Entire surfaces of constant curvature in Minkowski 3-space - Archive ouverte HAL
Article Dans Une Revue Mathematische Annalen Année : 2019

Entire surfaces of constant curvature in Minkowski 3-space

Résumé

This paper concerns the global theory of properly embedded spacelike surfaces in three-dimensional Minkowski space in relation to their Gaussian curvature. We prove that every regular domain which is not a wedge is uniquely foliated by properly embedded convex surfaces of constant Gaussian curvature. This is a consequence of our classification of surfaces with bounded prescribed Gaussian curvature, sometimes called the Minkowski problem, for which partial results were obtained by Li, Guan-Jian-Schoen, and Bonsante-Seppi. Some applications to minimal Lagrangian self-maps of the hyperbolic plane are obtained.
Fichier principal
Vignette du fichier
Math_Ann_arxiv.pdf (958.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-03000776 , version 1 (12-11-2020)

Identifiants

Citer

Francesco Bonsante, Andrea Seppi, Peter Smillie. Entire surfaces of constant curvature in Minkowski 3-space. Mathematische Annalen, 2019, 374 (3-4), pp.1261-1309. ⟨10.1007/s00208-019-01820-9⟩. ⟨hal-03000776⟩
24 Consultations
172 Téléchargements

Altmetric

Partager

More