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Abstract. It is well known that, among closed spherical Seifert three-
manifolds, only lens spaces and prism manifolds admit several Seifert
fibrations which are not equivalent up to diffeomorphism. Moreover
the former admit infinitely many fibrations, and the latter exactly two.
In this work, we analyse the non-uniqueness phenomenon for orbifold
Seifert fibrations. For any closed spherical Seifert three-orbifold, we
determine the number of its inequivalent fibrations. When these are in
a finite number (in fact, at most three) we provide a complete list. In
case of infinitely many fibrations, we describe instead an algorithmic
procedure to determine whether two closed spherical Seifert orbifolds
are diffeomorphic.
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1. Introduction

Seifert fibered 3-manifolds were introduced by Seifert [27] and are one of the cor-
nerstones in the study of 3-dimensional manifolds (see for example [1, 22, 26]).
Roughly speaking a Seifert fibered 3-manifold is a fiber bundle whose fibers are
circles, except that some fibers are exceptional, meaning that a tubular neigh-
borhood is a torus which is however not fibered as a product. The presence
of singular fibers is reflected by the fact that the base of the fibration is not
a manifold, but a particular type of 2-dimensional orbifold, namely a surface
containing cone points.

Orbifolds are a generalization of manifolds, which had been introduced in
different contexts by Satake [25], by Thurston [30, Chapter 13] and by Haefliger
[14] – useful references being also [1, 5, 10, 26]. The most standard example
of an orbifold (of dimension n) is the quotient of a manifold Mn by a group Γ
which acts properly discontinuously – but in general not freely – on M . If the
action is not free, singular points appear in the quotient M/Γ, keeping track
of the action of point stabilizers StabΓ(x) on a neighborhood of a fixed point
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x ∈M . More generally, an orbifold is locally the quotient of a manifold by the
action of a finite group.

Bonahon and Siebenmann [3] generalized the definition of Seifert fibration
to 3-orbifolds. This notion is actually more general than its counterpart for 3-
manifolds: here fibers are in general quotients of the circle, and therefore some
exceptional fibers are allowed to be intervals, which corresponds to the fact that
the base of the fibration has singularities which are not of conical type. Seifert
fibered 3-manifolds and 3-orbifolds are classified up to fibration-preserving dif-
feomorphisms by Seifert invariants, but some of them admit more than one
Seifert fibration. The complete topological classification of the Seifert fibered
3-manifolds follows from the work of several authors (see [1, Section 2.4.1]).
In the present paper we give a classification by diffeomorphism type of closed
Seifert fibered spherical 3-orbifolds. Throughout the paper 3-orbifolds and 3-
manifolds are assumed to be orientable; indeed, in the spherical fibered case
this assumption is not a restriction since non-orientable spherical 3-orbifolds
never admit a Seifert fibration, see Corollary 2.8.

Spherical 3-orbifolds are one of the eight classes of geometric 3-orbifolds,
which had a large importance in Thurston’s geometrization program. These
are locally the quotient of one of the eight Thurston’s model geometries by
the properly discontinuous action of a group of isometries. In the case of
manifolds, six of eight Thurston’s geometries give Seifert fibered 3-manifolds
(the exceptions are hyperbolic and Sol geometries). In the orbifold setting
the situation is the same with few exceptions: twelve euclidean 3-orbifolds
and eighteen spherical 3-orbifolds are not fibered, see [10, Theorem 1]. The
eighteen spherical 3-orbifolds not admitting a Seifert fibration are analyzed by
Dunbar [11]. On the other hand each closed Seifert fibered 3-orbifold without
bad 2-suborbifold admits a geometric structure [1, Proposition 2.13]; bad means
that the orbifold is not globally the quotient of a manifold.

The 3-manifolds admitting multiple fibrations are either spherical, euclidean
or covered by the Thurston geometry S2 × R, see [26]. In the euclidean case
there exists a unique 3-manifold admitting several inequivalent fibrations and
in the S2 × R case we find two of these manifolds. The most intriguing case
from this point of view is the spherical one where manifolds belonging to two
important classes (lens spaces and prism manifolds) admit multiple fibrations.
The situation for Seifert fibered 3-orbifolds is similar in the sense that interest-
ing non-uniqueness phenomena mostly appear for spherical geometry; see for
example [1, Theorem 2.15].

In this paper we compute, for each possible closed fibered spherical 3-
orbifolds, the number of fibrations it admits. When the number of the fibrations
is finite we describe explicitly the Seifert invariants of all fibrations of any 3-
orbifold. When infinitely many fibrations occur, we describe an algorithm to
decide if two sets of Seifert invariants give the same 3-orbifold. Hence we ob-
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tain a complete classification of closed Seifert fibered spherical 3-orbifold up
to orientation-preserving diffeomorphism. In fact, for orientable Seifert fibered
3-orbifolds the Seifert invariants are complete invariants of oriented fibered 3-
orbifolds. We also remark that we do not need to assume that the singular
locus is non-empty, hence the results of this paper also hold true when O is
a manifold. As already mentioned, the manifold case is well-known from the
literature.

The presentation of all possibile diffeomorphisms is rather technical and
summarizing it in a single statement seems impossible to us. In the present
introduction we describe the situation in terms of number of fibrations which
are admitted. The complete description of the classification can be found in
Section 5.

Theorem 1.1. Let O be a closed spherical Seifert fibered 3-orbifold with base
orbifold B and b an integer greater than one.

1. If B ∼= S2(2, 2, b), D2(b), RP 2(b), D2(2; b) or D2(; 2, 2, b) then O admits
two inequivalent fibrations with the following exceptions:

•
(
S2(2,2,b); 0

2 ,
0
2 ,±

2
b ;∓ 2

b

)
,
(
S2(2,2,b); 0

2 ,
1
2 ,±

1+b/2
b ;∓ 1

b

)
with b even,(

D2(2; );± b
2 ; ;∓ b

2 ; 0
)
,
(
D2(2; b); 1

2 ; ± 1
b ; ∓ 1

2b ; 1
)

and(
D2(; 2, 2, b); ; 1

2 ,
1
2 ,±

1
b ; ∓ 1

2b ; 1
)

which admit three fibrations;

•
(
S2(2,2,b); 0

2 ,
0
2 ,±

1
b ;∓ 1

b

)
,
(
S2(2,2,b); 0

2 ,
1
2 ,±

(1+b)/2
b ;∓ 1

2b

)
with b odd,(

D2(b; );± 1
b ; ;∓ 1

b ; 0
)
,
(
D2(b; );± (1+b)/2

b ; ;∓ 1
2b ; 1

)
with b odd,(

RP 2(b);± 1
b ;∓ 1

b

)
,
(
D2(2; b); 0

2 ; ± 1
b ; ∓ 1

2b ; 1
)

with b even,(
D2(; 2, 2, b); ; 0

2 ,
0
2 ,±

1
b ; ∓ 1

2b ; 0
)

with b odd and(
D2(; 2, 2, b); ; 0

2 ,
1
2 ,±

(b+1)/2
b ; ∓ 1

4b ; 1
)

with b odd

which admit infinitely many fibrations.

2. If B ∼= S2(2, 3, b) or D2(; 2, 3, b) with b = 3, 4, 5 then O admits a unique
fibration with the following exceptions:

•
(
S2(2, 3, 3) ; 0

2 ,±
2
3 ,±

2
3 ;∓ 1

3

)
,
(
S2(2, 3, 4) ; 0

2 ,±
2
3 ,±

2
4 ;∓ 1

6

)
,(

S2(2, 3, 4) ; 0
2 ,±

1
3 ,±

3
4 ;∓ 1

12

)
,
(
S2(2, 3, 5) ; 0

2 ,±
2
3 ,±

2
5 ;∓ 1

15

)
,(

D2(; 2, 3, 3); ; 1
2 ,±

1
3 ,±

1
3 ;∓ 1

12 ; 1
)
,
(
D2(; 2, 3, 4); ; 1

2 ,±
1
3 ,±

1
4 ;∓ 1

24 ; 1
)

and
(
D2(; 2, 3, 5); ; 1

2 ,±
1
3 ,±

1
5 ;∓ 1

60 ; 1
)

which admit two fibrations.

3. If B is a 2-sphere with at most two cone points or a 2-disk with at most
two corner points, then O admits infinitely many fibrations.
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For the notations for 2-orbifolds and for fibered 3-orbifolds we refer the
reader to Subsection 2.2 and 2.3, respectively. We remark that in Theorem 1.1,
the list of exceptions sometimes contains the Seifert invariants of different fi-
brations of the same 3-orbifold. As already said, in Section 5 we actually
list, for every spherical orbifold admitting multiple inequivalent fibrations as in
Theorem 1.1, all of its other fibrations.

We discuss briefly some topological aspects relating to the theorem. A
Seifert fibered 3-orbifold with base orbifold a 2-sphere with at most two cone
points has a lens space as underlying topological space and the singular set is
a subset of the union of the cores of the two tori giving the lens space; these
orbifolds can be considered as the generalization of lens spaces in the setting
of orbifolds. However, we remark that there are Seifert fibered 3-orbifolds
with base 2-orbifold different than a sphere with at most two cone points,
whose underlying topological space is still a lens space; when this happens, the
singular set does not entirely consist of a union of fibers. For instance, the other
orbifolds in the third case of Theorem 1.1 (whose base 2-orbifold is a 2-disk)
can be obtained as a quotient of an “orbifold lens space” by an involution whose
action is not free; in this case the underlying topological space is always S3,
see also [10].

The case B ∼= S2(2, 2, b) contains the classical family of prism manifolds.
Prism manifolds admit two inequivalent fibrations, the second one with B ∼=
RP 2(b), see [22] or [15, Theorem 2.3]. We recover an explicit description of the
relations between the two fibrations of prism manifolds in Case 1 of Subsec-
tion 5.2.

As a result of our analysis, we also obtain the following statement in analogy
with the situation for spherical Seifert 3-manifolds:

Theorem 1.2. If a closed spherical Seifert fibered 3-orbifold admits several
inequivalent fibrations, then its underlying topological space is either a lens
space or a prism manifold.

However, unlike the manifold case, this is not a complete characterization
of non-uniqueness, since there are 3-orbifolds with underlying manifold a lens
space, whose fibration is unique up to diffeomorphism.

Finally we remark that the presence of one platonic group (tetrahedral,
octahedral or icosahedral) or of one of their binary versions in the fundamental
group of the 3-orbifold assures, with a few exceptions, the uniqueness of the
fibration.

The methods we use in the paper are related to the fact that closed spherical
3-orbifolds are globally the quotient of the 3-sphere S3 by the action of a finite
group G of isometries. In [20, 21] we have analyzed different aspects of the
classification of finite subgroups of SO(4) up to conjugacy. Here we continue
this kind of analysis with an additional difficulty consisting in considering a
classification up to “fibration-preserving conjugacy”.
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Organization of the paper

In Section 2 we give an introduction to orbifolds of dimension 2 and 3, with
special attention to the spherical case, and we recall the definition of Seifert
fibration for orbifolds. In Section 3 we discuss the classification of finite sub-
groups of SO(4). In Section 4 we analyze which groups leave invariant the
Seifert fibrations of the 3-sphere and we explain the approach to the classifi-
cation of finite subgroups of SO(4) we adopt to get a classification of Seifert
fibered spherical 3-orbifolds by diffeomorphism type. In Section 5 we explicitly
present the classification by distinguishing the case of 3-orbifolds admitting
finitely many inequivalent fibrations and the case of 3-orbifolds with infinitely
many ones.

2. Spherical and Seifert fibered three-orbifolds

2.1. Spherical orbifolds

Let us start by recalling some notions on smooth and spherical orbifolds in any
dimension. For details see [1, 5, 23].

Definition 2.1. A smooth orbifold O (without boundary) of dimension n is
a paracomapct Hausdorff topological space X endowed with an atlas ϕi : Ui →
Ũi/Γi, where:

• The Ui form an open covering of O.

• The Ũi are open subsets of Rn on which the finite groups Γi act smoothly
and effectively.

• Each ϕi is a homeomorphism and the compositions ϕj ◦ ϕ−1
i lift to dif-

feomorphisms ϕ̃ij : Ũi → Ũj.

Moreover, the orbifold O is:

• Orientable if the groups Γi and the lifts ϕ̃ij preserve an orientation of Rn
(and the choice of such an orientation makes O oriented).

• Spherical if each Ũi is endowed with a Riemannian metric g̃i of constant
curvature 1 preserved by the action of the groups Γi and such that each
ϕ̃ij is an isometry from (Ũi, g̃i) to (Ũj , g̃j).

The topological space X is called the underlying topological space of the
orbifold. A diffeomorphism between orbifolds O and O′ is a homeomorphism
f : X → X ′ of the underlying topological spaces such that each composition
ϕ′j′ ◦ f |Ui

◦ϕ−1
i , when defined, can be lifted to a diffeomorphism from Ũi to its

image in Ũ ′j′ . If O and O′ are oriented, then f is orientation-preserving if the
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lifts preserve the orientation of the Ũi and Ũ ′j′ . If O and O′ are spherical, f is
an isometry if the lifts are isometric for the Riemannian metrics g̃i and g̃′j′ .

One can define a local group associated to every point x, namely the smallest
possible group Γ which gives a local chart ϕ : U → Ũ/Γ for x. If the local group
is trivial, then x is a regular point of O. Otherwise x is a singular point. The
set of regular points of O is a smooth manifold. Manifolds are thus special
cases of orbifolds, for which the group Γi in Definition 2.1 is always the trivial
group. We do not assume that the singular locus is non-empty here, hence all
the results of this paper also hold when O is a manifold.

One can give more generally the definition of smooth orbifold with boundary
by replacing Rn by a half-space in Rn in Definition 2.1; we will not need such a
notion in this paper, since we only consider closed orbifolds, as in the following
definition.

Definition 2.2. A closed orbifold is a smooth orbifold (without boundary)
whose underlying topological space is compact.

The underlying topological space of a closed orbifold might be a manifold
with boundary (see Section 2.2 below for examples), or also more pathological
topological spaces having non-manifold points. However in Section 2.2 below
we will see that the underlying topological space of closed orientable orbifolds
of dimension three is always a closed manifold and that of closed orbifolds of
dimension two is a compact manifold with possibly non-empty boundary.

The most intuitive examples of orbifolds are produced as quotients O =
M/G, for G a group acting smoothly and properly discontinuously on a man-
ifold M . In this case the local group of a point x in the quotient M/G is the
stabiliser of any of the preimages of x (which is finite). An orbifold is called
good if it is diffeomorphic to a quotient M/G as above. Otherwise it is called
bad.

Theorem 2.3 ([23, Theorem 13.3.10]). Every closed spherical orbifold is good,
and is in fact isometric to a global quotient Sn/G for G < O(n + 1) a finite
group of isometries of Sn.

If the spherical orbifold is orientable, then G is a subgroup of SO(n + 1).
The following theorem of de Rham is a rigidity result for spherical orbifolds:

Theorem 2.4 ([7, 24]). If two closed spherical orbifolds are diffeomorphic, then
they are isometric.

If we consider two closed spherical orbifolds of the form (by Theorem 2.3)
O = Sn/G and O′ = Sn/G′, then O and O′ are isometric if and only if G
and G′ are conjugate in O(n + 1). If moreover O and O′ are orientable (i.e.
G,G′ < SO(n+1)) and endowed with the orientation induced by the orientation
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of Sn, then O and O′ have an orientation-preserving isometry if and only if G
and G′ are conjugate in SO(n+ 1).

Hence the classification of closed spherical orientable 3-orbifolds up to orien-
tation-preserving diffeomorphisms amounts algebraically to the classification of
finite subgroups of SO(4) up to conjugacy, which is the content of Section 3.

2.2. Two and three-dimensional orbifolds

Let us start by considering orbifolds of dimension 2. The underlying topological
space turns out to be a manifold with boundary. In fact a neighborhood of any
point x is modelled on D2/Γ where Γ can be (see Figure 1):

• The trivial group, if x is a regular point;

• A cyclic group of rotations (in this case x is called cone point and is
labelled with the order of Γ);

• A group of order 2 generated by a reflection (x is called mirror reflector
and is a boundary point of the underlying 2-manifold);

• A dihedral group (x is called corner reflector, is still a boundary point
for the underlying manifold and is labelled with the order of the rotation
subgroup of Γ).

n

n

Figure 1: Local models of 2-orbifolds. From left to right, a cone point, a mirror
reflector and a corner reflector.

If O is closed, its diffeomorphism type is denoted by X(n1, . . . , nk;m1, . . . ,mh),
where X is the underlying manifold with boundary, n1, . . . , nk are the labels
of cone points and m1, . . . ,mh are the labels of corner reflectors. (Labels are
also called singularity indices.)

The Euler characteristic of O is then defined as:

χ(O) := χ(X)−
∑
i

(
1− 1

ni

)
− 1

2

∑
j

(
1− 1

mj

)

where χ(X) is the Euler characteristic of the underlying manifold X.
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As a consequence of the discussion of Section 2.1, any closed spherical 2-
orbifold is diffeomorphic to a quotient of S2 by a finite subgroup G of O(3),
and moreover the conjugacy class of G determines both the diffeomorphism
and isometry type of S2/G. Starting with the orientable case, the following
classical result classifies finite subgroups of SO(3):

Lemma 2.5. A finite subgroup of SO(3) is either a cyclic group, a dihedral
group, or the tetrahedral, octahedral or icosahedral group.

It follows that closed orientable spherical 2-orbifolds are (up to diffeomor-
phism):

S2, S2(p, p), S2(2, 2, p), S2(2, 3, 3), S2(2, 3, 4), S2(2, 3, 5) for p ≥ 2 . (1)

For non-orientable spherical orbifolds, it suffices to consider order 2 quotients
of orientable ones, thus getting the list:

D2, D2(p; ), D2(; p, p), D2(2; p), D2(; 2, 2, p), D2(3; 2), D2(; 2, 3, 3),

D2(; 2, 3, 4), D2(; 2, 3, 5), RP 2, RP 2(p) for p ≥ 2 . (2)

These are in fact all good two-dimensional orbifolds of positive Euler charac-
teristic. The additional bad orbifolds with χ(O) > 0 are:

S2(p, q) and D2(p, q) for p 6= q . (3)

Let us now move on to dimension three. In this paper we only consider
orientable 3-orbifolds. By a standard argument, any point x admits a local
chart of the form D3/Γ for Γ a finite subgroup of SO(3), and the local model
is thus the cone over one of the spherical orientable 2-orbifolds, listed in (1). It
follows that the underlying topological space is a manifold and the singular set
is a trivalent graph; the local group is cyclic in the complement of the vertices
of the graph, and the edges are thus labelled with a singularity index which is
the order of the cyclic group.

n

n

2 2

2

3 3

2

3 4

2

3 5

Figure 2: Local models of orientable 3-orbifolds.
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2.3. Seifert fibrations on three-dimensional orbifolds

Let us turn our attention to a topological description of the quotient in terms
of Seifert fibrations for orbifolds, which we now define.

Definition 2.6. Given a three-dimensional orientable orbifold O, a Seifert fi-
bration is a surjective map π : O → B with image a two-dimensional orbifold B,
such that for every point x ∈ B there exist:

• An orbifold chart ϕ : U ∼= Ũ/Γ for B around x;

• An action of Γ on S1;

• An orbifold diffeomorphism φ : π−1(U) → (Ũ × S1)/Γ, where Γ acts

diagonally on Ũ × S1 by preserving the orientation;

such that the following diagram

π−1(U)

π

��

φ // (Ũ × S1)/Γ

��

Ũ × S1oo

��
U

ϕ // Ũ/Γ Ũoo

is commutative, with the obvious maps on unspecified arrows.

Since the action of Γ is required to preserve the orientation (as a consequence
of the assumption that O is supposed orientable) each element of Γ may either

preserve both the orientation of Ũ and S1, or reverse both orientations. Observe
that each fiber π−1(x) is topologically either a simple closed curve or an interval.
A fiber which projects to a regular point of B is called generic; it is called
exceptional otherwise.

Let us now consider the local models for oriented Seifert fibered orbifolds.
More details can be found in [3] or [9].

• If the fiber π−1(x) is generic, one can pick Γ the trivial group in Defini-
tion 2.6, hence π−1(x) has a tubular neighborhood with a trivial fibration.

• If x is a cone point labelled by b, the local group Γ is a cyclic group
of order b acting by rotations on Ũ and thus it needs to act on S1 by
rotations too. Hence π−1(x) has a fibered neighborhood which is a solid
torus, fibered in the usual sense of Seifert fibrations for manifolds, except
that the central fiber might be singular. The local invariant of π−1(x)

is defined as the ratio a/b ∈ Q/Z, where a generator of Γ acts on Ũ by
rotation of an angle 2π/b and on S1 by rotation of −2πa/b. Up to adding
integer multiples of b, one can in fact choose a so that a/b ∈ [0, 1). The
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index of singularity π−1(x) is thus gcd(a, b) (meaning that points with
index of singularity 1 are regular). See Figure 3.

It is worth remarking that three qualitatively different situations may
occur here:

1. If a ≡ 0 mod b, then π−1(x) is a circle in the singular set of the
orbifold O, with local group Zb associated to each point. Forgetting
the singular locus, in the underlying manifold π−1(x) has a tubular
neighborhood endowed with a trivial fibration.

2. If a and b are relatively prime, then the action of the cyclic group
is free: in this case π−1(x) has a neighborhood consisting only of
regular points, fibered (non-trivially) in the usual sense of Seifert
fibrations for manifolds.

3. Finally, if a and b are not relatively prime and a 6≡ 0 mod b, then
π−1(x) is contained in the singular set, with index gcd(a, b) 6= 1, and
at the same time its tubular neighborhood is non-trivially fibered at
the level of underlying Seifert manifold.

Figure 3: The preimage of a cone point in the base orbifold. On the left, the
cyclic action on a solid torus D2 × S1 generated by a simultaneous rotation
of angle 2π/b on D2 and of angle −2πa/b on S1. On the right, the quotient
is identified to a solid cylinder (a fundamental domain for the previous ac-
tion) where top and bottom are glued by a rotation, and the central fibre has
singularity index k = gcd(a, b).

• If x is a mirror reflector, thus with local group Z2 whose generator acts
by reflection on Ũ and thus also on S1, the local model is topologically
a 3-ball. The fiber π−1(x) is an interval. The endpoints of all the fibers
π−1(x), as x varies in the mirror reflector, form two disjoint singular arcs
of index 2. See Figure 4 with k = 1.

• If x is a corner reflector, namely Γ is a dihedral group, by a similar
argument the non-central involutions in Γ act by simultaneous reflection
both on Ũ and on S1. The local model is again a topological 3-ball
(called solid pillow) with some singular set inside. The fiber π−1(x) is
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again an interval and might be singular in this case, while the preimages
of the nearby mirror reflectors are intervals as in the above case. The
local invariant associated to π−1(x) is defined as the local invariant of
the cyclic index two subgroup, and the singularity index is gcd(a, b), see
Figure 4 again.

Figure 4: On the left, the involution acting on a solid torus by a simultaneous
reflection. On the right, a solid pillow, namely the preimage of a neigbourhood
of a mirror reflector (k = 1) or a corner reflector (k = gcd(a, b)) in the base
orbifold.

Together with the base orbifold and the local invariants, to a Seifert fibered
orbifold is associated the Euler class e and an additional invariant ξ ∈ {0, 1}
for each boundary component of the underlying manifold of the base orbifold.
These invariants satisfy the relation:

e+
∑
i

ai
bi

+
1

2

∑
j

a′j
b′j

+
∑
k

ξk

 ≡ 0 mod 1 , (4)

where the first sum involves local invariants associated to all cone points, the
second sum is taken over corner reflectors, and the third sum is taken over
boundary components.

The base orbifold together the local invariants, the Euler class and the
boundary components invariants determine the Seifert fibered orbifold up to
orientation-preserving and fibration-preserving diffeomorphism.

Remark 2.1: Let us observe that changing the orientation of the orbifold
inverts the signs of local invariants and of the Euler number.

To denote a specific fibered Seifert 3-orbifold we use the following compact
notation:

• If the base orbifold is a 2-manifold or a 2-orbifold admitting only cone
points, (X; a1/b1, . . . , an/bn; e) is the Seifert fibered 3-orbifold with base
orbifold X, local invariants of the cone points ai/bi and Euler number e.
When X is a manifold we write simply (X; ; e)
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• If the base orbifold admits also mirror reflectors and possibly corner
points, then the Seifert fibered 3-orbifold (X; a1/b1, . . . , an/bn; a′1/b

′
1, . . . ,

a′m/b
′
m; e; ξ1, . . . ξa) has base orbifold X, local invariants of cone points

ai/bi, local invariants of corner points a′j/b
′
j , Euler number e and bound-

ary components invariants ξk. If the singular set of X does not contain
any cone point (resp. corner reflector) we write (X; ; a′1/b

′
1, . . . , a

′
m/b

′
m;

e; ξ1, . . . ξa), (resp. (X; a1/b1, . . . , an/bn; ; e; ξ1, . . . ξa))

2.4. Comparison with the classification of Seifert
manifolds

As already observed, ifO is a manifold (meaning that the singular set is empty),
then the notion of Seifert fibration according to Definition 2.6 coincides with
the usual notion of Seifert fibration for manifolds. If O is not a manifold but
the base orbifold B is orientable, which means that the only singular points
of B are cone points, then the underlying topological space of O is a Seifert
fibered manifold, whose invariants in the sense of the previous section are sim-
ply obtained by “simplifying the fractions” ai/bi. Namely, by replacing the
invariants ai and bi of each cone point in the base orbifold by ai/ gcd(ai, bi)
and bi/ gcd(ai, bi) respectively.

However, the classifying data for Seifert fibrations of manifolds are more
standardly defined as the following data:

(X;α1/β1, . . . , αn/βn) , (5)

where X is a closed surface (possibly non-orientable) and the pairs (αi, βi)
are relatively prime. Namely, one assumes that the fractions αi/βi cannot be
simplified, but one does not take the class of αi/βi in Q/Z, or in other words,
one cannot assume that αi/βi is in [0, 1) as we did for ai/bi in the previous
section. The representation of a Seifert fibered manifold by the data as in (5)
is not unique: two representations of the same Seifert fibered manifold differ
by replacing each αi/βi by α′i/β

′
i = αi/βi + ki for ki ∈ Z, under the constraint

that
∑
i ki = 0. It is not allowed to have n = 0, that is, no marked point

in X: in this case one needs to introduce an invariant α/β with β = 1. This is
necessary in order to determine the Euler class e, see below. For instance, this
allows to distinguish between S3 and S2 × S1 which both have base surface
X = S2.

For a Seifert fibered manifold M, let us now briefly explain how to go
from the invariants introduced in Section 2.3 (by interpreting M as a Seifert
fibered orbifold O with empty singular set) to the classical invariants of (5),
and viceversa.

Given a representation of M as in (5), the base orbifold B has underly-
ing topological space X and n cone points with indices β1, . . . , βn. The local
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invariants are the classes of the ratios αi/βi in Q/Z. Finally, the Euler class
equals e = −

∑
i(αi/βi). Observe that these data do not change if one changes

the representation of M as explained above.
Conversely, given the Seifert invariants in the sense of orbifolds, clearly X is

the topological surface underlying the base orbifold B. To determine the ratios
αi/βi ∈ Q, it suffices to pick some representatives of the classes of ai/bi in Q/Z
so that −

∑
i(αi/βi) coincides with the Euler class.

2.5. The spherical case

If a Seifert fibered orbifold O is geometric, i.e. it admits a metric locally
modelled on one of Thurston’s eight geometry, then its geometry is detected
by the Euler charactersitic of the base orbifold and by the Euler number of the
fibration (see [10, page 71]). In particular for the spherical case we have:

Proposition 2.7. Let O be a closed spherical orbifold and π : O → B be a
Seifert fibration. Then

χ(B) > 0 and e(π) 6= 0 . (6)

Conversely, every closed Seifert fibered orbifold satisfying the conditions in (6)
is spherical.

For the last part of the statement, see [1, Proposition 2.13] and its proof.
In [3] the definition of Seifert fibration for orbifolds is given for orbifolds

which might be non-orientable, hence in a more general setting with respect
to our Definition 2.6. We omit the complete definition in the non-orientable
case in this paper. However, the following statement, which is a consequence of
Proposition 2.7, shows that in the case of spherical orbifolds we can harmlessly
reduce to the case of orientable orbifolds.

Corollary 2.8. Every closed spherical Seifert fibered orbifold is orientable.

Proof. Let O be a non-orientable orbifold which is Seifert fibered in the sense
of [3]. It was proved in [3] that the Seifert fibration can be lifted to its orien-

tation double cover Õ, which is therefore endowed with a Seifert fibration π.
We claim that the Euler class of π vanishes. To see this, let ϕ be the generator
of the deck transformation group of the orbifold covering Õ → O. That is,
ϕ is an (order-two) orientation-reversing self-diffeomorphism of Õ. In other

words, if we choose an orientaton o on Õ and we denote by o′ the opposite
orientation, then ϕ : (Õ, o) → (Õ, o′) is an orientation-preserving orbifold dif-
feomorphism. Moreover ϕ preserves the Seifert fibration π by construction.
Since the Euler class is an invariant of oriented Seifert fibered orbifolds, we
have eo(π) = eo′(π). (Of course eo(π) denotes the Euler class of π with re-
spect to the orientation o.) But by Remark 2.1, eo(π) = −eo′(π). This implies
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that the Euler class of π vanishes. Therefore a Seifert fibered non-orientable
orbifold O cannot be spherical, for otherwise Õ would also inherit a spherical
structure, and by Proposition 2.7 the Euler class of π should be different from
zero.

In the proof of Corollary 2.8 we have used that, given an orbifold covering
O → O′, any Seifert fibration for O′ can be lifted to O. This fact has a
second important consequence. Namely, in light of Theorem 2.3, we can reduce
our analysis to the study of the fibrations induced on the quotient S3/G by
the Seifert fibrations of S3. Recalling again that, if O is a manifold, then
Definition 2.6 coincides with the usual Seifert fibrations for manifolds, Seifert
fibrations for S3 are well known (see [27] or also [13, Proposition 5.2]): they
have base orbifold S2(u, v) for u, v ≥ 1 two coprime integers, hence only two
non-generic fibers which are non-singular. The local invariants are given by
(the classes modulo 1 of) v̄/u and ū/v where uū+ vv̄ = 1, and the Euler class
is ±1/uv.

If u or v equals 1, we mean that the correponding point in the base orbifold
is regular, and hence there is no local invariant to associate (the above formula
would indeed give 0 as output). In particular, for u = v = 1 we obtain the
Hopf fibration, which is a fiber bundle in the usual sense, since every fiber has
a tubular neighborhood which is fibered as a usual product. A more concrete
description of these fibrations in terms of the geometry of S3 will be provided
in Section 4.

2.6. An example of non-uniqueness

Let us briefly discuss a concrete example of a spherical orbifold with non-empty
singular set which admits multiple fibrations. Let O be the orbifold having
underlying topological space the 3-sphere and singular set the Hopf link with
singularity index 2 for each component. Then O is easily seen to admit a Seifert
fibration which is simply the Hopf fibration of the underlying 3-sphere, and the
singular locus consists of two fibers of the Hopf fibration. Such a fibration has
base orbifold S2(2, 2), local invariants 0/2 over each cone point of the base
orbifold and Euler class e = −1. By Proposition 2.7, O is spherical. For an
illustration of the Hopf fibration, see for instance [12, Chapter 8, Figure 16]
or [18, 31].

One can describe an alternative Seifert fibration ofO as follows. We consider
an annulus, with boundary equal to the union of two singular circles of index 2,
fibered by intervals and a solid torus containing such annulus fibered as in
Figure 5, where the fibers of the complement of the annulus are meridians of the
torus. Then we perform a Dehn twist on such solid torus with singular circles
and we glue along its boundary another solid torus, identifying the meridian of
the former to a longitude of the latter. Taking into account the two singular
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circles in the first torus, the union of the two tori give O; moreover if we equip
the second torus with the trivial fibration, the fibrations of the two tori give a
Seifert fibration of O different from that described in the first paragraph. Such
a Seifert fibration has base orbifold D2 (with no cone and corner points), Euler
class e = −1, and invariant ξ = 0 associated to the only boundary component
of D2.

This example is a special case of three-orbifolds whose underlying topolog-
ical space is S3 and the singular locus is a 2-bridge link with local group of
order two. The possible fibrations of such orbifolds are briefly described in
Example 5.2 at the end of the paper.

2

2

2

2

Figure 5: On the left, a Seifert fibration of a solid torus with two singular
circles in the interior: an annulus connecting the two singular circles is fibered
by intervals, while the complement of such annulus in the solid torus is fibered
by meridional nonsingular circles. Performing a Dehn twist on such solid torus,
one gets a fibered solid neighbourhood of the Hopf link (on the right). Its
complement in the underlying manifold S3 is a trivially fibered solid torus.

3. Finite subgroups of SO(4)

In this section we discuss a classification of closed spherical orientable three-
orbifolds up to orientation-preserving diffeomorphisms, from a group-theoret-
ical point of view. In Section 4 we will then focus on a classification up to
fibration-preserving diffeomorphisms.

3.1. Quaternion algebra and subgroups of S3

As discussed in Section 2.1, two spherical 3-orbifolds O = S3/G and O′ =
S3/G′ are diffeomorphic if and only if they are isometric, and such an isometry
can be lifted to an isometry of S3 which conjugates G to G′. If the isometry
between the orbifolds is orientation-preserving, then the lift to S3 is orientation-
preserving. For this reason, the classification of closed spherical orientable
three-orbifolds S3/G up to orientation-preserving diffeomorphisms corresponds
to the algebraic classification of finite subgroups of SO(4) up to conjugation in
SO(4), originally due to Seifert and Threlfall ([28] and [29]), which we shall now
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briefly recall. For more details, see [8], which we essentially follow although it
must be mentioned that in Du Val’s list of finite subgroups of SO(4) there are
three missing cases, see also [6, 20, 21].

Let us identify R4 with the quaternion algebra H={a+bi+cj+dk | a, b, c, d ∈
R} = {z1 + z2j | z1, z2 ∈ C}. Given q = z1 + z2j ∈ H, its conjugate is
q̄ = z̄1 − z2j. Thus the standard positive definite quadratic form of R4 is
identified to qq̄ = |z1|2 + |z2|2. The three-sphere S3 then corresponds to the
set of unit quaternions:

S3 = {a+ bi+ cj + dk | a2 + b2 + c2 + d2 = 1} = {z1 + z2j | |z1|2 + |z2|2 = 1} .

which is thus endowed with a multiplicative group structure induced from that
of H.

Let us now consider the group homomorphism Φ : S3 × S3 → SO(4) which
associates to (p, q) ∈ S3 × S3 the map Φp,q : H → H defined by Φp,q(h) =
phq−1, which is an isometry of S3. It turns out that Φ is surjective with
kernel Ker(Φ) = {±(1, 1)}, hence Φ induces a 1-1 correspondence between finite
subgroups of SO(4) and finite subgroups of S3×S3 containing {±(1, 1)}. Since
(−1,−1) is central, two subgroups are conjugate in SO(4) if and only if their
preimages are conjugate in S3×S3. To give a classification of finite subgroups
G of SO(4) up to conjugation, it thus suffices to classify the subgroups Ĝ =
Φ−1(G) < S3 × S3 containing {±(1, 1)}, up to conjugation in S3 × S3. The
latter are uniquely determined by the 5-tuple (L,LK , R,RK , φ), where (if πi :
S3 × S3 → S3 denotes the projection to the i-th factor):

• L = π1(Ĝ);

• LK = π1((S3 × {1}) ∩ Ĝ);

• R = π2(Ĝ);

• RK = π2(({1} × S3) ∩ Ĝ);

• φ : L/LK → R/RK is a group isomorphism obtained by composing the

isomorphisms of Ĝ/(LK ×RK) with L/LK and with R/RK , induced by
π1 and π2 respectively.

Based on [21, Proposition 1], two such 5-tuples (L,LK , R,RK , φ) and (L′, L′K ,
R′, R′K , φ

′) correspond to conjugate subgroups if and only if there exist p, q ∈ S3

such that conjugation by p (which we denote by cp) maps L to L′ and LK to
L′K , cq maps R to R′ and RK to R′K , and φ′ = cq ◦ φ ◦ c−1

p .
It only remains to determine finite subgroups of S3 up to conjugation. For

this purpose, observe that the equatorial S2 = {bi+ cj + dk | b2 + c2 + d2 = 1}
in S3 consists of points equidistant from the North and South poles, which are
identified to 1 and −1 in H. Hence an element (p, q) ∈ S3 × S3 preserves S2

if and only if p = q, and this gives a 2-to-1 group epimorphism S3 → SO(3)
by composing the diagonal inclusion of S3 in S3 × S3 with Φ. Together with
Lemma 2.5, one obtains that the finite subgroups of S3 up to conjugation are:
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• The cyclic group Cn = {cos (2απ/n) + i sin (2απ/n) , α = 0, . . . , n − 1}
for n ≥ 1. Observe that Cn contains the center −1 if and only if n is
even.

• The binary dihedral group D∗4n = C2n∪C2nj for n ≥ 2, which is a central
extension of the dihedral group D2n by a group of order 2.

• The binary tetrahedral group T ∗ = ∪2
r=0(1/2+ i/2+j2+k/2)rD∗4 , which

is a central extension of the tetrahedral group.

• The binary octahedral group O∗ = T ∗ ∪ (
√

2/2 +
√

2j/2)T ∗ which is a
central extension of the octahedral group.

• The binary icosahedral group I∗ = ∪4
r=0

(
τ−1/2 + τj/2 + k/2

)r
T ∗ which

is a central extension of the icosahedral group, where τ = (
√

5 + 1)/2).

Observe that for n = 1, D∗4 = {±1,±j} is conjugate to C4 = {±1,±i}. For
this reason, the groups D∗4n are only taken with indices n ≥ 2. The case n = 2,
namely D∗8 = {±1,±i,±j,±k}, is also called quaternion group.

We remark that thoughout the paper, we use the notation Cn for the cyclic
subgroup of S3 defined in the first point of the list above, while we reserve the
symbol Zn for the abstract cyclic group of n elements.

3.2. Listing finite subgroups of SO(4)

The list of finite subgroups of SO(4) up to conjugacy is given, applying the
above procedure and following [8], in Table 1, by means of the data determining

their preimage Ĝ = Φ−1(G). In most cases, the isomorphism φ is uniquely de-
termined up to conjugacy, hence the last entry of the 5-tuple (L,LK , R,RK , φ)
is omitted. In Families 1 and 1′ (resp. 11 and 11′), φ is a isomorphism be-
tween cyclic (resp. dihedral) groups of order r (resp. 2r), thus it is encoded
by a subscript s such that gcd(s, r) = 1, meaning that the canonical generator
of Zr is sent to s times the canonical generator (and the non-central involution
induced by j is sent to itself, in the dihedral case).

There are other cases in which a subscript is necessary. For instance, for
Family 33 the relevant isomorphism f between D∗8m/C2m and D∗8n/C2n, which
are isomorphic to the dihedral group of four elements, is defined by

f [eiπ/m] = [j] and f [j] = [eiπ/n] . (7)

Then the group with data (D∗8m, C2m, D
∗
8n, C2n, f) is not conjugate to Family

11 with r = 2 (in which case the isomorphism between D∗8m/C2m and D∗8n/C2n

is trivial) unless m = 1 or n = 1. Indeed in this latter case one has (L,LK) =
(D∗8 , C2) (or the same for (R,RK)) and the equivalence classes [j] = {±j} and
[i] = {±i} are conjugate in S3 (for instance by (i + j)/

√
2). This explains
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Family 33 in Table 1, which is one of the families missing in the original list
of [8], with the restriction m 6= 1 and n 6= 1

A very similar behaviour appears for Family 33′, which is another additional
missing family in Du Val’s original list, together with Family 34. For more
details we refer to [21, Section 2.1].

It is finally important to remark that several families, which we will call
for instance Families 2bis, 3bis and so on, are to be added to Table 1 for the
following reason. When the pairs (L,LK) and (R,RK) do not coincide, the
groups determined by the 5-tuples (L,LK , R,RK , φ) and (R,RK , L, LK , φ

−1)
are conjugate in O(4) by means of the orientation-reversing isometry of S3,
sending each quaternion to its inverse, but not in SO(4). For example, we
shall call Family 2bis the family of groups with data (D∗4m/D

∗
4m, C2n/C2n); on

the other hand, there is no Family 1bis since for each group in Family 1, its
conjugate by an orientation-reversing isometry is already contained in Family 1
itself; as a final example, there is no Family 20bis as switching the roles of
left and right multiplication gives rise to the same group. This analysis is
developed more carefully in [21, Section 3.2], leading also to the computation
of orientation-reversing self-isometries.

4. Invariant Seifert fibrations

We will now compare the above list of conjugacy classes of finite subgroups
of SO(4) with the classification of subgroups which preserve Seifert fibrations
of S3, up to fibration-preserving conjugacy.

4.1. Seifert fibrations of S3 revisited

We have already introduced the Seifert fibrations of S3 in Section 2.5; let us
now give a more geometric description.

The Hopf fibration can be defined by means of the action of S1 on S3 by
left multiplication: (eiθ, q) 7→ eiθq for q ∈ S3. The fibers of the Hopf fibration
are then the orbits of this (free) action and the projection map can be written
as π : S3 → S2 expressed by

π(z1 + z2j) =
z1

z2

where we are identifying the target S2 with the Riemann sphere in the model
C ∪ {∞}. The subgroup N of SO(4) which preserves the Hopf fibration,
meaning that γ induces a diffeomorphism ρ(γ) of the base S2, coincides with
NormS3×S3(S1 × {1}) = NormS3(S1) × S3, where it is easily checked that an
element w1 + w2j normalizes S1 if and only if w1 = 0 or w2 = 0. Hence
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Ĝ order of G
1. (C2mr/C2m, C2nr/C2n)s 2mnr gcd(s, r) = 1
1′. (Cmr/Cm, Cnr/Cn)s (mnr)/2 gcd(s, r) = 1 gcd(2, n) = 1

gcd(2,m) = 1 gcd(2, r) = 2
2. (C2m/C2m, D

∗
4n/D

∗
4n) 4mn

3. (C4m/C2m, D
∗
4n/C2n) 4mn

4. (C4m/C2m, D
∗
8n/D

∗
4n) 8mn

5. (C2m/C2m, T
∗/T ∗) 24m

6. (C6m/C2m, T
∗/D∗8) 24m

7. (C2m/C2m, O
∗/O∗) 48m

8. (C4m/C2m, O
∗/T ∗) 48m

9. (C2m/C2m, I
∗/I∗) 120m

10. (D∗4m/D
∗
4m, D

∗
4n/D

∗
4n) 8mn

11. (D∗4mr/C2m, D
∗
4nr/C2n)s 4mnr gcd(s, r) = 1

11′. (D∗2mr/Cm, D
∗
2nr/Cn)s mnr gcd(s, r) = 1 gcd(2, n) = 1

gcd(2,m) = 1 gcd(2, r) = 2
12. (D∗8m/D

∗
4m, D

∗
8n/D

∗
4n) 16mn

13. (D∗8m/D
∗
4m, D

∗
4n/C2n) 8mn

14. (D∗4m/D
∗
4m, T

∗/T ∗) 48m
15. (D∗4m/D

∗
4m, O

∗/O∗) 96m
16. (D∗4m/C2m, O

∗/T ∗) 48m
17. (D∗8m/D

∗
4m, O

∗/T ∗) 96m
18. (D∗12m/C2m, O

∗/D∗8) 48m
19. (D∗4m/D

∗
4m, I

∗/I∗) 240m
20. (T ∗/T ∗, T ∗/T ∗) 288
21. (T ∗/C2, T

∗/C2) 24
21′. (T ∗/C1, T

∗/C1) 12
22. (T ∗/D∗8 , T

∗/D∗8) 96
23. (T ∗/T ∗, O∗/O∗) 576
24. (T ∗/T ∗, I∗/I∗) 1440
25. (O∗/O∗, O∗/O∗) 1152
26. (O∗/C2, O

∗/C2) 48
26′. (O∗/C1, O

∗/C1)Id 24
26′′. (O∗/C1, O

∗/C1)f 24
27. (O∗/D∗8 , O

∗/D∗8) 192
28. (O∗/T ∗, O∗/T ∗) 576
29. (O∗/O∗, I∗/I∗) 2880
30. (I∗/I∗, I∗/I∗) 7200
31. (I∗/C2, I

∗/C2)Id 120
31′. (I∗/C1, I

∗/C1)Id 60
32. (I∗/C2, I

∗/C2)f 120
32′. (I∗/C1, I

∗/C1)f 60
33. (D∗8m/C2m, D

∗
8n/C2n)f 8mn m 6= 1 n 6= 1.

33′. (D∗8m/Cm, D
∗
8n/Cn)f 4mn gcd(2, n) = 1 gcd(2,m) = 1

m 6= 1 and n 6= 1.
34. (C4m/Cm, D

∗
4n/Cn) 2mn gcd(2, n) = 1 gcd(2,m) = 1

Table 1: Finite subgroups of SO(4)
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NormS3(S1) = {w1 + w2j |w1 = 0 or w2 = 0} = O(2)∗ and

N = NormS3×S3(S1 × {1}) = O(2)∗ × S3 .

It is also useful for the following to compute the induced action of N on the
base S2 of the fibration. For this purpose, it suffices to observe that elements of
the form (eiθ, 0) ∈ N clearly act trivially on the base; that (j, 0) (and therefore
all elements of the form (eiθj, 0)) acts by the antipodal map of S2; on the other
hand (0, w1 + w2j) induces the action

λ 7→ w1λ+ w2

−w2λ+ w1
(8)

on the base C ∪ {∞}. For instance, elements of the form (0, eiθ) act on S2

by rotations of angle 2θ fixing the poles 0 and ∞ while (0, j) is a rotation of
order two fixing i and −i and switching 0 and ∞. The anti-Hopf fibration is
then obtained by composing π with an orientation-reversing isometry of S3.
Choosing the isometry q → q−1, we obtain the expression (z1 +z2j) 7→ −z1/z2.

In general the Seifert fibrations of S3 introduced in Section 2.5, can be
obtained by the action of S1 defined by (eiθ, z1 + z2j) 7→ (eivθz1, e

iuθz2) or
(eiθ, z1 +z2j) 7→ (e−ivθz1, e

iuθz2), for q ∈ S3 and u, v coprime integers. We call
these fibrations standard and any Seifert fibration of S3 can be mapped by an
orientation-preserving diffeomorphism to a standard one.

The projection of a standard fibration can be written as

π(z1 + z2j) =
zu1
zv2

or π(z1 + z2j) =
zu1
zv2

.

In the first case, the normalizer of the action consists of elements (w1+w2j, u1+
u2j) provided w2 = u2 = 0 or w1 = u1 = 0 (unless u = v = 1). From the
definition of the S1 action, it can be checked directly that the base orbifold
is S2(u, v) where the two cone points are the images of the fibers z1 = 0 and
z2 = 0, with local invariants v̄/u and ū/v where uū+ vv̄ = 1.

If u = v = 1 we recover the Hopf fibration. (Indeed when u = 1 or v = 1
the point is regular and the corresponding fiber generic).

Similarly as before, it is not necessary to repeat the analysis for the fibra-
tions of the second type, as for every pair (u, v) one can pre-compose π with the
orientation-reversing isometry q 7→ q−1 to obtain a new fibration of S3 which
is inequivalent to the previous ones in the category of oriented Seifert fibered
manifolds, but equivalent in the category of (unoriented) Seifert fibered mani-
folds. Observe moreover that these fibrations always have bad base orbifolds,
with the only exceptions of the Hopf and anti-Hopf fibrations.
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4.2. Seifert fibrations from Du Val’s list

In this subsection we analyze which standard fibrations of S3 are left invariant
by the subgroups in the Du Val’s list. Going back to Du Val’s list of subgroups
of SO(4) (Table 1), the groups which preserve the Hopf fibration are those with
L = Cm or L = D∗2m, for some m. That is, by Families 1 to 19, 33, 33′, 34,
and moreover Families 2bis, 3bis, 4bis, 13 bis and 34bis. In [20], the invariants
of the Seifert fibration induced in the quotient by each of these groups was
computed, and we report the results in Table 2. We omitted the results for
Families 1, 1′, 11 and 11′ which have a more complicated expression (see [20,
Tables 2 and 3]).

The other fibrations of type π(z1 + z2j) = zu1 /z
v
2 are left invariant only by

groups in Family 1,1′,11,11′ and the spherical orbifolds obtained as quotients by
these groups have an infinite number of inequivalent fibrations. To get a similar
analysis for the remaining fibrations it suffices to note that the orientation-
reversing isometry q 7→ q−1 maps the fibration π(z1 + z2j) = zu1/z

v
2 to π(z1 +

z2j) = zu1 /z
v
2 , and a group preserves a fibration π(z1 +z2j) = zu1/z

v
2 if and only

if its conjugate by q 7→ q−1 preserves π(z1 + z2j) = zu1 /z
v
2 .

Remark 4.1: The Seifert invariants of the quotient orbifold S3/G induced
by the anti-Hopf fibration can be obtained from those arising from the Hopf
fibration. In fact if a group G with data (L,LK , R,RK , φ) preserves the anti-
Hopf fibration, then the group G′ given by (R,RK , L, LK , φ

−1) preserves the
Hopf fibration: the Seifert fibration induced by the anti-Hopf fibration on S3/G
has the same base orbifold of that induced by the Hopf fibration on S3/G′

while the numerical invariants of S3/G are the opposite of those of S3/G′

(Remark 2.1).

4.3. Spherical orbifolds with multiple fibrations

In the previous sections we discussed which standard Seifert fibrations of S3

are left invariant by the groups in Du Val’s list. If a Seifert fibration of S3 is
left invariant by a group G acting on S3, the Seifert fibration of S3 induces a
Seifert fibration of the quotient orbifold. If two different standard fibrations are
left invariant, the induced fibrations of the quotient orbifold are not equivalent.

Moreover, we remark that finite subgroups in Du Val’s list can leave invari-
ant also fibrations that are not standard, which can induce additional fibrations
in the quotient orbifolds.

In this section we explore this phenomenon; the following lemma proved in
[21, Lemma 5] shows that it can occur only in some specific cases. We call a
non-Hopf fibration a fibration that cannot be mapped neither to the Hopf nor
to the anti-Hopf fibration.
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group e base orbifold invariants case
2. (C2m/C2m, D∗4n/D

∗
4n) −m

n
S2(2, 2, n) m

n
, m

2
, m

2

2bis. (D∗4m/D∗4m, C2n/C2n) −m
n

D2(n; ) m
n

n even
RP 2(n) m

n
n odd

3. (C4m/C2m, D∗4n/C2n) −m
n

S2(2, 2, n) m
n
, m+1

2
, m+1

2

3bis. (D∗4m/C2m, C4n/C2n) −m
n

D2(n; ) m
n

n odd
RP 2(n) m

n
n even

4. (C4m/C2m, D∗8n/D
∗
4n) − m

2n
S2(2, 2, 2n) m+n

2n
, m

2
, m+1

2

4bis. (D∗8m/D∗4m, C4n/C2n) − m
2n

D2(2n; ) m+n
2n

5. (C2m/C2m, T ∗/T ∗) −m
6

S2(2, 3, 3) m
2
, m

3
, m

3

6. (C6m/C2m, T ∗/D∗8) −m
6

S2(2, 3, 3) m
2
, m+1

3
, m+2

3

7. (C2m/C2m, O∗/O∗) −m
12

S2(2, 3, 4) m
2
, m

3
, m

4

8. (C4m/C2m, O∗/T ∗) −m
12

S2(2, 3, 4) m+1
2

, m
3
, m+2

4

9. (C2m/C2m, I∗/I∗) −m
30

S2(2, 3, 5) m
2
, m

3
, m

5

10. (D∗4m/D∗4m, D∗4n/D
∗
4n) − m

2n
D2(; 2, 2, n) m

n
, m

2
, m

2
n even

D2(2;n) m
n
, m

2
n odd

12. (D∗8m/D∗4m, D∗8n/D
∗
4n) − m

4n
D2(; 2, 2, 2n) m+n

2n
, m

2
, m+1

2

13. (D∗8m/D∗4m, D∗4n/C2n) − m
2n

D2(; 2, 2, n) m
n
, m+1

2
, m+1

2
n even

D2(2;n) m
n
, m+1

2
n odd

13bis. (D∗4m/C2m, D∗8n/D
∗
4n) − m

2n
D2(; 2, 2, n) m

n
, m

2
, m

2
n odd

D2(2;n) m
n
, m

2
n even

14. (D∗4m/D∗4m, T ∗/T ∗) −m
12

D2(3; 2) m
2
, m

3

15. (D∗4m/D∗4m, O∗/O∗) −m
24

D2(; 2, 3, 4) m
2
, m

3
, m

4

16. (D∗4m/C2m, O∗/T ∗) −m
12

D2(; 2, 3, 3) m
2
, m

3
, m

3

17. (D∗8m/D∗4m, O∗/T ∗) −m
24

D2(; 2, 3, 4) m+1
2

, m
3
, m+2

4

18. (D∗12m/C2m, O∗/D∗8) −m
12

D2(; 2, 3, 3) m
2
, m+1

3
, m+2

3

19. (D∗4m/D∗4m, I∗/I∗) −m
60

D2(; 2, 3, 5) m
2
, m

3
, m

5

33. (D∗8m/C2m, D∗8n/C2n)f − m
2n

D2(; 2, 2, n) m
n
, m+1

2
, m+1

2
n odd

D2(2;n) m
n
, m+1

2
n even

33′. (D∗8m/Cm, D∗8n/Cn)f − m
4n

D2(; 2, 2, n)
(m+n)/2

n
,m
2
,m+1

2
m,n odd

34. (C4m/Cm, D∗4n/Cn) − m
2n

S2(2, 2, n)
(m+n)/2

n
,m
2
,m+1

2
m,n odd

34bis. (D∗4m/Cm, C4n/Cn) − m
2n

D2(n; )
(m+n)/2

n
m,n odd

Table 2: Computation of local invariants from Du Val’s presentation
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Lemma 4.1. Let G be a finite subgroup of SO(4) leaving invariant a Seifert
fibration π of S3, then one of the two following conditions is satisfied:

1. G is conjugate in SO(4) to a subgroup in Families 1, 1′, 11 or 11′ and π
is a non-Hopf fibration;

2. there exists an orientation-preserving diffeomorphism f : S3 → S3 such
that π ◦ f is the Hopf or the anti-Hopf fibration and f−1Gf is a subgroup
of SO(4).

Lemma 4.1 has many interesting consequences.
First, if L and R are both isomorphic to T ∗, O∗ or I∗, then no fibration

of S3 is preserved by the action of the group (L,LK , R,RK , φ).
Then, if a group G leaves invariant a non-Hopf fibration π, the base orbifold

of the fibration induced on S3/G (which is a bad orbifold) is either a sphere
with at most two cone points or a disk with at most two corner points, since it
is obtained as a quotient of the bad 2-orbifold S2(u, v) with u and v different
coprime integers.

Finally, if G leaves invariant a fibration equivalent to the Hopf fibration
or to the anti-Hopf fibration, we can suppose that the fibration is standard
and G is a subgroup of SO(4). We remark that this does not imply that G is a
subgroup of the Du Val’s list; G is conjugate by an isometry to a group in the
Du Val’s list but this isometry in general does not leave invariant the fibration.

We will focus for a moment on the case of groups of isometries which leave
invariant the Hopf fibration. If G leaves invariant the Hopf fibration, then G
is a subgroup of N = NormS3×S3(S1 × {1}). Moreover, conjugation of G
by elements of N respects the Hopf fibration, and therefore induces in the
quotient orbifold S3/G a fibration-preserving isometry. We remark that some
of the conjugations used in the work of Du Val list do not have this property.
Hence in order to get a classification of Seifert fibered spherical 3-orbifolds up
to orientation-preserving diffeomorphism, we need to classify finite subgroups
of N , up to conjugation in N . This will result in a new list. In the following
remark, we explain the differences with respect to Du Val’s list (Table 1).

Remark 4.2: There are three classes of phenomena which can occur for the
Hopf fibration, marking the difference with Du Val’s list.

1. The groups (L,LK , R,RK , φ) and (R,RK , L, LK , φ
−1) are conjugate by

the orientation reversing isometry q 7→ q−1, which maps the Hopf fibra-
tion to the anti-Hopf fibration. Hence these groups are not to be con-
sidered equivalent for our purposes, although they are equivalent in Du
Val’s list. As already explained in Section 3.2 and done in Table 2, if the
two families obtained by swapping the roles of L and R do not coincide
up to orientation-preserving conjugation, they are distinguished by the
suffix “bis” added to the number used by Du Val’s list. Considering the
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families leaving invariant the Hopf fibration, this phenomenon is relevant
for the families 2, 3, 4, 12 and 34. In these cases the “bis” families do
also preserve the Hopf fibration, but the Seifert invariant of the quotient
orbifolds are obviously given by different formulae, see Table 2.

2. The subgroups generated by i and by j are conjugate in S3, but not
in O(2)∗. In Table 1, the subgroup D∗4 = {±1,±j} < O(2)∗ is not
considered since it gives the same group as when it is replaced with C4 =
{±1,±i} up to conjugation in SO(4). To classify subgroups in N it is
thus necessary to distinguish the two cases for L. Observe moreover that
D∗4 = {±1,±j} < O(2)∗ and C4 = {±1,±i} are not conjugate in the
normalizer of the group D8; this implies that a group with (L,LK) =
(D8, C4) is not conjugate to a group with (L,LK) = (D8, D4).

3. When L = D∗8 and LK = C1 or C2, the groups of Family 33 with m = 1,
namely (D∗8/C2, D

∗
8n/C2n)f (recalling that the isomorphism f is defined

in Subsection 3.2, Equation (7)) is conjugate in S3 to the case r = 2,
m = 1 of Family 11, namely (D∗8/C2, D

∗
8n/C2n) (where the automorphism

between L/LK and R/RK is the identity). But they are not conjugate in
N unless n also equals 1. The same occurs for Family 33′. Although in
Du Val’s list Families 33 and 33′ come with the restriction that m,n 6= 1,
we will thus consider the case m = 1, n 6= 1 as independent.

Of course the considerations of Remark 4.2 can be repeated analogously for the
anti-Hopf fibration, by switching the roles of (L,LK) and (R,RK).

5. Classification by diffeomorphism type

The purpose of this section is to determine a classification of spherical fibered
three-orbifolds up to orientation-preserving diffeomorphism. By Theorem 2.4,
this also turns out to be a classification up to isometry. More concretely, we
will provide a recipe to determine when two fibered spherical orientable three-
orbifolds are diffeomorphic in terms of the invariants of their fibrations. In
fact, recall from the classification theorem that two Seifert fibered orbifolds
have the same base orbifold and numerical invariants if and only if there exists
an orientation-preserving diffeomorphism which preserves the fibration.

5.1. General strategy

By Proposition 2.7, the possible base orbifolds for a Seifert fibration of a closed
spherical orbifold necessarily have positive Euler characteristic. Hence the pos-
sible base orbifolds are listed in (1), (2) and (3).

Spherical orbifolds may admit infinitely many inequivalent fibrations. This
occurs only if the underlying manifold is a lens space. In fact, lens spaces admit
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infinitely many Seifert fibrations in the manifold sense, and the classification
of these Seifert fibrations up to diffeomorphism is well-understood (see Sub-
section 5.3 below). The situation is however more delicate here since orbifolds
with underlying manifold a lens space may admit other fibrations which are
substantially different (i.e. the base orbifold may have mirror reflectors and
corner reflectors). Also, orbifolds which admit infinitely many fibrations do
admit one (infinitely many, in fact) with base orbifold S2(b1, b2) or D2(; b1, b2),
namely, either a sphere with at most two cone points or a disc with at most
two corner reflectors.

We will proceed as follows. We first consider fibrations with base orbifold B
not of the form S2(b1, b2) or D2(; b1, b2). We thus distinguish the various cases
according to the base orbifold of the fibration π : O → B and pointing out
in each case which other fibrations are admitted by O. If O admits more
than one fibration, it will re-appear in different cases, providing in each one
the instructions to obtain the other fibrations of the orbifolds. When O also
admits a fibration with base S2(b1, b2) or D2(; b1, b2), we will point out one of
them (there are in fact infinitely many). In this analysis we use the results
contained in Table 2 (see also Table 4 of [20]), which compute the invariants of
quotients S3/G when G < SO(4) preserves the Hopf fibration (recall also the
discussion of Section 4).

We then deal (Subsection 5.4) with base orbifolds of the form S2(b1, b2) or
D2(; b1, b2). Given such a spherical 3-orbifold O, with underlying space a lens
space, producing a “list” of all the (infinitely many) Seifert fibrations that O
admits is rather complicated and beyond the scope of this paper. For the
manifold case, an algorithm to list all Seifert fibrations on a given lens space,
satisfying a prescribed bound on the “complexity” is described in [13]. Here we
will rather describe a procedure which permits (algorithmically) to determine
whether two Seifert fibered orbifolds with base orbifold a sphere with at most
two cone points are diffeomorphic. Then we do the same for two Seifert orbifolds
with base a disc with at most two corner reflectors, and finally we point out
the (few) cases in which an orbifold admits fibrations of both types. Sometimes
these orbifolds admit additional fibrations with different bases, and these will
have already been pointed out in Subsection 5.2.

5.2. Finitely many fibrations

Let us now exhibit the (orientation-preserving) diffeomorphisms between spher-
ical orbifolds with (finitely many) different fibrations, in terms of their invari-
ants.

Case 1. The base orbifold is S2(2, 2, b).

The families of groups giving S2(2, 2, b) as base orbifold are 2, 3, 4 and 34
with the fibration induced by the Hopf fibration and 2bis, 3bis, 4bis and 34bis
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with the anti-Hopf fibration. By Equation (4) we obtain that the Euler invari-
ant can be represented by a fraction with denominator 2b. (If b is even, also by
a fraction with denominator b.) Let us consider the generic spherical fibered
orbifold with base orbifold S2(2, 2, b):(

S2(2, 2, b);
m1

2
,
m2

2
,
m3

b
;
a

2b

)
.

We remark that if a > 0 the fibration is induced by the anti-Hopf fibration
while if a < 0 it is induced by the Hopf fibration. Indeed each of the groups
considered in this case preserves both and each quotient orbifold admits at
least two inequivalent fibrations. By using Table 2 and Equation (4) we can
compute the Seifert invariants of both fibrations for each quotient orbifold (see
also Remark 4.1).

• If m1 = m2 = 0 then a is even, then necessarily m3 ≡ −a/2 (mod b). By
comparing the quotient fibrations of Families 2 and 2bis, or 3 and 3bis,
we get:(

S2(2, 2, b);
0

2
,

0

2
,−a/2

b
;
a/2

b

)
∼=
(
D2(|a/2|; );

b

a/2
; − b

a/2
; 0

)
• If m1 = m2 = 1 then a is again even, then m3 ≡ −a/2 (mod b) and we

get analogously:(
S2(2, 2, b);

1

2
,

1

2
,−a/2

b
;
a/2

b

)
∼=
(
RP 2(|a/2|); b

a/2
; − b

a/2

)
Note that this family of orbifolds contains the prism manifolds, one of
the families with multiple fibrations in the manifold case, see for instance
[15, Theorem 2.3].

• If m1 6= m2 we can suppose m1 = 0 and m2 = 1; in this case Equation (4)
implies that a and b have the same parity, and m3 ≡ (a + b)/2 (mod b).
From Families 4 and 34 and their bis-versions we get:(

S2(2, 2, b);
0

2
,

1

2
,− (a+ b)/2

b
;
a

2b

)
∼=
(
D2(|a|; );

(a+ b)/2

a
; − b

2a
; 1

)
We remark that, here and in what follows, when the base orbifold has mir-
ror reflectors, the invariant ξ is determined by the other invariants (see [9,
Corollary 2.9]).

Some of these orbifolds admit further inequivalent fibrations because i and j
are not conjugated in O(2)∗ (see Phenomenon 2 described in Remark 4.2).
For example, in Family 2 the groups with m = 2 are conjugate in SO(4) to
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groups with m = 1 in Family 10 but this conjugation cannot be performed
in N = NormS3×S3(S1 × {1}). This implies that an isometric copy of the
Hopf fibration in non-standard position is left invariant by (C4/C4, D

∗
4n/D

∗
4n)

inducing on the quotient orbifold a different Seifert fibration. A very similar
situation holds also for the Family 2bis and the anti Hopf-fibration. If b is even
we finally obtain that:(

S2(2, 2, b);
0

2
,

0

2
,±2

b
; ∓2

b

)
∼=
(
D2(; 2, 2, b); ;

1

2
,

1

2
,±1

b
; ∓ 1

2b
; 1

)
,

and if b is odd we get:(
S2(2, 2, b);

0

2
,

0

2
,±2

b
; ∓2

b

)
∼=
(
D2(2; b);

1

2
; ±1

b
; ∓ 1

2b
; 1

)
.

Hence we can conclude that
(
S2(2, 2, b); 0/2, 0/2,±2/b; ∓2/b

)
admits three

different fibrations for every b.
The analogous situation occurs for groups with m = 1 in Family 4 and

groups of Family 13bis with m = 1. So we consider b even and we obtain that
base of the extra fibration depends on the parity of b/2; in fact if b/2 is odd
we obtain:(

S2(2, 2, b);
0

2
,

1

2
,±1 + b/2

b
; ∓1

b

)
∼=
(
D2(; 2, 2, b/2); ;

1

2
,

1

2
,± 1

b/2
; ∓1

b
; 1

)
while if b/2 is even we get:(

S2(2, 2, b);
0

2
,

1

2
,±1 + b/2

b
; ∓1

b

)
∼=
(
D2(2; b/2);

1

2
; ± 1

b/2
; ∓ 1

b/2
; 1

)
.

Also these orbifolds admit three fibrations.
Finally the groups in Families 3 and 34 with m = 1 are conjugate in SO(4)

(but not in N ) to groups in Family 11 and 11′; the same holds for the groups
in Families 3bis and 34bis with n = 1 and the anti-Hopf fibration. We can
conclude that the orbifolds(

S2(2, 2, b);
0

2
,

0

2
,±1

b
; ∓1

b

)
and

(
S2(2, 2, b);

0

2
,

1

2
,± (1 + b)/2

b
; ∓ 1

2b

)
with b odd

admit infinitely many fibrations with base orbifold a disk with at most two
corner points. These cases are treated in Subsection 5.4 since they need a
different approach; here we only exhibit a single fibration with such base (whose
Seifert invariants are computed by using [20, Tables 2 and 3]):(

S2(2, 2, b);
0

2
,

0

2
,±1

b
; ∓1

b

)
∼=
(
D2(; b, b); ±1

b
,±1

b
;∓1

b
; 0

)
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for the former, and(
S2(2, 2, b);

0

2
,

1

2
,± (1 + b)/2

b
; ∓ 1

2b

)
∼=
(
D2(; b, b); ± (1 + b)/2

b
,± (1 + b)/2

b
;∓ 1

2b
; 1

)
with b odd

for the latter.

Case 2. The base orbifold is either D2(b; ) or RP 2(b).

In these cases the families to be considered are 2, 3, 4 and 34 with the
fibration induced by the anti-Hopf fibration and 2bis, 3bis, 4bis and 34bis with
the Hopf fibration. Again each of these groups preserves both the Hopf and the
anti-Hopf fibration of S3. The relations between the two fibrations induced in
the quotient orbifold can be deduced from the previous case, since one of the
two fibrations has S2(2, 2, b) as base orbifold.

It remains to consider the extra fibrations caused by Phenomenon 2 in Re-
mark 4.2. First, groups of Family 2 with m = 2 are conjugated to groups of
Family 10 with m = 1, but the conjugating elements are not contained in N ;
this implies that the groups of Families 2 with m = 2 leave invariant the stan-
dard Hopf fibration, the standard anti-Hopf fibration and a non-standard Hopf
fibration whose invariants can be obtained considering Family 10 in Table 2.
An analogous situation occurs for Family 2bis when n = 2. This implies that
the orbifolds

(
D2(2; ); b2 ; ;± b

2 ; 0
)

admit three inequivalent Seifert fibrations.
Indeed, the three fibrations has been already described in the previous case:(

D2(2; );
1

2
; ;± b

2
; 0

)
∼=
(
S2(2, 2, b);

0

2
,

0

2
,±2

b
; ∓2

b

)
∼=
(
D2(2; b);

1

2
; ±1

b
; ∓ 1

2b
; 1

)
when b is odd and strictly greater than 1, and(

D2(2; );
0

2
; ;± b

2
; 0

)
∼=
(
S2(2, 2, b);

0

2
,

0

2
,±2

b
; ∓2

b

)
∼=
(
D2(; 2, 2, b); ;

1

2
,

1

2
,±1

b
; ∓ 1

2b
; 1

)
when b is even.

The groups in Families 2, 3 and 34 with n = 1 and the ones in Families
2bis, 3bis and 34bis with m = 1 are conjugate to groups in Families 1 and 1′.
This implies that the following orbifolds admit infinitely many fibrations with
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base orbifold S2 with at most two cone points, see Subsection 5.4; here we only
exhibit a single fibration with such base:(

D2(b; );±1

b
; ;∓1

b
; 0

)
∼=
(
S2(b, b); ±2

b
,±2

b
; ∓4

b

)
with b even,(

D2(b; );±1

b
; ;∓1

b
; 0

)
∼=
(
S2(2b, 2b); ±1+b

2b
,±1+b

2b
; ∓1

b

)
with b odd,(

RP 2(b);±1

b
;∓1

b

)
∼=
(
S2(b, b); ±2

b
,±2

b
; ∓4

b

)
with b odd,(

RP 2(b);±1

b
;∓1

b

)
∼=
(
S2(2b, 2b); ±1+b

2b
,±1+b

2b
; ∓1

b

)
with b even,

(
D2(b; );± (1+b)/2

b
; ;∓ 1

2b
; 1

)
∼=
(
S2(2b, 2b); ± (1+b)/2

2b
,± (1+3b)/2

2b
; ∓ 1

2b

)
with b odd.

Case 3. The base orbifold is D2(; 2, 2, b).

The families we have to consider are 10, 12, 13, 13 bis, 33, 33′. By Equa-
tion (4) the Euler invariant can be represented by a fraction with denominator
4b and here the generic fibered orbifold is:(

D2(; 2, 2, b);
m1

2
,
m2

2
,
m3

b
;
a

4b
; ξ
)
.

Each of these groups preserves both the Hopf and the anti-Hopf fibration,
and by using Table 2 and Remark 4.1 we compute the Seifert invariants induced
by both.

• If m1 = m2 = 0 then a is even, and m3 ≡ a/2 (mod b). This kind
of fibration in the quotient orbifold is induced by the Hopf fibration left
invariant by groups in Family 10 with m and n even, in Family 13 with m
odd and n even, in Family 13bis with m even and n odd and in Family 33
with m and n odd. Considering the anti-Hopf fibration this case occurs
for groups in Families 10 with m and n even, in Family 13 with n odd and
m even, in Family 13bis with n even and m odd and in Family 33 with
m and n odd. If the fibration considered is induced by the Hopf fibration
we compute the invariants of the other fibration induced by the anti-Hopf
fibration and viceversa. Finally we get the following diffeomorphisms:(

D2(; 2, 2, b); ;
0

2
,

0

2
,−a/2

b
;
a/2

2b
; 0

)
∼=
(
D2(; 2, 2, |a/2|); ;

0

2
,

0

2
,
b

a/2
; − b

a
; 0

)
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• If m1 = m2 = 1 then a is again even, and m3 ≡ a/2 (mod b). Carrying
out an analysis similar to the previous case which involves again Families
10, 13, 13bis and 33, we obtain the following diffeomorphisms:(
D2(; 2, 2, b); ;

1

2
,

1

2
,−a/2

b
;
a/2

2b
; 1

)
∼=
(
D2(2; |a/2|); 0

2
;
b

a/2
; − b

a
; 0

)
• If m1 6= m2 we can suppose m1 = 0 and m2 = 1; in this case Equation (4)

implies that a and b have the same parity, and m3 ≡ (a + b)/2 (mod b).
Here the we have to consider Families 12 and 33′. Finally we get:(

D2(; 2, 2, b); ;
0

2
,

1

2
,− (a+ b)/2

b
;
a

4b
; 1

)
∼=
(
D2(; 2, 2, |a|); ;

0

2
,

1

2
,

(a+ b)/2

a
; − b

4a
; 1

)
Let us now consider the extra fibrations given by Phenomena 2 and 3 of

Remark 4.2.
Phenomenon 2 involves the groups in Families 10 and 13bis with m = 1,

which leave invariant a non-standard Hopf fibration, and in Families 10 and 13
with n = 1, which leave invariant a non-standard anti-Hopf fibration. We
obtain the following diffeomorphisms:(

D2(; 2, 2, b); ;
1

2
,

1

2
,±1

b
; ∓ 1

2b
; 1

)
∼=
(
D2(2; );

0

2
; ;± b

2
; 0

)
∼=
(
S2(2, 2, b);

0

2
,

0

2
,±2

b
; ∓2

b

)
when b is even(

D2(; 2, 2, b); ;
1

2
,

1

2
,±1

b
; ∓ 1

2b
; 1

)
∼=
(
D2(2; );

0

2
; ± b

2
; 1

)
∼=
(
S2(2, 2, 2b);

0

2
,

1

2
,±1 + b

2b
; ∓ 1

2b

)
when b is odd. These orbifolds admit three fibrations.

Moreover, by Phenomenon 3 the following orbifolds(
D2(; 2, 2, b); ;

0

2
,

0

2
,±1

b
; ∓ 1

2b
; 0

)
with b odd

and

(
D2(; 2, 2, b); ;

0

2
,

1

2
,± (b+ 1)/2

b
; ∓ 1

4b
; 1

)
with b odd
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given by groups in Family 33 with m = 1 and Family 33′ with m = 1 have
infinitely many fibrations with base orbifold a disk with two corner points (these
groups are conjugate in SO(4) to groups in Families 11 and 11′). As usual we
describe here one of these fibrations and the general analysis can be found in
Subsection 5.4.(

D2(; 2, 2, b); ;
0

2
,

0

2
,±1

b
; ∓ 1

2b
; 0

)
∼=
(
D2(; 2b, 2b); ; ±b+ 1

2b
,±b+ 1

2b
; ∓ 1

2b
; 1

)
(
D2(; 2, 2, b); ;

0

2
,

1

2
,± (b+ 1)/2

b
; ∓ 1

4b
; 1

)
∼=
(
D2(; 2b, 2b); ; ± (3b+ 1)/2

2b
,± (b+ 1)/2

2b
; ∓ 1

4b
; 1

)
where b is an odd integer in both cases.

Case 4. The base orbifold is D2(2; b).

The groups giving fibered quotients with base orbifold D2(2; b) are con-
tained in Families 10, 13, 13bis, 33. Each of these groups leaves invariant both
the Hopf and the anti-Hopf fibration, so the quotient orbifold has at least two
fibrations and the possible base orbifolds are D2(2; b) and D2(; 2, 2, b). The
cases when D2(; 2, 2, b) appears as base orbifold of one of the two fibrations
have been already treated in the previous case. When both fibrations have
D2(2; b) we obtain the following diffeomorphism:(

D2(2; b);
1

2
; −a

b
;
a

2b
; 1

)
∼=
(
D2(2; |a|); 1

2
;
b

a
; − b

2a
; 1

)
.

Phenomena 2 and 3 of Remark 4.2 give extra fibrations to the following orb-
ifolds:

•
(
D2(2; b); 1

2 ; ± 1
b ; ∓ 1

2b ; 1
)

whose fibration is induced by the Hopf fibration
left invariant by groups in Families 10 and 13bis with m = 1, and by
the anti-Hopf fibration left invariant by groups in Families 10 and 13bis
with n = 1; these orbifolds have three fibrations and the extra fibrations
(already described in the previous case) are:(

D2(2; );
1

2
; ;± b

2
; 0

)
∼=
(
S2(2, 2, b);

0

2
,

0

2
,±2

b
; ∓2

b

)
when b is odd and
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(
D2(2; );

1

2
; ± b

2
; 1

)
∼=
(
S2(2, 2, 2b);

0

2
,

1

2
,±1 + b

2b
; ∓ 1

2b

)
when b is even.

•
(
D2(2; b); 0

2 ; ± 1
b ; ∓ 1

2b ; 1
)

with b even, whose fibration is induced by the
Hopf fibration left invariants by groups in Family 33 with m = 1; these
orbifolds have infinitely many fibrations with base orbifold a disk with
two corner points because the groups are conjugate to groups in Family
11. Here we describe only one of these fibrations:

(
D2(2; b);

0

2
; ±1

b
; ∓ 1

2b
; 1

)
∼=
(
D2(; 2b, 2b); ; ±1 + b

2b
; ±1 + b

2b
; ∓ 1

2b
; 1

)

Case 5. The base orbifold is S2(2, 3, b) or D2(; 2, 3, b) with b = 3, 4, 5.

Fibrations having these base orbifold are induced by the Hopf fibration left
invariant by groups in Families 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19 and by
the anti-Hopf fibration left invariant by the bis-versions of the same families.
In this case each group leaves invariant exactly one among the Hopf and the
anti-Hopf fibration. With few exceptions due to Phenomenon 2 of Remark 4.2,
these orbifolds have exactly one fibration.

The sporadic diffeomorphisms are given by the correspondences between
Family 5 (m = 2) and 14 (m = 1), Family 7 (m = 2) and 15 (m = 1), Family 8
and 16 (m = 1), Family 9 (m = 2) and 19 (m = 1), and the analogous cor-
respondence between the bis-versions of the groups. All the quotient orbifolds
thus have 2 inequivalent fibrations. We collect here these diffeomorphisms:(

S2(2, 3, 3) ;
0

2
,±2

3
,±2

3
;∓1

3

)
∼=
(
D2(3; 2) ;±1

3
;±1

2
;∓ 1

12
; 1

)
(
S2(2, 3, 4) ;

0

2
,±2

3
,±2

4
;∓1

6

)
∼=
(
D2(; 2, 3, 4) ; ;

1

2
,±1

3
,±1

4
;∓ 1

24
; 1

)
(
S2(2, 3, 4) ;

0

2
,±1

3
,±3

4
;∓ 1

12

)
∼=
(
D2(; 2, 3, 3) ; ;

1

2
,±1

3
,±1

3
;∓ 1

12
; 1

)
(
S2(2, 3, 5) ;

0

2
,±2

3
,±2

5
;∓ 1

15

)
∼=
(
D2(; 2, 3, 5) ; ;

1

2
,±1

3
,±1

5
;∓ 1

60
; 1

)
.

5.3. Some facts on lens spaces

Let us briefly recall some generalities on lens spaces.



SEIFERT FIBERED SPHERICAL 3-ORBIFOLDS 33

Definition 5.1. The lens space L(p, q) is defined as the manifold obtained by
gluing two solid tori T1 and T2 by means of an orientation-reversing diffeomor-
phism of their boundaries which maps a meridian µ1 of T1 to pλ2− qµ2, where
µ2 and λ2 are a meridian and a longitude of T2.

Observe that there is no natural choice of longitude λi on ∂Ti, and in fact
if q ≡ q′ mod p, then performing a Dehn twist on T2 gives an orientation-
preserving diffeomorphism L(p, q) ∼= L(p, q′). For the very same reason, the
diffeomorphism type of L(p, q) does not depend on the image of a longitude λ1

by the diffeomorphism ∂T1 → ∂T2.
Suppose M is a Seifert fibered manifold with base surface S2 and at most

two cone points, and associated local invariants α1/β1 and α2/β2 for αi and
βi coprimes (we recall that these are the invariants in the classical notation
for Seifert manifolds, see Subsection 2.4), it is not hard to compute the corre-
sponding lens space. See [17, Theorem 4.4] and [13, Theorem 4.4] for a more
detailed explanation. Let T1 and T2 be the preimages of two discs D1 and D2

on the base S2, where D1 contains the first cone point and D2 the second, with
∂D1 = ∂D2. Then T1 and T2 are fibered solid tori. With some computations,
which are provided in the given references, one finds that M is obtained by
gluing T1 and T2 in such a way that a meridian µ1 of T1 is glued to pλ2 − qµ2,
and is thus diffeomorphic to the lens space L(p, q) according to our definition
above, for

p = −det

(
α1 α2

−β1 β2

)
= −α1β2 − β1α2

and q = −det

(
α1 γ2

β1 δ2

)
= β1γ2 − α1δ2 , (9)

where the pair (γ2, δ2) satisfies

det

(
α2 γ2

−β2 δ2

)
= α2δ2 − β2γ2 = 1 .

The choice of such a pair (γ2, δ2) is not unique, but any two choices differ by
a multiple of (α2, β2), hence giving the same result up to the usual modulo p
ambiguity for q.

Remark 5.1: We remark that the expressions in (9) are slightly different to
those recorded in [17, Theorem 4.4] and [13, Theorem 4.4]: this is because we
are adopting a different convention here for the classification data of a Seifert
fibration, following [3] and [15]. To pass from our convention to that used
in [17] and [13] one should switch the roles of the αi and βi, and there is also
a sign difference.

We shall now explain more precisely necessary and sufficient conditions for
two lens spaces to be (orientation-preserving) diffeomorphic. A fundamental
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fact is the following (proved in [2], see also [19, Theorem 10.1.12] and [15,
Theorem 2.5]):

Proposition 5.2. Any two Heegard surfaces of genus 1 in a lens space are
isotopic.

Proposition 5.2 implies that, given any orientation-preserving diffeomor-
phism between two lens spaces L(p, q) and L(p′, q′), one can modify the diffeo-
morphism so that it maps ∂T1 = ∂T2 to ∂T ′1 = ∂T ′2. The diffeomorphism now
either sends Ti to Ti, or T1 to T ′2 and T ′2 to T1. It is classical to show that the
first case occurs if and only if

p = p′ and q ≡ q′ mod p (10)

whereas the second if and only if

p = p′ and qq′ ≡ 1 mod p . (11)

In light of (10), one checks easily that two equivalent presentations of the same
Seifert manifoldM (as explained in Subsection 2.4) give an equivalent outcome
in Equation (9).

By putting together the two cases (10) and (11) together, one has:

Proposition 5.3. Two lens spaces L(p, q) and L(p′, q′) have an orientation-
preserving diffeomorphism if and only if

p = p′ and q±1 ≡ q′ mod p . (12)

5.4. Infinitely many fibrations

Let us now get back to the diffeomorphism type of spherical orbifolds.

Case 6. The base orbifold is a sphere with at most two cone points.

In this case the underlying topological space of the spherical 3-orbifold is a
lens space and the possible singular set is contained in the union of the cores of
the tori giving the standard Heegard decomposition of the lens space. Conse-
quentely the singular set may be empty, a knot or a link with two components.
Exactly as in the analogous manifold case, if an orbifold S3/G is contained in
this family, then it admits infinitely many fibrations, since (a conjugate of) G
leaves invariant all the non-Hopf fibrations.

Let us consider O and O′ with base orbifolds S2(b1, b2) and S2(b′1, b
′
2),

namely (
S2(b1, b2);

a1

b1
,
a2

b2
; e

) (
S2(b′1, b

′
2);

a′1
b′1
,
a′2
b′2

; e′
)
, (13)

and explain how one can decide whether O and O′ are diffeomorphic.
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The recipe is as follows. First compute the index of singularity of the
preimages of each cone point. These are simply given by ιi = gcd(ai, bi) for O
and ι′i = gcd(a′i, b

′
i), for i = 1, 2, where ai/bi and a′i/b

′
i are the local invariants.

Then the underlying Seifert fibered manifoldsM andM′ are given by the same
expressions as in (13), except that one needs to replace ai by ai/ιi, bi by bi/ιi,
and similarly for a′i and b′i.

Recalling the explanation given in Subsection 2.4, using also the Euler
classes e and e′, one can easily express the underlying manifolds M and M′
in terms of the classical invariants for Seifert manifolds. These will be of the
form:

M∼=
(
S2;α1/β1, α2/β2

)
M′ ∼=

(
S2;α′1/β

′
1, α
′
2/β
′
2

)
, (14)

respectively, where βi = bi/ιi, β
′
i = b′i/ι

′
i, the αi will be integer numbers

relatively prime with βi and satisfying αi/βi ≡ ai/bi mod 1, and similarly for
the α′i.

There are now various possibilities:

• If {ι1, ι2} does not equal {ι′1, ι′2}, then O and O′ are certainly not diffeo-
morphic, since a diffeomorphism should respect the singularity indices.

• If ι1 = ι2 = ι′1 = ι′2, determining whether O and O′ are diffeomorphic
amounts to whether their underlying manifolds M and M′ are diffeo-
morphic. In fact, by the discussion above, a diffeomorphism between lens
spaces always maps a solid torus of the standard Heegard decomposition
of M to a solid torus of the decomposition of M′, and one can arrange
such a diffeomorphism to map the (singular, if the ιi are not 1) cores
of each torus of M to cores of each torus of M′. Therefore, it suffices
to compute the underlying lens spaces of O and O′ (computed in the
first step) by applying (9) to (14), and determine whether they are dif-
feomorphic by checking if the classical formula (12) holds (Proposition
5.3).

• The last possibility is when {ι1, ι2} = {ι′1, ι′2} but ι1 6= ι2 (and thus
ι′1 6= ι′2). In this case one cannot directly apply the standard classification
for the underlying lens spaces, since one has to take into account that the
cores of the two solid tori in each Heegard decomposition have different
singularity index, and the singularity index must be preserved by orbifold
diffeomorphisms. Up to switching the order of cone points, let us assume
ι1 = ι′1 and ι2 = ι′2. In the notation used above in this section, O and O′
are diffeomorphic if and only if there is a diffeomorphism of the underlying
lens spaces which maps Ti to T ′i , for i = 1, 2. According to (10), this is
the case if and only if p = p′ and q, q′ have the same residue modulo p. In
conclusion, one has to use again the formulae (9) to compute p, q, p′, q′,
and check whether they satisfy (10) (instead of (12)).



36 M. MECCHIA AND A. SEPPI

Finally we remark that there are two spherical 3-orbifolds, each of which
admits both infinitely many fibrations with base orbifold a 2-sphere with two
cone points and infinitely many fibrations with base orbifold a disk with two
corner points. Fibrations having base orbifold a disk with two corner points
will be considered in Case 7 below.

The first orbifold is the quotient by the group (C4/C2, C4/C2) that can be
conjugate (by an isometry which does not preserve the Hopf fibration) to the
group (D∗4/C2, D

∗
4/C2). The underlying topological space of this 3-orbifold is

the 3-sphere and the singular set is the Hopf link whith local group of order
two. Two possible fibrations are

(
S2(2, 2); 0

2 ,
0
2 ;−1

)
and

(
D2; ; ;−1; 0

)
. Note

that these are the two fibrations described in the example of Section 2.6.
The second orbifold is given by the group (C4/C1, C4/C1) that can be con-

jugate to the group (D∗4/C1, D
∗
4/C1). In this case the underlying topological

space is the 3-sphere and the singular set is the trivial knot whith local group of
order two. Two possible fibrations are

(
S2(2, 2); 0

2 ,
1
2 ;− 1

2

)
and

(
D2; ; ;− 1

2 ; 1
)
.

Case 7. The base orbifold is a disk with at most two corner points.

Also in this case all the orbifolds admit infinitely many fibrations, since all
the non-Hopf fibrations are preserved by the groups involved.

Let O be a fibered orbifold whose base orbifold is D2(n1, n2). In this case
we can consider the 2-fold branched covering O′ of O induced by the 2-fold
orbifold covering S2(n1, n2)→ D2(n1, n2) obtained by doubling the disk along
its boundary. The orbifold O′ has the same local invariants of O. (It is worth
remarking that the preimage of a corner reflector in the base orbifold of O
will be a cone point in the base orbifold of O′, but the associated numerical
invariants will be the same.) The Euler class of O′ is twice as that of O.

Fibrations with base orbifold D2(n1, n2) are admitted by orbifolds given by
groups in Families 11 and 11′. These groups are generalized dihedral groups
Z2 n A where A is an Abelian normal subgroup of rank at most two. The
subgroup A is the unique index two Abelian subgroup with this property (with
the exception of the cases A ∼= Z2 and A ∼= Z2 × Z2).

The subgroup A corresponds to the unique 2-fold branched covering in-
duced by the orbifold covering S2(n1, n2) → D2(n1, n2). Also in the two ex-
ceptional cases all the possible 2-fold branched coverings having S2(n1, n2) as
base orbifold are diffeomorphic. Hence we have a 1-1 correspondence between
the orbifolds of Case 6 and the orbifolds of Case 7. We can reduce to the same
procedure as in the previous case to decide whether two fibered orbifolds with
base orbifolds D2(n1, n2) are diffeomorphic.

Some of these orbifolds admit also a fibration whose base orbifold is not a
disk with at most two corner points. We have already listed these exceptional
fibrations in Cases 1-6.

Example 5.2: Case 7 includes the orbifolds having the 3-sphere as underlying
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topological space and a 2-bridge link with local group of order two as singular
set. The 2-bridge links are a well known class of links which are classified
by their 2-fold branched coverings (see, e.g., [4]). In fact the 2-fold branched
covering of each of these orbifolds along the singular set is a lens space; on
the other hand, each lens space has a unique representation as 2-fold branched
covering of a link [16]. Hence, the classification of 2-bridge links (and of our
3-orbifolds) can be deduced by the classification of lens spaces. We denote by
O(p, q) the 3-orbifold that gives L(p, q) as 2-fold branched covering. We remark
that there exists an orientation-preserving diffeomorphism between O(p, q) and
O(p′, q′) if and only if p = p′ and q±1 ≡ q′ mod p .

A lens space can be obtained as the quotient of S3 by a cyclic group acting
freely; these groups are contained in Family 1 or 1′. Each group (C2mr/C2m,
C2nr/C2n)s in Family 1 is normalized by the involution Φ(j, j) ∈ SO(4) which
has non-empty fixed point set; the group (C2mr/C2m, C2nr/C2n)s and the in-
volution Φ(j, j) generate (D∗4m/D

∗
4m, D

∗
4n/D

∗
4n)s in Family 11. We remark

that the underlying topological space of the quotient of S3 by the group
(D∗4m/D

∗
4m, D

∗
4n/D

∗
4n)s is always the 3-sphere (see [20]) and, if (C2mr/C2m,

C2nr/C2n)s acts freely, the quotient orbifold is of type O(p, q). The same holds
for groups in Familiy 1′ which are contained in groups in Family 11′. This
assures us that each 3-orbifold O(p, q) is the quotient of S3 by a group con-
tained in Families 11 and 11′. Therefore O(p, q) admits infinitely many Seifert
fibrations with base orbifolds a disk with at most two corner points. Given a
group in Family 11 and 11′, by using [20, Tables 2 and 3] we can decide if it
gives an orbifold of type O(p, q) and compute p and q

Some of these orbifolds admit also some fibrations with a different base
orbifold. We can analyze this phenomenon considering the diffeomorphisms
between fibered spherical 3-orbifolds listed in Cases 1-6. We obtain the follow-
ing: O(1, 0), whose singular set is the unknot, and O(2, 1), whose singular set
in the Hopf link, admit infinitely many fibrations with base orbifold a sphere
with at most two cone points (Case 5); for each integer b > 1 the orbifold
O(b,±1) admits a fibration with base orbifold a sphere with three cone points
(Case 1); for each even integer b > 1 the orbifold O(4b,±(1 + 2b)) admits a
fibration with base orbifold a disk with one cone point and one corner reflector
(Case 4).
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[14] A. Haefliger, Groupöıdes d’holonomie et classifiants, Astérisque (1984),
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