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REGULAR DOMAINS AND SURFACES OF CONSTANT GAUSSIAN
CURVATURE IN THREE-DIMENSIONAL AFFINE SPACE

XIN NIE AND ANDREA SEPPI

Abstract. Generalizing the notion of domains of dependence in the Minkowski
space, we define and study regular domains in the affine space with respect to
a proper convex cone. In dimension three, we show that every proper regular
domain is uniquely foliated by a particular kind of surfaces with constant affine
Gaussian curvature. The result is based on the analysis of a Monge-Ampère equa-
tion with extended-real-valued lower semicontinuous boundary condition.

1. Introduction

The results of this paper place in the context ofAffineDifferential Geometry [NS94,
LSZH15], and aremore precisely concernedwith surfaces of constant affine Gaussian
curvature, which can be considered at the same time as a generalization of affine
spheres and of surfaces of constant Gaussian curvature, and whose study has been
started in [LSC97, LSZ00, WZ11].

A convex domain is said to be proper if it does not contain any entire straight
line. By solving the Dirichlet problem of Monge-Ampère equation

(1.1)
{

det D2w = (−w)−n−2 in Ω,
w|∂Ω = 0,

on any bounded convex domain Ω ⊂ Rn, Cheng and Yau [CY77] showed that in
every proper convex cone C ⊂ Rn+1 there exists a unique complete hyperbolic
affine sphere ΣC asymptotic to the boundary ∂C with affine shape operator the
identity. See also [Lof10].

On the other hand, certain convex domains in the Minkowski spaceRn,1 known
as domains of dependence or regular domains [Bon05, Bar05, BBZ11] are crucial in the
study of globally hyperbolic flat spacetimes [Mes07]. Such a domain is by def-
inition the intersection of the futures of null hyperplanes and is determined by
a lower semicontinuous function ϕ : ∂D → R ∪ {+∞}, where D ⊂ Rn is the
unit ball. Bonsante, Smillie and the second author showed in [BS17, BSS19] that
every 3-dimensional proper regular domain D ⊂ R2,1 contains a unique com-
plete surface with constant Gaussian curvature 1 which generatesD. Analytically,
this amounts to the unique existence of a lower semicontinuous convex function
u : D→ R ∪ {+∞} satisfying

(1.2)
{

det D2u = (1− |z|)−2 in U := int dom(u),
u|∂D = ϕ, |∇u(x)| → +∞ as x ∈ U tends to ∂U.
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2 XIN NIE AND ANDREA SEPPI

Here “int ” stands for the interior and “dom” for the subset in the domain of an
extended-real-valued functionwhere the values are real. It is also showed in [BSS19]
that dom(u) is exactly the convex hull of dom(ϕ) in R2.

The hyperboloid in the future light cone C0 ⊂ R2,1 provides the simplest exam-
ple of both results above: It corresponds to the function u0(z) = −(1 − |z|2) 1

2 on
D ⊂ R2, which satisfies det D2u0 = (−u0)−4 = (1 − |z|)−2 with u0|∂D = 0, hence
solves both (1.1) and (1.2). Geometrically, the two results can be viewed as provid-
ing different ways of deformingC0, with a canonical convex surface retained in the
deformed convex domain.

Statement of main results. The goal of this paper is to unify the two results via
surfaces with Constant Affine Gaussian (or Gauss-Kronecker) Curvature (CAGC)
k > 0. The underlying analytic problem, which generalizes both (1.1) and (1.2), is

(1.3)
{

det D2u = ck(−wΩ)−n−2 in U := int dom(u) ⊂ Ω,
u|∂Ω = ϕ, |∇u(x)| → +∞ as x ∈ U tends to ∂U,

where ck > 0 is a constant determined by k and n, and wΩ is the solution to (1.1).
The first equation in (1.3) has been called a two-stepMonge-Ampère equation [LSC97],
since the Monge-Ampère equation (1.1) is involved in wΩ. When n = 2, we show:

Theorem A. Let Ω ⊂ R2 be a bounded convex domain satisfying the exterior circle con-
dition and ϕ : ∂Ω → R ∪ {+∞} be a lower semicontinuous function such that dom(ϕ)
has at least three points. Then there exists a unique lower semicontinuous convex function
u : Ω→ R∪{+∞}which is smooth in the interior of dom(u) and satisfies (1.3). Moreover,
dom(u) coincides with the convex hull of dom(ϕ) in R2.

Here, the exterior circle condition means for every x0 ∈ ∂Ω there is a round disk
B ⊂ R2 containing Ω such that x0 ∈ ∂B. Under this condition, the right-hand side
of the first equation in (1.3) goes to +∞ fast enough near ∂Ω, which in turn ensures
the gradient blowup property of u, namely the last condition in (1.3).

CAGC hypersurfaces and the underlying Monge-Ampère problem (1.3) were
first studied by Li, Simon and Chen in [LSC97], where they proved unique solv-
ability in any dimension when ∂Ω and ϕ are both smooth. Thus, one of the main
novelties of this paper is the consideration of boundary value ϕwith much weaker
regularity assumption and possibly with infinite values, although in this situation
we have to restrict to dimension n = 2 for regularity of the solutions (c.f. [BF17] and
Remark 8.1 below).

We shall give a more precise geometric description of the CAGC surface result-
ing from the function u given by Theorem A. It is known that a non-degenerate
hypersurface Σ ⊂ Rn+1 has CAGC if and only if its affine normal mapping N :
Σ → Rn+1 has image in an affine sphere. Given k > 0 and a proper convex cone
C ⊂ Rn+1, we call Σ an affine (C, k)-hypersurface if it is locally strongly convex,
has CAGC k and N(Σ) lies in a scaling of the Cheng-Yau affine sphere ΣC ⊂ C
mentioned earlier. We deduce from Theorem A:

Theorem B. Let C ⊂ R3 be a proper convex cone such that the projectivized dual cone
P(C∗) ⊂ RP∗2 satisfies the exterior circle condition. Let D ⊂ R3 be a proper C-regular
domain. Then for every k > 0 there exists a unique complete affine (C, k)-surface Σk ⊂ D
which generates D. Moreover, Σk is asymptotic to the boundary of D.
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Here, a C-regular domain is defined in the same way as regular domains in Rn,1
mentioned earlier, except that the role of the future light coneC0 ⊂ Rn,1 is replaced
by C (see Section 3.1 for details). The exterior circle condition on P(C∗) is equiva-
lent to the interior circle condition on P(C), but P(C∗) plays a more important role
in our analysis because it is essentially the convex domain Ω in (1.3), while the sur-
face Σk claimed in Theorem B is given by the graph of Legendre transform of the
function u from Theorem A. In this regard, the gradient blowup property of u cor-
responds to the completeness of Σk, whereas the last statement of Theorem B will
be proved using the last statement of Theorem A.

Theorem B and its proof imply a classification of complete affine (C, k)-surfaces:
Corollary C. Given a constant k > 0 and a proper convex cone C ⊂ R3 such that P(C∗)
satisfies the exterior circle condition, there are natural one-to-one correspondences among
the following three types of objects:

(a) proper C-regular domains D ⊂ R3,
(b) complete affine (C, k)-surfaces Σ ⊂ R3, and
(c) lower semicontinuous functions ϕ : ∂P(C∗)→ R∪{+∞} such that dom(ϕ) has

at least three points,
where the correspondence (a)↔(b) is given by Theorem B. Moreover, given Σ from (b), the
image of the projectivized affine conormal mapping P ◦N∗ : Σ→ P(C∗) is the interior of
the convex hull of dom(ϕ) for the corresponding ϕ from (c).

Here, the affine conormal mapping N∗ : Σ → R∗3 has image in a scaling of the
affine sphere ΣC∗ ⊂ C∗ dual to ΣC , while the projectivization P : R∗3 \{0} → RP∗2
gives a bijection from ΣC∗ to P(C∗).

Furthermore, we obtain foliations of C-regular domains by CAGC surfaces:
TheoremD. The family of surfaces (Σk)k>0 from Theorem B is a foliation ofD. Moreover,
the functionK : D → R defined byK|Σk = log k is convex.

This foliation has been studied in theMinkowski setting in [BBZ11, BS17, BSS19],
although the convexity of the “time function” K seems to be new except when D
is the cone C itself. When D = C, since every Σk is a scaling of the Cheng-Yau
affine sphere ΣC , the function K is relatively easy to understand and is actually a
solution to the following Monge-Ampère equation on C:

(1.4)
{

det D2K = a ebK

K|∂C = +∞

(a, b > 0 are constants, see [Sas85, Appendix A]); whereas Cheng and Yau [CY82]
proved that (1.4) has a unique solution not only for proper convex conesC ⊂ R3 but
for any proper convex domain in Rd (d ≥ 2), and the Hessian of the solution gives
a complete Riemannian metric on the domain. On a C-regular domain D ⊂ R3

which is not a translation of C, this solution does not coincide with the function
K from Theorem D in general, and it is worth further investigation whether K is
smooth and gives a complete Riemannian metric.

About the exterior circle condition. Let us give more discussions about the exte-
rior circle condition in all the above results, which is responsible for the gradient
blowup condition in (1.3) and the completeness of the surface Σk from Theorem
B as mentioned. In the last part of the paper, we will produce a class of examples
where this condition is not satisfied and Theorems A and B do not hold:
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Proposition E. Let Ω ⊂ R2 be a bounded convex domain, ∆ ⊂ Ω be an open triangle with
vertices on ∂Ω and ϕ be the function on ∂Ω vanishing at the vertices of ∆ with ϕ = +∞
everywhere else.

(1) If Ω satisfies the exterior circle condition at every vertex of ∆ (see Figure 1.1 (a)),
then there exists a unique u satisfying (1.3) as in Theorem A.

(2) If ∂Ω contains an open line segment meeting ∂∆ exactly at a vertex (see Figure
1.1 (b)), then there does not exist u satisfying (1.3).

(a) (b)

Figure 1.1. Ω and ∆ under the assumptions of Parts (1) and (2) of
Proposition E, respectively.

The reason for Part (2) is that any u satisfying (1.3) can be shown to solve the
first equation in (1.3) on the triangle ∆ with vanishing boundary value on ∂∆, and
then one can show that the gradient of u does not blowup at the vertex of ∆ on the
line segment because the right-hand side of the equation does not go to +∞ fast
enough near the segment.

Geometrically, given a proper convex coneC, any circumscribed triangular cone
T as shown in Figure 1.2 (c) is aC-regular domain, andwededuce fromProposition
E that if the radial projections of C and T on RP2 look like in Figure 1.2 (a), which
is dual to Figure 1.1 (a), then T is foliated by affine (C, k)-surfaces as in Theorem
D; whereas in the case of Figure 1.2 (b), dual to Figure 1.1 (b), T is not generated
by any complete affine (C, k)-surface. See Corollary 8.6 for details.

(a) (b) (c)

Figure 1.2. The dual pictures of Figure 1.1a and 1.1b, and a convex
cone with a circumscribed triangular cone.
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Finally, we point out that if the domainD in Theorem B is preserved by an affine
action of the fundamental group π1(S) of a closed topological surface S and the
linear part of the action is a Hitchin representation π1(S)→ SL(3,R) preserving the
cone C, then the unique existence of a CAGC 1 surface preserved by the action is
already proved by Labourie [Lab07, Section 8] from a different point of view. This
in turn implies the unique solvability of (1.3) for the corresponding Ω andϕ. In this
case, Ω is a convex divisible set [Ben04, Ben08] and does not satisfy the exterior circle
condition. Nevertheless, ∂Ω and ϕ still have certain regularity properties, at least ϕ
is R-valued and continuous (see also [Ben04, Gui05] for regularity results on ∂Ω).
Finding a simple necessary condition for unique solvability of (1.3) covering this
case is a problem to be further investigated.

Despite not being covered by our main results, the case of Hitchin representa-
tions has particular geometric significance and is therefore one of the motivations
behind our work. This is because a C-regular domain naturally arises in this case
as domain of discontinuity. In fact, in the Minkowski setting, Mess [Mes07] showed
that any isometric action of π1(S) on R2,1 with linear part a Fuchsian representation
π1(S) → SO(2, 1) is properly discontinuous on some regular domain D and the
quotient D/π1(S) ∼= S × R is a prototype of maximal globally hyperbolic flat space-
times. We anticipate a similar result for affine actions with Hitchin linear parts.
However, we will not pursue surface group actions further in this paper.
Organization and methods of the paper. After reviewing backgrounds on affine
differential geometry in Section 2, we introduce in Section 3 the main objects of
this paper: We first define C-regular domains and C-convex hypersurfaces, a natu-
ral class of convex hypersurface generalizing the so-called future-convex spacelike
hypersurfaces in the Minkowski space, then we discuss hypersurfaces with CAGC
and define affine (C, k)-hypersurfaces.

Section 4 introduces some tools from convex analysis, such as convex envelopes,
subgradient and Legendre transformation. Then in Section 5 we relate C-regular
domains and C-convex hypersurfaces to the setting of convex analysis, by estab-
lishing some fundamental correspondences that enable to translate our geometric
problems into an analytic framework.

Moving forward to the analytic setup, Section 6 briefly reviews some ingredients
in the theory of Monge-Ampère equations, then the last two sections provide the
proofs of our main results. Section 7 first provides the concrete formulation of the
problem as in (1.3), and then obtains some fundamental local estimates, close to
the boundary, on the Cheng-Yau solutions of (1.1).

We finally solve the Monge-Ampère problem (1.3) in dimension 2 in Section 8.
While the existence and uniqueness of the Monge-Ampère equation with Dirichlet
boundary condition follows from more or less standard arguments, proving the
gradient blowup involved more subtle estimates, which rely on the estimates on
the Cheng-Yau solutions given in Section 7. Applying techniques of a similar type,
we also produce the counterexamples of Proposition E.

Acknowledgments. We are grateful to Francesco Bonsante for helpful discussions
and to Connor Mooney for helps with the proofs in Section 8.2. The work leading
to this paper was done during the first author’s visit to University of Pavia and
the second author’s visit to KIAS. We would like to thank the respective institutes
for their warm hospitality. The second author is member of the Italian national
research group GNSAGA.
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2. Preliminaries on affine differential geometry

The section gives a concise review of backgroundmaterials on affine differential
geometry used later on.

2.1. Intrinsic data of affine immersions relative to a transversal vector field. Fix
d = n + 1 ≥ 3. For conceptual clearness, we use different notations for Rd when
different structures are under consideration:

• Let V denote the d-dimensional real vector space endowed with a volume
form. We consider the volume form as the determinant det :

∧d V→ R.
• Let V∗ denote the vector space dual to V, consisting of linear forms on V.
• Let A denote the d-dimensional affine space modeled on V, endowed with

the volume form given by that on V. In other words, A is obtained from V
by “forgetting” the origin.

In this section, by a hypersurface in A, we always mean a smooth embedded one,
which has dimension n. Given a hypersurfaces Σ ⊂ A, Affine Differential Ge-
ometry studies properties of Σ invariant under volume-preserving affine transfor-
mations of A. To achieve this, one considers the intrinsic invariants of Σ defined
relative to a transversal vector fieldN : Σ→ V. These invariants include a volume
form ν, a torsion free affine connection∇, a symmetric 2-tensor h, a (1, 1)-tensor S
and a 1-form τ on Σ, determined as follows:

• ν is the induced volume form, defined by

ν(X1, · · · , Xn) = det(X1, · · · , Xn, N),

Here and below, X , Y and X1, · · · , Xn are any tangent vector fields on Σ.
• ∇ and h are the induced affine connection and affine metric, respectively, de-
termined by

DXY = ∇XY + h(X,Y )N.

• S and τ are the shape operator and transversal connection form, determined by

DXN = S(X) + τ(X)N.

Remark 2.1. Following the original convention of Blaschke, in the literature aminus
sign is often added to the definition of S, which is inconvenient for our purpose.
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Given an open set U ⊂ Rn, an immersion f : U → A and a map N : U → V
transversal to f , one can define the above invariants on U by pullback. The funda-
mental theorem of affine differential geometry, similar to the one in classical surface
theory, states that these invariants satisfy certain structural equations, and con-
versely when U is simply connected, any prescribed invariants satisfying the equa-
tions are realized by some f and N , unique up to volume-preserving affine trans-
formations. Therefore, we call the quintuple of invariants (ν,∇, h, S, τ) the intrinsic
data of the pair (Σ, N) or (f,N).

We give below some basic facts about these invariants to keep in mind. Here, a
smooth function is said to be locally strongly convex if its hessian is positive definite
everywhere, while a hypersurface is said to be locally strongly convex if it can be
presented locally as graphs of such functions.

- The rank and signature of the affine metric h only depends on Σ, not on
N , and Σ is said to be non-degenerate if h is. Thus, h is a genuine pseudo-
Riemannian metric in this case.

- A locally convex hypersurface is non-degenerate if and only if it is locally
strongly convex. Moreover, h is a Riemannian metric if and only if Σ is
locally strongly convex with N pointing towards the convex side.

- We have dτ = 0 if and only if h(X,S(Y )) = h(S(X), Y ). As a consequence,
ifΣ is non-degenerate and dτ = 0 thenS hasn real eigenvalues everywhere.

A transversal vector field N is said to be equi-affine if the transversal connection
form τ vanishes. We thus omit the τ component when talking about intrinsic data
in this case. From the definitions of τ and S, we deduce the following basic fact:

Lemma 2.2. Given p ∈ Σ, we have τ = 0 at p if and only if the image of the tangent map
dNp : TpΣ → V is contained in the tangent space TpΣ ⊂ TpA ∼= V. In this case, the
image of dNp equals TpΣ if and only if the shape operator S is non-degenerate at p.

2.2. Affine normals and affine spheres. If Σ is non-degenerate, there exists an
equi-affine vector field N such that the induced volume form ν coincides with the
volume form dvolh of the affinemetric h (note that dvolh is defined using the orien-
tation induced by ν). The vector field N is unique up to sign and is called an affine
normal field of Σ, or an affine normal mapping when N is viewed as a map from Σ to
V. As before, we extend the definition to define affine normal mappingN : U → V
of an immersion f : U → A.

Given an equi-affine transversal vector field N , if ν is a constant multiple of
dvolh, one can scale N to get an affine normal field:

Lemma 2.3. Let Σ ⊂ A be a hypersurface with equi-affine transversal vector field N :
Σ → V and intrinsic data (ν,∇, h, S). Suppose dvolh = aν for a constant a 6= 0. Then
±|a|

2
n+2N are the affine normal fields of Σ (recall that dim(A) = n+ 1).

Proof. This follows from the definition and the fact that if we scaleN by a constant
λ 6= 0, then ν and h get scaled by λ and 1

λ , respectively. �

While in general there is no privileged choice between the two affine normal
fields opposite to each other, we do have one when Σ is locally strongly convex:
the one pointing towards the convex side of Σ. In this case, we call the shape op-
erator S of Σ with respect to this choice of N the affine shape operator and call the
determinant det(S) : Σ → R the affine Gauss-Kronecker curvature, or simply affine
Gaussian curvature.
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Definition 2.4 (Proper and hyperbolic/elliptic affine spheres). A non-degenerate
hypersurface Σ ⊂ A is called a proper affine sphere if its shape operator with respect
to an affine normal field is S = λ id for a constant λ 6= 0 (where id denotes the
identity endomorphism of TΣ). This condition is equivalent to the existence of a
point o ∈ A, called the center of Σ, such that N(p) = λ−→op (for all p ∈ Σ) is an affine
normal field. Furthermore, Σ is called a hyperbolic (resp. elliptic) affine sphere if
Σ is locally convex and the condition is satisfied with λ > 0 (resp. λ < 0) for the
affine normal field pointing towards the convex side of Σ.

Remark 2.5. The terminology “proper” is used here as opposed to the case S = 0,
in which Σ is known as an improper affine sphere.

Thus, the center of a hyperbolic (resp. elliptic) affine sphereΣ lies on the concave
(resp. convex) side of Σ. In the sequel, when talking about proper affine spheres
in the vector space V, we always mean those centered at the origin 0 ∈ V.

2.3. Intrinsic data of equi-affine vector field as centro-affine immersion. A hy-
persurface Σ ⊂ V is said to be centro-affine if the position vector −→0p of every point
p ∈ Σ is transversal to Σ. Thus, proper affine spheres in V are centro-affine.

Given a hypersurface Σ ⊂ Awith equi-affine transversal vector fieldN : Σ→ V,
if the shape operator of (Σ, N) is non-degenerate, then Lemma 2.2 implies thatN is
a centro-affine immersion ofN intoV. Its intrinsic data with respect to the position
vector field are given by the intrinsic data of (Σ, N) as follows:

Lemma 2.6. Let Σ ⊂ A be a hypersurface, N : Σ → V be an equi-affine transversal
vector field and (ν,∇, h, S) be the intrinsic data of (Σ, N). Suppose det(S) 6= 0 on Σ and
consider N as a centro-affine hypersurface immersion. Then the intrinsic data of N with
respect to its position vector field (given by N itself) is

(det(S)ν, S−1∇S, h(·, S(·)), id).

Here, the affine connection ∇′ = S−1∇S is the gauge transform of ∇ by S−1,
defined by ∇′XY := S−1∇X(S(Y )) for any tangent vector fields X and Y on Σ.

To prove Lemma 2.6, we use the following framework to compute intrinsic data
in coordinates, which is also needed in Section 7.1 below. Let U ⊂ Rn be an open
set, f : U → A be an immersion and N : U → V be a transversal vector field to f .
Then the induced volume form of (f,N) is

(2.1) ν = det(∂1f, · · · , ∂nf,N) dx1 ∧ · · · ∧ dxn,

where x = (x1, · · · , xn) is the coordinate on U and ∂if(x), N(x) ∈ V ∼= Rn+1

are written in coordinates as column vectors. The other intrinsic invariants are
determined by the following equality of (n+ 1)× (n+ 1) matrices of 1-forms:

(2.2) d(∂1f, · · · , ∂nf,N) = (∂1f, · · · , ∂nf,N)
(

A S dx
tdxh τ

)
.

Here, dx represents the column vector of 1-forms t(dx1, · · · dxn). The shape opera-
tor S = (Sij) and affinemetric h = (hij) arewritten as n×nmatrices of functions on
U , and A is the matrix of 1-forms such that the induced affine connection ∇ is ex-
pressed under the frame (∂1, · · · , ∂n) as∇ = d +A. Note that the gauge transform
of ∇ by S−1 is S−1∇S = d + S−1AS + S−1dS.
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Proof of Lemma 2.6. Let U ⊂ Rn be an open set. We can replace Σ and N in the
statement of the lemma by an immersion f : U → A and a map N : U → V
transversal to f , respectively.

The intrinsic data (ν,∇, h, S) of (f,N) are determined by the equalities (2.1) and
(2.2) with τ = 0. The last column of (2.2) gives dN = (∂1f, · · · , ∂nf)S dx, hence

(2.3) (∂1N, · · · , ∂nN,N) = (∂1f, · · · , ∂nf,N)
(
S

1

)
.

Therefore, the induced volume form of N is
ν′ = det(∂1N, · · · , ∂nN,N) dx1 ∧ · · · ∧ dxn = det(S)ν,

as required, while the induced affine connection ∇′ = d + A′ and affine metric h′
are characterized by

d(∂1N, · · · , ∂nN,N) = (∂1N, · · · , ∂nN,N)
(

A′ dx
tdxh′ 0

)
.

By (2.3) and (2.2), the left-hand side is

d(∂1N, · · · , ∂nN,N) = d(∂1f, · · · , ∂nf,N)
(
S

1

)
+ (∂1f, · · · , ∂nf,N)

(
dS

0

)
= (∂1f, · · · , ∂nf,N)

[(
A S dx

tdxh 0

)(
S

1

)
+
(

dS
0

)]
= (∂1N, · · · , ∂nN,N)

(
S−1

1

)(
AS + dS S dx

tdxhS 0

)
.

Comparing with the right-hand side, we get the required expressions

A′ = S−1AS + S−1dS, h′ = hS.

�

2.4. Complete hyperbolic affine spheres. The following theorem classifies hyper-
bolic affine spheres that are complete in the sense that the Riemannian metric on it
induced by an ambient Euclidean metric is complete (see also Remark 3.4 below):

Theorem 2.7 (Cheng-Yau [CY77]). For any proper convex cone C ⊂ V, there exits
a unique complete hyperbolic affine sphere ΣC ⊂ C asymptotic to ∂C with affine shape
operator the identity.

Here, ΣC being asymptotic to ∂C means the distance from x ∈ Σ to ∂C with
respect to an ambient Euclidean metric tends to 0 as x goes to infinity in Σ.

The theorem essentially gives all complete hyperbolic affine spheres because for
any such affine sphere Σ ⊂ V, since Σ is centro-affine, the projectivization map
P : V \ {0} → RPn is a diffeomorphism from Σ to a convex domain in RPn and if
we let C be the component of the pre-image P−1(P(Σ)) containing Σ, then C is a
proper convex cone and Σ is a scaling of the affine sphere ΣC from the theorem.
For later use, we determine the precise relation between the scale factor and the
affine shape operator of Σ as follows:

Proposition 2.8. Given λ > 0 and a proper convex cone C ⊂ V, the scaling λΣC of the
affine sphere ΣC from Theorem 2.7 is the unique complete hyperbolic affine sphere asymp-
totic to ∂C with affine shape operator λ−

2(n+1)
n+2 id (where dim(V) = n+ 1).
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Proof. Let h and ν = dvolh be the affine metric and induced volume form of ΣC ,
which are definedwith respect to the affine normal field ofΣC , namely the position
vector field. Letting f : ΣC → λΣC denote the scalingmap, one can check from the
definitions that the induced volume form ν̃ and affinemetric h̃ of λΣC with respect
to its own position vector field are related to the push-forwards of ν and h by

ν̃ = λn+1f∗ν, h̃ = f∗h.

Sowehave dvol h̃ = f∗dvolh = f∗ν = λ−n−1ν̃, andLemma2.3 implies that the affine
normals of λΣC are λ−

2(n+1)
n+2 times its position vectors. The required expression of

affine shape operator follows. �

The following fundamental examples are among the rare caseswhereΣC admits
an explicit expression. See e.g. [Lof10] for details.

Example 2.9 (Hyperboloid). TheMinkowski spaceRn,1 isV endowedwith a bilinear
form of signature (n, 1) whose underlying volume form is the prescribed one. By
convention, we pick a component C0 of the quadratic cone {v ∈ V | (v, v) < 0} and
call C0 the future light cone in Rn,1. The affine sphere ΣC0 claimed by Theorem 2.7
turns out to be the component of the two-sheeted hyperboloid {(v, v) = −1} in C0,
namely ΣC0 = H := {v ∈ C0 | (v, v) = −1}.

Example 2.10 (Ţiţeica affine sphere). Let (v0, · · · , vn) be a unimodular basis of V.
For the simplicial cone C1 := {t0v0 + · · ·+ tnvn | ti > 0}, there is a constant Λn > 0
only depending on n such that the affine sphere claimed by Theorem 2.7 is

ΣC1 = {t0v0 + · · ·+ tnvn | t1, · · · , tn > 0, t0 · · · tn = Λn}.

2.5. Affine conormals and dual affine sphere. Given a hypersurface Σ ⊂ A with
affine normal field N : Σ → V, the affine conormal of Σ at p ∈ Σ dual to N is the
linear form N∗(p) ∈ V∗ defined by

〈N∗(p), N(p)〉 = 1, 〈N∗(p),TpΣ〉 = 0,

where “〈·, ·〉” is the pairing betweenV andV∗ and the last equalitymeans 〈N∗(p), v〉 =
0 for every v ∈ TpΣ ⊂ TpV ∼= V. We callN∗ : Σ→ V∗ the affine conormalmapping
dual to N .

If Σ has non-degenerate shape operator with respect to N , so that N is an im-
mersion of Σ into V as a centro-affine hypersurface (see Lemma 2.2 and Section
2.3), then N∗ : Σ→ V∗ is a centro-affine immersion as well and its image N∗(Σ) is
the centro-affine hypersurfaceM∗ dual toM = N(Σ), defined by

M∗ = {α ∈ V∗ | there is v ∈M such that 〈α, v〉 = 1, 〈α,TvM〉 = 0}.

WhenM is a proper affine spherewith affine shape operatorλ id, it can be shown
that the dual centro-affine hypersurfaceM∗ defined above is a proper affine sphere
in V∗ with affine shape operator λ−1 id, soM∗ is called the dual affine sphere ofM .
It can also be shown that for the hyperbolic affine sphere ΣC from Theorem 2.7, the
dual affine sphere is exactly ΣC∗ , where C∗ ⊂ V∗ is the dual cone of C, consisting
of linear forms on Vwhich take positive values on C \ {0}. It follows that the dual
affine sphere of λΣC is λ−1ΣC∗ .
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3. C-regular domains and hypersurfaces with CAGC

In this section, we define the main objects of study of this paper: C-regular do-
mains, C-convex hypersurfaces and affine (C, k)-hypersurfaces. When C is the fu-
ture light cone C0 in the Minkowski space Rn,1, the first two objects are known
in the literature as regular domains and future-convex spacelike hypersurfaces, re-
spectively, whilewe show in Section 3.3 that affine (C0, k)-hypersurfaces are exactly
C0-convex hypersurface with constant Gaussian curvature in the classical sense.

3.1. C-regular domains and C-convex hypersurfaces. As in Section 2, we fix n ≥
2, let V denote an (n+ 1)-dimensional vector space equipped with a volume form
andA denote the affine spacemodeled onV. By a convex domain, wemean a convex
open set, while a convex cone in V is a convex domain invariant under positive scal-
ings. A convex cone/domain is proper if it is nonempty and does not contain any
entire straight line. We further introduce the following definitions and notations:

• LetHA denote the space of all open half-spaces of A, i.e. open subsets whose
boundaries are affine hyperplanes.

• HV denote the space of all open half-spaces of V with boundaries passing
through the origin 0 ∈ V. Thus, there is a natural projectionHA → HV such
that the pre-image of H ∈ HV consists of the translations of H .

• A supporting half-space of a convex domain D at a boundary point p ∈ ∂D
is an open half-space H such that D ⊂ H and p ∈ ∂H .

• Given a convex cone C ⊂ V, we let HV(C) ⊂ HV denote the space of all
supporting half-spaces of C and let H0

V(C) ⊂ HV(C) denote the set of
supporting half-spaces at boundary points other than the origin. Also put
H1

V(C) := HV(C) \ H0
V(C). See Figure 3.1.

H1H0C

Figure 3.1. The cone C and the boundary hyperplanes of some
H0 ∈ H0

V and H1 ∈ H1
V. The half-spaces H0 and H1 are the parts

of V above the respective hyperplanes.

• Let H0
A(C) and H1

A(C) denote the pre-images of H0
V(C) and H1

V(C) in HA,
respectively.

Adapting terminologies fromMinkowski geometry, we call elements ofH0
A(C) and

H1
A(C) C-null and C-spacelike half-spaces, respectively, and call an affine hyper-

plane C-null/C-spacelike if it is the boundary of a C-null/C-spacelike half-space.
When C is the future light cone C0 in the Minkowski space Rn,1 (see Example 2.9),
these are just null/spacelike hyperplanes in the classical sense.

The following notion also arises from the Minkowski setting:
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Definition 3.1 (C-regular domains). Given a proper convex cone C ⊂ V, a C-
regular domain is by definition a subset D ⊂ A of the form

D = int
( ⋂
H∈H

H

)
, H ⊂ H0

A(C).

Namely, D is the interior of the intersection of a collection H of closed C-null half-
spaces. When H is the set of all C-null half-spaces containing some subset S of A,
D is called the C-regular domain generated by S.

Remark 3.2. For the future light cone C0 ⊂ Rn,1, such domains first appeared in
mathematical relativity as domains of dependence, then the name “regular domain”
is introduced in [Bon05]. Our definition is slightly wider even for C = C0, in that
regular domains in [Bon05] correspond to proper C0-regular domains under our
definition. We refer to the papers cited in the introduction for the role of such
domains in the study of globally hyperbolic flat spacetimes.

Note that C-regular domains are convex domains, and the simplest examples
include the empty set ∅, the whole A (corresponding toH = ∅), single C-null half-
spaces, and translations of the cone C itself.

A convex hypersurface Σ ⊂ A is by definition a nonempty open subset of the
boundary of some convex domain, and a supporting half-space of the domain at a
point p ∈ Σ is referred to as a supporting half-space of Σ at p. We will study the
following particular type of convex hypersurfaces, known as future-convex spacelike
hypersurfaces when C = C0 ⊂ Rn,1:

Definition 3.3 (C-convex hypersurfaces). Given a proper convex coneC ⊂ V, aC-
convex hypersurface is a convex hypersurface Σ ⊂ Awhose supporting half-spaces
are all C-spacelike. Σ is said to be complete if it is the entire boundary of some
convex domain.

Remark 3.4. For a locally convex immersed hypersurface, there is a nontrivial rela-
tion between the notion of completeness defined above and the completeness of
the geodesic metric on the hypersurface induced by an ambient Euclidean metric,
see [VH52]. However, since we only consider embedded globally convex hypersur-
faces, these notions are the same.

As an example, for the affine sphere ΣC ⊂ C given by Theorem 2.7, using the
fact that ΣC is equi-affine and asymptotic to ∂C, it can be shown that any scaling
λΣC is a complete C-convex hypersurface generating the convex cone C.

In Section 5, we will identify all complete C-convex hypersurfaces in A as the
entire graphs of a specific class of convex functions on Rn, and identify C-regular
domains as strict epigraphs of specific convex functions as well. We will also see
that if a complete C-convex hypersurface Σ is asymptotic to the boundary of a C-
regular domainD (in the sense defined in Section 2.4), thenΣ generatesD, whereas
the converse is not true.

3.2. Convex hypersurfaces with Constant Affine Gaussian Curvature. With the
definitions from Section 2 inmind, by a hypersurface inAwith constant affine Gauss-
ian curvature (CAGC), we mean a non-degenerate smooth embedded hypersurface
Σ ⊂ A such that the shape operator of Σ with respect to an affine normal field
has constant determinant. Since there are two affine normal fields opposite to each
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other, the precise value of affine Gaussian curvature (i.e. the determinant) has sign
ambiguity when n is odd. When Σ is locally convex, the ambiguity is eliminated
by picking the affine normals pointing towards the convex side as mentioned in
Section 2.2.

The following result characterizes CAGC hypersurfaces by affine normal map-
pings and singles out a subclass of these hypersurfaces which we study later on:
Proposition 3.5. Let Σ ⊂ A be a non-degenerate smooth hypersurface with affine normal
mapping N : Σ → V. Let S be the shape operator of Σ with respect to N and suppose
det(S) 6= 0 on Σ, so that N is an immersion (see Lemma 2.2). Then

(1) det(S) is constant if and only if N(Σ) is a proper affine sphere in V. In this case,
an affine normal field ofN(Σ) is given by |det(S)|−

1
n+2 times its position vectors.

(2) Further assume that Σ is locally strongly convex andN points towards the convex
side ofΣ. ThenN(Σ) is a hyperbolic affine sphere if and only if det(S) is a constant
and the eigenvalues of S are all positive at every point of Σ.

Proof. (1) Let (ν,∇, h, S) be the intrinsic data of (Σ, N), where ν = dvolh is the
volume form of h since N is an affine normal field. By Lemma 2.6, the induced
volume form ν′ and affine metric h′ of the centro-affine immersionN with respect
to its position vector field are given by ν′ = det(S)ν and h′(·, ·) = h(·, S(·)). The
volume form of h′ is

dvolh′ = |det(S)| 12 dvolh = |det(S)| 12 ν = ±|det(S)|− 1
2 ν′.

In particular, det(S) is a constant if and only if dvolh′ is a constant times ν′. But
Lemma 2.3 implies that dvolh′ is a constant a 6= 0 times ν′ if and only |a|

2
n+2 times

the position vector field ofN(Σ) is an affine normal field, hence the required state-
ments follows.

(2) The additional assumption is equivalent to the condition that h is positive
definite (see Section 2.1). In this case, the eigenvalues of S are all positive if and
only if h′ is positive definite as well. But the positive definiteness of h′ is equivalent
to the condition that N(Σ) is a locally convex centro-affine hypersurface with the
position vector of each point pointing towards the convex side (or equivalently,
0 ∈ V lies on the concave side). WhenN(Σ) is a proper affine sphere, this condition
means exactly that N(Σ) is actually a hyperbolic affine sphere. The first statement
then follows from Part (1). �

With the same proof, one can show a similar statement as Part (2) with “hyper-
bolic” and “positive” replaced by “elliptic” and “negative”, respectively. But we
are mainly interested in the situation whereN(Σ) is not merely a hyperbolic affine
sphere, but also part of a complete one discussed in Section 2.4:
Definition 3.6 (Affine (C, k)-hypersurfaces). Let C ⊂ V be a proper convex cone
and let k > 0. An affine (C, k)-hypersurface in A is a locally strongly convex smooth
hypersurface Σ with CAGC k such that the affine normal mapping N : Σ→ V has
image in a complete hyperbolic affine sphere generating C.

Given an affine (C, k)-hypersurfaceΣ ⊂ A, by Propositions 2.8 and 3.5, the affine
normal mapping N : Σ → V and conormal mapping N∗ : Σ → V∗ have images
in the following specific scaling of the Cheng-Yau affine spheres ΣC and ΣC∗ (see
Sections 2.4 and 2.5), respectively:

N(Σ) ⊂ k
1

2(n+1) ΣC , N∗(Σ) ⊂ k−
1

2(n+1) ΣC∗ .
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The former is the complete hyperbolic affine sphere generatingC with affine shape
operator k−

1
n+2 id by Proposition 2.8, and the latter is dual to the former. Also note

that Σ is C-convex because by Lemma 2.2 and the fact that N points towards the
convex side of Σ, the supporting half-space of Σ at a point p coincides with that of
N(Σ) at N(p) up to translation, while k

1
2(n+1) ΣC and hence N(Σ) are C-convex.

3.3. The Minkowski case. We view the Minkowski space Rn,1 (see Example 2.9
for the basic definitions) both as a vector space endowed with a bilinear form (·, ·)
of signature (n, 1) (hence also endowedwith the resulting volume form) and as the
affine space modeled on this vector space, which is a flat Lorentzian manifold.

A hypersurface Σ ⊂ Rn,1 is said to be spacelike if its tangent hyperplanes are
spacelike (c.f. Section 3.1). When Σ is C1, it is the case if and only if the ambient
Lorentzian metric restricts to a Riemannian metric g on Σ, which is called the first
fundamental form of Σ. Note that C0-convex hypersurfaces (see Definition 3.3) are
in particular spacelike.

From an affine-differential-geometric point of view, there is a natural equi-affine
transversal vector field to be considered for a spacelike hypersurfaces Σ: the unit
normal field, taking values in the hyperboloid H (see Example 2.9). The resulting
intrinsic data (ν,∇, h, S) have the following relations with the first fundamental
form g:

• The induced volume form ν and induced affine connection ∇ are the vol-
ume form and Levi-Civita connection of g, respectively.

• The affine metric h, known as the second fundamental form of Σ, is related to
the shape operator S through the relation h(·, ·) = g(·, S(·)).

We call the determinant det(S) : Σ → R the classical Gaussian curvature of Σ in
order to distinguish with the affine Gaussian curvature. Note that when n = 2, the
Gauss equation for Σ, similar to the one for surfaces in the Euclidean 3-space, states
that the classical Gaussian curvature is opposite to the intrinsic curvature of the
first fundamental form.

As the main result of this section, we characterize affine (C0, k)-hypersurface by
classical Gaussian curvature:

Proposition 3.7. Given k > 0, affine (C0, k)-hypersurfaces in the Minkowski space Rn,1

are exactly C0-convex hypersurfaces with constant classical Gaussian curvature k
n+2
2n+2 .

Proof. Let Σ ⊂ Rn,1 be an affine (C0, k)-hypersurface andN : Σ→ Rn,1 be its affine
normal mapping. Then Σ is C0-convex and N has image in the k

1
2(n+1) -scaling of

ΣC0 = H (see Section 3.2). Thus,N ′ := k−
1

2(n+1)N has images in H. By Lemma 2.2,
N ′ is a local diffeomorphism from Σ to H and for every p ∈ Σ, the tangent space
TpΣ coincides with dN ′p(TpΣ) = TN ′(p)H after translation. But the orthogonal
complement of the vector N ′(p) is exactly the subspace TN ′(p)H ⊂ TpRn,1 ∼= Rn,1.
Therefore,N ′ is the unit orthogonal normal field. The shape operator S′ of Σ with
respect toN ′ is S′ = k−

1
2(n+1)S, hence the classical Gaussian curvature is det(S′) =

k−
n

2(n+1) det(S) = k
n+2
2n+2 , as required.

Conversely, let Σ ⊂ Rn,1 be a C0-convex hypersurface with first fundamental
form g and unit orthogonal normal field N ′ : Σ → H, and let (ν′,∇′, h′, S′) be
the intrinsic data of (Σ, N ′). Assume the classical Gaussian curvature det(S′) is a
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constant k′ > 0. Since ν′ = dvolg and h′(·, ·) = g(·, S′(·)), the volume form of h′ is

dvolh′ = k′
1
2 dvolg = k′

1
2 ν′.

By Lemma 2.3,N = k′
1

n+2N ′ is the affine normal field of Σ, hence the affine Gauss-
ian curvature is det(S) = det(k′

1
n+2S′) = k′

2n+2
n+2 =: k. Thus, Σ is an affine (C0, k)-

hypersurface, as required. �

Remark 3.8. One can consider affine-differential-geometric properties of general
(not necessarily locally convex) spacelike hypersurfacesΣ ⊂ Rn,1, or hypersurfaces
in the Euclidean space En+1. In particular, refining the argument in the second
part of the above proof, it can be shown that for such a Σ in Rn,1 or En+1, a unit
normal vector field N (with values in H and the unit sphere S in the Minkowski
and Euclidean cases, respectively) scaled by some function a : Σ → R+ gives an
affine normal field if and only if the classical Gaussian curvature of Σ is a nonzero
constant, and in this case amust be a constant. Therefore, ifΣ has constant classical
Gaussian curvature then it also has CAGC.

4. Preliminaries on convex analysis

In this section, we introduce definitions, notations and results from convex anal-
ysis that we will use in the following sections.

4.1. Convex functions. We consider lower semicontinuous convex functions on
Rn with values in R∪ {+∞} and denote the space of them, excluding the constant
function +∞, by
LC(Rn) := {u : Rn → R∪{+∞} | u is lower semicontinuous and convex, u 6≡ +∞}.
Also, it is sometimes convenient to consider the space

L̃C(Rn) := LC(Rn) ∪ {±∞},
where +∞ and −∞ are understood as constant functions. It has the property that
the pointwise supremum of any family of functions F ⊂ L̃C(Rn) is still in L̃C(Rn)
(the supremum of the empty set is −∞ by convention). Members in L̃C(Rn) and
LC(Rn) are called “closed convex functions” and “closed proper convex functions”,
respectively, in literatures on convex analysis such as [Roc70]. Here “closed” refers
to the closedness of the epigraph

epi(u) := {(x, ξ) ∈ Rn × R | ξ ≥ u(x)}.
In fact, u is convex/lower semicontinuous if and only if epi(u) is convex/closed.

Given u ∈ LC(Rn), the effective domain
dom(u) := {x ∈ Rn | u(x) < +∞}

is a nonempty convex subset of Rn. It is a basic fact that any R-valued convex
function on an open subset of Rn is continuous (actually Lipschitz, see [Gut01,
Lemma 1.1.6]), so u is continuous in the interior U := int dom(u) of its effective
domain. At a boundary point x0 ∈ ∂U , u is continuous at least along line segments
in U in the sense that

lim
t→0+

u((1− t)x0 + tx1) = u(x0) for any x0 ∈ ∂U, x1 ∈ U.

Indeed, by lower semicontinuity we have lim inft→0+ u((1 − t)x0 + tx1) ≥ u(x0),
while by convexity we have u((1 − t)x0 + tx1) ≤ (1 − t)u(x0) + tu(x1), hence
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lim supt→0+ u((1 − t)x0 + tx1) ≤ u(x0). Note that u(x0) = +∞ is allowed here.
More generally, a similar argument shows that the restriction of u to every simplex
in dom(u) is continuous (see [Roc70, Theorem 10.2]).

By virtue of these continuity properties, if U is nonempty, then u is determined
by its restriction to U :

Proposition 4.1. Given a convex domain U ⊂ Rn and a convex function u : U → R, the
function u : Rn → R ∪ {+∞} defined by

u(x) :=


u(x) if x ∈ U
lim infy→x u(y) if x ∈ ∂U
+∞ if x ∈ Rn \ U

is the unique element in LC(Rn) extending u with effective domain contained in U .

The extension u is a particular instance of convex envelopes, introduced in the next
section for more general u.

Proof. It is elementary to check that the epigraph epi(u) is exactly the closure of
epi(u) ⊂ U×R inRn×R. Since epi(u) is convex, epi(u) is a closed convex set, hence
u ∈ LC(Rn). To prove the uniqueness, it is sufficient to show that given u ∈ LC(Rn)
with U := int dom(u) nonempty, the value of u at any x0 ∈ ∂U coincides with the
liminf of u(x) as x ∈ U tends to x0. This is given by

lim inf
x∈U, x→x0

u(x) ≥ u(x0) = lim
t→0+

u((1− t)x0 + tx1) ≥ lim inf
x∈U, x→x0

u(x),

where the first inequality is because u is lower semicontinuous. �

For general u ∈ LC(Rn) with int dom(u) possibly empty, there is a unique affine
subspace A ⊂ Rn containing dom(u) such that dom(u) has nonempty interior as a
subset of A, and one can study the restriction u|A ∈ LC(A) instead. The interior of
dom(u) as a subset of A is called the relative interior and denoted by ri dom(u) (see
[Roc70, Section 6]).

Proposition 4.1 assigns to every convex function u : U → R its boundary values,
namely, the restriction u|∂U . This is fundamental in the study of Monge-Ampère
equations on U because the Dirichlet problem of such equations asks for a convex
function with prescribed boundary values. A basic fact is that u extends continu-
ously to U if and only if its boundary values are continuous. This follows from:

Proposition 4.2. Let u ∈ LC(Rn) with U := int dom(u) nonempty and let x0 ∈ ∂U
be such that u(x0) < +∞ and the restriction of u to ∂U is continuous at x0. Then the
restriction of u to U is continuous at x0 as well.

Proof. Suppose u|U is not continuous at x0 and pick a point y0 ∈ U . Adding an
affine function Rn → R to u does not affect the statement, so we may suppose
without loss of generality that u(x0) = u(y0) = 0. Since u is lower semicontinuous,
u|U being discontinuous at x0 means there is ε > 0 and a sequence (yi)i≥1 in U
converging to x0 such that u(yi) ≥ ε for every i. Let (xi) be the sequence on ∂U
such that yi lies on the line segment joining y0 and xi. Since u is convex on that
segment with u(y0) = 0 and u(yi) ≥ 0, we have u(xi) ≥ u(yi) ≥ ε. Since xi
converges to x0 from ∂U , this shows that u|∂U is discontinuous at x0. �
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4.2. Convex envelope. An affine function on Rn is a function of the form

a : Rn → R, a(x) = x · y + η,

where η ∈ R and x ·y := x1y1 + · · ·+xnyn is the standard inner product (xi denotes
the ith coordinate of x). We call y the linear part of a.

Clearly, affine functions belong to LC(Rn), hence a function given by pointwise
supremum of a set of affine functions is in L̃C(Rn). We can thus introduce:

Definition 4.3 (Convex envelop). Given a subsetE ofRn×R, the convex envelope of
E is the function in L̃C(Rn) given by the pointwise supremumof all affine functions
with epigraphs containingE. Given a setS ⊂ Rn and a functionϕ : S → R∪{±∞},
the convex envelope ofϕ is defined as the convex envelope of the epigraph of ϕ and
is denoted by ϕ. Equivalently,

ϕ(x) := sup{a(x) | a : Rn → R is an affine function with a|S ≤ ϕ}

This is related to thewell known notion of convex hull of a setE ⊂ Rd, namely the
intersection of all convex subsets ofRd containingE, which we denote by Conv(E).
We have the following important characterizations of Conv(E) and its closure:

• (See [Roc70, Theorem 17.1]) A point x ∈ Rd is in Conv(E) if and only if x
is a convex combinations of d+ 1 points in E, i.e. x = t0x0 + · · ·+ tdxd for
some xi ∈ E and ti ∈ [0, 1] with t0 + · · ·+ td = 1.

• (See [Roc70, Theorem 11.5]) The closure Conv(E) equals the intersection of
all closed half-spaces of Rd containing E.

Using these facts, we can show:

Proposition 4.4. Let S be a subset of Rn and ϕ : S → R ∪ {+∞} be a function.
(1) If the convex envelope ϕ is not constantly −∞, then its epigraph epi(ϕ) is the

closure of the convex hull of epi(ϕ) ⊂ S × R in Rn × R.
(2) If S is compact and ϕ is lower semicontinuous, then the convex hull of epi(ϕ) is

closed, hence equals epi(ϕ).

The assumption ϕ 6≡ −∞ in Part (1) means there exists an affine function ma-
jorized by ϕ on S, which is clearly true under the assumption of Part (2). Also note
that the assumption of Part (2) implies epi(ϕ) is a closed subset of Rn+1, but the
convex hull of a general unbounded closed set is not necessarily closed.

Proof. (1) Given a closed half-space H ⊂ Rn × R ∼= Rn+1, let us call H vertical if it
contains a vertical line {x} × R, and call H an upper half-space if H is not vertical
and contains a vertical upper half-line {x} × [ξ,+∞). Thus, upper half-spaces are
exactly epigraphs of affine functions.

If ϕ ≡ +∞, then epi(ϕ) and epi(ϕ) are empty and the required conclusion holds.
Otherwise, epi(ϕ) contains a vertical upper half-line, hence every half-space con-
taining epi(ϕ) is either vertical or an upper half-space, and there is at least one up-
per half-spaceH0 containing epi(ϕ). For any vertical half-spaceH , the intersection
H ∩H0 equals the intersection of all upper half-spaces containing H ∩H0. There-
fore, the intersection of all closed half-spaces containing epi(ϕ) coincides with the
intersection of the upper half-spaces among them. This proves the required state-
ment because the former intersection is the closure of Conv(epi(ϕ)) and the latter
is epi(ϕ) by definition of ϕ.
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(2) Let (xi, ξi) be a sequence in Conv(epi(ϕ)) converging to (x∞, ξ∞) ∈ Rn × R.
We need to show that (x∞, ξ∞) belongs to Conv(epi(ϕ)). By the first bullet point
above, there are t(k)

i ∈ [0, 1] and (x(k)
i , ξ

(k)
i ) ∈ epi(ϕ) (k = 1, · · · , n+ 2) such that

n+2∑
k=1

t
(k)
i = 1, (xi, ξi) =

n+2∑
k=1

t
(k)
i · (x

(k)
i , ξ

(k)
i )

for every i. By restricting to a subsequence, we may assume x(k)
i → x

(k)
∞ ∈ S and

t
(k)
i → t

(k)
∞ ∈ [0, 1] (with

∑
k t

(k)
∞ = 1), so that x∞ =

∑
k t

(k)
∞ x

(k)
∞ and

(4.1) ξ∞ = lim
i→∞

∑
k

t
(k)
i ξ

(k)
i ≥ lim inf

i→∞

∑
k

t
(k)
i ϕ(x(k)

i ) ≥
∑
k

t(k)
∞ ϕ(x(k)

∞ ),

where the second inequality follows from super-additivity of liminf and the in-
equality lim inf ϕ(x(k)

i ) ≥ ϕ(x(k)
∞ ) is implied by the lower semicontinuity of ϕ.

Since epi(ϕ) + (0, t) ⊂ epi(ϕ) for all t ≥ 0, we have
Conv(epi(ϕ)) + (0, t) = Conv(epi(ϕ) + (0, t)) ⊂ Conv(epi(ϕ)).

This means if (x, ξ) belongs to Conv(epi(ϕ)) then so does (x, ξ + t). Therefore,
in view of (4.1) and the fact that

(
x∞,

∑
k t

(k)
∞ ϕ(x(k)

∞ )
)
∈ Conv(epi(ϕ)), we have

(x∞, ξ∞) ∈ Conv(epi(ϕ)), as required. �

As a consequence, ϕ is the maximum element in L̃C(Rn) majorized by ϕ:
Corollary 4.5. For any subset S ⊂ Rn and function ϕ : S → R ∪ {±∞}, the convex
envelope ϕ is the pointwise supremum of all u ∈ L̃C(Rn) with u|S ≤ ϕ. In particular, the
convex envelope of u ∈ L̃C(Rn) is u itself.
Proof. We prove the second statement first. The statement is trivial when u ≡ ±∞,
so we may suppose u ∈ LC(Rn). By convexity and lower semicontinuity, epi(u) is
a closed convex subset of Rn+1 contained in some upper half-space (see the proof
of Proposition 4.4), so Proposition 4.4 (1) implies epi(u) = epi(u), hence u = u.
To prove the first statement, we let Φ be the set of all u ∈ L̃C(Rn) with u|S ≤ ϕ
and A ⊂ LC(Rn) be the set of all affine functions. Then for all x ∈ Rn we have
supu∈Φ u(x) ≥ supa∈A∩Φ a(x) =: ϕ(x), and conversely

sup
u∈Φ

u(x) = sup
u∈Φ

sup
a∈A,a≤u

a(x) ≤ sup
a∈A∩Φ

a(x) = ϕ(x),

where the first equality is given by the statement just proved, and the inequality
is because supa∈A,a≤u a(x) ≤ supa∈A∩Φ a(x) for every u ∈ Φ. This proves the first
statement, namely ϕ(x) = supu∈Φ u(x).

�

4.3. Restrictions to the boundary of a convex domain. Given S ⊂ Rn, let LC(S)
denote the space of functions S → R ∪ {+∞} restricted from functions in LC(Rn):

LC(S) := {u|S | u ∈ LC(Rn)}.
For later use, we shall determine LC(∂Ω) for the boundary ∂Ω of a bounded convex
domain Ω ⊂ Rn. This will be a consequence of:
Lemma 4.6. Let Ω ⊂ Rn be a bounded convex domain. If ϕ : ∂Ω→ R ∪ {+∞} is lower
semicontinuous and restricts to a convex function on every line segment in ∂Ω, then ϕ
coincides with its convex envelope ϕ (see Definition 4.3) on ∂Ω.
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Proof. We extend ϕ to a lower semicontinuous function on the whole Rn by setting
ϕ = +∞ on Rn \ ∂Ω. By definition of ϕ, it is sufficient to show, for every x0 ∈ ∂Ω:

• if ϕ(x0) ∈ R, then for any ε > 0 there is an affine function a : Rn → R such
that a ≤ ϕ and a(x0) > ϕ(x0)− ε;

• if ϕ(x0) = +∞, then for anyM > 0 there is an affine function a : Rn → R
such that a ≤ ϕ and a(x0) > M .

We only give below a proof of the first statement since the second one is similar.
Suppose without loss of generality that x0 is the origin and Ω is contained in the

half-space Rn+ := {x ∈ Rn | xn > 0}, where xi denotes the ith coordinate of x. The
assumptions imply that the restrictionϕ|Rn−1 ofϕ to the subspaceRn−1 := ∂Rn+ is a
lower semicontinuous convex function. By Corollary 4.5, there is an affine function
â on Rn−1 majorized by ϕ|Rn−1 such that
(4.2) â(0) ≥ ϕ(0)− ε/2.

Denote x̂ := (x1, · · ·xn−1) for every x ∈ Rn. The lower semicontinuous function
x 7→ ϕ(x)− â(x̂) takes nonnegative values on the compact set Rn−1 ∩ ∂Ω, so there
is δ > 0 such that
(4.3) ϕ(x)− â(x̂) > −ε/2 if xn < δ.

On the other hand, the function is constantly +∞ outside of the compact set ∂Ω,
so there is Λ > 0 such that
(4.4) ϕ(x)− â(x̂) > −Λ for all x ∈ Rn.

We can then check that the affine function

a(x) := â(x̂)− Λ
δ
xn − ε

2
fulfills the requirements. In fact, (4.2) implies a(0) > ϕ(0)− ε, (4.3) and (4.4) imply
a(x) ≤ ϕ(x) when 0 ≤ xn < δ and xn ≥ δ, respectively, while a(x) < ϕ(x) = +∞
when xn < 0. �

Corollary 4.7. For a bounded convex domain Ω ⊂ Rn, LC(∂Ω) consists of all lower
semicontinuous functions ϕ : ∂Ω→ R ∪ {+∞} convex on every line segment in ∂Ω.

Proof. For any u ∈ LC(Rn), the restriction u|∂Ω clearly belongs to class of functions
described in the statement. Conversely, every function ϕ in the class is the restric-
tion of ϕ ∈ LC(Rn) by Lemma 4.6. �

In the sequel, we often need to consider the effective domain of the convex en-
velope ϕ for ϕ ∈ LC(∂Ω). It actually coincides with the convex hull of dom(ϕ) :=
{x ∈ ∂Ω | ϕ(x) < +∞} in Rn:

Proposition 4.8. Let Ω ⊂ Rn be a bounded convex domain. Then for any ϕ ∈ LC(∂Ω),
we have dom(ϕ) = Conv(dom(ϕ)).

Proof. By Proposition 4.4 (2), the epigraph epi(ϕ) is the convex hull of epi(ϕ), while
dom(ϕ) and dom(ϕ) are the projections of the two epigraphs, respectively, from
Rn ×R to Rn. It follows from the first bullet point in Section 4.2 that the operation
of taking convex hulls commuteswith the projection, hence the required statement.

�

We will also need the following result on the piecewise linear structure of ϕ:
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Lemma 4.9. Let Ω ⊂ Rn be a bounded convex domain. Given ϕ ∈ LC(∂Ω) and an affine
function a : Rn → R with a|∂Ω ≤ ϕ, the set {x ∈ Rn | ϕ(x) = a(x)} is the convex hull
of {x ∈ ∂Ω | ϕ(x) = a(x)} in Rn.

Proof. Since ϕ is lower continuous, for every ε ≥ 0,
Fε := {x ∈ ∂Ω | ϕ(x)− a(x) ≤ ε}

is a closed subset of ∂Ω. DenotingE := {x ∈ Rn | ϕ(x) = a(x)}, we have
⋂
ε>0 Fε =

F0 = E∩∂Ω (the last equality follows from Lemma 4.6). E contains Conv(F0) since
it is convex. So we only need to prove the inclusion E ⊂ Conv(F0).

Using the properties of convex hulls in Section 4.2, one can show Conv(F0) =⋂
ε>0 Conv(Fε). Therefore, if the required inclusion does not hold, there exists

x0 ∈ E \ Conv(Fε) for some ε > 0. We can then find a closed half-space H ⊂ Rn
containing Fε but not x0, and an affine function b on Rn such that b ≤ 0 on H and
0 < b ≤ ε on Ω \ H . The affine function ã = a + b satisfies ã|∂Ω ≤ ϕ, because
ã ≤ a ≤ ϕ on ∂Ω ∩H and ã ≤ a + ε < ϕ on ∂Ω \H ⊂ ∂Ω \ Fε. But on the other
hand we have ã(x0) = ϕ(x0) + b(x0) > ϕ(x0), a contradiction. �

When n = 2, the lemma implies that the graph of ϕ has the structure of “pleated
surface”. In [BS17], a link between LC(∂Ω) and measured geodesic laminations on
Ω is built based on this structure (for Ω the unit disk).

4.4. Subgradients. We review in this section some useful properties of subgradi-
ents of convex functions, defined as follows:

Definition 4.10. A supporting affine function of u ∈ LC(Rn) at x0 ∈ Rn is an affine
function a : Rn → R such that a ≤ u on Rn and a(x0) = u(x0). We let Du(x0) ⊂ Rn
denote the set of linear parts (see Section 4.2) of all supporting affine functions of u
at x0 and call its elements the subgradients of u at x0. Denote the set of points where
u admits subgradients (or equivalently, supporting affine functions) by

dom(Du) := {x ∈ Rn | Du(x) 6= ∅}.

Note that the definition can be written in a concise way as

y ∈ Du(x0) def.⇐⇒ u(x) ≥ u(x0) + (x− x0) · y for all x ∈ Rn.
We have the following basic existence results:

Lemma 4.11. Suppose u ∈ LC(Rn).
(1) We have ri dom(u) ⊂ dom(Du), i.e. u admits a subgradient at every relative

interior point (see Section 4.1) of dom(u).
(2) Du(x) has exactly one point if and only if x ∈ int dom(u) and u is differentiable

at x. In this case, the subgradient is exactly the gradient of u at x.

See Theorems 23.4 and 25.1 in [Roc70] for proofs of Statements (1) and (2), re-
spectively. Note that u is differentiable almost everywhere in the interior of dom(u)
because it is Lipschitz (see [Gut01, Lemma 1.1.7]). For a point x where u is differ-
entiable, we also understand Du(x) as the gradient itself, not distinguishing it with
the one-point subset of Rn formed by the gradient.

Subgradients of a convex function u at a point x0 is closely related to the direc-
tional derivatives of u at x0, see [Roc70, Section 23] for general discussions. We
only need the following notion on finiteness of directional derivatives at a bound-
ary point of essential domain:
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Definition 4.12. Given u ∈ LC(Rn) with U := int dom(u) nonempty, u is said to
have finite inner derivatives at x0 ∈ ∂U if u(x0) < +∞ and

(4.5) lim
t→0+

u(x0 + t(x1 − x0))− u(x0)
t

> −∞

for some x1 ∈ U . Otherwise, u is said to have infinite inner derivatives at x0.

Note that since t 7→ u(x1 +t(x1−x0)) is a convex function on [0, 1], the difference
quotient in (4.5) is increasing in t, hence the limit exists in [−∞,+∞). Condition
(4.5) is actually independent of the choice of x1 and is related to the existence of
subgradient at x0 and the boundedness of gradient in U :

Proposition 4.13. Given u ∈ LC(Rn) with U := int dom(u) 6= ∅ and a point x0 ∈ ∂U
with u(x0) < +∞, the following conditions are equivalent to each other:

(i) u has finite inner derivatives at x0;
(ii) Condition (4.5) is satisfied by every x1 ∈ U ;
(iii) u admits a subgradient at x0;
(iv) there exists a sequence (xi) of points inU tending to x0 such that u is differentiable

at xi and |Du(xi)| does not tend to +∞.

Proof. “(i)⇔(ii)”. For every vector v in the tangent cone

Cx0U := {v ∈ Rn | there exits t > 0 such that x0 + tv ∈ U},

we define the directional derivative of u along v as

∂vu(x0) := lim
t→0+

u(x0 + tv)− u(x0)
t

∈ [−∞,+∞).

Then Condition (i) (resp. (ii)) is equivalent to ∂vu(x0) > −∞ for some (resp. all)
v ∈ Cx0U . One can check (see [Roc70, Theorem 23.1]) that v 7→ ∂vu(x0) is a ho-
mogeneous convex function on Cx0U .Therefore, the equivalence “(i)⇔(ii)” follows
from the elementary fact that if a [−∞,+∞)-valued convex function f on a convex
domain attends the value −∞ at some point then f ≡ −∞.

“(ii)⇔(iii)”. One can check (see [Roc70, Theorem 23.2]) that y ∈ Rn is a subgra-
dient of u at x0 if and only if

(4.6) ∂vu(x0) ≥ y · v for all v ∈ Cx0U.

This implies (ii) by the above construction. Conversely, to prove “(ii)⇒(iii)”, we
take a hyperplane P ⊂ Rn disjoint from the origin such that P meets every ray
R≥0 ·vwith v ∈ Cx0U . If (ii) holds, then v 7→ ∂vu(x0) restricts to aR-valued convex
function on P ∩Cx0U . Let a be an affine function on P majorized by the restriction
and y ∈ Rn be the vector such that x ·y = a(x) for all x ∈ P . We have ∂vu(x0) ≥ y ·v
for v ∈ P ∩ Cx0U , hence (4.6) follows by homogeneity and implies (iii).

“(iii)⇔(iv)” let Su(x0) ⊂ Rn denote the set of all limit points of all sequences
of the form (Du(xi)), such that (xi)i=1,2,··· is a sequence in dom(u) converging to
x0 and u is differentiable at xi. Then Condition (iv) just says Su(x0) 6= ∅, which is
equivalent to (iii) by [Roc70, Theorem 25.6]. �

4.5. Legendre transformation. A fundamental tool of this paper is the Legendre
transform of a convex function, also known as the conjugate convex function. We
first recall its definition, which makes sense for non-convex functions:
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Definition 4.14. The Legendre transform of a function u : Rn → R ∪ {±∞} is the
function u∗ : Rn → R ∪ {±∞} defined by

u∗(y) := sup
x∈Rn

(x · y − u(x)).

Note that u∗ belongs to L̃C(Rn) (see Section 4.1) because it is a supremum of
affine functions. The most important property of Legendre transforms is:

Theorem 4.15. For any function u : Rn → R ∪ {±∞}, the repeated Legendre trans-
form u∗∗ coincides with the convex envelope u. As a consequence (see Corollary 4.5), the
Legendre transformation u 7→ u∗ is an involution on L̃C(Rn).

Since the constant functions+∞,−∞ ∈ L̃C(Rn) are Legendre transforms of each
other, u 7→ u∗ is also an involution on LC(Rn). We give here a proof of the theorem
because its ingredients will be used later on.

Proof. On one hand, the definition of Legendre transform can be rewritten as
(4.7) u∗(y) := sup

(x,ξ)∈graph(u)
(x · y − ξ) = sup

(x,ξ)∈epi(u)
(x · y − ξ).

On the other hand, the definition also implies that epi(u∗) is the set of all (y, η) ∈
Rn × R such that the affine function x 7→ x · y − η is majorized by u: In fact,

(y, η) ∈ epi(u∗)⇐⇒ η ≥ x · y − u(x),∀x ∈ Rn ⇐⇒ u(x) ≥ x · y − η,∀x ∈ Rn.
Replacing u with u∗ in (4.7), we get u∗∗(x) = sup(y,η)∈epi(u∗)(x · y − η). Using

the above interpretation of epi(u∗), we conclude that u∗∗ is the supremum of affine
functions majorized by u. �

The following lemma describes the Legendre transform of a convex envelope
(see Definition 4.3):

Lemma 4.16. Given E ⊂ Rn × R, let u ∈ L̃C(Rn) be the convex envelope of E. Then
u∗(y) = sup

(x,ξ)∈E
(x · y − ξ).

Proof. Put ũ(y) := sup(x,ξ)∈E(x·y−ξ). We showed in the proof of Theorem 4.15 that
the epigraph of u∗ is the set of points (y, η) ∈ Rn × R such that the affine function
x 7→ x · y − η is majorized by u. On the other hand, essentially the same argument
shows that the epigraph of ũ is the set of (y, η) ∈ Rn ×R such that the epigraph of
x 7→ x · y− η contains E. But by definition of convex envelopes, an affine functions
is majorized by u if and only if its epigraph contains E. Therefore, ũ and u∗ have
the same epigraphs, hence are equal. �

Legendre transformation is related to subgradients through the followingpropo-
sition, which is basically a reformulation of the definitions:

Proposition 4.17. For any u ∈ LC(Rn) and x, y ∈ Rn, we have
(4.8) u(x) + u∗(y) ≥ x · y.
Moreover, the following conditions are equivalent to each other:

(i) The equality in (4.8) is achieved;
(ii) y is a subgradient of u at x;
(iii) x is a subgradient of u∗ at y.
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An immediate consequence of the equivalence between Conditions (ii) and (iii)
is that the subgradient map of u and that of u∗ are inverse to each other:

Corollary 4.18. Given u ∈ LC(Rn), the set-valued maps x 7→ Du(x) and y 7→ Du∗(y)
are inverse to each other in the sense that y ∈ Du(x) ⇔ x ∈ Du∗(y). In particular, we
have Du(Rn) :=

⋃
x∈Rn Du(x) = dom(Du∗).

Proposition 4.17 also gives the values of u∗ on Du(Rn) = dom(Du∗) as
u∗(y) = x · y − u(x), ∀x ∈ Rn, y ∈ Du(x).

In particular, if u is differentiable on a set U ⊂ Rn, then the graph of u∗ over Du(U)
is parametrized by U itself through the following map, which is useful in affine
differential geometry (see Proposition 7.1 below):

Definition 4.19. Given a differentiable function u on an open set U ⊂ Rn, the map
U → Rn × R, x 7→

(
Du(x), x · Du(x)− u(x)

)
is called the Legendre map of u.

5. Legendre transforms of C-regular domains and C-convex hypersurfaces

In this sectionwe prove three fundamental results aboutC-regular domains and
C-convex hypersurfaces (see Section 3.1): the first, Theorem 5.2, identifies them
as strict epigraphs and graphs, respectively, of certain classes of convex functions
Rn → R, characterized through Legendre transformation; the second result, Theo-
rem 5.13, gives a necessary and sufficient condition for a completeC-convex hyper-
surface to be asymptotic to the boundary of a C-regular domain; finally we give in
Theorem 5.15 a necessary and sufficient condition for a family of C-convex hyper-
surfaces generating the same C-regular domain to be the level surfaces of a convex
function on the domain.

5.1. The affine section Ω and the spaces S(Ω) and S0(Ω). Given a proper convex
cone C ⊂ Rn+1, we write a point in Rn+1 as x̃ = (x, ξ) with x = (x1, · · · , xn) ∈
Rn and ξ ∈ R, considering ξ as the “vertical coordinate” and always assume the
coordinates are so chosen that C has the form

C = {(tx, t) | x ∈ C0, t > 0}
for a bounded convex domain C0 ⊂ Rn containing the origin. We identify Rn+1

with its dual vector spaceR∗(n+1) through the standard inner product (x, ξ)·(y, η) :=
x ·y+ξη, so that the dual cone C∗ ⊂ R∗(n+1), formed by linear forms onRn+1 taking
positive values on C \ {0}, can be written as C∗ = {(tx, t) | x ∈ C∗0 , t > 0}with

C∗0 := {x ∈ Rn | x · y + 1 > 0, ∀y ∈ C0}.
Note that C∗0 is also a bounded convex domain containing the origin. It is actually
the dual of C0 in the sense of Sasaki [Sas85]. The opposite domain

Ω := −C∗0
is important for us due to the following Lemma, which parametrizes the spaces of
C-null and C-spacelike half-spaces in Rn+1 by ∂Ω× R and Ω× R, respectively:

Lemma 5.1. Let C and Ω be as above. Then C-null (resp. C-spacelike) half-spaces in
Rn+1 are exactly strict epigraphs of affine functions on Rn of the form y 7→ x · y − ξ with
(x, ξ) ∈ ∂Ω× R (resp. (x, ξ) ∈ Ω× R).



24 XIN NIE AND ANDREA SEPPI

Here, the strict epigraph of a function u : Rn → R ∪ {±∞} is the set
epi◦(u) := {(x, ξ) ∈ Rn+1 | ξ > u(x)} = epi(u) \ graph(u).

The proof of the lemma is elementary and we omit it. We remark that Ω is the
section of the opposite dual cone−C∗ by the affine hyperplane {(x,−1) | x ∈ Rn}.
In particular,Ω can be identified projectivelywith the convex domainP(C∗) inRPn.

As mentioned, a main result of this section, Theorem 5.2 below, represents C-
regular domains and complete C-convex hypersurfaces as strict epigraphs and
graphs of the Legendre transforms of certain classes of convex functions. Roughly
speaking, the function tells us which C-null/spacelike half-spaces are used to cut
out a given domain/hypersurface.

The functions corresponding to C-convex hypersurfaces are as follows:
• Let S(Ω) denote the space of all u ∈ LC(Rn) such that u does not admit

subgradients at any point outside of Ω (see Definition 4.10). Namely,
S(Ω) := {u ∈ LC(Rn) | dom(Du) ⊂ Ω}.

• Let S0(Ω) denote the space of all u ∈ LC(Rn) satisfying:
– U := int dom(u) is nonempty and contained in Ω;
– u is smooth and locally strongly convex (see Section 2.1) in U ;
– u has infinite inner derivatives at every boundary point of U .

By Proposition 4.13, the last condition is equivalent to the gradient blowup con-
dition limx→∂U |Du(x)| → +∞, or the condition that u does not admit subgradi-
ents at any point of ∂U . The latter implies that S0(Ω) is a subset of S(Ω). Also
note that the effective domain of any u ∈ S(Ω) is contained in Ω because we have
dom(u) ⊂ dom(Du) by Lemma 4.11, so S(Ω) can be viewed as a space of R∪{+∞}-
valued functions on Ω.

5.2. Characterization of C-regular domains and C-convex hypersurfaces. Recall
from Section 4 that LC(∂Ω) is the space of lower semicontinuous functions ϕ :
∂Ω → R ∪ {+∞} convex on line segments, ϕ denotes the convex envelope of ϕ
and the asterisk stands for Legendre transformation.

Theorem 5.2. Given C and Ω as above, the following statements hold.
(1) The assignment ϕ 7→ D = epi◦(ϕ∗) gives a bijection from LC(∂Ω) to the space

of nonempty C-regular domains in Rn+1. Moreover, D is proper if and only if
Conv(dom(ϕ)) has nonempty interior.

(2) The assignment u 7→ Σ = graph(u∗) gives a bijection from S(Ω) to the space
of complete C-convex hypersurfaces in Rn+1. Moreover, Σ is smooth and locally
strongly convex if and only if u ∈ S0(Ω).

(3) Let u ∈ S(Ω) and put ϕ := u|∂Ω. Then epi◦(ϕ∗) is the C-regular domain gener-
ated by the C-convex hypersurface graph(u∗).

Let us establish some lemmas before giving the proof. We first note that by the
following lemma, the Legendre transforms ϕ∗ and u∗ in the theorem are R-valued
on the whole Rn, hence the strictly epigraphs and graphs in question are entire.

Lemma 5.3. Let u ∈ LC(Rn) be such that dom(u) is bounded and nonempty. Then
dom(u∗) = Rn.

Proof. For any y ∈ Rn, the lower semicontinuous convex function x 7→ u(x)− x · y
is +∞ outside of the bounded set dom(u), hence attends its minimum at some
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x0 ∈ dom(u). This means x 7→ (x − x0) · y + u(x0) is a supporting affine function
of u at x0, hence y ∈ Du(x0). Therefore, we have Du(Rn) = Rn and it follows from
Corollary 4.18 that dom(u∗) = Rn. �

For the assertion in Part (1) of the theorem about properness of D, we need:

Lemma 5.4. For k = 0, 1, · · · , n, let Ak denote the set of all u ∈ LC(Rn) such that
dom(u) is a k-dimensional affine subspace of Rn and u restricts to an affine function on
dom(u). Then the Legendre transformation u 7→ u∗ sends Ak to An−k.

Note that a 0-dimensional affine subspace is by convention a single point.

Proof. One can check that if ũ ∈ LC(Rn) is transformed from u ∈ LC(Rn) by
applying an affine transformation of Rn and adding an affine function (namely,
ũ(x) = u(g(x)) + a(x) for an affine transformation g : Rn → Rn and an affine func-
tion a : Rn → R), then the Legendre transforms ũ∗ and u∗ are related to each other
by a transformation of the same type. Therefore, the required assertion follows
from the fact that every function in Ak can be transformed into

uk(x) :=
{

0 if xk+1 = · · · = xn = 0
+∞ otherwise

,

and that the Legendre transform u∗k belongs toAn−k because it has the expression

u∗k(x) =
{

0 if x1 = · · · = xk = 0
+∞ otherwise

.

�

Finally, the last statement in Part (2) of the theorem relies on the following dual-
ity between continuous differentiability of a convex function and strictly convexity
of its Legendre transform:

Lemma 5.5 ([Roc70, Theorem 26.3]). Let u ∈ LC(Rn). Then the Legendre transform u∗

is strictly convex on every line segment in dom(Du∗) if and only if u satisfies:
• dom(u) has nonempty interior;
• u is C1 in int dom(u);
• u does not admit subgradients at any boundary point of dom(u).

Note that since the set dom(Du∗) is not necessarily convex (see [Roc70, P.253]),
it makes sense to talk about strict convexity of u∗ on line segments in dom(Du∗)
rather than on the entire set.

Proof of Theorem 5.2. (1) In view of Lemma 5.1, the definition for a subsetD ⊂ Rn+1

to be a C-regular domain (Definition 3.1) is equivalent to

D = int
( ⋂

(x,ξ)∈E

epi(y 7→ x · y − ξ)
)
, E ⊂ ∂Ω× R.

Since the intersection of epigraphs of a family of functions equals the epigraph of
their pointwise supremum, the above equality is equivalent to

D = int epi(w), where w(y) = sup
(x,ξ)∈E

(x · y − ξ), E ⊂ ∂Ω× R.

By Lemma 4.16, we can write w = u∗ where u ∈ LC(Rn) is the convex envelop of
E. If u 6≡ ±∞, Lemma 5.3 implies thatw is continuous onRn, henceD = int epi(w)
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coincides with the strict epigraph epi◦(w). In the particular cases u = −∞ and
u = +∞we have epi(w) = epi◦(w) = ∅ and epi(w) = epi◦(w) = Rn+1, respectively,
hence int epi(w) = epi◦(w) still holds. Therefore, we conclude that C-regular do-
mains in Rn+1 are exactly subsets of the form epi◦(u∗) with u ∈ LC(Rn) the convex
envelope of some subset of ∂Ω × R. But one can check from the definitions that
such a u coincides with the convex envelope of the restriction u|∂Ω, which is con-
tained in LC(∂Ω) with the only exception u ≡ −∞, corresponding to D = ∅. It
follows that nonempty C-regular domains are exactly subsets of the form epi◦(ϕ∗)
with ϕ ∈ LC(∂Ω). This proves the first statement.

To prove the second statement, we note that D = epi◦(ϕ∗) is improper (i.e. con-
tains a line in Rn+1) if and only if

ϕ∗ ≤ f for some f ∈ A1,

where Ak is defined in Lemma 5.4. Using the definition and involutive property
of Legendre transformation, it can be shown that u1 ≤ u2 ⇔ u∗1 ≥ u∗2 for u1, u2 ∈
LC(Rn). Therefore, by virtue of Lemma 5.4, the above condition is equivalent to

ϕ ≥ h for some h ∈ An−1.

This is in turn equivalent to the condition that dom(ϕ) has empty interior, while
Proposition 4.8 asserts dom(ϕ) = Conv(dom(ϕ)). The required statement follows.

(2) Σ ⊂ Rn+1 being a complete C-convex hypersurface means Σ = ∂G for a
convex domain G ⊂ Rn+1 whose supporting half-spaces are C-spacelike. Since
the boundary of a C-spacelike half-space cannot be vertical by our coordinate as-
sumptions, we infer that G = graph(w) for some convex function w : Rn → R. The
supporting half-spaces of G are exactly the strict epigraphs of supporting affine
functions of w. By Lemma 5.1, all supporting half-space are C-spacelike if and
only if all supporting affine function of w has linear part contained in Ω, which
just means Dw(Rn) ⊂ Ω (see Definition 4.10). Therefore, complete C-convex hy-
persurfaces are exactly graphs of convex functions w : Rn → R with Dw(Rn) ⊂ Ω.
By Corollary 4.18 and Lemma 5.3, such w’s are exactly the Legendre transforms of
functions in S(Ω). The first statement follows.

For the second statement, we pick u ∈ S(Ω) and need to show that the Legendre
transform u∗ is smooth and locally strongly convex if and only if u ∈ S0(Ω). To this
end, we first apply Lemma 5.5 (to both u and u∗) and conclude that u∗ is C1 and
strictly convex if and only if

• U := int dom(u) is nonempty and contained in Ω;
• u is C1 and strictly convex in U ;
• u does not admit subgradients at any boundary point of U .

When these conditions hold, u is smooth and locally strongly convex in U if and
only if its gradient map x 7→ Du(x) is smooth in U without critical points, and
similarly for smoothness and locally strongly convexity of u∗ on Rn. Therefore,
the second statement follows from the fact that the gradient maps of u and u∗ are
inverse to each other (see Corollary 4.18).

(3) Let D = epi◦(ψ∗) (where ψ ∈ LC(∂Ω)) be the C-regular domain generated
by Σ = graph(u∗). In view of Lemma 5.1, the condition that D generates Σ means
ψ
∗ is the pointwise supremum of all affine functions y 7→ x · y − ξ majorized by u∗

with (x, ξ) ∈ ∂Ω× R.
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On the other hand, the epigraph epi(u) consists of all (x, ξ) ∈ Rn+1 such that
y 7→ x · y − ξ is majorized by u∗ (see the proof of Theorem 4.15). Therefore, ψ∗ is
actually the pointwise supremumof y 7→ x·y−ξ for (x, ξ) running over epi(u|∂Ω) =
epi(ϕ), hence Lemma 4.16 implies ψ = ϕ. Therefore, we have D = epi◦(ϕ∗) and
the proof is completed. �

Given a C-regular domain D = epi◦(ϕ∗), the following proposition essentially
says thatD admitsC-null supporting half-spaces at any boundary point (y, ϕ∗(y)),
and every supporting half-space at that point is obtained from the C-null ones:

Proposition 5.6. Let Ω ⊂ Rn be a bounded convex domain and let ϕ ∈ LC(∂Ω). Then for
every y ∈ Rn there exists a closed subsetEy of ∂Ω such that the set Dϕ∗(y) of subgradients
of ϕ∗ at y is the convex hull of Ey in Rn.

Proof. By Proposition 4.17 and the definition of subgradients, x ∈ Dϕ∗(y) if and
only if there exists an affine function a on Rn with linear part y which supports ϕ
at x. This amust be the same for all x ∈ Dϕ∗(y), because there does not exists two
different affine functions with the same linear part both supporting a given convex
function. Therefore, we can write Dϕ∗(y) = {x ∈ Rn | ϕ(x) = a(x)}. By Lemma
4.9, the latter set is the convex hull of a closed subset of ∂Ω. �

This allows us to show the following basic fact:

Corollary 5.7. Let Σ be a C-convex hypersurface and let D be the C-regular domain
generated by Σ. Then Σ is contained in D.

Proof. Σ is contained in D by definition. If there exists p ∈ Σ ∩ ∂D, then every
supporting half-space ofD at p is also a supporting half-space ofΣ. But Proposition
5.6 and Lemma 5.1 implies that D has a least one C-null supporting half-space at
p, while supporting half-spaces of Σ are all C-spacelike, a contradiction. �

Example 5.8. (1) Every C-spacelike hyperplane is a complete C-convex hypersur-
face. It is the graph of Legendre transform of a function which is constantly +∞
except at a single point in Ω. The C-regular domain generated by it is the whole
Rn+1, corresponding to the constant function +∞ on ∂Ω.

(2) The coneC itself is aC-regular domain and corresponds to the constant func-
tion 0 on ∂Ω. Complete C-convex hypersurfaces generating C are in one-to-one
correspondence with continuous convex functions on Ω with zero boundary val-
ues (c.f. Proposition 4.2) and infinite inner derivatives at every boundary point.

5.3. Asymptoticity to the boundary. We give in this section a necessary and suf-
ficient condition for a complete C-convex hypersurface Σ to be asymptotic to the
boundary ∂D of aC-regular domainD, bywhichwemean the distance from x ∈ Σ
to ∂D with respect to an ambient Euclidean metric tends to 0 as x tends to infinity
in Σ. This will be deduced from the following general result:

Proposition 5.9. Let u1, u2 ∈ LC(Rn) be such that the effective domains dom(u1) and
dom(u2) are bounded subsets of Rn. Then the Legendre transforms u∗1 and u∗2 satisfy

lim
|y|→+∞

(u∗1(y)− u∗2(y)) = 0

if and only if u1 and u2 satisfy the following conditions:
(i) dom(u1) = dom(u2).
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(ii) u1 = u2 on the boundary of dom(u1).
(iii) If U := int dom(u1) is nonempty, then u1(x)−u2(x)→ 0 as x ∈ U tends to ∂U .

Remark 5.10. When U is empty, we have dom(u1) = ∂dom(u1), so the combination
of conditions (i) and (ii) means u1 = u2 on the entire Rn. On the other hand, when
U 6= ∅ and (i) holds, Condition (iii) actually implies (ii) because for any x0 ∈ ∂U
and x1 ∈ U we have ui(x0) = limt→0+ ui(x0 + t(x1−x0)) (i = 1, 2) (see Section 4.1).

Our main tool for the proof of Proposition 5.9 is the following lemma:

Lemma 5.11. Given u1, u2 ∈ LC(Rn), y ∈ Rn and c ∈ R, we have
(5.1) u∗1(y)− u∗2(y) > c

if and only if there exists an affine function a on Rn with linear part y (i.e. a(x) = x ·y−η
for some η ∈ R) such that
(5.2) sup

x∈Rn
(a(x)− u1(x)) > c, a ≤ u2 on Rn.

Note that in order to rule out the undefined difference +∞− (+∞), one should
understand (5.1) as u∗1(y) > u∗2(y) + c, which implies u∗2(y) < +∞.

Proof. We may assume u∗2(y) < +∞ because it is implied by both conditions. If
(5.2) holds, one can deduce (5.1) through

u∗1(y)− u∗2(y) = sup
x∈Rn

(x · y − u1(x))− sup
x∈Rn

(x · y − u2(x))

= sup
x∈Rn

(a(x)− u1(x))− sup
x∈Rn

(a(x)− u2(x)) > c

Conversely, if (5.1) holds, one easily checks (5.2) with a(x) := x · y − u∗2(y). �

The following property of subgradients is also used in the proof:

Lemma 5.12 ([Roc70, Theorem 24.7]). Given u ∈ LC(Rn) and a nonempty compact
subset E of U := int dom(u), the set of subgradients Du(E) :=

⋃
x∈E Du(x) is also

nonempty and compact.

Proof of Proposition 5.9. To prove the “if” part, we pick a sequence (yi) inRn tending
to∞ and need to show that u∗1(yi)− u∗2(yi)→ 0 under the assumptions (i), (ii) and
(iii). We may assume U is nonempty, otherwise u1 and u2 are identical by (i) and
(ii) (see Remark 5.10) and the required conclusion is trivial.

Take a subgradient xi ∈ Du∗1(yi) for each i. We have yi ∈ Du1(xi) by Corollary
4.18. It follows that the sequence (xi) ⊂ dom(Du1) ⊂ dom(u1) must leave any
compact subset of U , because otherwise a subsequence of (yi) would be bounded
by Lemma 5.12. Therefore, fromConditions (ii) and (iii) we get u1(xi)−u2(xi)→ 0.
Since u∗1(yi) = xi · yi − u1(xi) (see Proposition 4.17), we have

u∗1(yi)− u∗2(yi) = xi · yi − u1(xi)− sup
x∈Rn

(x · yi − u2(x))

≤ (xi · yi − u1(xi))− (xi · yi − u2(xi)) = u2(xi)− u1(xi).

It follows that lim sup(u∗1(yi) − u∗2(yi)) ≤ lim(u2(xi) − u1(xi)) = 0. Switching the
roles of u1 and u2, we get the required limit lim(u∗1(yi)− u∗2(yi)) = 0.

For the “only if” part, we assume u∗1(y) − u∗2(y) → 0 as y → ∞ in Rn and first
show that dom(u1) and dom(u2) have the same closure. Suppose by contradiction
that it is not the case. Switching the roles of u1 and u2 if necessary, we can find a
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point x0 in dom(u1) but not in the closure dom(u2). Since dom(u2) is convex, there
is an affine function b : Rn → R such that b(x0) > 0 and b ≤ 0 on dom(u2). Fix any
affine function a : Rn → Rwith a ≤ u2 onRn. Then for any t > 0 the affine function
at := a + tb still satisfies at ≤ u2. Moreover, given ε > 0, there is t1 > 0 such that
at(x0) − u1(x0) > ε for all t ≥ t1. Letting yt ∈ Rn denote the linear part of at, we
deduce from Lemma 5.11 that u∗1(yt) − u∗2(yt) ≥ ε for all t ≥ t1. This contradicts
the assumption because yt →∞ as t→ +∞, hence proves dom(u1) = dom(u2).

Property (ii) can be proved by contradiction in a similar way: Suppose for ex-
ample u1(x0) < u2(x0) at same boundary point x0 of dom(u1) = dom(u2) and pick
c ∈ R such that u1(x0) < c < u2(x0). By Corollary 4.5, there exists an affine func-
tion a ≤ u2 on Rn with a(x0) ≥ c. On the other hand, there is a nontrivial affine
function b such that b(x0) = 0 and b ≤ 0 on dom(u2). For any t > 0, the affine
function at := a+ tb satisfies at ≤ u2 and at(x0)−u1(x0) ≥ c−u1(x0) =: ε. Letting
yt be the linear part of at, we deduce from Lemma 5.11 that u∗1(yt) − u∗2(yt) > ε, a
contradiction.

Sincewe have shown that dom(u1) = dom(u2), Property (i) now follows from (ii).
Thus, it remains to show (iii). Since the roles of u1 and u2 are exchangeable, we only
need to show lim sup(u2(xi)−u1(xi)) ≤ 0 for every sequence (xi) inU approaching
∂U . Suppose by contradiction that it is not the case. Then there exist ε > 0 and a
sequence (xi) in U converging to some x0 ∈ ∂U such that u2(xi) − u1(xi) > ε for
every i. Pick a subgradient yi ∈ Du2(xi) for every i. By definition of subgradients,
the affine function

ai(x) := u2(xi) + (x− xi) · yi
is majorized by u2. Since ai(xi) − u1(xi) = u2(xi) − u1(xi) > ε, by Lemma 5.11
again, we have u∗1(yi)− u∗2(yi) > ε.

This contradicts the assumption if the sequence (yi) has a subsequence tending
to∞. Otherwise, (yi) is bounded and we deduce a contradiction in the following
way instead: Pick a nontrivial affine function b vanishing at x0 such that b ≤ 0 on
U and b(x) ≥ − ε2 |x0 − x| for all x ∈ Rn. Then the affine function

ãi := ai + 1
|x0−xi|b

satisfies ãi ≤ u2 on Rn and ãi(xi) − u1(xi) = u2(xi) − u1(xi) + 1
|x0−xi|b(xi) ≥

ε
2 .

Letting ỹi be the linear part of ãi and using Lemma 5.11 again, we obtain

u∗1(ỹi)− u∗2(ỹi) ≥ ε
2 .

But we have ỹi → ∞ because the linear part yi of ai is bounded while that of
1

|x0−xi|b goes to∞. Therefore, the above inequality contradicts the assumption and
concludes the proof. �

As a consequence of Proposition 5.9, we obtain:

Theorem 5.13. Let C and Ω be as in Section 5.1. Pick u ∈ S(Ω) and ϕ ∈ LC(∂Ω), so
that Σ := graph(u∗) is a completeC-convex hypersurface andD := epi◦(ϕ∗) aC-regular
domain. Then Σ is asymptotic to ∂D if and only if u and ϕ satisfy the following conditions:

• the effective domains dom(u) and dom(ϕ) coincide and have nonempty interior U ;
• ϕ(x)− u(x)→ 0 as x ∈ U tends to ∂U .

Moreover, these conditions imply that u = ϕ on ∂U and that u|∂Ω = ϕ. In particular, D
is the C-regular domain generated by Σ (see Theorem 5.2 (3)).
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Proof. The condition that Σ is asymptotic to ∂D is equivalent to u∗(y)− ϕ∗(y)→ 0
(y → ∞), which is in turn equivalent to Conditions (i) – (iii) from Proposition
5.9 for u1 = u and u2 = ϕ. As mentioned in Remark 5.10, if U is empty then (i)
and (ii) implies that u and ϕ are identical, which is impossible (by Corollary 5.7
for example). So (i) – (iii) altogether are equivalent to the two bullet points. This
proves the first statement. The assertion u = ϕ on ∂U follows from (i) and (ii) as
said, hence we have u = ϕ on Rn \ U and in particular, u|∂Ω = ϕ. �

Let us point out two remarkable consequences of Theorems 5.2 and 5.13. First,
if a C-regular domain D is given by a continuous function ϕ ∈ LC(∂Ω) ∩ C0(∂Ω),
so that ϕ and u are continuous functions on Ω with the same boundary values (see
Proposition 4.2), then every complete C-convex hypersurface generating D is as-
ymptotic to ∂D. A particular instance is when D is the cone C itself, as discussed
in Example 5.8. Second, a necessary condition for a C-regular D to admit a com-
plete C-convex hypersurface asymptotic to its boundary is that D is proper. We
give below an example of improper C-regular domain with complete C-convex
hypersurfaces generating it, and examine the corresponding ϕ and u.

Example 5.14. Given a proper convex cone C ⊂ R3, the “trough domain” formed
by intersecting two C-null half-spaces is an improper C-regular domain. For the
sake of clarity, we consider the cone C0 = {(x, y, z) ∈ R3 | z2 > x2 + y2, z > 0},
whose corresponding convex domain Ω under the setting of Section 5.1 is the unit
disk D ⊂ R2. Let ϕ : ∂D → R ∪ {+∞} be the function vanishing at (±1, 0) and
taking the value +∞ everywhere else, so that D = epi◦(ϕ∗) is the intersection of
the two C0-null half-spaces whose boundaries meet along the y-axis.

The hyperboloid H := {z2 − x2 − y2 = 1, z > 0} is of course a complete C0-
convex surface asymptotic to ∂C0. But for any λ > 1, the λ-dilation of H along the
y-axis, denoted by Hλ := {z2 − x2 − (y/λ)2 = 1, z > 0}, generates D instead. See
Figure 5.1. At the limit, we obtain the trough surface H∞ = {z2 − x2 = 1, z > 0}
from the second picture of Figure 5.1, which generates D as well.

Figure 5.1. Trough domain and C-convex hypersurfaces generating it.

One can check that H is the graph of the Legendre transform of

u(x, y) :=
{
−
√

1− (x2 + y2) if (x, y) ∈ D,
+∞ otherwise,

whileHλ andH∞ are the graphs of Legendre transforms of the functions uλ, u∞ ∈
S(D) defined by

uλ(x, y) := u(x, λy) for λ ∈ (1,+∞), u∞(x, y) :=
{
u(x, y) if y = 0,
+∞ if y 6= 0.
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Thus, uλ and u∞ restrict to ϕ on ∂D, but they violate the conditions in Theorem
5.13. Also note that uλ belongs to S0(D) but u∞ does not, which reflects the fact
that Hλ is strictly convex and H∞ is not (see Theorem 5.2 (2)).

5.4. Convex foliations byC-convex hypersurfaces. Given a family of completeC-
convex hypersurfaces (Σt)t∈R in Rn+1 generating the same C-regular domain D,
we give in the next theorem a necessary and sufficient condition for (Σt) to be a
convex foliation ofD in the sense that there is convex functionD → R for which Σt
is the level hypersurface with value t.

Theorem 5.15. Let ϕ ∈ LC(∂Ω) and let (ut)t∈R be a one-parameter family in S(Ω) with
ut|∂Ω = ϕ, so that every Σt := graph(u∗t ) is a completeC-convex hypersurface generating
the C-regular domain D := epi◦(ϕ∗). Suppose ut is pointwise nondecreasing in t. Then
there is a convex functionK : D → R such that Σt = K−1(t) for every t ∈ R if and only
if (ut) further satisfies the following conditions:

(i) for any x ∈ Rn and t1 < t2, if ut1 admits a subgradient at x, then the strict
inequality ut1(x) < ut2(x) holds;

(ii) ut is not uniformly bounded from below and limt→+∞ ut = ϕ pointwise;
(iii) ut(x) is a concave function in t for every fixed x ∈ Rn.

In the proof, we make use of the following general result on the Legendre trans-
form of the pointwise infimum of a family of functions:

Lemma 5.16. Let F be a subset of LC(Rn) and f ∈ L̃C(Rn) be the convex envelope of the
function x 7→ infu∈F u(x). Then the Legendre transform of f is given by

f∗(y) = sup
u∈F

u∗(y).

Proof. Theorem 4.15 implies the general fact that any function u : Rn → R∪{±∞}
and its convex envelop u ∈ LC(Rn) have the same Legendre transform. Therefore,

f∗(y) = sup
x∈Rn

(x · y − f(x)) = sup
x∈Rn

(
x · y − inf

u∈F
u(x)

)
= sup
x∈Rn

sup
u∈F

(x · y − u(x))

= sup
u∈F

sup
x∈Rn

(x · y − u(x)) = sup
u∈F

u∗(y).

�

Proof of Theorem 5.15. Given t1 < t2, since ut1 ≤ ut2 on Rn, we have u∗t1 ≥ u∗t2 by
definition of Legendre transformation. Put

h : Rn × R→ R, h(y, t) := u∗t (y) = sup
x∈Rn

(x · y − ut(x)) .

We shall first show that Conditions (i), (ii) and (iii) are equivalent to the following
conditions, respectively:

(i*) u∗t (y) is strictly decreasing in t for every y ∈ Rn;
(ii*) limt→−∞ u∗t = +∞ and limt→+∞ u∗t = ϕ∗ pointwise;
(iii*) h(y, t) is a convex function on Rn × R.
“(i)⇔ (i*)”: Suppose (i) fails, namely ut1(x) = ut2(x) = ξ ∈ R for some t1 < t2

and x ∈ Rn such that ut1 admits a subgradient y at x. Then y is also a subgradient
of ut2 at x and Proposition 4.17 gives u∗t1(y) = u∗t2(y) = x · y− ξ, so (i*) fails as well.
The converse is proved in the same way.
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“(ii)⇔ (ii*)”: Define u± ∈ L̃C(Rn) as follows: first put

ũ−(x) := inf
t∈R

ut(x) = lim
t→−∞

ut(x), u+(x) := sup
t∈R

ut(x) = lim
t→+∞

ut(x)

(so u+ ∈ LC(Rn) but ũ− is not necessarily lower semicontinuous), then let u− be
the convex envelope of ũ−. We claim that the Legendre transforms of u± are

u∗−(y) = sup
t∈R

u∗t (y) = lim
t→−∞

u∗t (y), u∗+(y) = inf
t∈R

u∗t (y) = lim
t→+∞

u∗t (y).

The former follows immediately from Lemma 5.16. For the latter, we note that
since u∗t : Rn → R is decreasing in t and minorized by ϕ∗, the pointwise limit
y 7→ inft∈R u∗t (y) is an R-valued convex function on the entire Rn, hence its con-
vex envelope is itself and Lemma 5.16 implies that its Legendre transform is u+.
Therefore, using the involutive property of Legendre transformation, we establish
the claim.

With these definitions and expressions of u± and u∗±, Conditions (ii) and (ii*)
can be reformulated as u− = −∞, u+ = ϕ and u∗− = +∞, u∗+ = ϕ∗, respectively,
hence they are equivalent to each other.

“(iii)⇔ (iii*)”: If ut(x) is concave in t then (y, t) 7→ x·y−ut(x) is a convex function
on Rn × R for every x ∈ Rn, hence the pointwise supremum h(y, t) is convex.
Conversely, suppose h is convex. It is a general fact (see [Roc70, Theorem 5.7]) that
if A : Rm → Rl is a linear map and f : Rm → R ∪ {+∞} is a convex function,
then y 7→ infx∈A−1(y) f(x) is a convex function on Rl. Fixing x ∈ Rn and applying
this to the projection A : Rn × R→ R and the function f(y, t) = h(y, t)− x · y, we
conclude that

inf
y∈Rn

(h(y, t)− x · y) = − sup
y∈Rn

(x · y − h(y, t)) = −u∗∗t (x) = −ut(x)

is convex in t. Thus, ut(x) is concave in t. This finishes the proof of the equivalences
between the conditions (i), (ii), (iii) and (i*), (ii*), (iii*).

To prove the theorem, it is sufficient to show that (i*), (ii*) and (iii*) hold alto-
gether if and only if there is a convex function K on D := epi◦(ϕ∗) with K−1(t) =
Σt := graph(u∗t ) for every t ∈ R.

If suchK exists, then (Σt) is a foliation ofD, hence Conditions (i*) and (ii*) hold
because u∗t is non-increasing in t from the beginning. To show (iii*), we note that the
defining property K−1(t) = graph(u∗t ) of K can be rewritten as h(y,K(y, s)) = s
for all (y, s) ∈ Rn+1. It follows that the epigraph epi(K) ⊂ Rn × R× R is obtained
from the epigraph of h by switching the last two R-components: in fact,

(y, s, t) ∈ epi(K)⇔ t ≥ K(y, s)⇔ h(y, t) ≤ h(y,K(y, s)) = s⇔ (y, t, s) ∈ epi(h),

where the second equivalence is because h(y, t) = u∗t (y) is strictly decreasing in
t (Condition (ii*)). Therefore, the convexity of K implies Condition (iii*), namely
convexity of h. This proves the “if” part.

Finally, suppose (i*), (ii*) and (iii*) hold. Then u∗t (y) strictly decreases from +∞
toϕ∗(y) as t goes from−∞ to+∞ and is convex in t. Since convex functionsR→ R
are continuous, t 7→ u∗t (y) is a bijection from R to (ϕ∗(y),+∞). It follows that (Σt)
is a foliation of D, hence we can define K : D → R by K−1(t) = Σt. The above
relation between epi(K) and epi(h) still holds and implies thatK is convex as h is.
This proves the “only if” part and completes the proof of the theorem. �
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We conclude this section by some remarks and examples about Theorem 5.15.
Assuming (ut) satisfies the conditions in the theorem, we first note that dom(ut) is
actually the same for all t ∈ R and contains dom(ϕ), because ut(x) is a nondecreas-
ing concave function in tmajorized by ϕ(x), and every R ∪ {+∞}-valued concave
function on R is either R-valued or constantly +∞. However, dom(ut) does not
necessarily coincide with dom(ϕ). For example, when dom(ut) is a single point in
Ω, we have dom(ϕ) = ∅ (see Example 5.8 (1)) and the corresponding foliation is that
of D = Rn+1 by C-spacelike hyperplanes parallel to each other.

On the other hand, if every Σt is asymptotic to ∂D (see Section 5.3), we have
dom(ut) = dom(ϕ) by Theorem 5.13. In case, ut can be viewed as a family of R-
valued convex functions on the convex domain U = int dom(ϕ) with the same
boundary values (see Section 4.1). As a simple example, for the cone C itself as
a C-regular domain, given any C-convex hypersurface Σ = graph(u∗) generating
it (see Example 5.8 (2)), all the scalingsΣt := e−tΣ (t ∈ R) form a convex foliation of
C with the corresponding (ut) given by ut = e−tu, which has zero boundary value.
A particular case is when Σ = ΣC is the Cheng-Yau affine sphere and u = wΩ is the
Cheng-Yau support function (see Theorems 2.7 and 7.3). The main results of this
paper can be viewed as generalizing this case to arbitrary ϕ ∈ LC(∂Ω).

6. Preliminaries on Monge-Ampère equations

We review in this section some basic notions and results from the theory of real
Monge-Ampère equations used in the next sections.

Let Ω ⊂ Rn be a convex domain and u : Ω → R be a function. A foundational
fact of the theory is that the determinant of hessian det D2u can be defined not
only when u is C2 but also in the generalized sense when u is merely convex (hence
Lipschitz but not necessary C1). In the latter situation, det D2u : Ω → [0,+∞] is
by definition the density of the Monge-Ampère measureMu of u, defined through
subgradients (see Section 4.4) by∫

E

det D2u dL :=Mu(E) := L(Du(E)) for any Borel subset E ⊂ Ω.

where L denotes the Lebesgue measure. Therefore, if this density equals a pre-
scribed measurable function g on Ω, we call u a generalized solution to det D2u = g.

The Monge-Ampère measure has the following stability property:

Lemma 6.1 ([TW08, Lemma 2.2]). Let Ω ⊂ Rn be a convex domain and ui : Ω→ R be a
sequence of convex functions converging on compact sets to u∞. Then the Monge-Ampère
measuresMui converges weakly to the Monge-Ampère measureMu∞.

The following super-additive property will also be important:

Lemma 6.2 ([Fig17, Lemma 2.9]). Let Ω ⊂ Rn be a convex domain and u1, u2 : Ω→ R
be convex functions. Then

det D2(u1 + u2) ≥ det D2u1 + det D2u2.

Here and below, inequalities between Borel measure densities such as the above
one are understood via evaluation on Borel sets. Note that if u1 and u2 are C2 then
the above inequality follows from the fact that det(A + B) ≥ det(A) + det(B) for
all positive definite symmetric matrices A and B.

Our main tool for estimating solutions of Monge-Ampère equations is:
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Lemma 6.3 (Maximum Principle). Let U ⊂ Rn be a bounded convex domain and
u+, u− : U → R be convex functions such that det D2u+ ≤ det D2u− in U . Then

inf
U

(u+ − u−) = lim inf
x→∂U

(u+(x)− u−(x))

Here, lim infx→∂U f(x) is defined as the supremum of infU\E f as E runs over
all compact subsets of U . A more standard version of the lemma (see e.g. [Gut01,
Theorem 1.4.6]) deals with continuous convex functions u± ∈ C0(U), for which the
conclusion amounts to minU (u+ − u−) = min∂U (u+ − u−). We need the above
simple generalization to cover the case where u± → +∞ near ∂U in Section 8.4.

Proof. Put a := infU (u+ − u−) and b := lim infx→∂U (u+(x)− u−(x)). Assume by
contradiction that a < b and fix c ∈ (a, b). Then there is a compact set E ⊂ U such
that u+ − u− ≥ c on U \ E. As a consequence, there is x0 ∈ E such that

a = min
E

(u+ − u−) = u+(x0)− u−(x0).

The rest of the proof is standard (see [Gut01, Theorem 1.4.6]): fix c′ ∈ (a, c) and
pick δ > 0 small enough such that w := u− + δ|x− x0|2 + c′ satisfies

u+ − w = u+ − u− − δ|x− x0|2 − c′ ≥ c− c′ − δ|x− x0|2 > 0 on U \ E.
Then G := {x ∈ U | u+(x) ≤ w(x)} is a compact subset of E and is nonempty
because u+(x0)− w(x0) = a− c′ < 0. Since u+ = w on ∂G by continuity, we have
Dw(G) ⊂ Du+(G) and hence∫

G

det D2w dL = L(Dw(G)) ≤ L(Du+(G)) =
∫
G

det D2u+ dL.

But on the other hand, by Lemma 6.2, we have
det D2w ≥ det D2u− + det D2(δ|x− x0|2) ≥ det D2u+ + (2δ)n,

a contradiction. �

Lemma 6.3 implies the fundamental Comparison Principle for Monge-Ampère
equations: if u± ∈ C0(U) are convex functions with det D2u+ ≤ det D2u− in U
and u+ ≥ u− on ∂U , then u+ ≥ u− throughout U . The following generalization,
essentially proved in [BSS19, Proposition 3.11], allows us to get the same conclusion
without comparing u+ and u− at certain boundary points:

Lemma 6.4 (Generalized Comparison Principle). Let U ⊂ Rn be a bounded convex
domain, u+ : U → R ∪ {+∞} be a lower semicontinuous convex function taking finite
values in U and u− : U → R be a continuous convex function such that

• det D2u+ ≤ det D2u− in U ;
• u+(x) ≥ u−(x) for every x ∈ ∂U where u+ has finite inner derivative and every
x ∈ ∂U where u− has infinite inner derivative.

Then we have u+ ≥ u− throughout U .

We refer to Definition 4.12 and Proposition 4.13 for the notion of finiteness of
inner derivatives.

Proof. Since U and ∂U are compact and u+−u− is lower semicontinuous, there are
x0 ∈ U and x1 ∈ ∂U and such that

a := inf
U

(u+ − u−) = min
x∈U

(u+(x)− u−(x)) = u+(x0)− u−(x0).
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b := lim inf
x→∂U

(u+(x)− u−(x)) = min
x∈∂U

(u+(x)− u−(x)) = u+(x1)− u−(x1).

Suppose by contradiction that a < 0. Then we can show a < b in the following two
possible cases respectively:

• If either u+ has finite inner derivatives or u− has infinite inner derivatives
at x1, then b = u+(x1)− u−(x1) ≥ 0 > a by assumption;

• Otherwise, u+ has infinite inner derivatives and u− has finite inner deriva-
tives at x1. This means that given x ∈ U , we have

lim
t→0+

u+(x1 + t(x− x1))− u+(x1)
t

= −∞, lim
t→0+

u−(x1 + t(x− x1))− u−(x1)
t

∈ R.

As a consequence, when t > 0 is small enough, we have
[u+(x1 + t(x− x1))− u+(x1)]− [u−(x1 + t(x− x1))− u−(x1)] < 0,
hence b > u+(x1 + t(x− x1))− u−(x1 + t(x− x1)) ≥ a.

This contradicts Lemma 6.3 and finishes the proof. �

We proceed to review results on regularity of Monge-Ampère equations. The
following theorem follows from the Evans-Krylov estimate for more general non-
linear elliptic PDEs:

Theorem 6.5 ([TW08, Theorem 3.1]). Let Ω ⊂ Rn be a bounded convex domain, u :
Ω→ R be a convex function and g be a positive smooth function on Ω. If u is a generalized
solution of det D2u = g and is strictly convex, then u is smooth.

There is a simple criterion for strictly convexity in dimension 2 exclusively:

Theorem6.6 (Aleksandrov-Heinz, see [TW08, Remark 3.2]). LetΩ ⊂ R2 be a bounded
convex domain and u : Ω → R be a convex function. If u is a generalized solution of
det D2u = g with g ≥ c for a constant c > 0, then u is strictly convex.

Theorems 6.6 and 6.5 provide the following regularity result in dimension 2:

Theorem 6.7. Let Ω ⊂ R2 be a bounded convex domain and let u : Ω → R be a convex
function. If u is a generalized solution of det D2u = g with g positive and smooth, then u
is smooth.

Finally, we collect some simple existence results of generalized solutions to the
Monge-Ampère equation det D2u = g. For g = 0, it basically follows from Lemma
4.9 that the convex envelop ϕ of any ϕ ∈ LC(∂Ω) gives a solution in the interior of
effective domain:

Theorem 6.8 ([Gut01, Theorem 1.5.2]). Let Ω be a bounded convex domain in Rn and
let ϕ ∈ LC(∂Ω). Then det D2ϕ = 0 in the interior of dom(ϕ).

For the Dirichlet problem with continuous boundary value, we have:

Theorem 6.9 ([Gut01, Theorem 1.6.2], [Fig17, Theorem 2.14]). Let Ω ⊂ Rn be a
bounded strictly convex domain and consider ϕ ∈ C0(∂Ω) and g a nonnegative Lebesgue
integrable function on Ω. Then there exists a unique generalized solution u ∈ C0(Ω) to the
Dirichlet problem {

det D2u = g in Ω,
u|∂Ω = ϕ.

Note that the uniqueness assertion follows from Comparison Principle.
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7. Monge-Ampère equation for affine (C, k)-hypersurfaces

In this section, we first compute the affine normals and intrinsic data (see Sec-
tions 2.1 and 2.2) of the Legendremapof a smooth function (Definition 4.19), viewed
as a hypersurface immersion, thenwe use the computation to express the condition
for a complete C-convex hypersurface Σ = graph(u∗) (with u ∈ S(Ω), see Theorem
5.2) to be an affine (C, k)-hypersurface as a Monge-Ampère equation on u.

7.1. Computations of intrinsic data. Recall from Section 4.5 that given an open
set U ⊂ Rn and a function u ∈ C1(U), we define the Legendre map of u as

f : U → Rn+1, f(x) =
(

Du(x)
x · Du(x)− u(x)

)
.

Here and below, we write points in Rn and Rn+1 in coordinates as column vectors.
In particular, the gradient is written in column as Du = t(∂1u, · · · ∂nu). Also view
the hessian D2u = (∂iju) as an n× nmatrix of functions.

Consider Rn+1 as an affine space equipped with the volume form given by the
standard determinant of (n + 1) × (n + 1) matrices. It turns out that f is a non-
degenerate hypersurface immersion (see Section 2.1) if and only if D2u is non-
degenerate. The following proposition computes some of the intrinsic data of f :

Proposition 7.1. Let U ⊂ Rn be an open set, u : U → R be a smooth function with
det D2u > 0 and f : U → Rn+1 be the Legendre map of u, viewed as a non-degenerate
hypersurface immersion. Then the Legendre map N : U → Rn+1 of the function

w := −(det D2u)−
1

n+2

is an affine normal mapping of f . The resulting affine metric and shape operator are

h = − 1
w

D2u, S = (D2u)−1D2w.

Moreover, the affine conormal mapping dual to N is

N∗ : U → R∗(n+1) ∼= Rn+1, N∗(x) = 1
w

(
x
−1

)
.

Here, as in Section 5.1, we identify the dual vector spaceR∗(n+1) withRn+1 using
the standard inner product.

Proof. Given any map N : U → Rn+1, we let N0 := t(N1, · · · , Nn) : U → Rn
denote its first n entries and put w(x) := x ·N0(x) −Nn+1(x). We shall prove the
first statement of the proposition by showing that N is an affine normal mapping
of f if and only if w has the required expression up to sign and N is the Legendre
map of w.

Let I denote the n× n identity matrix. A computation gives

(7.1) (∂1f, · · · , ∂nf,N) =
(
I N0
tx Nn+1

)(
D2u

1

)
.

The determinant of the above matrix is−w det D2u. SoN gives a transversal vector
field of f if and only if w 6= 0. In this case, the induced volume form is

ν = det(∂1f, · · · , ∂nf,N) dx1 ∧ · · · ∧ dxn = −w det D2u dx1 ∧ · · · ∧ dxn,
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while the other intrinsic data are determined by Eq.(2.2) in Section 2.3. In order to
obtain explicit expressions, we first compute the inverse matrix to (7.1) and get

(∂1f, · · · , ∂nf,N)−1 = 1
w

(
(D2u)−1

1

)(
wI −N0

tx N0
tx −1

)
.

Multiplying it to both sides of Eq.(2.2) and computing, we get

τ = 1
w

(tx dN0 − dNn+1) , h = − 1
w

D2u.

We also get the following expression of S when τ = 0 particularly:

S = (D2u)−1(∂1N0, · · · , ∂nN0).
By definition, N is an affine normal field of f if τ = 0 and the volume form

dvolh = |w|−n2 |det D2u| 12 dx1 ∧ · · · ∧ dxn

coincides with ν. By the expression of ν obtained earlier, the latter condition is
equivalent to the equality w = ±(det D2u)−

1
n+2 . On the other hand, one can check

from the definitions of w and the expression of τ that τ = 0 if and only if N is the
Legendre map of w. This proves the first statement.

While the required expression of h is already obtained above, using the condi-
tion that N is the Legendre map of w, one checks that the above expressions of S
coincides with the required one, and that the N∗ given by the expression in the
statement of the proposition satisfies tN∗(∂1f, · · · , ∂nf,N) = (0, · · · , 0, 1), which
meansN∗ is the affine conormalmapping dual toN . So the proof is completed. �

7.2. Equation of affine (C, k)-hypersurfaces. Recall from Section 5.1 that given
a bounded convex domain Ω ⊂ Rn, S0(Ω) is the space of lower semicontinuous
convex functions u : Rn → R such that u is smooth, locally strongly convex and has
the gradient blowup property limx→∂U |Du(x)| = +∞ in some convex subdomain
U ⊂ Ω with u = +∞ outside of U .

We showed in Theorem 5.2 that the complete C-convex hypersurfaces (see Def-
inition 3.3) in Rn+1 which are smooth and locally strongly convex are exactly the
entire graphs graph(u∗), u ∈ S0(Ω), where u∗ is the Legendre transforms u and Ω
is an affine section of the opposite dual cone −C∗. The goal of this section is to
deduce from Proposition 7.1 conditions on u ∈ S0(Ω) for graph graph(u∗) to be an
affine (C, k)-hypersurface.

For the particular case of affine spheres, Proposition 7.1 implies:

Corollary 7.2. Let C and Ω be as in Section 5.1. Then Σ ⊂ Rn+1 is a complete hy-
perbolic affine sphere generating C with affine shape operator the identity if and only if
Σ = graph(w∗) for w ∈ S0(Ω) satisfying

(7.2)
{

det D2w = (−w)−n−2 in Ω,
w|∂Ω = 0.

In this case, the affine sphere Σ∗ dual to Σ (see Section 2.5) is given by

Σ∗ =
{

1
w(x)

(
x
−1

) ∣∣∣x ∈ Ω
}
⊂ R∗(n+1) ∼= Rn+1.

Therefore, the Cheng-Yau theorem on unique existence of affine spheres (Theo-
rem 2.7) is a consequence of the following unique solvability result on (7.2):



38 XIN NIE AND ANDREA SEPPI

Theorem7.3 (Cheng-Yau [CY77], analytic version of Theorem2.7). For every bounded
convex domain Ω ⊂ Rn, there exists a unique convex function wΩ ∈ C0(Ω)∩ C∞(Ω) sat-
isfying Eq.(7.2). Moreover, wΩ satisfies limx→x0 |∇wΩ(x)| → +∞ for all x0 ∈ ∂Ω.

In the sequel, we refer to the function wΩ as the Cheng-Yau support function of Ω.

Remark 7.4. ByCorollary 7.2, the relation betweenwΩ and affine spheres is twofold:
on one hand, if we extend wΩ to Rn by setting wΩ = +∞ outside of Ω, then the
graph of its Legendre transform w∗Ω is the affine sphere ΣC from Theorem 2.7; on
the other hand, while the dual cone C∗ consists of all negative scalings of points
(x,−1) ∈ Rn+1 with x ∈ Ω, the locus of the 1

wΩ(x) -scaling is the dual affine sphere
ΣC∗ in C∗. The latter property can be used to determine wΩ when ΣC∗ is known.

Complete affine (C, k)-hypersurfaces can now be characterized throughMonge-
Ampère equation as follows:

Corollary 7.5. LetC andΩ be as in Section 5.1 andwΩ be the Cheng-Yau support function
of Ω. Then Σ ⊂ Rn+1 is a complete affine (C, k)-hypersurface with k > 0 if and only if Σ
is the graph of the Legendre transform of some u ∈ S0(Ω) satisfying

(7.3) det D2u = k−
n+2

2(n+1)

(−wΩ)n+2 in U := int dom(u).

In this case, the image of the projectivized affine conormal mapping P◦N∗ : Σ→ P(C∗) ∼=
Ω is exactly U .

This result is essentially contained in [LSC97] albeit in a local sense.

Proof. Affine (C, k)-hypersurfaces are smooth, locally strongly convex andC-convex
(see Section 3.2). Therefore, by Theorem 5.2, a complete affine (C, k)-hypersurface
is the graph of the Legendre transform u∗ of some u ∈ S0(Ω). We shall deter-
mine the condition on u for the graph to be affine (C, k). Since u∗ is a smooth
convex function on the entire Rn (see Lemma 5.3 and Theorem 5.2 (2)), we have
Du(U) = Du(Rn) = dom(Du∗) = Rn (the first equality follows from the defini-
tion of S0(Ω) and the second from Corollary 4.18), hence Σ is parametrized by the
Legendre map of u|U ∈ C∞(U) (see Section 4.5). Proposition 7.1 and Corollary 7.2
then imply that the affine normalmapping ofΣ has image in a scaling of theCheng-
Yau affine sphere ΣC if and only if w := −(det D2u)−

1
n+2 is a constant multiple of

the Cheng-Yau support function wΩ, i.e.

det D2u = (−w)−n−2 = c(−wΩ)−n−2 in U

for some constant c > 0. In this case, we havew = c−
1

n+2wΩ and the affineGaussian
curvature of Σ is

k = det(S) = det(D2u)−1 det D2w = c−1(−wΩ)n+2c−
n
n+2 det D2wΩ = c−

2(n+1)
n+2 ,

which yields c = k−
n+2

2(n+1) . Therefore,Σ = graph(u∗) is an affine (C, k)-hypersurface
if and only if u satisfies (7.3). This proves the first statement. The second statement
follows from the expression of affine conormal given in Proposition 7.1. �
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7.3. Properties of the Cheng-Yau support function. In this section, we collection
some results on the Cheng-Yau support function wΩ from Theorem 7.3.

We first give explicit expression of wΩ when Ω is a ball or a simplex, which cor-
respond to hyperboloids and Ţiţeica affine spheres from Example 2.9 and 2.10:

Example 7.6 (Balls and simplices). Let B := {x ∈ Rn | |x| < 1} be unit ball. Then

wB(x) = −
√

1− |x|2.
For a general ball B = BR(x1) := {x ∈ Rn | |x− x1| < R}, we have

wB = −R−
1

n+1
√
R2 − |x− x1|2.

On the other hand, for the simplex ∆ ⊂ Rn with vertices x0, · · · , xn ∈ Rn, given
by ∆ := {t0x0 + · · ·+ tnxn | ti > 0, t0 + · · ·+ tn = 1}, we have

w∆(x) = −
(

vol(∆)
Λ t0(x) · · · tn(x)

) 1
n+1

,

where vol(∆) is the volume of ∆, Λ = Λn is the constant mentioned in Example
2.10 and the functions ti : ∆→ (0, 1) are determined by

t0(x)x0 + · · ·+ tn(x)xn = x, t0(x) + · · · tn(x) = 1 for all x ∈ ∆.
Let Pi ⊂ Rn denote the hyperplane spanned by the vertices of ∆ other than xi.

It is elementary to check that after choosing a Euclideanmetric onRn, we canwrite

ti(x) = dist(x, Pi)
dist(xi, Pi)

,

where “dist” stands for the distance induced by the metric.

These expressions are obtained using Remark 7.4 and the expressions of affine
spheres given in Example 2.10. The dimensional exponents appearing in the ex-
pressions can be justified from the fact that wg(Ω)(x) = Jac(g)

1
n+1wΩ(g−1(x)) for

any affine transformation g : Rn → Rn, where Jac(g) denotes the Jacobian of g.
Our main technique to deal with a general wΩ is to compare it with the above

special ones using the following lemma:

Lemma 7.7. Let Ω1 and Ω2 be bounded convex domains in Rn such that Ω1 ⊂ Ω2. Then
we have wΩ1 ≥ wΩ2 on Ω1.

Proof. Assume by contradiction that the required inequality does not hold, so that
the function wΩ1 −wΩ2 on Ω1, which takes nonnegative values on ∂Ω1, achieves its
negative minimum at some x0 ∈ Ω1. It follows that the hessian D2(wΩ1 −wΩ2)(x0)
is positive semidefinite, hence

(−wΩ1)−n−2 = det D2wΩ1 ≥ det D2wΩ2 = (−wΩ2)−n−2

at x0. But this contradicts the fact that wΩ1(x0)− wΩ2(x0) < 0. �

We proceed to show that as a sequence of convex domains approaches Ω from
outside, the resulting sequence of Cheng-Yau support functions converges uni-
formly to wΩ on Ω:

Proposition 7.8. Given a bounded convex domain Ω ⊂ Rn and ε > 0, there exists δ > 0
such that for any convex domain Ω′ containing Ω and contained in a δ-neighborhood of Ω,
we have wΩ − ε ≤ wΩ′ ≤ wΩ in Ω.
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In the statement of the proposition and the proof below, we fix an auxiliary Eu-
clidean metric on Rn, under which the δ-neighborhood is defined.

Proof. The second inequality is given by Lemma 7.7. To prove the first one, we let
Ωδ denote the δ-neighborhood of Ω, which is itself a bounded convex domain. Let
wδ := wΩδ ∈ C0(Ωδ) denote the Cheng-Yau support function of Ωδ . Key to the
proof is to show that
(7.4) lim

δ→0
min
∂Ω

wδ = 0.

To this end, we claim that there is a constant C only depending on n such that
for every bounded convex domain U ⊂ Rn and every y ∈ ∂U there exists a simplex
∆ ⊂ Rn containingU with vol(∆) ≤ C diam(U)n and y ∈ ∂∆ (where “diam” stands
for diameter). To show this, we fix a simplex ∆0 containing the unit half-ball B :=
{x ∈ Rn | |x| < 1, x1 > 0} such that the boundary ∂∆0 contains the origin 0. Given
U and y, there is an isometry g : Rn → Rn with g(0) = y such that U is contained
in the half-ball g (diam(U)B). The simplex ∆ = g(diam(U)∆0) then satisfies the
requirements of the claim with C = vol(∆0).

To prove (7.4), we fix δ > 0, a point x0 ∈ ∂Ω and a supporting hyperplane H of
Ω at x0. Let y ∈ Rn be the point such that the vector −→x0y is orthogonal to H , has
length δ and points towards the exterior of Ω. Then y is on the boundary of Ωδ and
the above claim yields a simplex ∆ containing Ωδ such that y ∈ ∂∆ and

vol(∆) ≤ C diam(Ωδ)n ≤ C(diam(Ω) + 2δ)n.
Let v0, · · · , vn ∈ ∂∆ be the vertices of ∆ such that y is contained in the face of ∆
spanned by v1, · · · vn. Let P0 ⊂ Rn be the hyperplane containing that face. Since ∆
contains Ω, we have

dist(v0, P0) ≥ hΩ := sup{h | Ω contains a ball with diameter h }.

Example 7.6 gives w∆(x0) = −
(
Λ−1vol(∆)t0 · · · tn

) 1
n+1 with t0, · · · tn ∈ (0, 1) and

t0 = dist(x0,P0)
dist(v0,P0) . The above estimates then yield

|w∆(x0)| ≤
(

dist(x0, P0)
dist(v0, P0) ·

vol(∆)
Λ

) 1
n+1

≤
(

δ

ΛhΩ
vol(∆)

) 1
n+1

≤
(
Cδ

ΛhΩ
(diam(Ω) + 2δ)n

) 1
n+1

.

The last bound is independent of x0 and goes to 0 as δ → 0, while Lemma 7.7
implies w∆(x0) ≤ wδ(x0) ≤ 0. The required limit (7.4) follows.

The required inequalitywΩ−ε ≤ wΩ′ can be deduced from (7.4) using the classi-
cal Maximum Principle for Monge-Ampère equations (see Section 6): Given ε > 0,
on one hand, (7.4) yields δ > 0 such that

wΩ − ε = −ε ≤ wδ ≤ wΩ′ on ∂Ω
for any convex domain Ω′ with Ω ⊂ Ω′ ⊂ Ωδ , where the last equality is provided
by Lemma 7.7; on the other hand, the inequality wΩ′ ≤ wΩ ≤ 0 implies

det D2(wΩ − ε) = (−wΩ)−n−2 ≥ (−wΩ′)−n−2 = det D2wΩ′ in Ω.
Thus, we can apply Maximum Principle and obtain the required inequality in Ω.

�
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Finally, the growth of wΩ(x) near a boundary point x0 ∈ Ω can be estimated in
terms of the distance function from x0. We only give below the results in dimen-
sion 2, which is needed in the next section. In this case, Ω ⊂ R2 is said to satisfy
the exterior circle condition at a boundary point x0 ∈ ∂Ω if there is a disk B ⊂ R2

containing Ω such that x0 ∈ ∂B.

Proposition 7.9. Let Ω be a bounded convex domain in R2.
(1) If Ω satisfies the exterior circle condition at x0 ∈ ∂Ω, then there is a constant c > 0

such that
wΩ(x) ≥ −c |x− x0|

1
2 for all x ∈ Ω.

(2) Let L ⊂ R2 be a straight line such that L ∩ ∂Ω is a segment and let x0 be an
interior point of that segment. Then there is a constant c > 0 such that

wΩ(x) ≤ −c dist(x, L) 1
3

for all x ∈ Ω in some neighborhood of x0.

Proof. (1) LetB = {x ∈ R2 | |x−x1| < R} (R = |x0−x1|) be a disk such that Ω ⊂ B
and x0 ∈ ∂B. By Lemma 7.7, we have wB(x) ≤ wΩ(x) ≤ 0 for all x ∈ Ω, where
wB(x) is given in Example 7.6 as

wB(x) = −R− 1
3
√
R2 − |x− x1|2.

The required inequality then follows from the estimates

0 ≤ R2 − |x− x1|2 = (R+ |x− x1|)(R− |x− x1|)
≤ 2R(|x0 − x1| − |x− x1|) ≤ 2R|x− x0|.

(2) Let ∆ ⊂ Ω be a triangle with vertices v0, v1 and v2 such that v1, v2 ∈ L. By
Lemma 7.7, we have

wΩ(x) ≤ w∆(x) = −c′
(
t0(x)t1(x)t2(x)

) 1
3 for all x ∈ ∆,

where the equality is from Example 7.6, with c′ > 0 a constant, t0, t1, t2 function on
∆ with values in (0, 1) and in particular t0(x) = dist(x,L)

dist(v0,L) . The required inequality
follows.

�

8. Analysis of the Monge-Ampère equation

In this section, we solve theMonge-Ampère problemmentioned in the introduc-
tion and deduce the results on affine (C, k)-surfaces. The main tool used to deal
with infinite boundary values is the generalized maximum principle reviewed in
Section 6. We also examine in Section 8.6 triangular cones in R3 as C-regular do-
mains, which provide a situation where the exterior circle condition is not fulfilled
and the solution does not have the gradient blowup property.

8.1. Statement of the main results. Recall from Section 4 the following notations
and facts:

• Given a bounded convex domain Ω ⊂ Rn, LC(∂Ω) denotes the space of
lower semicontinuous functions ϕ : ∂Ω→ R ∪ {+∞}which are convex on
every line segment in ∂Ω, and ϕ denotes the convex envelope of ϕ.
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• The notation “dom” stands for the effective domain of a R ∪ {+∞}-valued
function, namely the set of points in the domain where the function has
values inR. Forϕ ∈ LC(∂Ω), the convex hullConv(dom(ϕ)) of dom(ϕ) ⊂ ∂Ω
in Rn coincides with dom(ϕ) (Proposition 4.8).

• LC(Rn) denotes the space of lower semicontinuous convex functions u :
Rn → R ∪ {+∞} that is not constantly +∞. Such a u is determined by
its restriction to the interior of effective domain U := int dom(u) if U is
nonempty (Proposition 4.1), and is said to have infinite inner derivatives at
x0 ∈ ∂U if either u(x0) = +∞ or the graph of u over any line segment from
x0 to a point inU has infinite slope at x0 (Definition 4.12). This is equivalent
to limx→x0 |Du(x)| → +∞ if u is differentiable in U (Proposition 4.13).

We can now state our main results on Monge-Ampère equations as the following
theorem, covering Theorem A from the introduction:

Theorem A’. Let Ω ⊂ R2 be a bounded convex domain, c > 0 be a constant and ϕ ∈
LC(∂Ω) be such that Conv(dom(ϕ)) has nonempty interior. Suppose u ∈ LC(R2) satisfies

(?)


U := int dom(u) is nonempty and contained in Ω,
det D2u = cw−4

Ω in U,
u|∂Ω = ϕ,

where wΩ ∈ C0(Ω) ∩ C∞(Ω) is the Cheng-Yau support function of Ω, namely the unique
convex solution to (see Theorem 7.3){

det D2w = (−w)−n−2 in Ω,
w|∂Ω = 0.

Then the following statements hold.
(1) Given x0 ∈ ∂U ∩ ∂Ω, if Ω satisfies the exterior circle condition at x0, then u has

infinite inner derivatives at x0.
(2) The following conditions are equivalent to each other:

(i) u has infinite inner derivatives at every point of ∂U ∩ Ω;
(ii) ϕ(x)− u(x)→ 0 as x ∈ U tends to ∂U .
The second condition implies dom(u) = Conv(dom(ϕ)) and u = ϕ on ∂U .

(3) There exists a unique u satisfying (?) and the conditions in Part (2).
(4) Given t ∈ R, let ut denote the u produced by Part (3) with parameter c = e−t in

(?). Then t 7→ ut(x) is a strictly increasing concave function with
lim

t→−∞
ut(x) = −∞, lim

t→+∞
ut(x) = ϕ(x)

for every x ∈ U = int Conv(dom(ϕ)).

Note that Part (1) of the theorem is independent of other parts.

Remark 8.1 (Regularity). A priori, u is merely continuous in U and the Monge-
Ampère equation in (?) is understood in the generalized sense (see Section 7). But
classical regularity results on Monge-Ampère equations in dimension 2 (see The-
orem 6.7 in Section 6) ensures that u is actually smooth and strictly convex in U ,
hence a classical solution.

For a higher-dimensional bounded convex domain Ω ⊂ Rn (n ≥ 3), there exists
continuous ϕ : ∂Ω → R such that (?) has a unique generalized solution u ∈ C0(Ω)
which is not smooth and restricts to affine functions on some line segments in Ω
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joining boundary points (hence u has finite inner derivatives at these points), even
when Ω is the unit ball. In fact, Bonsante and Fillastre [BF17] constructed examples
that correspond to regular domains D ⊂ Rn,1 (n ≥ 3) such that D is invariant
under an affine deformation of a uniform lattice in SO(n, 1) but there is no smooth
hypersurface of constant Gauss-Kronecker curvature generating D. On the other
hand, if ∂Ω and ϕ are both smooth, it is showed in [LSC97] that (?) has a unique
solution u ∈ C0(Ω) ∩ C∞(Ω) and it satisfies limx→∂Ω |Du(x)| → +∞.
Remark 8.2 (u not satisfying the conditions in Part (2)). If dom(ϕ) = ∂Ω, then
U = Ω and Condition (i) in Part (2) is trivial. Otherwise, there exists u satisfying
(?) without fulfilling (i) or (ii) . For instance, if Ω is strictly convex and A ( ∂Ω
is a nonempty closed subset, then the characteristic function ϕ = χA (defined by
χA = 0 onA andχA = +∞ outside ofA) belongs to LC(∂Ω) and its convex envelope
ϕ is the characteristic function of Conv(A) on R2. In this case, the convex function

u(x) :=
{
wΩ(x) if x ∈ Conv(A)
+∞ if x /∈ Conv(A)

satisfies (?) (with c = 1) but not (i) or (ii) .
We prove Parts (1) – (4) of Theorem A’ through Sections 8.2 – 8.5 and discuss

in Section 8.6 the case where Ω is not strictly convex, hence fails the exterior circle
condition. In the rest of of this section, we deduce from Theorem A’ the results on
affine (C, k)-surfaces mentioned in the introduction.

Proof of Theorems B, D and Corollary C in Introduction. Given the coneC as in the as-
sumption of Theorem B, in the way explained in Section 5.1, we choose coordinates
of R3 and get a convex domain Ω ⊂ R2 as an affine section of −C∗, which can be
identified projectively with P(C∗) and satisfies the exterior circle condition. In par-
ticular, Ω is strictly convex, hence LC(∂Ω) consists exactly of lower semicontinuous
functions ϕ : ∂Ω → R ∪ {+∞}, and Conv(dom(ϕ)) has nonempty interior exactly
when dom(ϕ) has at least three points.

By Theorem 5.2 (1), a properC-regular domainD can bewritten asD = epi◦(ϕ∗)
for some ϕ ∈ LC(∂Ω) with int Conv(dom(ϕ)) 6= ∅, while Corollary 7.5 says that a
complete affine (C, k)-surface generating D is exactly the graph of the Legendre
transform of some u ∈ S0(Ω) satisfying Eq.(?) in Theorem A’, with c = k−

2
3 (see

Section 5.1 or 7.2 for the definition of S0(Ω)). By Parts (1) and (3) of Theorem A’
and classical regularity results (see Remark 8.1), there exists a unique such u, which
proves Theorem B. Theorem D then follows from Theorem 5.15 and Theorem A’
(4). The construction also provides the required correspondences “(c)↔(a)↔(b)”
in Corollary C as

ϕ ←→ D = epi◦(ϕ∗) ←→ Σ = graph(u∗),
where u ∈ S0(Ω) is related to ϕ through (?) with c = k−

2
3 . Finally, the identifi-

cation between the image of affine conormal map of the above Σ = graph(u) and
int Conv(dom(ϕ)) is contained in Corollary 7.5. �

8.2. Infiniteness of inner derivatives. In this section, we collect some results on
(in)finiteness of inner derivatives (seeDefinition 4.12 andProposition 4.13) thatwill
be used later on and deduce Part (1) of Theorem A’. Note that although Definition
4.12 is concerned with convex functions Rn → R ∪ {+∞}, it also makes sense for
R-valued convex functions on convex domains through Proposition 4.1.
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Lemma 8.3. Let U ⊂ R2 be a convex domain such that ∂U contains an open line segment
I , and u ∈ C0(U) be a convex function such that det D2u ≥ c in U for a constant c > 0
and that u restricts to an affine function on I . Then u has infinite inner derivatives at every
point of I .

Proof. For any open triangle ∆ ⊂ R2, let u∆ ∈ C0(∆) be the generalized solution to{
det D2u = 1 in ∆
u|∂∆ = 0

given by Theorem 6.9. Letting x∆ ∈ ∆ denote the barycenter of ∆, we note that
there is a constant C > 0 independent of ∆ such that

(8.1) u∆(x∆) = −C Area(∆) for any triangle ∆ ⊂ R2.

To see this, fix a triangle ∆0 with area 1 and take an affine transformation g(x) =
a(x) + b (where a is a linear transformation of R2 and b ∈ R2) such that g(∆0) = ∆.
The convex function ũ(x) := u∆0(g−1x) on ∆ satisfies

det D2ũ(x) = det(a)−2 det D2u∆0(g−1x) = Area(∆)−2.

It follows that u∆ = Area(∆)ũ, which implies (8.1)withC = −ũ(x∆) = −u∆0(x∆0).
We claim that u∆ has infinite inner derivatives at the midpoints of its edges. To

prove this, by applying a volume-preserving affine transformation (which does not
change the Monge-Ampère measure), we can suppose without loss of generality
that x0 = (0, 0) and the vertices of ∆ are (0,±1) and (t0, 0) with t0 > 0. Assume
by contradiction that u∆ has finite inner derivatives at (0, 0), so that ∂1u∆(0, 0) :=
limt→0+

u∆(t,0)
t is a negative real number and

v(x) := u∆(x)− ∂1u∆(0)x1

(where xi denotes the ith coordinate of x ∈ R2) satisfies ∂1v(0, 0) = 0. In particular,
v(t, 0) ≥ 0 for 0 ≤ t ≤ t0.

Fix 0 < t < t0 and consider the triangle ∆t with vertices (0,±1) and (t, 0). Since
v is convex in ∆t and vanishes on the vertical edge, we have v(x) ≤ v(t, 0) for all
x ∈ ∆t, hence

v(x) ≤ u∆t
(x) + v(t, 0)

for x on the boundary of ∆t. By Comparison Principle, the inequality also holds
for all x ∈ ∆t. Taking x to be the barycenter x∆t

= ( t3 , 0) and applying (8.1), we get

v( t3 , 0) ≤ −CArea(∆t) + v(t, 0) = −Ct+ v(t, 0).

But the right-hand side is negative when t is small enough because ∂1v(0, 0) :=
limt→0+

v(t,0)
t = 0. This contradicts the fact that v(t, 0) ≥ 0 for 0 ≤ t ≤ 1 and

completes the proof of the claim.
Now, under the assumptions of the lemma, for every x0 in the interior of the

line segment I ⊂ ∂Ω, we can take a triangle ∆ ⊂ U such that an edge I ′ of ∆ is a
sub-segment of I and has x0 as its midpoint, and that the opposing vertex x1 is in
U . Let a : R2 → R be the affine function with a = u on I ′ ∪ {x1}. Then we have
a+
√
c u∆ = u on I ′ ∪ {x1} and hence a+

√
c u∆ ≥ u on ∂∆ by convexity, while

det D2(a+
√
c u∆) = cdet D2u∆ = c ≤ det D2u
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holds in ∆. By Comparison Principle, we have a+
√
c u∆ ≥ u throughout ∆. Since

a +
√
c u∆ equals u at x0 ∈ ∂∆ and has infinite inner derivatives at x0 as shown

above, we conclude that u has infinite inner derivatives at x0, as required. �

Lemma 8.4. Let ∆ ⊂ R2 be an open triangle, x0 ∈ ∂∆ be a vertex and u ∈ C0(∆) be a
convex function.

(1) If there are constants c > 0 and α > −2 such that{
det D2u(x) ≤ c |x− x0|α for all x ∈ ∆,
u|∂∆ = 0,

then u has finite inner derivatives at x0.
(2) If there is a constant c > 0 such that

det D2u(x) ≥ c |x− x0|−2 for all x ∈ ∆,

then u has infinite inner derivatives at x0.

Proof. (1) Assuming x0 = 0without loss of generality, we only need to find a convex
function v ∈ C0(∆) with finite inner derivatives at 0 such that

(8.2)
{

det D2v(x) = c′ |x|α for some c′ > 0 and all x ∈ ∆,
v|∂∆ ≤ 0, v(0) = 0

Comparison Principle would then imply u ≥ (c/c′) 1
2 v, hence u has finite inner

derivatives at 0 as well.
To find v, we set β := α+4

2 > 1. The function x 7→ |x|β is convex and we have

det D2|x|β = β2(β − 1)|x|α.

Let l : R2 → R be a linear form such that l(x) ≥ |x|β for all x on the edge of ∆
opposing the vertex 0. By convexity, l(x) ≥ |x|β holds for all x ∈ ∆. Therefore,

v(x) := |x|β − l(x)

satisfies (8.2) and proves the required statement.
(2) By applying an affine transformation to ∆ and subtracting from u the affine

functionwhose values coincidewith u at the vertices of∆, wemay assumewithout
loss of generality that

• x0 = (0, 0) and the other two vertices of ∆ are (1,±1);
• u = 0 at the vertices of ∆. This implies u ≤ 0 on ∆.

Consider the smooth functionw on the bandB := {x ∈ R2 | 0 < x1 < 1} (where
xi is the ith coordinate of x) defined by

w(x) := x1(− log x1) 1
2

((
x2

x1

)2

− 1
)
.

By some computations, one checks that

det D2w(x) = 1
(x1)2

[
1 + 1

2(− log x1)−1 −
(
x2

x1

)2(
1 + 3

2(− log x1)−1
)]
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and that the hessian D2w is positive definite on the convex domain (see Figure 8.1)

W :=
{
x ∈ R2

∣∣∣ 0 < x1 < 1,
(
x2

x1

)2

≤
1
2 − log x1

3
2 − log x1

}
= {x ∈ B | det D2w(x) > 0} ⊂ ∆.

1 e1/20

(1,1)

(1,-1)

W

Δ

Figure 8.1. The domainW . The dashed curve is
(
x2

x1

)2 =
1
2−log x1

3
2−log x1 ,

which is tangent to both edges of the triangle ∆ at the origin.

Fix λ ∈ (0, 1) and denote V := {x ∈ W | x1 < λ}. Setting w(0, 0) := 0, we can
view w as a continuous convex function on V and verify the following properties:

• by the above expression of det D2w, there is a constant c′ > 0 such that

det D2w(x) ≤ c′|x|−2 for all x ∈ V ;

• w has infinite inner derivatives at (0, 0) ∈ ∂W ;
• µ := infx∈∂V w(x)/x1

= min
{
−(− log λ) 1

2 , inf
0<x1≤λ

(− log x1) 1
2

( 1
2 − log x1

3
2 − log x1 − 1

)}
> −∞.

As a consequence, v(x) := w(x) − µx1 is a continuous convex function on V with
infinite inner derivatives (0, 0) and satisfies{

det D2v(x) ≤ c′|x|−2 for all x ∈ V ,
v|∂V ≥ 0.

We can thus apply Comparison Principle to get u ≥ (c/c′) 1
2 v on V . Since u(0, 0) =

v(0, 0) = 0, we conclude that u has infinite inner derivatives at (0, 0), as required.
�

Proof of Theorem A’ (1). Given u and x0 under the assumptions, we have

det D2u(x) = cwΩ(x)−4 ≥ c′|x− x0|−2 for all x ∈ U,

where the inequality follows from Proposition 7.9. If u(x0) = +∞ then u has infi-
nite inner derivatives at x0 by definition. Otherwise, take a triangle ∆ with a vertex
at x0 and the other two vertices in U . The restriction of u to ∆ is continuous (see
Section 4.1), so we can apply Lemma 8.4 (2) to it and conclude that u has infinite
inner derivatives at x0. �
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8.3. Equivalence between Conditions (i) and (ii).

Lemma 8.5. If u ∈ LC(R2) satisfies (?) and Condition (i) in Theorem A’, then

ϕ+
√
cwU ≤ u ≤ ϕ on U,

where wU is the Cheng-Yau support function of U .

Proof. The second inequality follows from the condition u|∂Ω = ϕ by Corollary 4.5.
To prove the first inequality, we consider, for every δ > 0, the δ-neighborhood

of U in Ω:
Uδ := {x ∈ Ω | dist(x, U) < δ},

where “dist” stands for the distance defined with respect to a Euclidean metric on
R2. Let wδ := wUδ ∈ C0(Uδ) ∩ C∞(Uδ) be the Cheng-Yau support function of Uδ .

Recall that ϕ is the pointwise supremum of affine functions a : R2 → R with
a|∂Ω ≤ ϕ (see Definition 4.3). For any such a, we shall show that

(8.3) u ≥ a+
√
cwδ in U

using Generalized Comparison Principle (Lemma 6.4). By Lemma 7.7, we have
wΩ ≤ wδ ≤ 0 in Uδ , hence the required comparison of Monge-Ampère measures

det D2u = cw−4
Ω ≤ cw−4

δ = det D2(a+
√
cwδ) .

On the other hand, we have
u(x) = ϕ(x) ≥ a(x) = a(x) +

√
cwδ(x) for all x ∈ ∂U ∩ ∂Ω.

This gives the required comparison of boundary values in Lemma 6.4, because by
Condition (i) and the fact that a+

√
cwδ is smooth in Uδ , any boundary point x of

U such that either u has finite inner derivatives at x or a+
√
cwδ has infinite inner

derivatives at xmust be on the boundary of Ω. Thus, Lemma 6.4 implies (8.3).
In view of Proposition 7.8, taking the pointwise supremum of the right-hand

side of (8.3) for all affine functions awith a|∂Ω ≤ ϕ and all δ > 0, we obtain the first
inequality and completes the proof of the lemma. �

Proof of Theorem A’ (2). Let us first prove the second statement, namely, Condition
(ii) implies dom(u) = Conv(dom(ϕ)) and u = ϕ on ∂U . Note that Conv(dom(ϕ)) =
dom(ϕ) byProposition 4.8. Assuming (ii), we only need to show that the convex sets
dom(u) and dom(ϕ) have the same closure and u = ϕ on their common boundary.
By Corollary 4.5, we have u ≤ ϕ on R2, hence dom(u) contains dom(ϕ). If the
closures are not the same, thenU \dom(ϕ) is a nonempty set touching the boundary
of U . But we have ϕ−u = +∞ on this set, contradicting Condition (ii). This proves
dom(u) = dom(ϕ). For any x0 ∈ ∂U = ∂dom(u) = ∂dom(ϕ) and x1 ∈ U , we have
limt→0+ u((1 − t)x0 + tx1) = u(x0) (see Section 4.1) and the same for ϕ, hence
Condition (ii) implies u = ϕ at x0, as required.

The implication “(i)⇒ (ii)” follows from Lemma 8.5. Conversely, assuming (ii),
in order to show that u has infinite inner derivatives at x ∈ ∂U ∩ Ω, we let I be
the connected component of ∂U ∩ Ω containing x. Since U is the convex envelop
of the subset dom(ϕ) of ∂Ω, I is an open line segment with endpoints x1, x2 ∈ ∂Ω.
If ϕ takes finite values on both x1 and x2, then u|I = ϕ|I is the affine function
interpolating ϕ(x1) and ϕ(x2), and u has infinite inner derivatives at every x ∈ I
by Lemma 8.3. Otherwise, we have u = ϕ = +∞ on I and u has infinite inner
derivatives by convention. This establishes “(ii)⇒ (i)” and completes the proof. �
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8.4. Existence and uniqueness.

Proof of the existence part of Theorem A’ (3). We shall construct a convex function u :
V := int Conv(dom(ϕ))→ R such that
(8.4) det D2u = cw−4

Ω , ϕ+
√
cwV ≤ u ≤ ϕ in V,

wherewV is theCheng-Yau support function ofV . The extension ofu toR2 given by
Proposition 4.1 then satisfies (?) and Condition (ii), as required. The construction
is standard and goes though the following steps.
Step 1:Let V1 ⊂ V2 ⊂ · · · ⊂ V be an exhaustion of V by strictly convex domains.
Using Theorem 6.9, we find a convex function ui ∈ C0(V i) satisfying{

det D2ui = cw−4
Ω in Vi,

ui = ϕ on ∂Vi.

Each ui is strictly convex and smooth by Theorems 6.6 and 6.7.

Step 2:We show that
(8.5) ϕ+

√
cwV ≤ ui ≤ ϕ in Vi.

Since wV < 0 in V , these inequalities hold on ∂Vi by construction. On the other
hand, we have det D2ϕ = 0 by Lemma 6.8. Using Lemmas 6.2 and 7.7, we obtain

det D2 (ϕ+
√
cwV

)
≥ det D2ϕ+ c det D2wV = cw−4

V ≥ cw
−4
Ω = det D2ui.

Therefore, the respective Monge-Ampère measure densities of the three functions
in (8.5) satisfy the reversed inequalities. Inequality (8.5) then follows from the clas-
sical Comparison Principle (see Section 6).

Step 3:By (8.5), the convex functions ui are uniformly bounded. On each Vk, ap-
plying Arzela-Ascoli to the the sequence of functions (ui)i≥k, one can extract a
convergent subsequence. Moreover, we can assume that the subsequence for Vk+1
is a subsequence of the subsequence for Vk. Let u : V → R be the limit obtained by
this diagonal argument. It follows from Lemma 6.1 and Inequality (8.5) that u is a
convex function fulfilling the requirement (8.4).

�

Proof of the uniqueness part of Theorem A’ (3). Suppose u1 and u2 both satisfy (?) and
Condition (i) . Lemma 8.5 implies |u1 − u2| ≤ −

√
cwU in U = int dom(u1) =

int dom(u2) = Conv(dom(ϕ)), hence
lim
x→∂U

(u1(x)− u2(x)) = 0

because wU ∈ C0(U) vanishes on ∂U . Maximum Principle (Lemma 6.3) then gives
infU (u1 − u2) = infU (u2 − u1) = 0, i.e. u1 = u2. �

8.5. Dependence on the parameter.

Proof of Theorem A’ (4). We first show that t 7→ ut(x) is nondecreasing with an ar-
gument similar to the above proof of uniqueness. Given t1 < t2, we have

det D2ut1 = e−t1w−4
Ω > e−t2w−4

Ω = det D2ut2

in U = int dom(ut) = int Conv(dom(ϕ)). On the other hand, Lemma 8.5 gives

(8.6) ϕ+ e−
t
2wU ≤ ut ≤ ϕ in U for all t ∈ R



REGULAR DOMAINS AND SURFACES OF CONSTANT GAUSSIAN CURVATURE 49

Since wU ∈ C0(U) vanishes on ∂U , it follows that limx→∂U (ut2(x)− ut1(x)) = 0.
Using Maximum Principle (Lemma 6.3), we get infV (ut2 − ut1) = 0, or ut1 ≤ ut2 .

Next, let us establish the concavity of t 7→ ut(x). Using the fact that log det is a
concave function on the space of positive definite matrices, we get

log det D2
(
ut1 + ut2

2

)
= log det

(
D2ut1 + D2ut2

2

)
≥ log det D2ut1 + log det D2ut2

2 = − t1 + t2
2 + logw−4

Ω = log det D2u t1+t2
2

in U . Using Maximum Principle in the same way as above, we obtain ut1+ut2
2 ≤

u t1+t2
2

in U , which means t 7→ ut(x) is concave.
The required limit limt→+∞ ut(x0) = ϕ(x0) (x0 ∈ U ) follows from (8.6). The

other limit limt→−∞ ut(x0) = −∞ can be proved by taking a disk D = D(x0, ε)
with closure contained in U and using Comparison Principle to control ut from
above on the disk by the function

vt(x) = a e−
t
2
(
|x− x0|2 − ε2)+ b,

where the constants a, b > 0 are chosen to ensure that

det D2vt = 4a2e−t ≤ e−t(−wΩ)−4 = det D2ut

in D and vt ≥ ϕ ≥ ut on ∂D.
Finally, given x0 ∈ U , in order to show that ut(x0) is strictly increasing in t, we

first establish the strict inequality ut(x0) < ϕ(x0). Assume by contradiction that
ut(x0) = ϕ(x0) for some t and consider the supporting affine function a : Rn → R
of ut at x0, namely

a(x) = (x− x0) · Dut(x0) + ut(x0).

The locus of a = ut is the single point x0 because ut is strictly convex in U (see
Remark 8.1). Since ut ≤ ϕwith equality at x0, we have a ≤ ϕwith equality only at
x0. This contradicts Lemma 4.9 (the locus of a = ϕ is the convex hull of a subset of
∂Ω), hence proves ut(x0) < ϕ(x0). Now, since t 7→ ut(x0) is concave, nondecreasing
and tends to ϕ(x0) as t→ +∞, if ut1(x0) = ut2(x0) for t1 < t2 then ut(x0) = ϕ(x0)
for all t ≥ t2, contradicting what we just proved. This shows that ut(x) is strictly
increasing in t and completes the proof. �

8.6. Triangular cone as C-regular domain. Given a proper convex cone C ⊂ R3,
we consider in this section a triangular cone T ⊂ R3 circumscribed to C as shown
in Figure 1.2 (c) from the introduction, which is a C-regular domain.

We show in Corollary 8.6 that if the projections of C and T on RP2 look like
Figure 1.2 (a), then T is uniquely foliated by affine (C, k)-surfaces generating T ;
whereas in case of Figure 1.2 (b), T is not generated by any affine (C, k)-surface. A
particular instance of the former case is whenC = C0 is the future light cone in the
Minkowski space, which is computed explicitly in [BSS19, Section 5].

The analytic counterpart is Proposition E from the introduction, which deals
with the Monge-Ampère problem (?) studied in the previous part of this section in
the particular case where ϕ ∈ LC(∂Ω) vanishes at three points and take value +∞
everywhere else. We give a more precise statement of the proposition as follows:
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Proposition E’. LetΩ ⊂ R2 be a bounded convex domain,∆ ⊂ Ω be an open triangle with
vertices on ∂Ω and ϕ be the function on ∂Ω vanishing at the vertices of ∆ with ϕ = +∞
everywhere else.

(a) If Ω satisfies the exterior circle condition at every vertex of ∆ (see Figure 1.1 (a)),
then there exists a unique u ∈ S0(Ω) (see Section 5.1) satisfying (?). Moreover,
we have dom(u) = ∆, and u is continuous on ∆ with vanishing boundary value.

(b) If ∂Ω contains an open line segment meeting ∂∆ exactly at a vertex (see Figure
1.1 (b)), then there does not exist u ∈ S0(Ω) satisfying (?).

Proof. Part (3) of Theorem A’ yields a unique u ∈ LC(R2) satisfying (?) and the
following conditions, which are equivalent to each other by Part (2):

• u has infinite inner derivatives at every boundary point of dom(u) that is
not on ∂Ω;

• dom(u) = ∆, and u is continuous on ∆ with vanishing boundary value.
Under the assumption of Statement (a), Part (2) of Theorem A’ implies that u has
infinite inner derivatives everywhere on the boundary of∆. In view of the classical
regularity results (see Remark 8.1), we conclude that u ∈ S0(Ω), proving (a).

To prove Part (b), it is sufficient to show that the unique u given above has finite
inner derivatives at the vertices of ∆. To this end, we fix a Euclidean distance “dist”
on R2 and let L ⊂ R2 be the line containing I . Since both edges of ∆ issuing from
x0 only touch L at x0, there is a constant c > 1 such that

dist(x, x0) ≤ c dist(x, L) for all x ∈ ∆.
Therefore, it follows from Proposition 7.9 (2) that (−wΩ)−4 is bounded from above
on ∆ by a positive constant multiple of the function x 7→ dist(x, x0)− 4

3 . But u satis-
fies det D2u = (−wΩ)−4 on ∆ with u = 0 on ∂∆, hence has finite inner derivatives
at x0 by Lemma 8.4 (1). �

Corollary 8.6. Let T ⊂ R3 be a convex cone such that the projectivization P(T ) ⊂ RP2

is a triangle with edges denoted by I0, I1 and I2. Let C be a convex cone contained in T
such that the boundary of its projectivization P(C) meets the interior of every Ii. Then T
is a C-regular domain and the following assertions hold:

(a) If for each i there is an open ellipse Ei ⊂ P(C) such that ∂Ei ∩ Ii 6= ∅ (see Figure
1.2 (a)), then T is uniquely foliated by complete affine (C, k)-surfaces as in the
conclusions of Theorems B and D in Introduction.

(b) If ∂P(C) meets the interior of some edge Ii at a single point and Ii is not tangent
to ∂P(C) at that point (see Figure 1.2 (b)), then there does not exist complete affine
(C, k)-surface generating T .

Note that under the assumption of (b), the convex curve ∂P(C) is not C1 at the
point where it meets Ii and both of its tangent directions there point towards the
interior of the triangle P(T ), as the figure illustrates.

Proof. LetHi denote the open half-space ofR3 containing T such that the boundary
plane ∂Hi projects to the line in RP2 containing Ii. Then T = H1 ∩H2 ∩H3. Under
the assumption onC, eachHi is aC-null half-space, hence T is aC-regular domain.

Let Ω ⊂ R2 be the bounded convex domain determined from C through the
procedure in Section 5.1, which can be identified projectively with P(C∗). The pro-
jectivization ∆ := P(T ∗) of the triangular cone T ∗ dual to T is a triangle contained
in P(C∗) ∼= Ω with vertices on ∂Ω. Let x0, x1 and x2 denote these vertices and
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ϕ : ∂Ω → R ∪ {+∞} be the function with ϕ(xi) = 0 (i = 1, 2, 3) and ϕ = +∞ on
∂Ω\{x1, x2, x3}. Then under the bijection in Theorem 5.2 (1), we have T = epi◦(ϕ∗).
The additional assumptions on P(C) and P(T ) in statements (a) and (b) are equiv-
alent to the following conditions on Ω and ∆, respectively:

• The assumption of (a)⇔ Ω satisfies the exterior circle condition at each xi.
• The assumption of (b)⇔ xi is in the interior of a line segment in ∂Ω.

The proofs of Theorems B and D given in Section 8.1 actually shows that the
conclusions of these theorems hold for the C-regular domain D corresponding to
a given ϕ ∈ LC(∂Ω) whenever the function u provided by Theorem A’ (3) for this
ϕ and arbitrary c > 0 is in S0(Ω). Therefore, by Proposition E’ (a), they hold in
particular under the assumption of (a). On the other hand, under the assumption
of (b), Proposition E’ (b) asserts that there is no u ∈ S0(Ω) satisfying (?), hence no
complete affine (C, k)-surface generating T . �
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