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Abstract

The development of a macroscopic model for solute transport coupled with unsaturated 
water low in double-porosity media is presented in this work, by using the asymptotic 
homogenization method. The model was derived for the case in which the medium exhibits 
a strong contrast of transport properties by upscaling rigorously the transport mechanisms 
from micro-scale to macro-scale. It consists of two coupled equations for dispersion–con-
vection processes at macroscopic level and difusion intervention from local scale that can 
be described by a non-Fickian behaviour of solute concentration breakthrough. The pro-
posed model was numerically implemented in the environment of a inite element code 
(commercial software) and applied to 2D examples with diferent boundary conditions. To 
validate, a comparative analysis between the results obtained from the homogenized model 
and the ine scale model (reference solution obtained from explicit heterogeneous repre-
sentation of the medium structure) was carried out. The obtained numerical tool for the 
two-scale implementation enables treating various types of two-equation models to study 
the macroscopic non-Fickian transport and also non-equilibrium evolution of concentration 
ields inside the micro-porous medium.

Keywords Non-Fickian transport · Double-porosity medium · Asymptotic 
homogenization · Modelling · Two-scale numerical simulation
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1 Introduction

The study of solute transport in porous media has not been declining, particularly in the 
actual context of exploitation and conservation of terrestrial resources. The motivation 
is stimulated by the fact that complex low and transport processes are observed in dif-
ferent civil/industrial activities such as groundwater use, soil decontamination, oil/gas 
reservoirs or carbon dioxide geological sequestration (Doughty and Moridis 2018). Het-
erogeneity of the geological environment at various scales within the context of mul-
tiphase–multicomponent transport plays a key role on this complexity of the processes 
(e.g. Dagan 1984; Sudicky 1986; Dagan et al. 1990; Berkowitz et al. 2000; de Marsily 
et al. 2005; Niessner and Helmig 2007; Tran Ngoc et al. 2011; Gensterblum et al. 2015; 
Cremer et al. 2016; Wu et al. 2017; Portois et al. 2018). For such media, conventional 
models are not always appropriate to describe their non-standard behaviour. Non-Fick-
ian transport assigned by an early breakthrough and tailing of solute concentration evo-
lution in time and space throughout heterogeneous media has been much investigated 
in the literature (Berkowitz et  al. 2008; Berkowitz and Scher 2009; Tran Ngoc et  al. 
2014). Nevertheless, the macroscopic non-Fickian transport taking into account the dif-
fusion efect at the local scale needs further investigation (Dartois et  al. 2018). These 
non-Fickian features are attributed to preferential low transport implying local non-
equilibrium concentrations inside the media (Sternberg et al. 1996; Lewandowska et al. 
2004; Jarvis et al. 2016). The molecular difusion ceases apparently to play a role with 
regard to the dispersion when the Péclet number (Pe) is high enough (Fried and Com-
barnous 1971). In fact, Jankovic et  al. (2009) proposed to neglect difusion for weak 
to moderately heterogeneous porous media, but found that difusion impacts consider-
ably the transport for highly heterogeneous ones, through numerical simulations with 
Pe = O(102–104). The particular case of Pe = O(1) has to be more investigated for the 
question of the impact of local difusion on the transport in unsaturated porous media.

The Barenblatt concept of the “double-porosity” medium (Barenblatt et al. 1960) can 
be used to replace a class of heterogeneous porous media (aggregated soils, fractured 
porous rocks, for example) in which a strong contrast in the local pore size character-
istics is manifested. This concept of two overlapping sub-domains has been applied to 
phenomenological approach allowing to explain the non-conventional transport behav-
iour and to resolve practice problems. Using a double-porosity model revealed very 
appropriate for the granite basement reservoir of the White Tiger oilield in Vietnam 
ofshore (Ngo 2002; Ha et  al. 2015), for example. Since the irst models (Barenblatt 
et  al. 1960; Warren and Root 1963), many continuum two-domain models (macro-
porosity and micro-porosity) were proposed with their mathematical form of two equa-
tions representing the transport mechanism in each domain and linked by an exchange 
term. Diferent models describing the unsaturated preferential low and transport in 
double-porosity soils were reviewed by Šimůnek et al. (2003), Gerke (2006) and Köhne 
et al. (2009) in a comparative manner between them. The macroscopic equations pro-
posed in these works were diferent one from another according to the imposed assump-
tions. It can be noticed that the complexity of the models, i.e. number of model param-
eters, increases in the respective order of the mobile–immobile model (van Genuchten 
and Wierenga 1976; Gaudet et  al. 1977), the mobile–mobile model (Gerke and van 
Genuchten 1993) and the dual-permeability mobile–immobile model (Šimůnek and van 
Genuchten 2008). Moreover, the macroscopic form of all these models displays a coex-
istence of two concentration ields linked by a irst-order mass transfer between the two 
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porosity domains. It must be noted that this coeicient is only determined by the itting 
of solute evolution curves (de Vries et al. 2017).

Upscaling approaches have contributed to a great advance in modelling several physi-
cal mechanisms including solute transport in double-porosity media. Among others, the 
asymptotic homogenization approach (Sanchez-Palencia 1980; Auriault 1983; Auriault 
et  al. 2009) and the volume averaging method (Whitaker 1983; Quintard and Whitaker 
1988; Whitaker 1999) have been applied to double-porosity transport issues thus improv-
ing profoundly the understanding of these phenomena thanks to the rigorous processes of 
upscaling from a small scale to a larger scale (Royer and Boutin 2012; Davit and Quintard 
2017). One of the advantages of the upscaling method is to save resources when resolv-
ing macroscopic problems taking into account the microstructures of the medium through 
efective properties, instead of directly computing at a iner scale using a large number of 
mesh elements (Auriault 1991). This can be carried out for the case in which a representa-

tive elementary volume (REV) of the microstructure exists in the heterogeneous medium. 
It is not simple to obtain a REV, but using advanced geophysics and non-invasive imag-
ing techniques to detect heterogeneities allows to establish the possible REV (Bear 1972; 
Jarvis et al. 2016).

Using the method of volume averaging Ahmadi et al. (1998) described the solute trans-
port in saturated two-domain media by the generalized two-equation model. Estimating the 
irst-order mass transfer term of this model is comparable to one of the aforementioned 
phenomenological models (Cherblanc et al. 2003). Cherblanc et al. (2007) compared the 
results of the two-equation model with those of ine scale simulations (porous or Darcy 
scale) for the cases of local-scale dispersion in which diferent permeability contrasts of 
the periodic two-domain medium (nodular system) in a numerical transport experiment 
were considered, but no difusivity contrast was considered in their work. While provid-
ing a good prediction for the “mobile–mobile” system medium, a discrepancy with the 
“mobile–immobile” model was observed due to the estimation of mass transfer coei-
cient. Golier et al. (2007) attempted to reproduce numerically the transport experiments in 
highly heterogeneous porous medium of Zinn et al. (2004). They proposed a mixed model 
derived from the two-equation model to confront with the experiments in considering a 
“mobile–immobile” system where only difusion process occurs in the immobile domain 
and the full mass transport is maintained in the mobile domain. A reasonably good agree-
ment between the experimental data and theory could only be obtained when accepting 
that the mass transfer coeicient had to be computed from direct solution at the local scale.

Various models have been developed for water low and solute transport in double-
porosity media by using the asymptotic homogenization method of multiple-scale asymp-
totic expansions (Royer et al. 1996, 2002; Peszynska and Showalter 2007). A macroscopic 
model of difusion–convection containing a difusion equation in the micro-porosity domain 
was developed by Hornung (1991) under unsaturated condition. Auriault and Lewandowska 
(1995) developed the double-difusivity model allowing to capture the tailing efect. Mikelic 
and Rosier (2004) derived a transport model by convection and dispersion in the macro-
porosity domain, coupled with adsorption at the interface of micro- and macro-pore regions, 
but without solute transport in the micro-pore region. In these models, Richard’s equa-
tion and convection–difusion/dispersion equation were employed to describe the transient 
low and transport in the microstructure. Considering diferent characteristic times, difer-
ent models described the steady-state double-porosity transport in saturated porous media 
(Tejchman 2004). Lewandowska et al. (2004) derived a model of the transient low in a dou-
ble-porosity medium of which the two porous materials, at the local scale, are saturated by 
water and air composing a macro-pore network surrounded by a micro-porous matrix. This 
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highly hydraulic contrasted double-porosity medium with predeined dimensionless num-
bers characterizing the physical processes leads to conclude on the existence of low only 
in the macro-porosity domain. This was successfully validated by experiments of diferent 
hydrologic situations in a physical double-porosity column (Lewandowska et al. 2005, 2008; 
Szymkiewicz et  al. 2008). Associated with this model, a double-porosity dispersion–con-
vection model has been developed in Tran Ngoc et al. (2011), taking into account the dis-
persion regime at the local scale (Andricevic 1998; Fiori 2001). It was validated by the 
unsaturated double-porosity experiments in which the salt difusion coeicients in sand and 
clay (two material constituents of double-porosity medium) are diferent by only one order 
of magnitude (Tran Ngoc 2008). Based on the characteristic time analysis at three consecu-
tive scales: from micro-pore scale to micro-porous scale and to macroscopic one, Royer and 
Boutin (2012) revised the theory for diferent low and transport macroscopic behaviours 
in saturated double-porosity media. They found that the non-Fickian transport may occur 
for the cases of low difusivity contrast. From a semi-analytical mean-ield approximation, 
Brassart and Stainier (2019) obtained a homogenization-based difusion model enabling to 
describe the long-tail efect for the case of large contrast of difusivities in a two-phase com-
posite. To go further, it is also interesting to develop a dispersive model for the case of a 
strong difusivity contrast between two porous domains inside the unsaturated double-poros-
ity medium, in order to pursue the study of the non-Fickian transport with memory efect for 
this case. Thus, this will allow us to ill in the double-porosity model catalogue obtained by 
the homogenization methods and to distinguish various models and to help the selection of a 
model appropriate for each particular application.

Numerical solutions for the two-equation model type have been developed (Pruess 
and Narasimhan 1982; Huyakorn et al. 1983; Gaudet et al. 1976; Ahmadi et al. 1998; 
Lewandowska et  al. 2004; Cherblanc et  al. 2007; Szymkiewicz 2013), since the irst 
analytical solutions of Barenblatt et  al. (1960), Barenblatt (1963), Warren and Root 
(1963) and Coats and Smith (1964). The complexity of resolving the two-domain trans-
port resides in the fully transient problem of the mass transfer coupling between two 
concentrations at the macroscopic and microscopic scales. Thus, Golier et  al. (2007) 
stated “that begins to be nearly as diicult (if not more so) than the direct solution to the 
problem at the microscale”. It is interesting to reproduce numerically many transport 
experiments performed in double-porosity media presented in the literature, not only 
for investigating the macroscopic behaviour but also for the study of transport processes 
at the microscopic scale (Zinn et al. 2004; Dalla Costa 2007; Ngien et al. 2012; Majda-
lani et al. 2015; Peng et al. 2015, for example). A powerful numerical tool is needed to 
simulate these experimental results.

The aim of this paper is to present (1) a development of a macroscopic transport 
model by dispersion–convection with local difusion in a double-porosity medium pre-
senting strong contrast of both low and transport properties under unsaturated steady-
state conditions, by using the asymptotic homogenization and (2) a numerical tool to 
implement the obtained mathematical model for macroscopic boundary value problems. 
The development of the model will start from the description of physical processes at 
the microscopic scale (local scale) and will be accompanied with the deinition of the 
efective properties. The macroscopic model is solved in 2D numerical experiments per-
formed by using a commercial FEM code. To validate the obtained model, compari-
son between theoretical predictions of the macroscopic model and reference solutions 
of the transport in heterogeneous inely discretized model of the experiments at the 
microscopic level is conducted. A discussion of the developed model and the compared 
results will be addressed.
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2  Mathematical Formulation of the Problem

In this section, we present the general conditions and physical situations in which the dou-
ble-porosity dispersion–convection model will be derived in the framework of the asymp-
totic homogenization method.

2.1  Double‑Porosity Medium and Its Physical Characteristics

The macroscopic double-porosity medium with characteristic length L [L] considered as 
the same in Lewandowska et  al. (2004) is a periodic porous medium (Ω) whose micro-
structure, i.e. a period with characteristic length ℓ [L], contains two porous domains (Ω1 
and Ω2) of strongly contrasted physical properties (pore size, hydraulic permeability and 
transport difusivity), distinguished by the common interface Γ (Fig. 1). The ratio between 
these two characteristic lengths

is an important small parameter for the upscaling technique. The condition � << 1 is 
equivalent to the existence of a REV (Auriault 1991). The basic problem is to study the 
asymptotics of the solution as � → 0. We assume that the double-porosity medium is unsat-
urated with given constant water contents in the porous domain 1 (macro-porous ingredient 
Ω1), θ1  [L

3/L3] and in the porous domain 2 (micro-porous ingredient Ω2), θ2  [L
3/L3]. The 

porous domain 1 is continuously connected and much more conductive and difusive than 
the porous domain 2: K

2
∕K

1
= O(�2) and D

2
∕D

1
= O(�2) , where subscripts “1” and “2” 

denote the domains 1 and 2, respectively; K1 (θ1)  [LT−1] and K2 (θ2)  [LT−1] are the hydrau-
lic conductivity tensors, and D1(θ1)  [L

2T−1] and D2 (θ2)  [L
2T−1] are the efective difusion 

tensors. Therefore, the efects of preferential low/transport can be expected. The strong 
ratio D

2
∕D

1
= O(�2) can be referred to a situation of solute difusion in polycrystals (Bras-

sart and Stainier 2019) or helium difusing in silica (silicon dioxide) inclusions embedded 
in a coarse sand, for example. This strong contrast may also be reached when hindered dif-
fusion occurs in the porous domain 2 (i.e. when the difusing molecules are quite large with 
respect to the pore size).

(1)� =

�

L

Fig. 1  Periodic double-porosity medium with the macro- and microscopic characteristic lengths and the 
microstructure with two porous ingredients
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The double-porosity medium is a double-structured medium with three distinct diferent 
scales: the pore scale, the Darcy scale and the macroscopic scale. In this study, the start-
ing point of the analysis is the Darcy scale (hereinafter named microscopic scale or local 
scale).

2.2  Transport Description at the Microscopic Scale

At the ℓ scale, we assume that under the unsaturated steady-state low the transport of a 
nonreactive solute can be described in each porous domain by the mass conservation equa-
tion (Bear 1972):

together with the continuity conditions of the lux and the concentrations at the interface:

where C1  [ML−3] and C2  [ML−3] are the solute concentrations; the X = (X1, X2, X3) [L] 
denotes the physical spatial variable with X3 oriented positively upwards; t [T] is the time; 
v1 and v2  [LT−1] are the local Darcy velocities; and N [–] is the unit vector normal to Γ and 
exterior to Ω1.

The unsaturated water low in each homogeneous rigid domain is described by the Rich-
ards equation (Richards 1931). We assume that the low ields of water, considered incom-
pressible and Newtonian, are known and determined independently from the transport 
problem and that the air pressure is constant and equal to the atmospheric pressure during 
the whole low process. We recall the macroscopic low equation in the double-porosity 
medium obtained by Lewandowska et al. (2004) using the homogenization approach:

where Kef  [LT−1] is the efective hydraulic conductivity depending on the conductiv-
ity of the porous domain Ω1 and the geometry of the microstructure; h [L] is the water 
pressure head; �

1
 [–] is the volumetric fraction of the macro-porosity domain 1, deined 

by �
1
= |
|�1

|
|∕|�| and is of the order O(1); and W(h, t)  [T−1] is the source term of water 

exchange between the two domains. Under the steady-state condition, Eq. (6) becomes

with

(2)
�
(

�
1
C

1

)

�t
= ∇

X
⋅

(

D
1
(�

1
) ⋅ ∇

X
C

1
− v

1
C

1

)

in �
1

(3)
�
(

�
2
C

2

)

�t
= ∇

X
⋅

(

D
2
(�

2
) ⋅ ∇

X
C

2
− v

2
C

2

)

in �
2

(4)
(

D
1
(�

1
) ⋅ ∇

X
C

1
− v

1
C

1

)

⋅ N =
(

D
2
(�

2
) ⋅ ∇

X
C

2
− v

2
C

2

)

⋅ N on �

(5)C
1
= C

2
on �

(6)�1

��1

�t
= ∇

X
⋅

[

Keff(h) ⋅ ∇X

(

h + X3

)]

− W(h, t)

(7)∇
X
⋅

[

K
eff
(h) ⋅ ∇

X

(

h + X
3

)]

= 0

(8)⟨v⟩ = ⟨v
1
⟩ =

�
K

eff
(h) ⋅ ∇

X

�
h + X

3

��
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deining the macroscopic velocity  [LT−1]. Moreover, according to the result of the low 
problem in the double-porosity medium obtained by homogenization, the low only occurs 
in the domain 1 (macro-porosity domain) and water is stagnant in the domain 2 (micro-
porosity domain) (see detail in Lewandowska et al. 2004), we have:

The problem (2)–(5) can be rewritten as:

2.3  Dimensionless Microscopic Model with Estimated Characteristic Numbers

Let us normalize the variables with respect to their characteristic values denoted herein by 
the subscript “c”. One leads to the following dimensionless variables denoted by the super-
script “*”:

We divide also the spatial variable by the microscopic and macroscopic characteristic 
length, respectively, to obtain two dimensionless space variables:

where y (y1, y2, y3) and x (x1, x2, x3) are the microscopic and macroscopic dimensionless 
variables, respectively. From the microscopic point of view, the local problem (11)–(14) 
normalized with respect to ℓ in terms of dimensionless unknowns (15) and (16) becomes:

(9)∇
y
⋅ v

(0)

1
= 0 in �

1

(10)v
(0)

1
⋅ N = 0 on � .

(11)
�
(

�
1
C

1

)

�t
= ∇

X
⋅

(

D
1
(�

1
) ⋅ ∇

X
C

1
− v

1
C

1

)

in �
1

(12)
�
(

�
2
C

2

)

�t
= ∇

X
⋅

(

D
2
(�

2
) ⋅ ∇

X
C

2

)

in �
2

(13)
(

D
1
(�

1
) ⋅ ∇

X
C

1
− v

1
C

1

)

⋅ N =
(

D
2
(�

2
) ⋅ ∇

X
C

2

)

⋅ N on �

(14)C
1
= C

2
on � .

(15)

C
∗

1
=

C1

C1c

; C
∗

2
=

C2

C2c

; D
∗

1
=

D1

D1c

; D
∗

2
=

D2

D2c

; �
∗

1
=

�1

�1c

; �
∗

2
=

�2

�2c

; v
∗

1
=

v1

v1c

; t
∗
=

t

t
c

.

(16)y =

X

�
and x =

X

L

(17)
�

2

D
1ctc

�
(

�
∗

1
C∗

1

)

�t∗
= ∇y ⋅

(

D
∗

1
⋅ ∇yC∗

1
−

�v
1c

D
1c

v
∗

1
C∗

1

)

in �
1

(18)�
2

D
2ctc

�
(

�
∗

2
C∗

2

)

�t∗
= ∇y ⋅

(

D
∗

2
⋅ ∇yC∗

2

)

in �
2
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In the dimensionless microscopic problem (17)–(20), we identify the following dimension-
less quantities:

We establish the order of magnitude of the above dimensionless numbers in power of ε 
in a manner involving the dispersion phenomena, the double-porosity behaviours and the 
resulting local non-equilibrium. To do that, the Péclet number is chosen to consider the 
equivalence of the convective and difusive efects at the micro-scale such that Pe

1�
= O(1) 

and the ratio Q = O(�2) . The latter can be named the local difusion case which is difer-
ent from the local dispersion case presented in Tran Ngoc et al. (2011). The characteristic 
time, chosen as the reference difusion time t

c
= L

2∕D
1c

 over L (time of the observation), 
is postulated as well as the ratio Q. Finally, we assume C

1c
 to be of the same order of mag-

nitude as C
2c

 . Thus, we will proceed the homogenization of the dimensionless problem 
(17)–(20) with the estimations as follows:

Making use of the estimates (22), we get

3  Modelling by Homogenization

We applied here the procedure of homogenization by two-scale asymptotic expansions for the 
engineering problems pioneered by Auriault (1983, 1991). Homogenization postulates that all 
the unknowns ψ can be expressed in the form of asymptotic expansions in powers of ε

(19)

(

D
∗

1
⋅ ∇yC∗

1
−

�v
1c

D
1c

v
∗

1
C∗

1

)

⋅ N =
D

2cC
2c

D
1cC

1c

(

D
∗

2
⋅ ∇yC∗

2

)

⋅ N on �

(20)C
1c

C
∗

1
= C

2c
C
∗

2
on � .

(21)Pe1� =
�v1c

D1c

(Péclet number); P1� =
�

2

D1ctc
; P2� =

�
2

D2ctc
and Q =

D2c

D1c

.

(22)

tc =
L2

D1c

; Pe1� =
�v1c

D1c

= O(1); Q =
D2c

D1c

= O(�2) so that

P1� =
�

2

D1ctc
= O(�2) and P2� =

�
2

D2ctc
= O(1).

(23)�
2
�
(

�
∗

1
C∗

1

)

�t∗
= ∇y ⋅

(

D
∗

1
⋅ ∇yC∗

1
− v

∗

1
C∗

1

)

in �
1

(24)
�
(

�
∗

2
C∗

2

)

�t∗
= ∇y ⋅

(

D
∗

2
⋅ ∇yC∗

2

)

in �
2

(25)
(

D
∗

1
⋅ ∇yC∗

1
− v

∗

1
C∗

1

)

⋅ N = �
2
(

D
∗

2
⋅ ∇yC∗

2

)

⋅ N on �

(26)C
∗

1
= C

∗

2
on � .

(27)�(x, y, t
∗) = �

(0)(x, y, t
∗) + ��

(1)(x, y, t
∗) + �

2
�

(2)(x, y, t
∗) +⋯
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where � (x, y, t
∗) stands for C∗

1
 , C∗

2
 or v

∗

1
 and is spatially periodic in y over both sub-

domains. All the terms ψ(i) (x, y, t*) in Eq.  (27) are dimensionless without the * super-
script, in order to simplify the notation. Due to (16) and (1), we have the relation x = � y 
that allows the derivation operator to be transformed into

Applying (27) and (28) to the microscopic model Eqs. (23)–(26), regrouping the terms at 
the same order of ε0–ε2 and neglecting the terms with a higher order of ε2 leads to:

Equating the terms of the same order of ε in Eqs.  (29)–(32) yields successive boundary 
value problems to be solved on the period. Hereinafter, we present only the analysis of 
the results of these problems at the successive orders of ε allowing to obtain the efective 
parameters and the form of the macroscopic model.

3.1  Macroscopic Variable

At the order ε0, Eqs. (29) and (31) are rewritten as
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.
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where C(0)

1
 is y-periodic. Taking into account Eqs.  (9) and (10), it can be shown that the 

solution of the problem (33) and (34) is (Bensoussan et al. 1978; Sanchez-Palencia 1980; 
Auriault and Adler 1995; Auriault and Lewandowska 1996)

This means that C(0)

1
 is the macroscopic variable, independent of the local space variable y 

and denoted C(0).

3.2  Transport Equation in the Micro‑Porosity Domain

From Eqs. (30) and (32) at the order ε0, we obtain the boundary value problem for the C(0)

2
:

It can be seen that the problem (36) is a solute difusion problem in the micro-porosity 
domain and its concentration variable depends on y. Thus, the local non-equilibrium may 
be observed by two concentration ields C(0)

1
(x, t

∗) and C(0)

2
(x, y, t

∗) balancing at the cou-
pling boundary with the condition given by Eq. (37).

3.3  Local Boundary Value Problem

Let us analyse Eqs. (29) and (31) at the order ε1 taking into account Eq. (35):

Integrating Eq. (38) over �
1
 and dividing it by |�| , then applying the Gauss–Ostrogradsky 

theorem for the irst term in l. h. s. of this equation to transform the volume integral to a 
surface integral and using the periodicity condition and the boundary condition given by 
Eq. (39) leads to

here the intrinsic volume average is deined by
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The problem given by Eqs.  (38) and (39) deines C(1)

1
 and the solution can be put in the 

form of a linear function of ∇
x
C
(0)

1
 (Bensoussan et  al. 1978; Sanchez-Palencia 1980; 

Auriault and Adler 1995; Auriault and Lewandowska 1996)

where �(y) is y-periodic and considered as a corrector of the gradient of C(0)

1
 with respect to 

x relecting the inluence of the microstructural geometry. This function satisies the zero-
valued volume average condition for uniqueness:

C̄
(1)

1
(x, t

∗) is an arbitrary function independent of y, therefore a macroscopic concentration 
satisfying ∇yC̄

(1)

1
(x, t∗) = 0

In order to obtain the local problem allowing to calculate the vector �(y) , we intro-
duce Eq.  (42) into Eq.  (38) and analyse it term by term. The irst term, on the l. h. s. 
becomes

where I is the identity matrix. The second term can be transformed as

We have had ∇
y
⋅ v

(0)

1
= 0 (Eq. 9) and C(0)

1
 does not depend on y, so Eq. (45) becomes

The third term gives

Using the above obtained results, Eq. (40) is reformulated in the following form

Let us now analyse the sum of third and fourth terms in l. h. s. of Eq. (48)

Due to the low problem at the order ε2, Eq. (49) can be written as
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⋅ d�.
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On the other hand, Eq. (6) can be rewritten in the dimensionless form

hence we obtain for Eq. (50)

Now, returning to Eq. (40), its development gives

or

With the result of the replacement (54) into (52) and the fact that the water exchange term 
W(h(0), t*) disappears from the development due to the steady-state low condition, Eq. (48) 
becomes

Taking into account the boundary condition on Γ for steady-state water low, Eq.  (39) is 
reduced to

and then replacing C(1)

1
 by the expression given in Eq. (42) leads to

Imposing successively the unit gradient ∇
x
C
(0)

1
 in the directions 1, 2 and 3, we obtain the 

local problem for �(y)

and we recall the condition by Eq. (43) which assures the unicity of the solution.
This local boundary value problem, Eqs. (58)–(59), has the same form as the one obtained 

by Auriault and Adler (1995) and Auriault and Lewandowska (1996) for the saturated 
conditions.

(51)�1

��
(0)

1

�t∗
= ∇

x
⋅

⟨

v
(0)

1

⟩

− W(h(0)
, t

∗)

(52)C
(0)

1

(

∇y ⋅ v
(1)

1
+ ∇x ⋅ v

(0)

1

)

= C
(0)

1

[

1

�1

∇x ⋅

⟨

v
(0)

1

⟩

−
1

�1

W(h(0)
, t∗)

]

.

(53)∇
x
⋅

(⟨

v
(0)

1

⟩

C
(0)

1

)

= C
(0)

1
∇

x
⋅

⟨

v
(0)

1

⟩

+

⟨

v
(0)

1

⟩

⋅ ∇
x
C
(0)

1
= 0

(54)C
(0)

1
∇

x
⋅

⟨

v
(0)

1

⟩

= −

⟨

v
(0)

1

⟩

⋅ ∇
x
C
(0)

1
.

(55)

∇y ⋅

[

D
∗

1
⋅

(

∇y� + I
)]

∇xC
(0)

1
− v

(0)

1
⋅ ∇y ⋅

(

�∇xC
(0)

1

)

+
1

�
1

⟨

v
(0)

1

⟩

⋅ ∇xC
(0)

1
− v

(0)

1
⋅ ∇xC

(0)

1
= 0 in �

1
.

(56)
(

D
∗

1
∇yC

(1)

1
+ D

∗

1
∇xC

(0)

1

)

⋅ N = 0 on �

(57)
[

D
∗

1
⋅

(

∇y� + I
)

∇xC
(0)

1

]

⋅ N = 0 on � .

(58)∇
y
⋅

[

D
∗

1
⋅

(

∇
y
� + I

)]

− v
(0)

1
⋅ ∇

y
� = v

(0)

1
−

1

�
1

⟨

v
(0)

1

⟩

in �
1

(59)
[

D
∗

1
⋅

(

∇
y
� + I

)]

⋅ N = 0 on �



Homogenization of Solute Transport in Unsaturated…

1 3

3.4  Macroscopic Model

In this section, we present the development of the macroscopic model by analysing 
the homogenization of the problem given by Eqs.  (29) and (31) at the order O(ε2) of 
approximation

The following transformations are successively conducted: (1) integrating Eq. (60) over �
1
 

and dividing it by |�| ; (2) applying the Gauss–Ostrogradsky theorem for the irst two terms 
in r. h. s. of Eq.  (60); (3) applying the periodicity condition and the boundary condition 
Eq. (61). After these transformations, we obtain

Applying once again the Gauss–Ostrogradsky theorem for the irst term in the r. h. s. of 
Eq. (62) to pass from the surface to the volume integral over the domain �

2
 and taking into 

account Eq. (36) leads to

From Eqs. (63) and (64) and the replacement of the expression of C(1)

1
 given by Eq. (42), 

we can rephrase Eq. (62) as

where
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In order to obtain the macroscopic equation, we perform a similar process as in Auriault 
and Lewandowska (1996). Equation (65) multiplied by ε will be added to Eq. (40)

The examination of all the convective terms in the r. h. s. of Eq. (67)

in regards with the following relations

leads to

Inserting Eq. (71) into Eq. (67) yields the dimensionless macroscopic equation expressed 
in the form

This equation is of the ε2 order of approximation. As expected, we can observe the pres-
ence of ε in the dispersion term with regard to the convective term. After recalling Eq. (22), 
we obtain the dimensional double-porosity dispersion–convection model

coupled with the microscopic difusion equation in the micro-porosity �
2

and at the common interface �
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where Def would be the dispersion tensor in the double-porosity medium when the medium 
velocity is enough high (Pe is high enough). Otherwise Def is the difusion tensor. It is 
deined by

The macroscopic double-porosity model with the local difusion [Eqs. (73)–(76)] has the 
same form as the one presented in Tran Ngoc et al. (2011) for the case of local dispersion 
consisting of two equations coupled through the interface. It is similar to two-domain mod-
els of the literature with diferent validity domains, for example the one presented in Royer 
and Boutin (2012) for the case of the difusivity ratio D2/D1 = O(ε). Equations  (75)–(76) 
lead to memory efects (which give rise to tailing efects in the breakthrough curves) as 
shown in several works cited in the paper. It describes two mutual solute transport pro-
cesses namely dispersion–convection in the macro-porosity domain and difusion in the 
micro-porosity domain. This situation induces a local non-equilibrium of the concentra-
tions by the presence of the source term in Eq. (73) coming from the interaction with the 
micro-porosity domain. This causes particular efects in the transport phenomena which 
cannot be captured by classic models. Note that the efective parameter of the model is an 
anisotropic dispersion tensor Def given by Eq. (76) as a function of the local difusion ten-
sor D1, local velocity vector v1 and the function characterizing the micro-geometry of the 
period χ.

4  Numerical Validation

In order to validate the double-porosity model developed in this work, we consider in 
this section  2D cases in which a solute is transported by a given unsaturated low in a 
periodic double-porosity medium. The numerical implementation macroscopic boundary 
value problem [Eqs. (73)–(76)] was performed using the commercial element inite code 
COMSOL  Multiphysics®. A particular strategy enabling to compute the concentrations at 
two scales corresponding to the macro- and micro-porosity domains was developed. The 
obtained solutions of the macroscopic model will be compared with the reference solutions 
of the ine scale model (direct numerical simulation) in order to validate numerically the 
developed double-porosity model.

4.1  Description of the Numerical Test Cases and the Fine Scale Direct Simulation

The geometry of the double-porosity medium is represented by circular inclusions (micro-
porous domain assumed isotropic for simplicity) embedded in the matrix (macro-porous 
domain, also assumed isotropic) (Fig. 2). For the numerical veriication, we chose a mac-
roscopic domain L = 2 × 10−2 m containing 10 periods ℓ = 2 × 10−3 m (Fig. 2) (Davit and 
Quintard 2017). The ℓ/L ratio and the number of periods are comparable to the ones con-
sidered in the numerical model used to reproduce the transport experiments in Golier 
et al. (2007). The macroscopic length is relatively short but acceptable for the relatively 
small lux imposed. Thus, the expected features of the developed model can be ensured. 
The diameter of the circular inclusion is equal to half of the period length, 2R = 1 × 10−3 
m where R is the radius of the inclusion. The hydraulic and transport properties are very 
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contrasted between the two porous domains to respect the characteristics of double-poros-
ity media. The physical properties of the porous media used in the two numerical examples 
are reported in Table 1.

For a ixed water content ⟨�⟩ , we assume a given Darcy velocity 
⟨v⟩(�) = 0.796 × 10

−7
m/s at the inlet of the medium leading in conformity with the 

condition on the Peclet number of O(1). The water low corresponding to the averaged 
⟨�⟩ = ϕ1 × θ1 + ϕ2 × θ2 (θ1 and θ2 are the volumetric water content of macro- and micro-
porosity domain, respectively) here can be considered as an unsaturated low, since the 
averaged water content is smaller than the total porosity of the medium. In the numerical 
test cases, the unsaturated steady-state low condition with θ1 > θ2 could be seen when we 
have the hydraulic head condition h = h1(θ1) = h2(θ2) on water retention curves of the two 
domains (Lewandowska et al. 2005; Jougnot et al. 2008). This unsaturated steady-state lux 
was imposed at the inlet, and a given pressure (atmospheric) is considered at the outlet. 
The transport of the solute is started when the steady-state low condition is reached.

For the solute transport, diferent boundary conditions were applied for cases 1 and 2, 
whereas the initial condition is zero concentration for both cases. In case 1, the pulse-like 
concentration of 1 g/L within 1000 s was introduced in the medium. In case 2, the step-like 
solicitation was used with a solute concentration of 1 g/L at the medium inlet. The concen-
tration gradient is zero at the outlet boundary for both examples.

Direct numerical simulation of the ine scale model was carried out in a manner of 
solving the coupled low and transport problems by using the inite element code COM-
SOL  Multiphysics®. The medium was discretized into 8718 triangular elements for the 2D 
examples. These choices are the results of a prior mesh sensitivity analysis. Using a com-
puter with a processor of i5-5200U CPU @ 2.20 GHz and RAM of 4 GB, the computation 
time needed to obtain the ine scale solution was about 75 s for the 2D examples.

The two numerical test cases were presented here in order to assess diferent transport 
phenomena reproduced by the developed model. In particular, the pulse-like transport pro-
ducing more complex mechanisms than the step-like transport was studied to study the 
interesting concentration evolution inside the micro-porosity domain (inclusions).

Fig. 2  Periodic double-porosity medium (10 periods) of the numerical test cases 1 and 2. The radius of the 
circular inclusions (micro-porous domain 2) is of 0.5 × 10−3 m

Table 1  Properties of the periodic structure for the numerical examples

Geometry size (m) ℓ =2 × 10−3; L = 2 × 10−2

Physical properties Macro-porous domain 1 Micro-porous domain 2

Volume fraction (–) ϕ1 = 0.804 ϕ2 = 0.196

Water content (–) θ1 = 0.50 θ2 = 0.30

Difusion coeicient  (m2/s) D1 (θ1) = 1 × 10−9 D2 (θ2) = 1 × 10−13
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4.2  Numerical Simulation of the Homogenized Model

4.2.1  Governing Equations

To simulate the test cases presented above by the double-porosity model (i.e. homogenized 
model), we consider the 1D macroscopic solute transport for the macro-porous domain, 
which is coupled with the 2D transport problems in the micro-porous domain (circular 
inclusions). According to their local geometry, these 2D local problems can be transformed 
into 1D ones in cylindrical coordinates.

According to Eqs. (73)–(75), the homogenized model can be rewritten as follows:

where z and r [L] are spatial coordinates, respectively. The initial and boundary conditions 
are applied for each case as follows:

• Case 1 corresponding to a solute transport by pulse-like injection:

– t ≤ 0, for Eqs. (77)–(79):

– t > 0, for Eq.  (77), the third-type (Cauchy type) boundary condition was used to 
prescribe the concentration lux at the medium inlet (z = 0), whereas the second-type 
(Neumann type) for the medium outlet (z = L) (van Genuchten and Parker 1984; 
Schoen et al. 1999; Cushman and Tartakovsky 2016):

where Cinj [M/L3] is the concentration of the solute injected in the medium, 
Cinj = 1 g/L; C0 = 0; t0 = 1000 s; ⟨v⟩ = 0.796 × 10

−7
m/s.

– t > 0, for Eq. (78):

where R [L] is the radius of the circular inclusions.
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• Case 2 corresponding to a solute transport by step-like injection:

The initial and boundary conditions of the test case 2 are all the same as the ones for the 
test case 1, except the boundary condition for Eq. (77) corresponding to a solute transport 
by step-like injection as follows:

where Cinj = 1 g/L.

4.2.2  Numerical Implementation

Two main steps have to be followed to solve the macroscopic problem: (1) calculation of 
the efective parameter Def by Eq. (76), after resolving the local boundary value problem 
given by Eqs. (58) and (59) and (43) for a given local geometry of the medium; (2) resolv-
ing the macroscopic boundary value problem of Eqs. (77)–(79) together with known initial 
and boundary conditions [Eqs. (80)–(85)]. A special algorithm is required for the coupling 
of the macroscopic concentration ield with information on the concentration of the micro-
porous domain. The efective parameter Def is of 0.637 × 10−9  m2/s for cases 1 and 2. The 
value results from the resolution of the boundary value problem given by Eqs.  (58) and 
(59) and (43) on a unit cell (period) of the double-porosity media (not presented in detail 
here, see in Tran Ngoc 2008).

The implementation strategy for the numerical resolution is the same as the one used 
for a similar two-equation model presented in Tran Ngoc et al. (2011). The macroscopic 
solution of the homogenized model will be obtained by solving a macroscopic 1D Eq. (77) 
coupled with a series of microscopic 1D local problems Eq. (78). We perform the compu-
tations at two coupled scales whose variables are as follows:

• the concentration C1(z) at the macroscopic domain is equal to the concentration C2 at 
r = R standing for all the micro-porous domain, Eq. (79);

• the difusive lux [or source term in Eq. (77)]

calculated on the interface of the micro-porous domain [from Eq.  (78)] is inserted in 
the macroscopic equation [Eq. (77)].

This numerical implementation was performed in the environment of the COMSOL 
 Multiphysics® software. The macroscopic domain is modelled geometrically 1D, whereas 
the 2D geometry (two independent variables z and r) is used for the micro-porosity domain 
(domain 2). This is related to the strategy chosen here, which is to solve the 1D radial prob-
lem for all z values, in order to facilitate the coupling with the macro-scale problem. The 
macroscopic domain 1 was uniformly discretized into 100 elements using Δz = 2 ×  10−4 
m. The discretization of the micro-domain 2 (L × R) representing the micro-porosity was 
performed by 1412 elements (612 triangular elements and 800 quadrilateral elements). The 
area close to the interface with the domain 1 is meshed iner. Due to R ≪ L, we re-scaled 

(85)z = 0, t > 0 ∶ ⟨v⟩C1 − Deff

�C1

�z
= ⟨v⟩Cinj

(86)S =
1

|�| ∫
�

D
2

�C
2

�r
d� (r = R)



Homogenization of Solute Transport in Unsaturated…

1 3

the r direction by factor 10 and thus got a mesh of 7050 elements (6250 triangular ele-
ments and 800 quadrilateral elements) in order to obtain more precise solutions. A mesh 
size sensitivity carried out by combining 50 or 100 elements in the domain 1 with 1412 or 
7050 elements in the domain 2 showed a very slight diference in computation results. The 
simulations were only performed for a given value of the unsaturated steady-state water 
low ⟨v⟩(�) = 0.796 × 10

−7
m/s for cases 1 and 2.

4.3  Results and Comparisons

4.3.1  Case 1

Figure 3 shows the concentration evolution curves (breakthrough curves) observed at the 
outlet of the medium for both the ine scale model (FSM) and the homogenized model 
(HM). A very good agreement between the two models was found with the coeicient of 
determination R2 = 0.9987. It can be seen that the HM is capable to capture the early con-
centration breakthrough and the tailing efect of the non-Fickian transport. Note that C(t) at 
z = L of the ine scale model was computed by using a velocity-weighted average over the 
outlet surface (Golier et al. 2011).

The concentration proiles at diferent times on an axis passing through the centre of the 
medium, obtained by the FSM and HM, are presented in Fig. 4. As expected, a strong vari-
ation of the concentration can be observed from the macro-porosity domain to the micro-
porosity domain in the ine scale model solution. This shows the local non-equilibrium of 
the concentrations at short and intermediate times. The equilibrium concentration condi-
tion of the whole domain was reached after t = 6 × 105 s. While the C1 concentration pro-
ile of the HM reproduced very well the concentrations at each z of all the macro-porosity 
domain, the C2 concentration proile of the HM represented only for the concentrations at 
the centre of each inclusion (r = 0, micro-porosity domain), due to the numerical imple-
mentation manner employed. For comparing the concentrations at other positions in the 
micro-porosity domain, we can refer to Fig. 5. This igure corresponds to the computation 
of the concentration at each position z, by solving the radial problems given by Eq. (78). 
The concentration ield is therefore plotted on the (r, z) plane. This is used as a computation 

Fig. 3  Comparison of the evolu-
tion of the concentration at the 
outlet of medium versus time 
obtained by the ine scale model 
(reference solution, dashed 
curve) and predicted by the 
homogenized model (bold curve) 
for the case 1
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Fig. 4  Comparison between the 
concentration proiles along the 
axis in the centre of the medium 
at diferent times a t = 5 ×  104 s; 
b t = 8 ×  104 s; and c t = 2 ×  105 s 
obtained by the ine scale model 
(reference solution, dashed 
curve) and the homogenized 
model (bold curve for the con-
centration in the macro-porosity 
domain C1 and thin curve for the 
concentration in micro-porosity 
domain C2) for the case 1
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step for the coupling with the macroscopic model. It can be seen that the non-equilibrium 
solute transport processes occurring inside the micro-porosity domain from the inlet to 
the outlet at diferent times were very well captured by the HM. Note that the concentra-
tion proile C2 presented in Fig. 4 is the concentrations on the cut line AB of Fig. 5. We 
can observe the high and low concentrations in the macro- and micro-porosity domains 
(Figs. 4a, b, 5a, b), respectively, for intermediate times t corresponding to the vicinity of 
the concentration peak (Fig. 3). The inverse is observed for long times t (Figs. 4c, 5c). It is 
interesting to see the coexistence of two mechanisms “solute looding water and looded by 
water” inside the micro-porosity domain along the medium expressed by the HM (Fig. 5b).

The numerical implementation allows to calculate the solute exchange term S [Eq. (86)] 
between the macro- and micro-porosity domains. Figure  6 shows the evolution of the 
exchange term with time at selected z in the medium. Due to the pulse-like solute input, we 
have S > 0 when the solute enters into the micro-porosity domain from the macro-porosity 
domain and S < 0 when the solute is released from the micro-porosity domain.

4.3.2  Case 2

The time evolution of the eluent concentration obtained by the FSM was very well repro-
duced by the HM Fig. 7. The R2 = 0.9985 is as good as in case 1. As case 1, almost no sol-
ute exchange between the two porous domains is observed after t = 6 × 105 s (Fig. 8), when 
the concentration in all the medium reached at the injection concentration (C inj = 1 g/L) 
and the concentration tail tended to asymptotic (Fig. 7). By normalizing the same of con-
centration value as in case 1, the exchange source term S with time is bigger than in case 1 
by the fact of the continuous solute injection at the medium inlet. For this step-like injec-
tion, the only mechanism of the solute entering into the micro-porous domain from the 
macro-porous domain occurs, S > 0 (Fig. 8).

Figure 9 presents the concentration proiles inside the inclusions of the double-porosity 
medium. Once again, in this case, it can be seen very clearly that the solute started to intro-
duce in the inclusions at the earlier times (Fig. 9 a) and illed in them along the medium at 
the inal times (Fig. 9b).

5  Discussion and Conclusion

Using the asymptotic homogenization theory, a homogenized model (HM) for solute 
transport in double-porosity media under unsaturated steady-state water low conditions 
was developed. The model is limited to cases with strong difusivity contrast between the 
micro- and macro-porous domains. These could be considered as a particular case with a 
very tortuous micro-porous domain causing difusion at the local scale and thus leading 
to a macroscopic model giving a breakthrough curve with a tailing efect, i.e. non-Fickian 
transport (Royer and Boutin 2012). According to the deined orders of the Péclet number 
for diferent transport regimes at the local scale, a series of the macroscopic models for the 
double-porosity medium can be derived similarly as those presented in Auriault and Adler 
(1995) and Auriault and Lewandowska (1996).
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The developed model was numerically veriied by confronting with the ine scale model 
(FSM) for the test cases with diferent boundary conditions. The homogenized model 
showed a good capacity to describe the local non-equilibrium concentration prevailing in 
transport processes and therefore the tailing efect. In the application of the HM to numeri-
cal test cases, the calculated Péclet number was Pe

1�
=

�v
1c

D
1c

=
�

D
1c

⟨v⟩

�
1

= 0.2 for the cases 1 

and 2 and the characteristic difusion time of the two cases was tc = L2/D1c = O(106) s. This 
is much greater than the convective time O(104) s and allows to complete the local difu-
sion process in the whole medium (Figs. 3, 5). According to the magnitude of the imposed 
velocity, the efective longitudinal difusion coeicient was at the same order of magnitude 
as the difusion coeicient of the macro-porous domain D1. The HM can be the “richest” 
model (Royer and Boutin 2012), applicable in these example cases, i.e. a difusion–convec-
tion regime for the example tests. Moreover, the validity domain of the numerical examples 
was veriied with � =

�

L
=

0.002

0.02
= 0.1:

While Eq.  (88) is satisied, we have Q = O(10−4), therefore not satisfying Eq.  (87) when 
D1c and D2c are estimated at the same order of magnitude as D1 and D2. Further simula-
tions satisfying the entire domain of validity would require a greater macroscopic length L 
than 0.02 m for the numerical examples, say ≥ 0.08 m, equivalent to 40 periods. The tail-
ing efect may even occur for the case without contrast between transport properties (Royer 
and Boutin 2012). It must be noted that even for the numerical examples with a very low Q 
ratio presented here, the developed model (HM) revealed to capture fully the non-Fickian 
transport, although one of the conditions of Eq. (22) is not veriied (Eq. 87).

The implementation method used in this work for the HM is capable to simulate 
simultaneously both solute concentrations at two scales, using the FEM code COMSOL 
 Multiphysics®. To conirm the entire validity of the developed model for all orders of mag-
nitude estimates imposed [Eq.  (22)], other 2D and 3D tests should be performed by re-
employing this implementation. The latter allows to apprehend what happens inside the 
inclusions. By the fact that each position of the macro-domain is considered interactive 
with the micro-domain, a suicient number of microstructure periods is required and thus 
also for the macroscopic length of the medium. This is consistent with the requirement of 
the small separation parameter ε [Eq. (1)]. The numerical tool elaborated in this study can 
be used for other two-equation models and modiied for other microstructure geometries 
to study solute transport in physical models of double-porosity media presented in the lit-
erature. This tool can be applied to reproduce experimental results of Zinn et al. (2004) for 
tracer transport in a two-domain medium with intermediate and high contrast in hydrau-
lic conductivity, and especially the experiments by Dalla Costa (2007) mimicking solute 
transport in a fractured medium, using a double-porosity model chosen with appropriate 
D2/D1 contrast.
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Fig. 5  Comparison between the concentration proiles of the whole medium (the ine scale model) and of 
the micro-porosity domain (inclusions) (the homogenized model) for the case 1. Each z on AB line is imple-
mented as the centre of the inclusions. CD line is the interface of the macro- and micro-porosity domains. 
AD or BC are the radius R of the inclusions (to better visualize, the r direction of the micro-porosity domain 
was enlarged by the factor L/R). To interpret, a concentration at a z in the inclusion from the ine scale model 
(at the inclusion centre of the irst period z = 0.001), for example), to be compared with a concentration at the 
corresponding r and z from the homogenized model (r = 0 and z = 0.001: the concentration close to A)
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Fig. 6  Time evolution of the 
solute exchange term, normal-
ized by a concentration of 2.21 × 
 10−4 g/L at t = 4 ×  105 s, between 
the macro- and micro-porous 
domains at diferent interface 
positions in the medium for the 
case 1
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Fig. 7  Comparison of the evolu-
tion of the concentration at the 
outlet of medium versus time 
obtained by the ine scale model 
(reference solution, dashed 
curve) and predicted by the 
homogenized model (bold curve) 
for the case 2
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Fig. 8  Time evolution of the 
solute exchange term, normalized 
by a concentration of 2.21 ×  10−4 
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0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

1.E+03 1.E+04 1.E+05 1.E+06

S
/C

[1
/s

]

t [s]

z = 0.007 m

z = 0.013 m

z = 0.019 m



Homogenization of Solute Transport in Unsaturated…

1 3

Finally, the proposed homogenization and numerical simulation approach can be 
employed to investigate other physical couplings such as hydro-chemical with reaction or 
hydro-biological in heterogeneous porous media.
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Fig. 9  Comparison between the concentration proiles of the whole medium (the ine scale model) and 
of the micro-porosity domain (inclusions) (the homogenized model) for the case 2. Each z on AB line is 
implemented as the centre of the inclusions. CD line is the interface of the macro- and micro-porosity 
domains. AD or BC are the radius R of the inclusions (to better visualize, the r direction of the micro-
porosity domain was enlarged by the factor L/R)
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