Trends and new directions in the crystal chemistry of actinide oxo-clusters incorporated in polyoxometalates
Maxime Dufaye, Sylvain Duval, Thierry Loiseau

To cite this version:
Maxime Dufaye, Sylvain Duval, Thierry Loiseau. Trends and new directions in the crystal chemistry of actinide oxo-clusters incorporated in polyoxometalates. CrystEngComm, 2020, 22 (21), pp.3549-3562. 10.1039/d0ce00088d. hal-03000827

HAL Id: hal-03000827
https://hal.science/hal-03000827
Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Trends and new directions in the crystal chemistry of actinide oxo-clusters incorporated in polyoxometalates.

Maxime Dufaye, Sylvain Duval* and Thierry Loiseau*

Univrsité de Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du solide, F-59000 Lille, France.

* To whom correspondences should be addressed. E-mail: sylvain.duval@univ-lille.fr / thierry.loiseau@univ-lille.fr. Phone: (33) 3 20 43 473, Fax: (33) 3 20 43 48 95.

Invitation from CrystEngComm.
Highlight status article
First version January 20, 2020
Revised version March 23, 2020
Maxime DUFAYE received his bachelor degree from the University of Valenciennes and his M. Sc. in chemistry from the University of Lille, France. Afterward, he joined the group of Dr. Thierry Loiseau and prepared his PhD. under his supervision with Dr. Sylvain Duval. He worked on the synthesis and characterization of polyanionic molecular species bearing actinides or lanthanides elements. After his Ph.D. defense in 2019, he moved to the Laboratory of Reactivity and Solid State Chemistry, headed by Dr. Mathieu Morcrette at the University of Amiens as a Research Engineer and now focuses on the development of new electrodes materials and their coating for solid-state batteries.

https://orcid.org/0000-0002-5270-4718

Sylvain DUVAL is an Associate Professor at the University of Lille since 2013. He received his Ph.D. degree from Versailles-Saint-Quentin University, France, in 2009 under the supervision of Prof. E. Cadot and Dr. C. Simonnet-Jegat in the field of supramolecular polyoxothiometalates and their solution stabilities studies. He then moved to Geneva, Switzerland, for a postdoctoral position between 2010 and 2013 in the group of Prof. A. Williams, where he worked on ligand synthesis and coordination chemistry of copper and iron cations. He is now interested in the crystallography and chemistry of polyoxometalates and poly-oxo clusters composed of tetravalent elements such as cerium, thorium or uranium. He pays a particular attention to their solution behavior using various techniques such as NMR and SAXS.

https://orcid.org/0000-0002-3398-2501

Thierry LOISEAU is a Research Director at CNRS and received his Ph.D. degree from Le Mans University, France, in 1994. He worked with Pr G. Férey (Institut Lavoisier, University of Versailles, France) in the field of the elaboration of open-framework materials since 1991. His research interests concerned the hydrothermal synthesis and structural characterization (XRD, NMR, in-situ experiment) of organically templated aluminium or gallium phosphates and more recently MOF-type porous aluminium carboxylates. He then moved to the University of Lille (2009) and now focuses on the chemistry of carboxylates, polyoxometalates and poly-oxo clusters bearing actinides, which include metals such as thorium or uranium, and their use in the treatment and recycling of nuclear waste. He is author of more than 200 articles (h index of 55, > 13 000 citations) and 4 patents.

https://orcid.org/0000-0001-8175-3407
Abstract: The present highlight article deals with the incorporation of actinide cations with polyoxometalates (POMs) moieties, since the first example structurally characterized and described in literature at the beginning of the 70’s. It illustrates the various structural types of topologies that can arise from the association of different polyoxometalates (molybdates or tungstates, Keggin- or Wells-Dawson-based entities, etc...), with the light actinide elements (mainly thorium and uranium). Nevertheless, it has been also reported some rare investigations, performed with transuranian elements, such as neptunium, plutonium, americium, curium and californium. The synthetic strategies for obtaining such molecular species, their crystal structure arrangements and their behavior in aqueous solution are discussed. The diverse variety of actinide-POM assemblies is classified on the basis of the nature of the metal (Mo or W) and the vacancies states occurring in the polyoxometallic precursors, starting with the polyoxomolybdate family. The second series of polyoxotungstate has been intensively studied and is described more widely.

Keywords: polyoxometalates, actinides, crystal chemistry, NMR, SAXS.

1. Introduction

The chemistry of polyoxometalates (POMs) has been intensively studied during the past decades due to their structural diversities and fascinating varieties of atomic organizations with heteroelements in the construction of molecular entities with high nuclearities. POMs consist of discrete units composed of octahedrally coordinated metal oxides \{MO_6\} occurring at their highest oxidation states (mainly W_VI, Mo_VI, V_V and Nb_V).\(^1,2\) They result from the polycondensation reactions of the \{MO_6\} units, either by olation or oxolation mechanisms, to form intermediate species with well-defined nuclearities, around trigonal \{XO_3\} or tetrahedral \{XO_4\} mononuclear heterometalates, knowing that the ultimate step is the formation of infinite dense metallic oxide MO_x.

Based on their compositions, the different types of structural atomic arrangements resulting from these reactions can be divided into several families with specific names (Keggin, Wells-Dawson, Lindqvist,...) related to the discoverer of a given molecular architecture.\(^3-5\) In these different series, literature has shown that the most studied species derived from either the saturated Keggin [XM_{12}O_{40}]\(^\text{m-}\) or Wells-Dawson [X\(_2\)M\(_{18}O_{62}\)]\(^\text{m-}\) archetypes. Indeed, from these saturated species, it is possible to obtain a wide variety of molecular systems going from mono-lacunary polyoxometalate up to hexa-lacunary ones. Furthermore, starting from some of these polyvacant species, macro-cyclic compounds with complexing properties towards transition metals can easily be synthesized (Figure 1).\(^6,7\)
Figure 1: Representation of some polyoxotungstates derived from the Keggin or the Wells-Dawson structural archetypes. (a) \{XW_{11}O_{39}\}, (b) \{XW_{10}O_{36}\}, (c) \{A-XW_9O_{34}\}, (d) \{B-XW_9O_{34}\}, (e) [As_4W_{40}O_{140}]^{24-}, (f) \{\alpha_1-X_2W_{17}O_{61}\}, (g) \{X_2W_{15}O_{56}\}, (h) [P_2W_{12}O_{48}]^{14-}, (i) [H_2P_8W_{46}O_{184}]^{33-}.

One can also note that this structural richness arises mainly with the polyoxotungstate (POTs) compounds, but much fewer results were described in the literature using polyoxomolybdate (POMOs). This fact can be explained by the weaker stability of lacunary polyanions based on molybdate in comparison with the tungstate ones. For instance, the vacant POMOs seem to easily reorganize themselves in aqueous solution to form saturated Keggin or Wells-Dawson architectures, making difficult to obtain lacunary species.\(^8\) The polyvacant polyoxometalate precursors can be used as inorganic ligands for the incorporation of a wide range of 3d-4d transition or 4f rare-earth elements.\(^{1,9-14}\) These chemical combinations have been extensively described in literature and are not the purpose of this review, which will be specifically devoted to the complexation of the 5f actinides elements.

The first relevance of the complexation of actinides with polyoxometalates appeared in 1971 with the publication of Sptisyn and co-workers.\(^\text{15}\) It was then followed by several research teams due to the interest of polyoxometalates as potential complexing agents for the separation or the storage of radioactive elements generated by military or industrial activities.\(^\text{16}\) Several article reviews were published between 1985 and 2002, focusing on coordination behavior of actinides with polyoxometalate among others molecules and on stability constants of formations of such compounds.\(^\text{17-19}\) Following this period, several
worldwide research groups have continuously dedicated their work to the elaboration of such compounds. A book chapter was also written more than a decade ago, by M. T. Pope, who drew up the inventory about the structural chemistry of vacant polyoxometalates bearing actinides.20 The present review concerns the state of art in the synthetic formation of polyoxometalate species, based on molybdate or tungstate, interacting with actinide elements and the recent research advances in this particular field.

2. Polyoxomolybdates

As mentioned in the introduction, vacant polyoxomolybdate compounds are much less explored than their polyoxotungstate counterpart. But, surprisingly, the first reported association between a polyanionic core and actinides was constituted of hexavalent molybdenum centers. The resulting molecular systems with thorium(IV), neptunium(IV) and uranium(IV) were structurally characterized between 1971 and 1978 and possess the formula [AnIVMo12O42]8− (with AnIV = ThIV, NpIV and UIV).15,21,22 All these molecules belong to the Dexter-Silverton type, discovered and described before, in 1968, by Dexter and Silverton with the cerium(IV) cation instead.23 In this archetype, the single-incorporated tetravalent center behaves as an heteroelement, with a surprisingly high twelve-fold coordination (Figure 2a).

![Figure 2](image)

Figure 2: (a) Structural representation of the Dexter-Silverton polyoxomolybdate [Mo12O42]12− discrete anionic species incorporating an UIV center (orange sphere) and (b) example of the interaction with CuII (cyan sphere) at the periphery of [Mo12O42]12− anions, which then form one-dimensional chains.

The [UIVMo12O42]8− molecule was electrochemically studied and found to remain stable towards a reversible redox process of the uranium center from UIV to U V at a potential of +0.91V vs sce at pH = 0. After 3-4 hours, a degradation of the oxidized species (loss of the characteristic orange color of the solution) appeared and, it was impossible to isolate the U V bearing moieties by precipitation.16 Successful investigations were performed with the encapsulation of thorium(IV) and neptunium(IV) cations within the same molecular archetype.21,22 The uranium-containing molecule was also fruitfully studied. It resulted in the formation of polymeric compounds by addition of various cations (ThIV, ErIII, VV, {UVI O2}2+, NiII, CuII, ScIII, FeIII) linking the [UIVMo12O42]8− entities (Figure 2b).24–31 Only recently,
Nyman’s team explored another similar interesting system, related to the isolation of crystals of $\text{Na}_5[\text{NaU}^{IV}(\text{Mo}_6\text{P}_4\text{O}_{31}\text{H}_7)_2]$, being the only molecular compound possessing reduced MoV centers interacting with actinides. Using SAXS, it could be demonstrated that these entities produce in aqueous solution, fragments of polymeric ribbons of $[\text{NaU}^{IV}(\text{Mo}_6\text{P}_4\text{O}_{31}\text{H}_7)_2]^{5n-}$ species where $n=7$, which is the predominant soluble species with a length of approximately 92 Å (Figure 3).

![Figure 3](image.png)

Figure 3: (a) Structural representation of the polymeric chain in compound $[\text{NaU}^{IV}(\text{Mo}_6\text{P}_4\text{O}_{31}\text{H}_7)_2]^{5n-}$ and (b) SAXS measurements showing the presence of polymeric ribbons with $n=7$.

The molybdate systems $[\text{An}^{IV}\text{Mo}_{12}\text{O}_{48}]^{8-}$ and $[\text{NaU}^{IV}(\text{Mo}_6\text{P}_4\text{O}_{31}\text{H}_7)_2]^{5n-}$ are the only entities reported in the literature appearing to interact with actinides elements. The second category, related to the polyoxotungstate, has been much more studied with actinides and will be described in details.

3. Polyoxotungstates

Due to the wide possibility of synthesizing numerous stable monovacant and polyvacant molecular species, the coordination properties of the polyoxotungstate family have been extensively explored with a large number of cations from the elements periodic table. Consequently, several reports about the interaction with actinides are thus described in the literature. They can be subdivided into the isopolyoxometalates containing exclusively tungsten centers, and the heteropolyoxometalates, containing a central heteroelement ($X = \text{As, Bi, Sb, P, Si…}$) with a tetrahedral or trigonal geometry, in addition to tungsten centers.

3.1-Isopolyoxotungstates

In the family of isopolyoxotungstates, the simplest compound derives from the Lindqvist type $[\text{W}_6\text{O}_{19}]^{2-}$ and is synthesized starting from the dissolution of WO_4^{2-} anions in water, following by an acidification. The addition of actinide cation in an aqueous solution of tungstate $[\text{WO}_4]^{2-}$ was firstly performed with U^{IV} and, then followed by Th^{IV} and Np^{IV} in a narrow pH range between 5.5 and 6.5. It gave rise to the formation of isostructural 1:2 sandwich type
molecular systems with a \([\text{An}^{IV}(\text{W}_5\text{O}_{18})_2]^8-\) formula. In these double mono-lacunary Lindqvist molecules, the global molecular symmetry is \(D_{4d}\), allowing the actinide cation with the tetravalent oxidation state to be sat at its center, with a regular eight-fold square antiprism (Figure 4).

![Figure 4](image)

Figure 4: Structural representation of the \([\text{An}^{IV}(\text{W}_5\text{O}_{18})_2]^8-\) Lindqvist-like species (An = Th\(^{IV}\), U\(^{IV}\) and Np\(^{IV}\)).

Thermal degradation of the thorium containing compound results in the formation of \(\text{Th}_x\text{WO}_3\) (\(x \sim 0.1\)) possessing a partially reduced tungsten center. This oxide was thought to be used as an inert matrix for actinides wastes management.\(^36\)

3.2-Iso-heteropolytungstate hybrids

To our knowledge, there are only two iso-heteropolytungstate hybrid systems incorporating uranium(IV) cations.\(^37,38\). The first one was synthesized in an aqueous solution at pH 4-4.5 by mixing Sb\(_2\)O\(_3\), Na\(_2\)WO\(_4\) and UCl\(_4\) to give orange crystals among other impurities. It was found a molecular entity, composed of two mono-lacunary POMs units, corresponding to one protonated \(\{\text{H}\text{W}_5\text{O}_{18}\}\) moiety together with and one triprotonated \(\{\text{H}_3\text{Sb}^{\text{III}}\text{W}_{17}\text{O}_{59}\}\) entity. It forms the tetra-protonated anionic species \(\{(\text{H}_3\text{Sb}^{\text{III}}\text{W}_{17}\text{O}_{59})\text{U}^{\text{IV}}(\text{HW}_5\text{O}_{18})\}^{11-}\) stabilizing one uranium(IV) cation with the classical square antiprism geometry. Several years later, in 2011, another molecule \(\{(\text{B}^{\text{III}}\text{W}_{11}\text{O}_{39})\text{Np}^{\text{IV}}(\text{W}_5\text{O}_{18})\}^{11-}\) containing one neptunium(IV) cation, was synthesized. In this case, the synthesis was involving \([\text{WO}_4]^{2-}\) anion and the preformed monovacant \(\{\text{B}^{\text{III}}\text{W}_{11}\text{O}_{39}\}\) heteropolyanion (Figure 5).
This latter neptunium(IV) containing iso-heteropolytungstate hybrid \([(B^{III}W_{11}O_{39})Np^{IV}(W_{5}O_{18})]^{11-}\) was also dissolved in aqueous solution and analyzed by UV-Vis spectroscopy. It was observed three characteristic groups of signals at 746-751 nm, 896-904 nm and 976-982 nm, assigned to a neptunium(IV) center in square antiprismatic geometry in this specific neptunium-POM association. Nevertheless, the comparison with electronic spectra of the \([Np^{IV}(W_{5}O_{18})]^{8-}\) and \([Np^{IV}(B^{III}W_{11}O_{39})]^{14-}\) polyanions seems to show that the hybrid neptunium \([(B^{III}W_{11}O_{39})Np^{IV}(W_{5}O_{18})]^{11-}\) species is not stable and decomposes, following eq. 1, to form a mixture of two entities.\(^{39,40}\)

(eq.1) \[2 [(B^{III}W_{11}O_{39})Np^{IV}(W_{5}O_{18})]^{11-} \rightarrow [Np^{IV}(W_{5}O_{18})]^{8-} + [Np^{IV}(B^{III}W_{11}O_{39})]^{14-}\]

3.3-Heteropolytungstates

A wider variety of molecular systems can be found in the literature regarding the use of heteropolyanions for the complexation of actinides with different oxidation states (IV, V or VI). Distinctly from macromolecules (described in section 3.3.d), the first assemblies were obtained by using tetravalent actinides associated to monovacant POMs. In one hand, the utilization of polyvacant anionic precursors with actinides(IV) was reported later in aqueous solution in 1999 and more recently their X-Ray diffraction structure determinations were described from 2015. All the lacunary POMs derives from the well-known Keggin \(\{XM_{12}O_{40}\}\) and Wells-Dawson \(\{X_{2}M_{18}O_{62}\}\) structural archetypes, for which one to several oxo-tungstate \(\{WO_{6}\}\) units (up to 3), have been removed. In the other hand, the incorporation of the \(\{AnO_{2}\}\)^{n+} actinyl form is encountered only in polyvacant polyanionic entities, and no structural report was reported when using mono-lacunary species.
(a) Monovacant heteropolytungstate anions

In the late 70’s, the incorporation of actinides(IV) has been observed in the monovacant POMs derived from the Keggin type, corresponding to the composition \([XW_{11}O_{39}]^{n^-}\), with a wide range of central heteroelements: \(X = \text{Si}^{IV}, \text{Ge}^{IV}, \text{P}^{V}, \text{B}^{III}\). The structural characterization indicated polyanionic molecules with a systematically 1:2 sandwich organization of \([\text{An}^{IV}(XW_{11}O_{39})_2]^{2n^-}\) type with An\(^{IV}\) = Th\(^{IV}\), U\(^{IV}\) and Np\(^{IV}\). As expected, the actinide cation exhibited a typical Archimedean square antiprismatic geometry. This study was then completed by using other transuranian elements Pu(IV), Am(III), Cm(IV) and Cf(IV), for which molecules of general formula \([\text{An}^{IV,III}(XW_{11}O_{39})_2]^{2n^-}\) were identified in aqueous solution. In the case of the cations Pu(IV), Cm(IV) and Cf(IV), the coordination environment is probably similar to that found with the previous light actinides, but no single-crystal-XRD characterizations were performed to confirm this assessment. It is noteworthy that a redox reaction by the water solvent occurs in the case of the Cm(IV)- and Cf(IV)-containing species.\(^{46-47}\) In 1986, a study was extended with the use of the monovacant Dawson derivatives \([\text{PW}_{17}O_{61}]^{15^-}\). The first results were focused on aqueous solution investigations, in strongly acidic condition (from 0.1 M to 14M HNO\(_3\)), in which the actinide and POM species have been combined in order to determine the decontamination ratios in biphasic mixtures (aqueous nitric acid with an alkyl-amine dissolved in either CH\(_2\)Cl\(_2\), CHCl\(_3\) or CCl\(_4\)) of various isotopes and cations: \(^{249}\)Bk, \(^{241}\)Am, \(^{243}\)Cm, \(^{144}\)Ce, \(^{152-154}\)Eu, \(^{137}\)Cs, \(^{90}\)Sr, \(^{232}\)Th, \(^{235}\)U elements.\(^{48-51}\) From 2003, the related molecular moieties were structurally characterized and similar 1:2 sandwich molecular systems of formula \([\text{An}^{IV}(\text{PW}_{17}O_{61})_2]^{26^-}\) were revealed with the series of tetravalent cations \(\text{An}^{IV} = \text{Th}^{IV}, \text{U}^{IV}, \text{Np}^{IV}, \text{Pu}^{IV}\) and \(\text{Am}^{IV}\).\(^{52,53}\) In the case of uranium(IV) and thorium(IV), it was noticed that the compounds could exist as “syn” and “anti” configurations in the presence of pure \(\alpha_1\) or \(\alpha_2\) POM isomers or with a \(\alpha_1\)-\(\alpha_2\) POM mixture (Figure 6). \(^{31}\)P NMR spectroscopy on the uranium-based POM moiety shows that at least two species are present in aqueous solution and interconvert slowly on NMR time scale.

![Figure 6: (a) Syn and (b) anti conformations of the \([\text{An}^{IV}(P_2W_{17}O_{61})_2]^{2n^-}\) polyoxometalates (with An\(^{IV}\) = Th\(^{IV}\), U\(^{IV}\)).](image-url)
(b) Divacant heteropolytungstate anions

Surprisingly, no molecular assembly was reported when actinides(IV) are associated to divacant polyoxotungstate units. However, the divacant γ-[SiW₁₀O₃₆]⁸⁻ polyanion was studied with the uranyl {U⁶⁺O₂} cation, giving rise to the formation of a tetrameric inner core \([\{\text{M(H}_2\text{O)}\}_4\text{(U}^\text{VI}\text{O}_2\}_4(\mu-\text{OH})_2\text{SiW}_{10}\text{O}_{36}\}_4]^{22-}\) (with \(\text{M} = \text{Na}^+ \text{ et K}^+\)).\(^{54}\) It consists of a ring-like sub-unit containing two dimers of corner-sharing seven-fold coordinated uranyl cations. Solution studies by \(_{29}\text{Si}\) and \(_{183}\text{W}\) NMR spectroscopy revealed the equimolar presence of a mixture of the tetrameric entity with another unidentified polyanion. The uranyl(VI)@γ-{SiW₁₀O₃₆} moiety was then found to decompose after approximately 12 hours, to generate only the unidentified polyanion (Figure 7).

Figure 7: Structure of the \([\{\text{M(H}_2\text{O)}\}_4\text{(U}^\text{VI}\text{O}_2\}_4(\mu-\text{OH})_2\text{SiW}_{10}\text{O}_{36}\}_4]^{22-}\) polyanion (left). \(_{29}\text{Si}\) and \(_{183}\text{W}\) NMR spectroscopy of the dissolved species indicating the presence of two different systems (right).

Based on the relative intensities of the \(_{29}\text{Si}\) and \(_{183}\text{W}\) NMR signals, this unidentified entity is probably constructed with [SiW₁₀O₃₆]⁸⁻ groups, lying on mirror planes orthogonal to those of the tetrameric architecture.

(c) Trivacant heteropolytungstate anions

The literature related to the interactions of trivacant polyanions, derived from either Keggin or Dawson archetypes, is much more abundant with actinide elements. It concerns many studies describing the association of pentavalent or hexavalent actinyl cations with heteropolytungstate anions, while illustrations of such molecular compounds with the actinides(IV) were reported only recently. Due to the structural diversity of An@POTs assemblies, this part is subdivided as a function of the nature of the polyanion, considering the trivacant A or B isomers for the Keggin type, or the Wells-Dawson phosphotungstate.
Prior to the first structural characterization of actinide-trivacant polyanion association, some research groups have proposed interpretations using aqueous solution studies (electronic spectroscopies and photo-colorimetric titrations) and elemental analysis to determine the possible compositions from compounds reactions using [PW$_9$O$_{34}$]$^{9-}$ and [GeW$_9$O$_{34}$]$^{10-}$ precursors with uranium(IV).55,56 They determine that these systems could structurally be closely related to the compound defined with a trinuclear sub-unit of cerium(IV), [(CeIV)$_3$(H$_2$O)$_2$(PW$_9$O$_{34}$)$_2$]$^{12-}$.57 In 2015, Duval et al. reported the two first structural associations between the trivacant moiety [SiW$_9$O$_{34}$]$^{10-}$ with thorium(IV) and uranium(IV) cations (Figure 8).

They showed that two distinct systems are organized in sandwich type compounds, for which a set of trinuclear (with Th(IV)) or tetranuclear (with U(IV)) poly-oxo clusters interacts with two [SiW$_9$O$_{34}$]$^{10-}$ polyanions, to generate the molecules [U$_4$V$_4$(µ$_3$O)$_2$(SiW$_9$O$_{34}$)$_2$(CH$_3$COO)$_2$]$^{10-}$ and [Th$_3$(µ$_3$O)(µ$_2$OH)$_3$(SiW$_9$O$_{34}$)$_2$]$^{13-}$ in an 1M acetate buffered aqueous solution.58 29Si and 183W NMR spectroscopy was performed on the aqueous solution containing the cerium(IV) model compound [Ce$_4$V$_4$(µ$_3$O)$_2$(SiW$_9$O$_{34}$)$_2$(CH$_3$COO)$_2$]$^{10-}$ showing the five-line spectrum.

Most of these compounds possess similar sandwich-like architectures. The first structurally characterized phosphotungstate anions were described in 1999 with the isolation of the species [X$_2$(UVIO$_2$)(PW$_9$O$_{34}$)$_2$]$^{12-}$ (with X= Na$^+$ or K$^+$) from an uranyl-[PW$_9$O$_{34}$] mixture in aqueous solution.59 For these molecules, the single uranyl group adopts classical pentagonal bipyramidal geometry and the alkaline Na$^+$, K$^+$ cations play a role in stabilizing the crystal structure assembly as they also interact with the two vacancies of the polyanionic {PW$_9$O$_{34}$} moiety. The structurally analogous compounds [Na$_2$(UVIO$_2$)(AsW$_9$O$_{34}$)$_2$]$^{12-}$ and [Na$_2$(UVIO$_2$)(SiW$_9$O$_{34}$)$_2$]$^{14-}$ were obtained using arsenicotungstate or silicotungstate precursors, respectively. A neptunyl(VI) derivative was also characterized later, in 2002, with the same architecture, from the [PW$_9$O$_{34}$]$^{10-}$ precursor and was further characterized in aqueous solution following the O \rightarrow NpVI charge transfer band by UV-Visible spectroscopy.54,60
influence of the alkaline (Na\(^+\) or K\(^+\)) or ammonium cations occurring in the neptunyl sandwich-like polyanion on their stability was also reported in 2015.\(^{61}\) Synthesis and luminescence properties of the closely related neptunyl(VI) and plutonyl(VI) containing system obtained from the [GeW\(_9\)O\(_{34}\)]\(^{10-}\) entity in water, were investigated later, with the generation of a similar single [Np\(^{VI}\)O\(_2\)]\(^{2+}\) or [Pu\(^{VI}\)O\(_2\)]\(^{2+}\) unit encapsulated between two trivacant polytungstate species.\(^{62}\) In the case of the neptunyl(VI)-containing molecule, the authors were able to show the interest of the polyanionic moieties in preventing the water quenching over the {Np\(^{VI}\)O\(_2\)}\(^{2+}\) luminescence.\(^{63}\) In addition to this property, the ((Np\(^{VI}\) or Pu\(^{VI}\))O\(_2\))[GeW\(_9\)O\(_{34}\)]\(^{16-}\) sandwich-like compounds are rapidly formed in solution in a near quantitative yield and were consequently considered for a potential utilization in actinyl cations separation. In 2002, a more complex system incorporating a hypothetic central core of three uranyl centers was identified when the {PW\(_9\)O\(_{34}\)} precursor was used. In this work, the synthesis was performed in an aqueous solution at pH = 3.5. However, the observation was based on elemental analysis and electronic spectroscopy and, the occurrence of the three uranyl-centered cluster was not structurally characterized by means of single-crystal XRD technique.\(^{64}\) Later, in 2011, an interesting star-like molecule was synthesized by Mohadeszadeh, starting from the [A-AsW\(_9\)O\(_{34}\)]\(^{9-}\) polyanion.\(^{65}\) He was able to structurally characterize an octahedral macromolecule [(NH\(_4\))\(_{12}\)(U\(^{VI}\)O\(_2\)(H\(_2\)O))\(_{12}\)(AsW\(_9\)O\(_{34}\))\(_6\)]\(^{18-}\), for which the six trivacant {AsW\(_9\)O\(_{34}\)} polyanionic moieties occupy the nodes in an octahedral geometry fashion, allowing the encapsulation of twelve uranyl centers. The uranyl centers (organized in two trimers, bridged by \(\mu^2\)-OH ligands, and six monomers in pentagonal bipyramidal geometry) are localized on the face of the octahedral architecture. This molecular association appears to be stabilized by the presence of twelve ammonium cations located within the octahedral cavity. Electronic spectroscopy was performed showing a classical O → U\(^{VI}\) charge transfer band a 428 nm, indicating a weakening of the U\(^{VI}\)=O\(_{\delta}\) bonds due to the strongly coordinating oxygen atoms of the vacancies of the polyanion. The U\(^{VI}\)=O\(_{\delta}\) bonds distances are in the usual range 1.70(3) \(\text{Å}\) - 1.80(3) \(\text{Å}\) and thus appear unaffected by the coordinative environment.

\((c2)\) [B-X\(^{III}\)W\(_9\)O\(_{33}\)]\(^{n-}\) and [B-X\(^{IV}\)W\(_9\)O\(_{34}\)]\(^{n-}\) type polytungstate anions

The polyanionic family containing central heteroatoms with a lone electronic pair, such as As\(^{III}\), Sb\(^{III}\) or Bi\(^{III}\), has been particularly intensively explored with transition elements but also with the uranyl(VI) cation. In another hand, fewer structural characterizations were investigated with tetravalent uranium cations. The literature shows that the [XW\(_9\)O\(_{33}\)]\(^{n-}\) polyanion has been successfully complexed with hexavalent uranium to form various structural entities, with a large diversity of the central X heteroelement, such as As\(^{III}\), Sb\(^{III}\), Bi\(^{III}\), Se\(^{IV}\) and Te\(^{IV}\). The resulting polyanionic entities were obtained as sandwich-like molecules [(U\(^{VI}\)O\(_2\))\(_2\)(H\(_2\)O)\(_2\)(XW\(_9\)O\(_{33}\))\(_2\)]\(^{n-}\) (with X = Sb\(^{III}\) or Bi\(^{III}\), n = 14 and X = Te\(^{IV}\), n = 12) with a C\(_{2v}\) symmetry, for which the two uranyl atoms are present as monomeric centers.\(^{66}\) When the [As\(^{III}\)W\(_9\)O\(_{33}\)]\(^{9-}\) precursor is used, a distinct polyanionic entity is isolated with the assembly of three polyanionic units, for which two of them are reorganized in [As\(^{III}\)W\(_9\)O\(_{30}\)]\(^{9-}\) entities linked by one tungsten center. The three uranyl groups, possessing classical pentagonal bipyramidal coordination geometry, are bridging the three polyanionic moieties on
four of their equatorial positions, the fifth one being linked to a water molecule. With $X = \text{Sb}^\text{III}$ or Bi^III, the $\text{B-[XW}_9\text{O}_{33}]^\text{9-}$ polyanions were successfully assembled in two molecular species encapsulating the pentavalent form $\{\text{Np}^\text{V} \text{O}_2\}^+$ of the neptunyl cation groups. In both polyanionic moieties, the three monomeric neptunyl centers are linked to a central $\{\text{W}_4\text{O}_{15}\}$ group, sharing an oxygen atom, to form the $[(\text{Np}^\text{V}_3\text{W}_4\text{O}_{15})(\text{H}_2\text{O})(\text{XW}_9\text{O}_{33})_3]^{18-}$ compound (Figure 9).

Figure 9: (a) Structural representation of the compound $[(\text{Np}^\text{V}_3\text{W}_4\text{O}_{15})(\text{H}_2\text{O})(\text{XW}_9\text{O}_{33})_3]^{18-}$ and (b) highlight on the central $[\text{Np}^\text{V}_3\text{W}_4\text{O}_{15}]^{9+}$ unit showing the $\text{Np}^\text{V}=\text{O}$yl-$\text{W}^\text{VI}$ interaction.

This $[\text{Np}^\text{V}_3\text{W}_4\text{O}_{15}]$ block appears to be unique in the actinyl-polyanion molecular chemistry as it reports the existence of a particular $\text{Np}^\text{V}=\text{O}_{3\text{f}}$-$\text{W}^\text{VI}$ bonding (so-called cation-cation interaction),6 that takes place between the three $\text{Np}(\text{V})$ centers (pentagonal bipyramidal geometry) with one octahedral $\{\text{W}^\text{VI}\text{O}_6\}$ unit. The $\text{Np}=\text{O}_{3\text{f}}$ distances appear impacted by this interaction and are elongated (Np-O distance of 1.99(3) Å) in comparison with the uncoordinated shorter trans--$\text{O}_{3\text{f}}$ atom (Np-O distances of 1.833(17) Å). In the same way, the central $\{\text{WO}_6\}$ atom presents three elongated W-O distances of 2.03(3) Å to 2.05(3) Å when interacting with the neptunyl oxygen atoms and three shorter ones (W-O distances of 1.77(3) Å to 1.87(3) Å).

In the other hand, the fewer structural reports dealing with the use of uranium(IV), were firstly investigated in 2001 by using the tri-lacunary $[\text{Sb}^\text{III}\text{W}_9\text{O}_{33}]^9$ polyanion.7 In the latter, the uranium(IV) atoms are found in a trinuclear sub-unit between two Sb^III-polytungstate precursors, with the resulting sandwich-like compound of an assumed formula $[\text{U}^\text{IV}_3(\text{Sb}^\text{III}\text{W}_9\text{O}_{33})_2]^{6-}$. Spectroscopic evidence shows an interaction between the uranium(IV) cation and the Sb^III-polytungstate polyanion based on the shifts of the precursor $\text{v}_{\text{as}}(\text{W}=\text{O}_{\text{bc}})$, $\text{v}_{\text{as}}(\text{W}=\text{O}_{\text{d}})$ and $\text{v}_{\text{as}}(\text{W}=\text{O}_{\text{e}})$ vibrations but, no single-crystal XRD structural data were obtained to confirm the formula assessment and the molecular arrangement of the system. Nevertheless, the $[\text{As}^\text{III}\text{W}_9\text{O}_{33}]^9$ polyanion was successfully used to complex uranium(IV)-based hexanuclear clusters in presence of an acetate buffer at $\text{pH} = 4.5$ in aqueous solution (Figure 10).7
Three distinct molecular species, \((\text{As}^{\text{III}}\text{W}_{9}\text{O}_{33})_3(\text{OAc})_2(\text{U}^{\text{IV}})_{3.55}(\mu^3-\text{OH})_4(\mu^3-\text{O})_4\text{O}(\text{U}^{\text{VI}})_{0.5})^{19-}\), \((\text{As}^{\text{III}}\text{W}_{9}\text{O}_{33})_3(\text{U}^{\text{IV}})_3(\text{U}^{\text{VI}})(\mu^3-\text{OH})_4(\mu^3-\text{O})_4)^{15-}\) and \((\text{As}^{\text{III}}\text{W}_{9}\text{O}_{33})_4(\text{U}^{\text{IV}})_6(\mu^3-\text{OH})_4(\mu^3-\text{O})_4)^{24-}\), were thus structurally characterized. The first one crystallizes after a few hours and, the second system then appears when the crystallization solution is left under air overnight. These two first molecules stabilize hexameric clusters with three \(\{\text{As}^{\text{III}}\text{W}_{9}\text{O}_{33}\}\) moieties. Interestingly, the hexameric cluster is composed of uranium centers at two different oxidation states. In the first compound, the hexanuclear core consists of one uranium center, substitutionally disordered between a tetravalent center and a hexavalent one while, in the second molecule, three uranium cations are at the tetravalent oxidation state and the three others are at the hexavalent one. The last compound of this series is obtained by decreasing the acetate buffer concentration and stabilized an “classic” purely uranium(IV) hexanuclear \(\{\text{U}^{\text{IV}}_6\text{O}_4(\text{OH})_4\}\) brick. Very recently, the use of a trivacant analog polyanion, \([\text{As}^{\text{V}}\text{W}_{9}\text{O}_{34}]^9-\), with thorium(IV) leads to the formation of a complex molecular compound \([\text{K}_4\{\text{Th}^{\text{IV}}_3(\text{H}_2\text{O})_3(\text{As}^{\text{V}}\text{O}(\mu^2-\text{O}))_3\}_2\}{\text{Th}^{\text{IV}}_3(\text{H}_2\text{O})_2(\text{As}^{\text{V}}\text{O}(\mu^2-\text{O}))_3\}_3(\text{As}^{\text{V}}\text{W}_{10}\text{O}_{38})_6]^{38-}\), defined from the octahedral arrangement of the \(\text{As}^{\text{V}}\)-polytungstate units. In this molecule, six divacant \([\text{As}^{\text{V}}\text{W}_{11}\text{O}_{38}]^{11-}\) entities, coming from the reorganization of the arsenicotungstic precursor \([\text{As}^{\text{V}}\text{W}_{9}\text{O}_{34}]^9-\), are connected to four \(\{\text{Th}^{\text{IV}}_3\text{As}^{\text{V}}_2\text{O}_n\}_n\) \((n = 25 \ or \ 26)\) groups (Figure 11). Furthermore, four potassium cations appear to be embedded within the resulting cavity formed by the inorganic moiety. The latter might play a templating role, favoring the crystallization of this compound. SAXS measurements were performed on dissolved crystals of this molecule in aqueous solution. A shift between the experimental scattering data and the modelled curve clearly indicates that the molecular assembly is decomposed in aqueous solution, resulting in the generation of simple 1:2 sandwich-like, which would imply two monovacant polytungstates \([\text{As}^{\text{V}}\text{W}_{11}\text{O}_{38}]^{11-}\) encapsulating one eight-fold coordinated thorium center.
Figure 11: (a) Structural representation of the \(\{\text{Th}^{IV}_{12}(\text{As}^{V}_{9}\text{W}_{34}O_{34})_{6}\} \) molecular system, (b) SAXS analysis (dashed curve) and modelling (full line) of a solution of \(\{\text{Th}^{IV}_{12}(\text{As}^{V}_{9}\text{W}_{34}O_{34})_{6}\} \) in water using the structural model of the \(\{\text{Th}^{IV}_{12}(\text{As}^{V}_{9}\text{W}_{34}O_{34})_{6}\} \) system and (c) modelling (full line) considering a 1:2 sandwich like compound.

(c3) The \([\text{P}_{3}\text{W}_{15}O_{56}]^{12-}\) polytungstate anion

The trivacant polyanions derived from the Wells-Dawson archetype have been relatively much less studied than their Keggin counterparts. Surprisingly, only the tri-lacunary \([\text{P}_{3}\text{W}_{15}O_{56}]^{12-}\) derivatives have been used with actinide elements. This polyanion possesses the same type of vacancy as encountered in the B isomer of \([\alpha-\text{PW}_{9}O_{34}]^{9-}\) unit. The use of the uranyl cationic group with the Wells-Dawson trivacant unit, in a 3:2 stoichiometry, gave rise to the formation of the \([\text{U}^{VI}_{3}\text{O}_{2}]_{12}(\mu^3-\text{O})_4(\mu^2-\text{H}_{2}\text{O})_{12}(\text{P}_{2}\text{W}_{15}O_{56})_4]^{32-}\) entity with four \([\text{P}_{3}\text{W}_{15}O_{56}]^{12-}\) units organized around a \(T_d\) symmetry (Figure 12).}

Figure 12: Structural representation of \([\text{U}^{VI}_{3}\text{O}_{2}]_{12}(\mu^3-\text{O})_4(\mu^2-\text{H}_{2}\text{O})_{12}(\text{P}_{2}\text{W}_{15}O_{56})_4]^{32-}\).

The twelve uranyl cations, with the typical pentagonal bipyramidal geometry, are linked to each other in four independent \(\{\text{U}^{VI}_{3}\text{O}_{2}]_3(\text{H}_{2}\text{O})_3\}\) \(\mu_3\)-oxo-centered trinuclear bricks. Solution studies by \(^{31}\text{P}\) NMR spectroscopy in water give the expected two-line spectra (with chemical shits of -2.95 ppm and -13.58 ppm) confirming the existence of the molecule in aqueous solution. Interestingly, the use of mixture with a 3U / 1P\(_2\text{W}_{15}\) stoichiometry reveals a two-line NMR spectrum with different chemical shifts (also affected by the pH) compared to
those found in the T_d-symmetry based original macromolecule. It probably indicates the presence of other $\{\text{U}^{IV}\text{O}_2\}\{\text{P}_2\text{W}_{15}\text{O}_{62}\}$ configurations in aqueous solution.

For now, the syntheses using actinide(IV) only lead to the formation of a molecule with a suggested $[(\text{U}^{IV}\text{O})_3(\text{H}_2\text{O})_6(\text{P}_2\text{W}_{15}\text{O}_{56})_2]^{18-}$ chemical formula isolated as a sodium salt. This species was characterized by elemental analysis and spectroscopic solution studies showing the adsorption band related to $\text{U}^{IV} \rightarrow \text{W}^{VI}$ charge transfer but, no structural analysis has yet confirmed its solid-state organization.\cite{55}

\section*{(d) Cryptants heteropolytungstate anions}

The cryptant species like $[\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}$, $[\text{P}_8\text{W}_{48}\text{O}_{184}]^{40-}$ or the Preyssler anion $[\text{P}_5\text{W}_{30}\text{O}_{110}]^{15-}$, are all derived from the previous polyvacant polyoxometalates. Their utilization introduces an alternative way in term of complexation of actinide elements. Indeed, the occurrence of specific complexation sites within these cryptants molecules may offer a better controllable route to encapsulate actinide cations.

\subsection*{(d1) The $[\text{P}_3\text{W}_{30}\text{O}_{110}]^{15-}$ phosphopolytungstate anion}

The $[\text{P}_3\text{W}_{30}\text{O}_{110}]^{15-}$ molecule was firstly discovered in 1970 with the erroneous formulation of $\{\text{P}_3\text{W}_{18}\}$ type, and was finally structurally characterized in 1985.\cite{74,75} It exhibits a cryptant configuration, described as a cyclic arrangement of five $[\text{PW}_6\text{O}_{22}]^{3-}$ hexavacant entities derived from the Keggin structure resulting in a central cavity. A sodium cation and a water molecule (which was discovered later by reexamination of the structure) lie within this inner void, centered on the five-fold symmetry axis of the molecule.\cite{76} The non-labile Na+ cation can be removed using hydrothermal treatment in order to insert other metallic elements of approximately the same radius (~1 Å). By this way, actinides elements like uranium(IV), and later thorium(IV), americium(III) and curium(III) could be trapped within the cavity.\cite{77,78} The final actinide/POM ratio was one An(III or IV) for one $[\text{P}_5\text{W}_{30}\text{O}_{110}]$ species. Electrochemical studies on these molecular systems reveal that the presence of the actinide cation (ThIV, AmIII or CmIII) within the $[\text{P}_5\text{W}_{30}\text{O}_{110}]$ cavity, modifies the reduction potential of the tungsten(VI) centers of the polyanion, in comparison with the precursor $\{\text{Na}\circlearrowleft\text{P}_5\text{W}_{30}\text{O}_{110}\}$. This indicates that the sodium cation can be effectively exchanged with the various tetravalent elements mentioned above. Nevertheless, the cationic exchange of the central sodium atom with other elements is rather difficult, since a hydrothermal reaction at temperature of 203-204°C for 100 hours is required and this makes it particularly unpractical for a potential application in separation of actinides elements.

\subsection*{(d2) The $[\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}$ arsenatopolytungstate anion}

The $[\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}$ macromolecule was structurally identified in 1980.\cite{79} It consists of four $\{\text{As}^{III}\text{W}_9\text{O}_{33}\}$ fragments linked by four \textit{cis}-di-oxo WO\textsubscript{2} subunits to generate a distorted cyclic tetrameric architecture with a global D_{2d} symmetry. The ring-like species possesses two types
of coordination sites noted S\textsubscript{1} and S\textsubscript{2} (Figure 13), that can bind various alkali and alkaline earth elements or transition metals and lanthanides, respectively.80

Figure 13: Structural representation of the \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) showing the S\textsubscript{1} and S\textsubscript{2} complexation sites.

The reaction of \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) with \([\text{UO}_2]^{2+}\) uranyl cations has been performed and has given rise, to a distinct molecular entity \([\text{U}^{\text{VI}}\text{O}_2]_3(\text{H}_2\text{O})_6(\text{W}_3\text{O}_6)(\text{AsW}_9\text{O}_{33})_3]15-, due to decomposition of the cyclic precursor at pH = 4. The latter is characterized by a \(C_3v\) symmetry showing the presence of three trivacant units stabilizing three isolated uranyl centers. An analogous molecule but with one lacking tungsten center in the linking (W\textsubscript{3}O\textsubscript{6}) trimeric fragment, was isolated at pH = 7 to be \([\text{U}^{\text{VI}}\text{O}_2]_3(\text{H}_2\text{O})_5(\text{W}_2\text{O}_5)(\text{AsW}_9\text{O}_{33})_3]19-. This molecule remains reactive and, addition of vanadium(V) was successfully performed on this vacancy.81

Thermal treatment, at 725°C under nitrogen, performed on the \([\text{U}^{\text{VI}}\text{O}_2]_3(\text{H}_2\text{O})_6(\text{W}_3\text{O}_6)(\text{AsW}_9\text{O}_{33})_3]15- ammonium salt leads to the formation of a tungsten bronze mixed oxide \(\text{U}_{0.1}\text{WO}_3\). It was therefore noticed that the insertion of uranyl cations within the \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) species was unsuccessful up to now from a direct reaction route. Comparatively, the interaction with uranium(IV) salts has been attempted by several research groups. In the first study in 1996,82 it was suggested that two octahedrally coordinated uranium atoms were incorporated within the cryptand but, no structural investigation could confirm such an assessment. In 2002, a study of the mixture of different concentrations of uranium(IV) and \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) was undertaken in aqueous solution and showed that up to four uranium(IV) atoms could be incorporated within the cryptant-like molecule. However, an important structural disorder related to the uranium(IV) positions, has prevented a proper structural determination.54

It was finally reported that a reaction of the uranium(IV)/\([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) solution with guanidinium chloride gave rise to the formation of the unexpected uranyl containing molecule \([\text{Na}(\text{U}^{\text{VI}}\text{O}_2)_3(\mu-\text{OH})(\text{H}_2\text{O})_6(\text{WO})_{\text{As}_4}\text{W}_{40}\text{O}_{140}])^{18-}\). The oxidation reaction of uranium(IV) into uranyl(VI) species was thus observed together with the addition of \{WO\} units attached to the \{As\textsubscript{4}W\textsubscript{40}O\textsubscript{140}\} original core. The challenging investigation involving uranium(IV) was finally described in 2018 by Dufaye \textit{et al.}83 By systematically studying an addition of uranium(IV) varying from 1 to 10 equivalents per
cryptand molecules, they were able to isolate three different crystal structures deriving from the \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) moiety. The first one was actually previously studied by Pope et al. and characterized by the occurrence of the disorder for uranium(IV) at the central “S2” type sites. It was resolved with the presence of two uranium(IV) centers statistically located at the four S2 complexation sites with an occupancy factor of 0.5. The two other crystal systems were found to incorporate either two or four uranium(IV) atoms located at the S2 sites with a ordered manner. The ability of the \([\text{As}_4\text{W}_{40}\text{O}_{140}]^{28-}\) cryptand to bind selectively uranium cations was further explored with an Nd\(^{III}/U\(^{IV}\) mixture in the presence of cesium in order to favor their precipitation from the aqueous solutions. Surprisingly, the neodymium(III) cations were specifically complexed instead of the highly charged uranium(IV), opening an interesting route for the separation investigations of trivalent and tetravalent actinides mixtures.

\((d3)\) The \([\text{P}_8\text{W}_{48}\text{O}_{184}]^{40-}\) polytungstate anion

The \([\text{P}_8\text{W}_{48}\text{O}_{184}]^{40-}\) wheel was firstly structurally described by Content and Tézé in 1985\(^7\) and its complexation properties has been studied with several transition metals.\(^{84-92}\) However, it was observed that it remains quite difficult to insert additional cationic species, due to the presence of strongly anchored potassium cations coming from the chemical composition of the \(\text{K}_{28}\text{Li}_5[\text{H}_7\text{P}_8\text{W}_{48}\text{O}_{184}]\cdot 92\text{H}_2\text{O}\) precursor salt. As far as we know, there was no literature report about the interactions of actinides with this macromolecule before the end of 2018. One can mention an approaching study with the isolation of the compound \([\text{LiK}_4(\text{H}_2\text{O})_4\{(\text{U}^{\text{VI}}\text{O}_2)_4(\mu-\text{O}_2)_4(\text{H}_2\text{O})_2\}_2(\text{PO}_3\text{OH})_2\text{P}_8\text{W}_{36}\text{O}_{136}]^{25-}\) obtained in 2008 by Kortz et al., from a slightly different synthetic strategy, using the \([\text{H}_6\text{P}_4\text{W}_{20}\text{O}_{92}]^{18-}\) precursor (see section 4 below). Direct use of the \([\text{P}_8\text{W}_{48}\text{O}_{184}]^{40-}\) macrocycle with uranyl cations was firstly described by Duval et al. in the end of 2018.\(^{93}\) The compound was synthesized using hydrothermal treatment at pH 3.5 in presence of formate ligands and LiCl to insert a maximum of 7.2 uranyl groups per \(\{\text{P}_8\text{W}_{48}\text{O}_{184}\}\) unit, on the periphery of the cavity. The uranyl centers appear to be highly disordered on two independent crystallographic sites with the occupancy factors of 0.25 and 0.65 for the directly interacting uranyl with the \(\{\text{P}_8\text{W}_{48}\text{O}_{184}\}\) core and for the neighboring one, respectively. Once dissolved in aqueous solution, SAXS and TEM studies show the good stability of the uranyl-containing phosphopolytungstate anionic moiety. It was also pointed out an interesting supramolecular aggregation process of these species in the form of spherical blackberries organization, with a diameter of approximately 260 Å (Figure 14). This particular aggregation was previously reported in a closely related system with a 20-centers copper cluster inside of the cyclic precursor.\(^{94}\)
Figure 14: Schematic representation of the aggregation process (blackberries form) occurring upon dissolution of the \{(U^{VI}O_2)_7P_8W_{48}O_{184}\} molecular polyanion. SAXS measurement (red and orange dots) showing the aggregation process is presented on the right. The black curve corresponds to the modelling based on the crystal data from the molecular \{(U^{VI}O_2)_7P_8W_{48}O_{184}\} species alone.

One year later, Koronev et al. published two similar systems, [(U^{VI}O_2)_7P_8W_{48}O_{184}]^{26-} and [(U^{VI}O_2)_8P_8W_{48}O_{184}]^{24-} also incorporating uranyl cationic group starting from the classical K_{28}Li_5[H_2P_8W_{48}O_{184}]·92H_2O and the more recent Li_{17}(NH_4)_{21}[H_2P_8W_{48}O_{184}]·85H_2O precursors, respectively.\(^7,95,96\) These two molecules were obtained at lower pH values (pH = 1.5) and the crystallographic positions of the uranyl groups were determined to be close to those already observed in the first report.\(^93\) The two compounds are stable once dissolved in water and electrochemical studies apparently show the irreversible reduction of \{(U^{VI}O_2)^{2+}\} groups into U^{IV} at a potential of -0.31V (vs. As/AgCl).

Until now, the association of the \{P_8W_{48}O_{184}\} macrocycle with the uranium(IV) cation or with other actinides/actinyl groups has not been described in the literature.

4. Other chemical systems

In this review, we have also to mention other polyanionic molecules obtained with non-classical synthetic methods, and derived from the previously described systems. For instance, Kortz’s team obtained an interesting horse shoes architecture using uranyl cations and peroxide-type oxygen groups in the presence of the half unit [H_6P_4W_24O_{92}]^{18-} from the \{P_8W_{48}\} macrocycle.\(^97\) The resulting compound is constructed around the in situ formation of a \{P_8W_{36}\} horse-shoes like polyanion incorporating two uranyl-centered \{(U^{VI}O_2)_4(O_2)_4(H_2O)_2\} tetramers decorated with four peroxo ligands (Figure 15).
The uranyl groups have a classical hexagonal bipyramidal geometry with two trans-dioxo atoms with typical short bond lengths of 1.73 Å to 1.83 Å. Four potassium cations directly connect these two peroxo-uranyl-based tetramers and are capped either by a lithium or potassium additional cation. This molecule was also studied in aqueous solution, revealing its stability but also a slow exchange (on NMR timescale) between the two hanging phosphates and “free” phosphates.

Another interesting class of molecular system was discovered in 2005 by Peter C. Burns et al. This research team is specialized in the synthesis of the well-known actinyl (uranyl or neptunyl) peroxo cage clusters, prepared in alkaline solutions. Later in 2012, they have made some successful syntheses of uranyl-peroxide assemblies interacting with either polytungstates or polymolybdates entities. The interest is to work in more basic peroxide conditions while polyanionic entities are mainly obtained in solutions below pH 7. In 2012, they obtained at pH = 8.8, a wheel-shaped molecule \[
[(W^{VI}O_5)_3(U^{VI}O_2)_{18}W_2P_{12}]^{30-}
\]
as a mixed sodium-lithium salt. The uranyl centers in this molecule possess hexagonal bipyramidal geometry with classical U=O_y bond lengths of 1.8 Å. The \(W_{5O_{21}}\) sub-unit is composed of one square-pyramidal \(W^{VI}O_5\) tungsten atom surrounded by four octahedrally coordinated \(W^{VI}O_6\) atoms. These o xo-tungstic groups are alternated with uranyl peroxo dimers to form the molecular wheel. Later, an alternative approach was successfully performed by using Keggin type phospho-polynuclearates (instead of \([WO_4]^{2-}\) tungstate precursors), associated to uranyl and hydrogen peroxide at pH around 6. Six hybrid uranium-transition metals-peroxo cage clusters were isolated: the uranyl-peroxo polyhedra interact with monomers of tungstate or molybdate (depending on the precursor used) in which uranium-transition metal number goes from \(U^{VI}_{18}W_2P_{12}\) to \(U^{VI}_{50}W_6P_{20}\) for tungsten containing cages and from \(U^{VI}_{28}Mo_4P_{12}\) to \(U^{VI}_{44}Mo_2P_{16}\) for molybdenum ones. The somewhat great number of phosphor atoms comes from the addition of \(H_3PO_4\) in the various syntheses. For all the molecules, the uranyl centers adopt the typical coordination environment with hexagonal bipyramid geometry. Here, the originality of this geometry consists in the fact that two peroxo ligands on the uranyl groups are in a trans-arrangement which is relatively rare in the uranyl peroxo cage family. Indeed, they are usually observed in cis configurations in most of Burns’ uranyl peroxides cages. Interestingly, the transition metals inserted in the spherical uranyl peroxo clusters exhibit various coordination modes. They can be found as \([MO_3(OH)]^- (M = Mo or W)\) tetrahedra, \([WO_4(OH)]^-\) square pyramids
and \([\text{WO}_3(\text{OH})_3]^{3-}\) octahedra. This shows the ability of these elements to be incorporated within the uranyl peroxy cages and may be stabilizing or constraining the occurrence of the trans-arrangement of the peroxy ligands around the uranyl centers.

5. Conclusion and remarks

Table 1: Structurally characterized Actinide-POM associations.

<table>
<thead>
<tr>
<th>Actinide cation</th>
<th>Binding polyoxometalate unit</th>
<th>Reference numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Th}^{IV})</td>
<td>([\text{WO}_{12}])</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}])</td>
<td>52+53</td>
</tr>
<tr>
<td></td>
<td>([\text{XW}{12}O{40}]) (X = Si(^{IV}), As(^{V}))</td>
<td>58+72</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}(\text{OH})_3])</td>
<td>78</td>
</tr>
<tr>
<td>(\text{U}^{IV})</td>
<td>([\text{MoO}_6\text{P}2\text{O}{7} \cdot \text{H}_2\text{O}])</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>([\text{W}2\text{O}{18}])</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>([\text{SbW}6\text{O}{18}])</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}])</td>
<td>52+53</td>
</tr>
<tr>
<td></td>
<td>([\text{XW}{12}O{40}]) (X = P(^{V}), Ge(^{IV}), Si(^{IV}), As(^{V}))</td>
<td>55+56+58</td>
</tr>
<tr>
<td></td>
<td>([\text{ShW}{12}O{40}])</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>([\text{AsW}{12}O{40}])</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>([\text{As}2\text{W}{18}O_{40}])</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>([\text{As}6\text{W}{36}O_{110}])</td>
<td>54+82+83</td>
</tr>
<tr>
<td>(\text{U}^{VI})</td>
<td>([\text{SiW}{12}O{40}])</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>([\text{XW}{12}O{40}]) (X = P(^{V}), Si(^{IV}), As(^{V}))</td>
<td>54+59+64+65</td>
</tr>
<tr>
<td></td>
<td>([\text{XW}{12}O{40}]) (X = As(^{III}), Bi(^{IV}), Te(^{IV}), Se(^{VI}), Sh(^{III}))</td>
<td>54+66</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}])</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>([\text{As}6\text{W}{36}O_{110}])</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>([\text{P}2\text{W}{12}O_{44}])</td>
<td>93+95</td>
</tr>
<tr>
<td></td>
<td>([\text{P}2\text{W}{27}O_{102}])</td>
<td>97</td>
</tr>
<tr>
<td>(\text{Np}^{IV})</td>
<td>([\text{W}{12}O{48}])</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>([\text{BW}{12}O{48}])</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}])</td>
<td>38</td>
</tr>
<tr>
<td>(\text{Np}^{V})</td>
<td>([\text{XW}{12}O{40}]) (X = Sh(^{III}), Bi(^{IV}))</td>
<td>68</td>
</tr>
<tr>
<td>(\text{Np}^{VI})</td>
<td>([\text{XW}{12}O{40}]) (X = P(^{V}), Ge(^{IV}))</td>
<td>60+61+62+63</td>
</tr>
<tr>
<td>(\text{Am}^{IV})</td>
<td>([\text{PW}{12}O{40}])</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>([\text{PW}{12}O{40}(\text{OH})_3])</td>
<td>78</td>
</tr>
<tr>
<td>(\text{Pu}^{IV})</td>
<td>([\text{PW}{12}O{40}])</td>
<td>53</td>
</tr>
<tr>
<td>(\text{Pu}^{VI})</td>
<td>([\text{GeW}{12}O{40}])</td>
<td>62</td>
</tr>
<tr>
<td>(\text{Cm}^{IV})</td>
<td>([\text{P}2\text{W}{27}O_{102}])</td>
<td>78</td>
</tr>
</tbody>
</table>

Although polyoxometalate chemistry has been mainly devoted to the formation of systems incorporating 3d-4d transition metals or 4f lanthanides cations for various applications such as magnetism, luminescence or material chemistry, the incorporation of actinides/actinyl cations within POMs moieties has been much less explored. Indeed, the utilization of such materials for real applications remains quite complicated due to their intrinsic radiotoxicity. Only potential concepts such as their use in nuclear waste treatment by forming tungsten bronze for confinement or their coordination properties for separation of heavy actinides (SESAME process) have been explored. While some molecules have been studied, we could say from actual literature results that, no real effort have been made to completely study the potentialities of such POM-actinides associations even if some research teams have started to regain interest in this topic (Table 1). The stabilization of tetravalent actinides by polyanions is relatively new and many chemical combinations still remain unknown, as well as with the actinyl cationic groups. Another strategy could lie on the addition of an organic ligand to the polyanion, in order to modulate the condensation process of the actinides elements and to
mimic their environmental behavior. This hybrid polyanion-organic linkers approach was succinctly investigated with uranium(IV) elements and a little bit more exemplified with cerium(IV), which could be used as surrogate cations.58,104,105 Such associations would for sure give more structural versatility to the potential molecules and could provide a direction to new applications for these materials. Another class of rising systems in the polyanion domain is the so-called POMOFs (polyoxometalate-based Metal-Organic Frameworks) compounds, in which the polyanion serve as a node for the construction of the three-dimensional architecture, in order to generate a MOF-like compound through spacer organic ligands. These molecules could thus serve as a trap for actinides, using actinide-POM as the node and, in addition, post modifications on the organic part could also help in complexing other actinides for trapping purpose. The chemical robustness of these systems could allow the emergence of new applications. For instance, a study on this topic showing a multi-purpose POMOF acting as a uranyl encapsulation for chemical and photocatalytic reduction of \(\text{U}^{\text{VI}} \underset{2}{\text{O}}_2^{2+} \) in \(\text{U}^{\text{IV}} \) was recently published.106

Acknowledgment:
The authors would like to thank the "Fonds Européen de Développement Régional (FEDER)", "CNRS", "Région Nord Pas-de-Calais" and "Ministère de l'Education Nationale de l'Enseignement Supérieur et de la Recherche" are acknowledged for funding of X-ray diffractometers. S.D. would like to thanks ANR for the funding of the POMAR project.

References
102 J. Qiu, K. Nguyen, L. Jouffret, J. E. S. Szymanski and P. C. Burns, 2013, **52**, 337.