

<(D′ +D′′)2

]}1/2

ΩR (7.25)

where = is the imaginary part. Equating this equation with the modulus of Eq. (7.11)
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gives the value of the critical angle α at which the flow becomes unstable:

α =
4kiR

|F |

{
<(D′)<(D′′)

N ′N ′′

[
1 +
=(D′ −D′′)2

<(D′ +D′′)2

]}1/2 ∣∣∣∣−T sin(kiH) +
B + C√

Re
+

V

Re

∣∣∣∣ .
(7.26)

This threshold is plotted in Fig 4(a) at H/R = 2 (blue) for the first resonance of mode
1 and at H/R = 1 (red) for the first resonance of mode 2. It is also plotted in Fig 5(a)
at Re = 5000.


