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The development of a macroscopic model for solute transport coupled with unsaturated water low in double-porosity media is presented in this work, by using the asymptotic homogenization method. The model was derived for the case in which the medium exhibits a strong contrast of transport properties by upscaling rigorously the transport mechanisms from micro-scale to macro-scale. It consists of two coupled equations for dispersion-convection processes at macroscopic level and difusion intervention from local scale that can be described by a non-Fickian behaviour of solute concentration breakthrough. The proposed model was numerically implemented in the environment of a inite element code (commercial software) and applied to 2D examples with diferent boundary conditions. To validate, a comparative analysis between the results obtained from the homogenized model and the ine scale model (reference solution obtained from explicit heterogeneous representation of the medium structure) was carried out. The obtained numerical tool for the two-scale implementation enables treating various types of two-equation models to study the macroscopic non-Fickian transport and also non-equilibrium evolution of concentration ields inside the micro-porous medium.

Introduction

The study of solute transport in porous media has not been declining, particularly in the actual context of exploitation and conservation of terrestrial resources. The motivation is stimulated by the fact that complex low and transport processes are observed in different civil/industrial activities such as groundwater use, soil decontamination, oil/gas reservoirs or carbon dioxide geological sequestration [START_REF] Doughty | Editorial to the special issue on the 2015 TOUGH Symposium[END_REF]. Heterogeneity of the geological environment at various scales within the context of multiphase-multicomponent transport plays a key role on this complexity of the processes (e.g. [START_REF] Dagan | Solute transport in heterogeneous porous formations[END_REF][START_REF] Sudicky | A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process[END_REF][START_REF] Dagan | Efect of spatial variability upon subsurface transport of solutes from nonpoint sources[END_REF][START_REF] Berkowitz | Anomalous transport in laboratory-scale, heterogeneous porous media[END_REF][START_REF] De Marsily | Dealing with spatial heterogeneity[END_REF][START_REF] Niessner | Multi-scale modeling of three-phase-three-component processes in heterogeneous porous media[END_REF][START_REF] Ngoc | Two-scale model of solute dispersion in doubleporosity unsaturated media: homogenization and experiments[END_REF][START_REF] Gensterblum | Gas transport and storage capacity in shale gas reservoirs-a review. Part A: transport processes[END_REF][START_REF] Cremer | Solute transport in heterogeneous soil with time-dependent boundary conditions[END_REF][START_REF] Wu | Multiscale pore structure and its efect on gas transport in organic-rich shale[END_REF][START_REF] Portois | Foam for environmental remediation: generation and blocking efect[END_REF]). For such media, conventional models are not always appropriate to describe their non-standard behaviour. Non-Fickian transport assigned by an early breakthrough and tailing of solute concentration evolution in time and space throughout heterogeneous media has been much investigated in the literature [START_REF] Berkowitz | Non-Fickian transport and multiplerate mass transfer in porous media[END_REF][START_REF] Berkowitz | Exploring the nature of non-Fickian transport in laboratory experiments[END_REF][START_REF] Ngoc | Experimental evidence of the double-porosity efects in geomaterials[END_REF]. Nevertheless, the macroscopic non-Fickian transport taking into account the diffusion efect at the local scale needs further investigation [START_REF] Dartois | Impact of local difusion on macroscopic dispersion in threedimensional porous media[END_REF]). These non-Fickian features are attributed to preferential low transport implying local nonequilibrium concentrations inside the media [START_REF] Sternberg | Laboratory observation of nonlocal dispersion[END_REF][START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF][START_REF] Jarvis | Understanding preferential low in the vadose zone: recent advances and future prospects[END_REF]. The molecular difusion ceases apparently to play a role with regard to the dispersion when the Péclet number (Pe) is high enough [START_REF] Fried | Dispersion in porous media[END_REF]. In fact, [START_REF] Jankovic | The impact of local difusion on longitudinal macrodispersivity and its major efect upon anomalous transport in highly heterogeneous aquifers[END_REF] proposed to neglect difusion for weak to moderately heterogeneous porous media, but found that difusion impacts considerably the transport for highly heterogeneous ones, through numerical simulations with Pe = O(10 2 -10 4 ). The particular case of Pe = O(1) has to be more investigated for the question of the impact of local difusion on the transport in unsaturated porous media.

The Barenblatt concept of the "double-porosity" medium [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in the issured rocks[END_REF]) can be used to replace a class of heterogeneous porous media (aggregated soils, fractured porous rocks, for example) in which a strong contrast in the local pore size characteristics is manifested. This concept of two overlapping sub-domains has been applied to phenomenological approach allowing to explain the non-conventional transport behaviour and to resolve practice problems. Using a double-porosity model revealed very appropriate for the granite basement reservoir of the White Tiger oilield in Vietnam ofshore [START_REF] Ngo | Kỳ tích tìm dầu ở tầng đá móng[END_REF][START_REF] Ha | Development of a dual-porosity model for "Bach Ho" fractured basement reservoir[END_REF], for example. Since the irst models [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in the issured rocks[END_REF][START_REF] Warren | The behavior of naturally fractured reservoirs[END_REF], many continuum two-domain models (macroporosity and micro-porosity) were proposed with their mathematical form of two equations representing the transport mechanism in each domain and linked by an exchange term. Diferent models describing the unsaturated preferential low and transport in double-porosity soils were reviewed by Šimůnek et al. (2003), [START_REF] Gerke | Preferential low description for structured soils[END_REF] and [START_REF] Köhne | A review of model applications for structured soils: a) water low and tracer transport[END_REF] in a comparative manner between them. The macroscopic equations proposed in these works were diferent one from another according to the imposed assumptions. It can be noticed that the complexity of the models, i.e. number of model parameters, increases in the respective order of the mobile-immobile model [START_REF] Van Genuchten | Mass transfer studies in sorbing porous media: I. Analytical solutions[END_REF][START_REF] Gaudet | Solute transfer, with exchange between mobile and stagnant water through unsaturated sand[END_REF], the mobile-mobile model [START_REF] Gerke | A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media[END_REF] and the dual-permeability mobile-immobile model [START_REF] Šimůnek | Modeling non-equilibrium low and transport processes using Hydrus[END_REF]. Moreover, the macroscopic form of all these models displays a coexistence of two concentration ields linked by a irst-order mass transfer between the two 1 3 porosity domains. It must be noted that this coeicient is only determined by the itting of solute evolution curves [START_REF] De Vries | Multiscale modelling of dual-porosity porous media; a computational pore-scale study for low and solute transport[END_REF].

Upscaling approaches have contributed to a great advance in modelling several physical mechanisms including solute transport in double-porosity media. Among others, the asymptotic homogenization approach [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF][START_REF] Auriault | Efective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Auriault | Homogenization of Coupled Phenomena in Heterogeneous Media[END_REF]) and the volume averaging method [START_REF] Whitaker | Difusion and reaction in a micropore-macropore model of a porous medium[END_REF][START_REF] Quintard | Two-phase low in heterogeneous porous media: the method of large scale averaging[END_REF][START_REF] Whitaker | The Method of Averaging[END_REF] have been applied to double-porosity transport issues thus improving profoundly the understanding of these phenomena thanks to the rigorous processes of upscaling from a small scale to a larger scale [START_REF] Royer | Time analysis of the three characteristic behaviours of dual-porosity media. I: luid low and solute transport[END_REF][START_REF] Davit | Technical notes on volume averaging in porous media I: how to choose a spatial averaging operator for periodic and quasi periodic structures[END_REF]. One of the advantages of the upscaling method is to save resources when resolving macroscopic problems taking into account the microstructures of the medium through efective properties, instead of directly computing at a iner scale using a large number of mesh elements [START_REF] Auriault | Heterogeneous medium is an equivalent macroscopic description possible?[END_REF]. This can be carried out for the case in which a representative elementary volume (REV) of the microstructure exists in the heterogeneous medium. It is not simple to obtain a REV, but using advanced geophysics and non-invasive imaging techniques to detect heterogeneities allows to establish the possible REV [START_REF] Bear | Dynamics of luids in porous media[END_REF][START_REF] Jarvis | Understanding preferential low in the vadose zone: recent advances and future prospects[END_REF].

Using the method of volume averaging [START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media. V: two-equation model for solute transport with adsorption[END_REF] described the solute transport in saturated two-domain media by the generalized two-equation model. Estimating the irst-order mass transfer term of this model is comparable to one of the aforementioned phenomenological models [START_REF] Cherblanc | Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties[END_REF]. [START_REF] Cherblanc | Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments[END_REF] compared the results of the two-equation model with those of ine scale simulations (porous or Darcy scale) for the cases of local-scale dispersion in which diferent permeability contrasts of the periodic two-domain medium (nodular system) in a numerical transport experiment were considered, but no difusivity contrast was considered in their work. While providing a good prediction for the "mobile-mobile" system medium, a discrepancy with the "mobile-immobile" model was observed due to the estimation of mass transfer coeicient. [START_REF] Golier | Comparison of theory and experiment for solute transport in highly heterogeneous porous medium[END_REF] attempted to reproduce numerically the transport experiments in highly heterogeneous porous medium of [START_REF] Zinn | Experiments visualization of solute transport and mass transfer processes in two dimensional conductivity ields with connected regions of high conductivity[END_REF]. They proposed a mixed model derived from the two-equation model to confront with the experiments in considering a "mobile-immobile" system where only difusion process occurs in the immobile domain and the full mass transport is maintained in the mobile domain. A reasonably good agreement between the experimental data and theory could only be obtained when accepting that the mass transfer coeicient had to be computed from direct solution at the local scale.

Various models have been developed for water low and solute transport in doubleporosity media by using the asymptotic homogenization method of multiple-scale asymptotic expansions [START_REF] Royer | Macroscopic modeling of double-porosity reservoirs[END_REF][START_REF] Royer | Continuum modelling of contaminant transport in fractured porous media[END_REF][START_REF] Peszynska | Multiscale elliptic-parabolic systems for low and transport[END_REF]. A macroscopic model of difusion-convection containing a difusion equation in the micro-porosity domain was developed by [START_REF] Hornung | Homogenization of miscible displacement in unsaturated aggregated soils[END_REF] under unsaturated condition. [START_REF] Auriault | Non-Gaussian difusion modeling in composite porous media by homogenization: tail efect[END_REF] developed the double-difusivity model allowing to capture the tailing efect. [START_REF] Mikelic | Modeling solute transport through unsaturated porous media using homogenization I[END_REF] derived a transport model by convection and dispersion in the macroporosity domain, coupled with adsorption at the interface of micro-and macro-pore regions, but without solute transport in the micro-pore region. In these models, Richard's equation and convection-difusion/dispersion equation were employed to describe the transient low and transport in the microstructure. Considering diferent characteristic times, diferent models described the steady-state double-porosity transport in saturated porous media [START_REF] Tejchman | Solute transport through single and dual porosity media[END_REF]). [START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF] derived a model of the transient low in a double-porosity medium of which the two porous materials, at the local scale, are saturated by water and air composing a macro-pore network surrounded by a micro-porous matrix. This highly hydraulic contrasted double-porosity medium with predeined dimensionless numbers characterizing the physical processes leads to conclude on the existence of low only in the macro-porosity domain. This was successfully validated by experiments of diferent hydrologic situations in a physical double-porosity column [START_REF] Lewandowska | Iniltration in a double-porosity medium: experiments and comparison with a theoretical model[END_REF][START_REF] Lewandowska | Water drainage in double porosity soils: experiments and micro-macro modelling[END_REF][START_REF] Szymkiewicz | Two scale modeling of unsaturated water low in a double-porosity medium under axi-symmetric conditions[END_REF]. Associated with this model, a double-porosity dispersion-convection model has been developed in Tran [START_REF] Ngoc | Two-scale model of solute dispersion in doubleporosity unsaturated media: homogenization and experiments[END_REF], taking into account the dispersion regime at the local scale [START_REF] Andricevic | Efects of local dispersion and sampling volume on the evolution of concentration luctuations in aquifers[END_REF][START_REF] Fiori | On the inluence of local dispersion in solute transport through formations with evolving scales of heterogeneity[END_REF]. It was validated by the unsaturated double-porosity experiments in which the salt difusion coeicients in sand and clay (two material constituents of double-porosity medium) are diferent by only one order of magnitude (Tran Ngoc 2008). Based on the characteristic time analysis at three consecutive scales: from micro-pore scale to micro-porous scale and to macroscopic one, [START_REF] Royer | Time analysis of the three characteristic behaviours of dual-porosity media. I: luid low and solute transport[END_REF] revised the theory for diferent low and transport macroscopic behaviours in saturated double-porosity media. They found that the non-Fickian transport may occur for the cases of low difusivity contrast. From a semi-analytical mean-ield approximation, [START_REF] Brassart | Efective transient behaviour of heterogeneous media in difusion problems with a large contrast in the phase difusivities[END_REF] obtained a homogenization-based difusion model enabling to describe the long-tail efect for the case of large contrast of difusivities in a two-phase composite. To go further, it is also interesting to develop a dispersive model for the case of a strong difusivity contrast between two porous domains inside the unsaturated double-porosity medium, in order to pursue the study of the non-Fickian transport with memory efect for this case. Thus, this will allow us to ill in the double-porosity model catalogue obtained by the homogenization methods and to distinguish various models and to help the selection of a model appropriate for each particular application.

Numerical solutions for the two-equation model type have been developed [START_REF] Pruess | A practical method for modeling luid and heat low in fractured porous media[END_REF][START_REF] Huyakorn | An eicient inite element technique for modeling transport in fractured porous media. 1. Single species transport[END_REF][START_REF] Gaudet | Étude du mécanisme des transferts d'eau et de soluté en zone non saturée avec prise en compte d'une fraction liquide immobile[END_REF][START_REF] Ahmadi | Transport in chemically and mechanically heterogeneous porous media. V: two-equation model for solute transport with adsorption[END_REF][START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF][START_REF] Cherblanc | Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments[END_REF][START_REF] Szymkiewicz | Modelling Water Flow in Unsaturated Porous Media. Accounting for Nonlinear Permeability and Material Heterogeneity[END_REF], since the irst analytical solutions of [START_REF] Barenblatt | Basic concepts in the theory of seepage of homogeneous liquids in the issured rocks[END_REF], [START_REF] Barenblatt | On certain boundary-value-problems for the equations of seepage of liquid in issured rocks[END_REF], [START_REF] Warren | The behavior of naturally fractured reservoirs[END_REF] and [START_REF] Coats | Dead-end pore volume and dispersion in porous media[END_REF]. The complexity of resolving the two-domain transport resides in the fully transient problem of the mass transfer coupling between two concentrations at the macroscopic and microscopic scales. Thus, [START_REF] Golier | Comparison of theory and experiment for solute transport in highly heterogeneous porous medium[END_REF] stated "that begins to be nearly as diicult (if not more so) than the direct solution to the problem at the microscale". It is interesting to reproduce numerically many transport experiments performed in double-porosity media presented in the literature, not only for investigating the macroscopic behaviour but also for the study of transport processes at the microscopic scale [START_REF] Zinn | Experiments visualization of solute transport and mass transfer processes in two dimensional conductivity ields with connected regions of high conductivity[END_REF][START_REF] Costa | Transferts d'un traceur en milieu poreux consolide et en milieu poreux issure: Expérimentations et modélisations[END_REF][START_REF] Ngien | Observation of light nonaqueous phase liquid migration in aggregated soil using image analysis[END_REF][START_REF] Majdalani | Solute transport in periodical heterogeneous porous media: importance of observation scale and experimental sampling[END_REF]Peng et al. 2015, for example). A powerful numerical tool is needed to simulate these experimental results.

The aim of this paper is to present (1) a development of a macroscopic transport model by dispersion-convection with local difusion in a double-porosity medium presenting strong contrast of both low and transport properties under unsaturated steadystate conditions, by using the asymptotic homogenization and (2) a numerical tool to implement the obtained mathematical model for macroscopic boundary value problems. The development of the model will start from the description of physical processes at the microscopic scale (local scale) and will be accompanied with the deinition of the efective properties. The macroscopic model is solved in 2D numerical experiments performed by using a commercial FEM code. To validate the obtained model, comparison between theoretical predictions of the macroscopic model and reference solutions of the transport in heterogeneous inely discretized model of the experiments at the microscopic level is conducted. A discussion of the developed model and the compared results will be addressed.

Double-Porosity Medium and Its Physical Characteristics

The macroscopic double-porosity medium with characteristic length L [L] considered as the same in [START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF] is a periodic porous medium (Ω) whose microstructure, i.e. a period with characteristic length ℓ [L], contains two porous domains (Ω 1 and Ω 2 ) of strongly contrasted physical properties (pore size, hydraulic permeability and transport difusivity), distinguished by the common interface Γ (Fig. 1). The ratio between these two characteristic lengths is an important small parameter for the upscaling technique. The condition << 1 is equivalent to the existence of a REV [START_REF] Auriault | Heterogeneous medium is an equivalent macroscopic description possible?[END_REF]. The basic problem is to study the asymptotics of the solution as → 0. We assume that the double-porosity medium is unsat- urated with given constant water contents in the porous domain 1 (macro-porous ingredient Ω 1 ), θ 1 [L 3 /L 3 ] and in the porous domain 2 (micro-porous ingredient Ω 2 ), θ 2 [L 3 /L 3 ]. The porous domain 1 is continuously connected and much more conductive and difusive than the porous domain 2: 2) , where subscripts "1" and "2" denote the domains 1 and 2, respectively; K 1 (θ 1 ) [LT -1 ] and K 2 (θ 2 ) [LT -1 ] are the hydraulic conductivity tensors, and D 1 (θ 1 ) [L 2 T -1 ] and D 2 (θ 2 ) [L 2 T -1 ] are the efective difusion tensors. Therefore, the efects of preferential low/transport can be expected. The strong ratio D 2 ∕D 1 = O( 2 ) can be referred to a situation of solute difusion in polycrystals (Bras- sart and Stainier 2019) or helium difusing in silica (silicon dioxide) inclusions embedded in a coarse sand, for example. This strong contrast may also be reached when hindered diffusion occurs in the porous domain 2 (i.e. when the difusing molecules are quite large with respect to the pore size).

K 2 ∕K 1 = O( 2 ) and D 2 ∕D 1 = O(
(1) = L The double-porosity medium is a double-structured medium with three distinct diferent scales: the pore scale, the Darcy scale and the macroscopic scale. In this study, the starting point of the analysis is the Darcy scale (hereinafter named microscopic scale or local scale).

Transport Description at the Microscopic Scale

At the ℓ scale, we assume that under the unsaturated steady-state low the transport of a nonreactive solute can be described in each porous domain by the mass conservation equation [START_REF] Bear | Dynamics of luids in porous media[END_REF]): together with the continuity conditions of the lux and the concentrations at the interface:

where

C 1 [ML -3 ] and C 2 [ML -3 ] are the solute concentrations; the X = (X 1 , X 2 , X 3 ) [L]
denotes the physical spatial variable with X 3 oriented positively upwards; t [T] is the time; v 1 and v 2 [LT -1 ] are the local Darcy velocities; and N [-] is the unit vector normal to Γ and exterior to Ω 1 .

The unsaturated water low in each homogeneous rigid domain is described by the Richards equation [START_REF] Richards | Capillary conduction of liquids through porous medium[END_REF]. We assume that the low ields of water, considered incompressible and Newtonian, are known and determined independently from the transport problem and that the air pressure is constant and equal to the atmospheric pressure during the whole low process. We recall the macroscopic low equation in the double-porosity medium obtained by [START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF] using the homogenization approach:

where K ef [LT -1 ] is the efective hydraulic conductivity depending on the conductivity of the porous domain Ω 1 and the geometry of the microstructure; h [L] is the water pressure head; 1 [-] is the volumetric fraction of the macro-porosity domain 1, deined by

1 = | | 1 | | ∕| | and is of the order O(1); and W(h, t) [T -1 ]
is the source term of water exchange between the two domains. Under the steady-state condition, Eq. ( 6) becomes with

(2) 1 C 1 t =∇ X ⋅ D 1 ( 1 ) ⋅ ∇ X C 1 -v 1 C 1 in 1 (3) 2 C 2 t =∇ X ⋅ D 2 ( 2 ) ⋅ ∇ X C 2 -v 2 C 2 in 2 (4) D 1 ( 1 ) ⋅ ∇ X C 1 -v 1 C 1 ⋅ N = D 2 ( 2 ) ⋅ ∇ X C 2 -v 2 C 2 ⋅ N on (5) C 1 = C 2 on (6) 1 1 t =∇ X ⋅ K eff (h) ⋅ ∇ X h + X 3 -W(h, t) (7) ∇ X ⋅ K eff (h) ⋅ ∇ X h + X 3 = 0 (8) ⟨v⟩ = ⟨v 1 ⟩ = � K eff (h) ⋅ ∇ X � h + X 3 ��
deining the macroscopic velocity [LT -1 ]. Moreover, according to the result of the low problem in the double-porosity medium obtained by homogenization, the low only occurs in the domain 1 (macro-porosity domain) and water is stagnant in the domain 2 (microporosity domain) (see detail in [START_REF] Lewandowska | Modeling of unsaturated water low in double-porosity soils by the homogenization approach[END_REF]), we have:

The problem ( 2)-( 5) can be rewritten as:

Dimensionless Microscopic Model with Estimated Characteristic Numbers

Let us normalize the variables with respect to their characteristic values denoted herein by the subscript "c". One leads to the following dimensionless variables denoted by the superscript "*":

We divide also the spatial variable by the microscopic and macroscopic characteristic length, respectively, to obtain two dimensionless space variables:

where y (y 1 , y 2 , y 3 ) and x (x 1 , x 2 , x 3 ) are the microscopic and macroscopic dimensionless variables, respectively. From the microscopic point of view, the local problem ( 11)-( 14) normalized with respect to ℓ in terms of dimensionless unknowns ( 15) and ( 16) becomes:

(9) ∇ y ⋅ v (0) 1 = 0 in 1 (10) v (0) 1 ⋅ N = 0 on . (11) 1 C 1 t =∇ X ⋅ D 1 ( 1 ) ⋅ ∇ X C 1 -v 1 C 1 in 1 (12) 2 C 2 t =∇ X ⋅ D 2 ( 2 ) ⋅ ∇ X C 2 in 2 (13) D 1 ( 1 ) ⋅ ∇ X C 1 -v 1 C 1 ⋅ N = D 2 ( 2 ) ⋅ ∇ X C 2 ⋅ N on (14) C 1 = C 2 on . (15) C * 1 = C 1 C 1c ; C * 2 = C 2 C 2c ; D * 1 = D 1 D 1c ; D * 2 = D 2 D 2c ; * 1 = 1 1c ; * 2 = 2 2c ; v * 1 = v 1 v 1c ; t * = t t c . (16) y = X and x = X L (17) 2 D 1c t c * 1 C * 1 t * =∇ y ⋅ D * 1 ⋅ ∇ y C * 1 - v 1c D 1c v * 1 C * 1 in 1 (18) 2 D 2c t c * 2 C * 2 t * =∇ y ⋅ D * 2 ⋅ ∇ y C * 2 in 2
In the dimensionless microscopic problem ( 17)-( 20), we identify the following dimensionless quantities:

We establish the order of magnitude of the above dimensionless numbers in power of ε in a manner involving the dispersion phenomena, the double-porosity behaviours and the resulting local non-equilibrium. To do that, the Péclet number is chosen to consider the equivalence of the convective and difusive efects at the micro-scale such that Pe 1 = O(1) and the ratio Q = O( 2 ) . The latter can be named the local difusion case which is difer- ent from the local dispersion case presented in Tran [START_REF] Ngoc | Two-scale model of solute dispersion in doubleporosity unsaturated media: homogenization and experiments[END_REF]. The characteristic time, chosen as the reference difusion time t c = L 2 ∕D 1c over L (time of the observation), is postulated as well as the ratio Q. Finally, we assume C 1c to be of the same order of magnitude as C 2c . Thus, we will proceed the homogenization of the dimensionless problem ( 17)-( 20) with the estimations as follows:

Making use of the estimates (22), we get

Modelling by Homogenization

We applied here the procedure of homogenization by two-scale asymptotic expansions for the engineering problems pioneered by [START_REF] Auriault | Efective macroscopic description for heat conduction in periodic composites[END_REF][START_REF] Auriault | Heterogeneous medium is an equivalent macroscopic description possible?[END_REF]. Homogenization postulates that all the unknowns ψ can be expressed in the form of asymptotic expansions in powers of ε

(19) D * 1 ⋅ ∇ y C * 1 - v 1c D 1c v * 1 C * 1 ⋅ N = D 2c C 2c D 1c C 1c D * 2 ⋅ ∇ y C * 2 ⋅ N on (20) C 1c C * 1 = C 2c C * 2 on . (21) Pe 1 = v 1c D 1c (Péclet number); P 1 = 2 D 1c t c ; P 2 = 2 D 2c t c and Q = D 2c D 1c . ( 22 
)
t c = L 2 D 1c ; Pe 1 = v 1c D 1c = O(1); Q = D 2c D 1c = O( 2 ) so that P 1 = 2 D 1c t c = O( 2 ) and P 2 = 2 D 2c t c = O(1). ( 23 
) 2 * 1 C * 1 t * =∇ y ⋅ D * 1 ⋅ ∇ y C * 1 -v * 1 C * 1 in 1 (24) * 2 C * 2 t * =∇ y ⋅ D * 2 ⋅ ∇ y C * 2 in 2 (25) D * 1 ⋅ ∇ y C * 1 -v * 1 C * 1 ⋅ N = 2 D * 2 ⋅ ∇ y C * 2 ⋅ N on (26) C * 1 = C * 2 on . (27) (x, y, t * )= (0) (x, y, t * )+ (1) (x, y, t * )+ 2 (2) (x, y, t * )+⋯
where (x, y, t * ) stands for C * 1 , C * 2 or v * 1 and is spatially periodic in y over both subdomains. All the terms ψ (i) (x, y, t*) in Eq. ( 27) are dimensionless without the * superscript, in order to simplify the notation. Due to ( 16) and (1), we have the relation x = y that allows the derivation operator to be transformed into Applying ( 27) and ( 28) to the microscopic model Eqs. ( 23)-( 26), regrouping the terms at the same order of ε 0 -ε 2 and neglecting the terms with a higher order of ε 2 leads to:

Equating the terms of the same order of ε in Eqs. ( 29)-(32) yields successive boundary value problems to be solved on the period. Hereinafter, we present only the analysis of the results of these problems at the successive orders of ε allowing to obtain the efective parameters and the form of the macroscopic model.

Macroscopic Variable

At the order ε 0 , Eqs. ( 29) and ( 31) are rewritten as

(28) ∇ y ↦ ∇ y + ∇ x . (29) 2 � * 1 C (0) 1 � t * + ⋯ =∇ y ⋅ � D * 1 ⋅ ∇ y C (0) 1 -v (0) 1 C (0) 1 � + ⎡ ⎢ ⎢ ⎢ ⎣ ∇ y ⋅ � D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 � -∇ y ⋅ � v (0) 1 C (1) 1 + v (1) 1 C (0) 1 � -∇ x ⋅ � D * 1 ⋅ ∇ y C (0) 1 � -∇ x ⋅ � v (0) 1 C (0) 1 � ⎤ ⎥ ⎥ ⎥ ⎦ + 2 ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ∇ y ⋅ � D * 1 ⋅ ∇ y C (2) 1 + D * 1 ⋅ ∇ x C (1) 1 � -∇ y ⋅ � v (0) 1 C (2) 1 + v (1) 1 C (1) 1 + v (2) 1 C (0) 1 � +∇ x ⋅ � D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 � -∇ x ⋅ � v (0) 1 C (1) 1 + v (1) 1 C (0) 1 � ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ + ⋯ in 1 (30) * 2 C (0) 2 t * + * 2 C (1) 2 t * + 2 * 2 C (2) 2 t * + ⋯ =∇ y ⋅ D * 2 ⋅ ∇ y C (0) 2 + ∇ y ⋅ D * 2 ⋅ ∇ y C (1) 2 + D * 2 ⋅ ∇ x C (0) 2 +∇ x ⋅ D * 2 ⋅ ∇ y C (0) 2 + 2 ∇ y ⋅ D * 2 ⋅ ∇ y C (2) 2 + D * 2 ⋅ ∇ x C (1) 2 +∇ x ⋅ D * 2 ⋅ ∇ y C (1) 2 + D * 2 ⋅ ∇ x C (0) 2 + ⋯ in 2 (31) D * 1 ⋅ ∇ y C (0) 1 -v (0) 1 C (0) 1 ⋅ N + D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 -v (0) 1 C (1) 1 -v (1) 1 C (0) 1 ⋅ N + 2 D * 1 ⋅ ∇ y C (2) 1 + D * 1 ⋅ ∇ x C (0) 1 -v (0) 1 C (2) 1 -v (1) 1 C (1) 1 -v (2) 1 C (0) 1 ⋅ N + ⋯ = 2 D * 2 ⋅ ∇ y C (0) 2 ⋅ N + ⋯ on (32) C (0) 1 + C (1) 1 + 2 C (2) 1 + ⋯ = C (0) 2 + C (1) 2 + 2 C (2) 2 + ⋯ on .
where C (0) 1 is y-periodic. Taking into account Eqs. ( 9) and ( 10), it can be shown that the solution of the problem ( 33) and ( 34) is [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF][START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF][START_REF] Auriault | Difusion/adsorption/advection macrotransport in soils[END_REF] This means that C (0) 1 is the macroscopic variable, independent of the local space variable y and denoted C (0) .

Transport Equation in the Micro-Porosity Domain

From Eqs. ( 30) and ( 32) at the order ε 0 , we obtain the boundary value problem for the C (0) 2 :

It can be seen that the problem ( 36) is a solute difusion problem in the micro-porosity domain and its concentration variable depends on y. Thus, the local non-equilibrium may be observed by two concentration ields C (0) 1 (x, t * ) and C (0) 2 (x, y, t * ) balancing at the cou- pling boundary with the condition given by Eq. (37).

Local Boundary Value Problem

Let us analyse Eqs. ( 29) and (31) at the order ε 1 taking into account Eq. ( 35):

Integrating Eq. ( 38) over 1 and dividing it by | | , then applying the Gauss-Ostrogradsky theorem for the irst term in l. h. s. of this equation to transform the volume integral to a surface integral and using the periodicity condition and the boundary condition given by Eq. (39) leads to here the intrinsic volume average is deined by

(33) ∇ y ⋅ D * 1 ⋅ ∇ y C (0) 1 -v (0) 1 C (0) 1 = 0 in 1 (34) D * 1 ⋅ ∇ y C (0) 1 -v (0) 1 C (0) 1 ⋅ N = 0 on (35) C (0) 1 = C (0) 1 (x, t * )=C (0) (x, t * ).
(36)

( (0) 2 C (0) 2 ) t * =∇⋅ D * 2 ⋅ ∇ y C (0) 2 in 2 (37) C (0) 1 = C (0) 2 on .
(38)

∇ y ⋅ D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 -∇ y ⋅ v (0) 1 C (1) 1 + v (1) 1 C (0) 1 -∇ x ⋅ v (0) 1 C (0) 1 = 0 in 1 (39) D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 -v (0) 1 C (1) 1 -v (1) 1 C (0) 1 ⋅ N = 0 on . ( 40 
) 1 | | ∫ 1 ∇ x ⋅ v (0) 1 C (0) 1 d = 0 or ⟨ ∇ x ⋅ v (0) 1 C (0) 1 ⟩ =∇ x ⋅ ⟨ v (0) 1 ⟩ C (0) 1 = 0.
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The problem given by Eqs. ( 38) and (39) deines C (1) 1 and the solution can be put in the form of a linear function of ∇ x C (0) 1 [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF][START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF][START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF][START_REF] Auriault | Difusion/adsorption/advection macrotransport in soils[END_REF] where (y) is y-periodic and considered as a corrector of the gradient of C (0) 1 with respect to x relecting the inluence of the microstructural geometry. This function satisies the zerovalued volume average condition for uniqueness:

C(1)
1 (x, t * ) is an arbitrary function independent of y, therefore a macroscopic concentration satisfying ∇ y C(1) 1 (x, t * )=0 In order to obtain the local problem allowing to calculate the vector (y) , we intro- duce Eq. ( 42) into Eq. ( 38) and analyse it term by term. The irst term, on the l. h. s. becomes where I is the identity matrix. The second term can be transformed as

We have had ∇ y ⋅ v (0) 1 = 0 (Eq. 9) and C (0) 1 does not depend on y, so Eq. ( 45) becomes

The third term gives

Using the above obtained results, Eq. ( 40) is reformulated in the following form

Let us now analyse the sum of third and fourth terms in l. h. s. of Eq. ( 48)

Due to the low problem at the order ε 2 , Eq. ( 49) can be written as

(41) ⟨⋅⟩ = 1 � � ∫ 1 ⋅ d . (42) C (1) 1 = (y) ⋅ ∇ x C (0) 1 + C(1) 1 (x, t * ) (43) ⟨ (y)⟩ = 0 (44) ∇ y ⋅ D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 =∇ y ⋅ D * 1 ⋅ ∇ y + I ∇ x C (0) 1 (45) ∇ y ⋅ v (0) 1 C (1) 1 + v (1) 1 C (0) 1 = C (1) 1 ∇ y ⋅ v (0) 1 + v (0) 1 ⋅ ∇ y C (1) 1 + C (0) 1 ∇ y ⋅ v (1) 1 + v (1) 1 ⋅ ∇ y C (0) 1 . (46) ∇ y ⋅ v (0) 1 C (1) 1 + v (1) 1 C (0) 1 = v (0) 1 ⋅ ∇ y ⋅ (y)∇ x C (0) 1 + C (0) 1 ∇ y ⋅ v (1) 1 . (47) ∇ x ⋅ v (0) 1 C (0) 1 = C (0) 1 ∇ x ⋅ v (0) 1 + v (0) 1 ⋅ ∇ x C (0) 1 . (48) ∇ y ⋅ D * 1 ⋅ ∇ y + I ∇ x C (0) 1 -v (0) 1 ⋅ ∇ y ⋅ ∇ x C (0) 1 -C (0) 1 ∇ y ⋅ v (1) 1 -C (0) 1 ∇ x ⋅ v (0) 1 -v (0) 1 ⋅ ∇ x C (0) 1 = 0 in 1 . (49) C (0) 1 ∇ y ⋅ v (1) 1 + C (0) 1 ∇ x ⋅ v (0) 1 = C (0) 1 ∇ y ⋅ v (1) 1 +∇ x ⋅ v (0) 1 . (50) C (0) 1 ∇ y ⋅ v (1) 1 +∇ x ⋅ v (0) 1 = C (0) 1 (0) 1 t * .
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On the other hand, Eq. ( 6) can be rewritten in the dimensionless form hence we obtain for Eq. ( 50)

Now, returning to Eq. ( 40), its development gives or With the result of the replacement (54) into ( 52) and the fact that the water exchange term W(h (0) , t * ) disappears from the development due to the steady-state low condition, Eq. ( 48) becomes

Taking into account the boundary condition on Γ for steady-state water low, Eq. ( 39) is reduced to and then replacing C (1) 1 by the expression given in Eq. ( 42) leads to Imposing successively the unit gradient ∇ x C (0) 1 in the directions 1, 2 and 3, we obtain the local problem for (y) and we recall the condition by Eq. ( 43) which assures the unicity of the solution.

This local boundary value problem, Eqs. ( 58)-( 59), has the same form as the one obtained by [START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF] and [START_REF] Auriault | Difusion/adsorption/advection macrotransport in soils[END_REF] for the saturated conditions.

(51)

1 (0) 1 t * =∇ x ⋅ ⟨ v (0) 1 ⟩ -W(h (0) , t * ) (52) C (0) 1 ∇ y ⋅ v (1) 1 +∇ x ⋅ v (0) 1 = C (0) 1 1 1 ∇ x ⋅ ⟨ v (0) 1 ⟩ - 1 1 W(h (0) , t * ) . (53) ∇ x ⋅ ⟨ v (0) 1 ⟩ C (0) 1 = C (0) 1 ∇ x ⋅ ⟨ v (0) 1 ⟩ + ⟨ v (0) 1 ⟩ ⋅ ∇ x C (0) 1 = 0 (54) C (0) 1 ∇ x ⋅ ⟨ v (0) 1 ⟩ =- ⟨ v (0) 1 ⟩ ⋅ ∇ x C (0) 1 . (55) 
∇ y ⋅ D * 1 ⋅ ∇ y + I ∇ x C (0) 1 -v (0) 1 ⋅ ∇ y ⋅ ∇ x C (0) 1 + 1 1 ⟨ v (0) 1 ⟩ ⋅ ∇ x C (0) 1 -v (0) 1 ⋅ ∇ x C (0) 1 = 0 in 1 . (56) D * 1 ∇ y C (1) 1 + D * 1 ∇ x C (0) 1 ⋅ N = 0 on (57) D * 1 ⋅ ∇ y + I ∇ x C (0) 1 ⋅ N = 0 on . (58) ∇ y ⋅ D * 1 ⋅ ∇ y + I -v (0) 1 ⋅ ∇ y = v (0) 1 - 1 1 ⟨ v (0) 1 ⟩ in 1 (59) D * 1 ⋅ ∇ y + I ⋅ N = 0 on 1 3

Macroscopic Model

In this section, we present the development of the macroscopic model by analysing the homogenization of the problem given by Eqs. ( 29) and ( 31) at the order O(ε 2 ) of approximation

The following transformations are successively conducted: (1) integrating Eq. ( 60) over 1 and dividing it by | | ;

(2) applying the Gauss-Ostrogradsky theorem for the irst two terms in r. h. s. of Eq. ( 60); (3) applying the periodicity condition and the boundary condition Eq. ( 61). After these transformations, we obtain Applying once again the Gauss-Ostrogradsky theorem for the irst term in the r. h. s. of Eq. ( 62) to pass from the surface to the volume integral over the domain 2 and taking into account Eq. ( 36) leads to From Eqs. ( 63) and ( 64) and the replacement of the expression of C (1) 1 given by Eq. ( 42), we can rephrase Eq. ( 62) as where

(60) * 1 C (0) 1 t * =∇ y ⋅ D * 1 ⋅ ∇ y C (2) 1 + D * 1 ⋅ ∇ x C (1) 1 -∇ y ⋅ v (0) 1 C (2) 1 + v (1) 1 C (1) 1 + v (2) 1 C (0) 1 +∇ x ⋅ D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 -∇ x ⋅ v (0) 1 C (1) 1 + v (1) 1 C (0) 1 in 1 (61) D * 1 ⋅ ∇ y C (2) 1 + D * 1 ⋅ ∇ x C (0) 1 -v (0) 1 C (2) 1 -v (1) 1 C (1) 1 -v (2) 1 C (0) 1 ⋅ N = D * 2 ⋅ ∇ y C (0) 2 ⋅ N on .
(62)

⟨ * 1 C (0) 1 ⟩ t * = 1 | | ∫ D * 2 ⋅ ∇ y C (0) 2 ⋅ Nd +∇ x ⋅ ⟨ D * 1 ⋅ ∇ y C (1) 1 + D * 1 ⋅ ∇ x C (0) 1 ⟩ -∇ x ⋅ ⟨ v (0) 1 C (1) 1 ⟩ -∇ x ⋅ ⟨ v (1) 1 C (0) 1 ⟩ . (63) 1 | | ∫ D * 2 ⋅ ∇ y C (0) 2 ⋅ Nd =- 1 | | ∫ 2 ∇ y ⋅ D * 2 ⋅ ∇ y C (0) 2 d and (64) - 1 | | ∫ 2 ∇ y ⋅ D * 2 ⋅ ∇ y C (0) 2 d =- 1 | | ∫ 2 * 2 C (0) 2 t * d . (65) ⟨ * 1 C (0) 1 ⟩ t * =∇ x ⋅ D * eff ⋅ ∇ x C (0) 1 -∇ x ⋅ ⟨ v (0) 1 C(1) 1 ⟩ -∇ x ⋅ ⟨ v (1) 1 C (0) 1 ⟩ - ⟨ * 2 C (0) 2 ⟩ t * (66) D * eff ( )= 1 | | ∫ 1 D * 1 ( ) ⋅ ∇ y + I -v (0) 1 ⋅ d .
In order to obtain the macroscopic equation, we perform a similar process as in [START_REF] Auriault | Difusion/adsorption/advection macrotransport in soils[END_REF]. Equation (65) multiplied by ε will be added to Eq. ( 40)

The examination of all the convective terms in the r. h. s. of Eq. ( 67) in regards with the following relations leads to Inserting Eq. (71) into Eq. ( 67) yields the dimensionless macroscopic equation expressed in the form This equation is of the ε 2 order of approximation. As expected, we can observe the presence of ε in the dispersion term with regard to the convective term. After recalling Eq. ( 22), we obtain the dimensional double-porosity dispersion-convection model coupled with the microscopic difusion equation in the micro-porosity 2 and at the common interface

(67) ⟨ * 1 C (0) 1 ⟩ t * = ∇ x ⋅ D * eff ⋅ ∇ x C (0) 1 -∇ x ⋅ ⟨ v (0) 1 C(1) 1 ⟩ -∇ x ⋅ ⟨ v (1) 1 C (0) 1 ⟩ - ⟨ * 2 C (0) 2 ⟩ t * -∇ x ⋅ ⟨ v (1) 1 ⟩ C (0) 1 . (68) ∇ x ⋅ ⟨ v (0) 1 C(1) 1 ⟩ +∇ x ⋅ ⟨ v (1) 1 ⟩ C (0) 1 + ∇ x ⋅ ⟨ v (1) 1 C (0) 1 ⟩ (69) ⟨ v * 1 ⟩ = ⟨ v (0) 1 ⟩ + ⟨ v (1) 1 ⟩ + ⋯ and (70) ⟨ C * 1 ⟩ = ⟨ C (0) 1 ⟩ + ⟨ C (1) 1 ⟩ + ⋯ ≈ 1 C (0) 1 + 1 C(1) 1 (71) ∇ x ⋅ ⟨ v (0) 1 C(1) 1 ⟩ +∇ x ⋅ ⟨ v (1) 1 ⟩ C (0) 1 + ∇ x ⋅ ⟨ v (1) 1 C (0) 1 ⟩ = 1 1 ∇ x ⋅ ⟨ v * 1 ⟩⟨ C * 1 ⟩ . ( 72 
) 1 * 1 C * 1 t * = ∇ x ⋅ D * eff ⋅ ∇ x C * 1 -∇ x ⋅ ⟨ v * 1 ⟩ C * 1 - ⟨ * 2 C * 2 ⟩ t * + O( 2 ). ( 73 
) 1 � 1 C 1 � t =∇ X ⋅ � D eff ⋅ ∇ X C 1 � -∇ X ⋅ � ⟨v 1 ⟩C 1 � - ⟨ 2 C 2 ⟩ t (74) ( 2 C 2 ) t =∇ X ⋅ D 2 ⋅ ∇ X C 2 (75) C 1 = C 2
where D ef would be the dispersion tensor in the double-porosity medium when the medium velocity is enough high (Pe is high enough). Otherwise D ef is the difusion tensor. It is deined by

The macroscopic double-porosity model with the local difusion [Eqs. ( 73)-( 76)] has the same form as the one presented in Tran [START_REF] Ngoc | Two-scale model of solute dispersion in doubleporosity unsaturated media: homogenization and experiments[END_REF] for the case of local dispersion consisting of two equations coupled through the interface. It is similar to two-domain models of the literature with diferent validity domains, for example the one presented in [START_REF] Royer | Time analysis of the three characteristic behaviours of dual-porosity media. I: luid low and solute transport[END_REF] for the case of the difusivity ratio D 2 /D 1 = O(ε). Equations ( 75)-( 76) lead to memory efects (which give rise to tailing efects in the breakthrough curves) as shown in several works cited in the paper. It describes two mutual solute transport processes namely dispersion-convection in the macro-porosity domain and difusion in the micro-porosity domain. This situation induces a local non-equilibrium of the concentrations by the presence of the source term in Eq. ( 73) coming from the interaction with the micro-porosity domain. This causes particular efects in the transport phenomena which cannot be captured by classic models. Note that the efective parameter of the model is an anisotropic dispersion tensor D ef given by Eq. ( 76) as a function of the local difusion tensor D 1 , local velocity vector v 1 and the function characterizing the micro-geometry of the period χ.

Numerical Validation

In order to validate the double-porosity model developed in this work, we consider in this section 2D cases in which a solute is transported by a given unsaturated low in a periodic double-porosity medium. The numerical implementation macroscopic boundary value problem [Eqs. ( 73)-( 76)] was performed using the commercial element inite code COMSOL Multiphysics ® . A particular strategy enabling to compute the concentrations at two scales corresponding to the macro-and micro-porosity domains was developed. The obtained solutions of the macroscopic model will be compared with the reference solutions of the ine scale model (direct numerical simulation) in order to validate numerically the developed double-porosity model.

Description of the Numerical Test Cases and the Fine Scale Direct Simulation

The geometry of the double-porosity medium is represented by circular inclusions (microporous domain assumed isotropic for simplicity) embedded in the matrix (macro-porous domain, also assumed isotropic) (Fig. 2). For the numerical veriication, we chose a macroscopic domain L = 2 × 10 -2 m containing 10 periods ℓ = 2 × 10 -3 m (Fig. 2) [START_REF] Davit | Technical notes on volume averaging in porous media I: how to choose a spatial averaging operator for periodic and quasi periodic structures[END_REF]. The ℓ/L ratio and the number of periods are comparable to the ones considered in the numerical model used to reproduce the transport experiments in [START_REF] Golier | Comparison of theory and experiment for solute transport in highly heterogeneous porous medium[END_REF]. The macroscopic length is relatively short but acceptable for the relatively small lux imposed. Thus, the expected features of the developed model can be ensured. The diameter of the circular inclusion is equal to half of the period length, 2R = 1 × 10 -3 m where R is the radius of the inclusion. The hydraulic and transport properties are very (76)

D eff ( )= 1 | | ∫ 1 D 1 ( ) ⋅ ∇ y + I -v 1 ⋅ d .
contrasted between the two porous domains to respect the characteristics of double-porosity media. The physical properties of the porous media used in the two numerical examples are reported in Table 1.

For a ixed water content ⟨ ⟩ , we assume a given Darcy velocity ⟨v⟩( )=0.796 × 10 -7 m/s at the inlet of the medium leading in conformity with the condition on the Peclet number of O(1). The water low corresponding to the averaged ⟨ ⟩ = ϕ 1 × θ 1 + ϕ 2 × θ 2 (θ 1 and θ 2 are the volumetric water content of macro-and micro- porosity domain, respectively) here can be considered as an unsaturated low, since the averaged water content is smaller than the total porosity of the medium. In the numerical test cases, the unsaturated steady-state low condition with θ 1 > θ 2 could be seen when we have the hydraulic head condition h = h 1 (θ 1 ) = h 2 (θ 2 ) on water retention curves of the two domains [START_REF] Lewandowska | Iniltration in a double-porosity medium: experiments and comparison with a theoretical model[END_REF][START_REF] Jougnot | Hydraulic conductivity of unsaturated double porosity geomaterials[END_REF]. This unsaturated steady-state lux was imposed at the inlet, and a given pressure (atmospheric) is considered at the outlet. The transport of the solute is started when the steady-state low condition is reached.

For the solute transport, diferent boundary conditions were applied for cases 1 and 2, whereas the initial condition is zero concentration for both cases. In case 1, the pulse-like concentration of 1 g/L within 1000 s was introduced in the medium. In case 2, the step-like solicitation was used with a solute concentration of 1 g/L at the medium inlet. The concentration gradient is zero at the outlet boundary for both examples.

Direct numerical simulation of the ine scale model was carried out in a manner of solving the coupled low and transport problems by using the inite element code COM-SOL Multiphysics ® . The medium was discretized into 8718 triangular elements for the 2D examples. These choices are the results of a prior mesh sensitivity analysis. Using a computer with a processor of i5-5200U CPU @ 2.20 GHz and RAM of 4 GB, the computation time needed to obtain the ine scale solution was about 75 s for the 2D examples.

The two numerical test cases were presented here in order to assess diferent transport phenomena reproduced by the developed model. In particular, the pulse-like transport producing more complex mechanisms than the step-like transport was studied to study the interesting concentration evolution inside the micro-porosity domain (inclusions). Volume fraction (-)

ϕ 1 = 0.804 ϕ 2 = 0.196 Water content (-) θ 1 = 0.50 θ 2 = 0.30 Difusion coeicient (m 2 /s) D 1 (θ 1 ) = 1 × 10 -9 D 2 (θ 2 ) = 1 × 10 -13
1 3

Numerical Simulation of the Homogenized Model

Governing Equations

To simulate the test cases presented above by the double-porosity model (i.e. homogenized model), we consider the 1D macroscopic solute transport for the macro-porous domain, which is coupled with the 2D transport problems in the micro-porous domain (circular inclusions). According to their local geometry, these 2D local problems can be transformed into 1D ones in cylindrical coordinates. According to Eqs. ( 73)-( 75), the homogenized model can be rewritten as follows:

where z and r [L] are spatial coordinates, respectively. The initial and boundary conditions are applied for each case as follows:

• Case 1 corresponding to a solute transport by pulse-like injection:

-t ≤ 0, for Eqs. ( 77)-( 79):

-t > 0, for Eq. ( 77), the third-type (Cauchy type) boundary condition was used to prescribe the concentration lux at the medium inlet (z = 0), whereas the second-type (Neumann type) for the medium outlet (z = L) (van Genuchten and Parker 1984; [START_REF] Schoen | Modelling of solute transport in a large undisturbed lysimeter, during steady-state water lux[END_REF][START_REF] Cushman | The Handbook of Groundwater Engineering[END_REF]:

where C inj [M/L 3 ] is the concentration of the solute injected in the medium, C inj = 1 g/L; C 0 = 0; t 0 = 1000 s; ⟨v⟩ = 0.796 × 10 -7 m/s. -t > 0, for Eq. ( 78):

where R [L] is the radius of the circular inclusions.

(77)

1 � 1 C 1 � t = z � D eff C 1 z -⟨v⟩C 1 � - 1 � � ∫ D 2 C 2 r d (78) 2 C 2 t = D 2 2 C 2 r 2 + 1 r C 2 r (79) C 1 = C 2 on the interface (80) C 1 = C 2 = C 0 = 0 (81) z = 0, 0 < t ≤ t 0 ∶ ⟨v⟩C 1 -D eff C 1 z = ⟨v⟩C inj (82) z = 0, t > t 0 ∶ ⟨v⟩C 1 -D eff C 1 z = ⟨v⟩C 0 (83) r = R ∶ C 1 (z)=C 2 (r) on the interface (84) r = 0 ∶ D 2 C 2 r = 0
• Case 2 corresponding to a solute transport by step-like injection:

The initial and boundary conditions of the test case 2 are all the same as the ones for the test case 1, except the boundary condition for Eq. ( 77) corresponding to a solute transport by step-like injection as follows:

where C inj = 1 g/L.

Numerical Implementation

Two main steps have to be followed to solve the macroscopic problem: (1) calculation of the efective parameter D ef by Eq. ( 76), after resolving the local boundary value problem given by Eqs. ( 58) and ( 59) and ( 43) for a given local geometry of the medium; (2) resolving the macroscopic boundary value problem of Eqs. ( 77)-( 79) together with known initial and boundary conditions [Eqs. ( 80)-( 85)]. A special algorithm is required for the coupling of the macroscopic concentration ield with information on the concentration of the microporous domain. The efective parameter D ef is of 0.637 × 10 -9 m 2 /s for cases 1 and 2. The value results from the resolution of the boundary value problem given by Eqs. ( 58) and ( 59) and ( 43) on a unit cell (period) of the double-porosity media (not presented in detail here, see in Tran Ngoc 2008).

The implementation strategy for the numerical resolution is the same as the one used for a similar two-equation model presented in Tran [START_REF] Ngoc | Two-scale model of solute dispersion in doubleporosity unsaturated media: homogenization and experiments[END_REF]. The macroscopic solution of the homogenized model will be obtained by solving a macroscopic 1D Eq. ( 77) coupled with a series of microscopic 1D local problems Eq. ( 78). We perform the computations at two coupled scales whose variables are as follows:

• the concentration C 1 (z) at the macroscopic domain is equal to the concentration C 2 at r = R standing for all the micro-porous domain, Eq. ( 79); • the difusive lux [or source term in Eq. ( 77)] calculated on the interface of the micro-porous domain [from Eq. ( 78)] is inserted in the macroscopic equation [Eq. (77)].

This numerical implementation was performed in the environment of the COMSOL Multiphysics ® software. The macroscopic domain is modelled geometrically 1D, whereas the 2D geometry (two independent variables z and r) is used for the micro-porosity domain (domain 2). This is related to the strategy chosen here, which is to solve the 1D radial problem for all z values, in order to facilitate the coupling with the macro-scale problem. The macroscopic domain 1 was uniformly discretized into 100 elements using Δz = 2 × 10 -4 m. The discretization of the micro-domain 2 (L × R) representing the micro-porosity was performed by 1412 elements (612 triangular elements and 800 quadrilateral elements). The area close to the interface with the domain 1 is meshed iner. Due to R ≪ L, we re-scaled

(85) z = 0, t > 0 ∶ ⟨v⟩C 1 -D eff C 1 z = ⟨v⟩C inj (86) S = 1 | | ∫ D 2 C 2 r d (r = R)
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the r direction by factor 10 and thus got a mesh of 7050 elements (6250 triangular elements and 800 quadrilateral elements) in order to obtain more precise solutions. A mesh size sensitivity carried out by combining 50 or 100 elements in the domain 1 with 1412 or 7050 elements in the domain 2 showed a very slight diference in computation results. The simulations were only performed for a given value of the unsaturated steady-state water low ⟨v⟩( )=0.796 × 10 -7 m/s for cases 1 and 2.

Results and Comparisons

Case 1

Figure 3 shows the concentration evolution curves (breakthrough curves) observed at the outlet of the medium for both the ine scale model (FSM) and the homogenized model (HM). A very good agreement between the two models was found with the coeicient of determination R 2 = 0.9987. It can be seen that the HM is capable to capture the early concentration breakthrough and the tailing efect of the non-Fickian transport. Note that C(t) at z = L of the ine scale model was computed by using a velocity-weighted average over the outlet surface [START_REF] Golier | Comparison of theory and experiment for solute transport in weakly heterogeneous bimodal porous media[END_REF].

The concentration proiles at diferent times on an axis passing through the centre of the medium, obtained by the FSM and HM, are presented in Fig. 4. As expected, a strong variation of the concentration can be observed from the macro-porosity domain to the microporosity domain in the ine scale model solution. This shows the local non-equilibrium of the concentrations at short and intermediate times. The equilibrium concentration condition of the whole domain was reached after t = 6 × 10 5 s. While the C 1 concentration proile of the HM reproduced very well the concentrations at each z of all the macro-porosity domain, the C 2 concentration proile of the HM represented only for the concentrations at the centre of each inclusion (r = 0, micro-porosity domain), due to the numerical implementation manner employed. For comparing the concentrations at other positions in the micro-porosity domain, we can refer to Fig. 5. This igure corresponds to the computation of the concentration at each position z, by solving the radial problems given by Eq. ( 78). The concentration ield is therefore plotted on the (r, z) plane. This is used as a computation step for the coupling with the macroscopic model. It can be seen that the non-equilibrium solute transport processes occurring inside the micro-porosity domain from the inlet to the outlet at diferent times were very well captured by the HM. Note that the concentration proile C 2 presented in Fig. 4 is the concentrations on the cut line AB of Fig. 5. We can observe the high and low concentrations in the macro-and micro-porosity domains (Figs. 4a,b,5a,b), respectively, for intermediate times t corresponding to the vicinity of the concentration peak (Fig. 3). The inverse is observed for long times t (Figs. 4c,5c). It is interesting to see the coexistence of two mechanisms "solute looding water and looded by water" inside the micro-porosity domain along the medium expressed by the HM (Fig. 5b).

The numerical implementation allows to calculate the solute exchange term S [Eq. ( 86)] between the macro-and micro-porosity domains. Figure 6 shows the evolution of the exchange term with time at selected z in the medium. Due to the pulse-like solute input, we have S > 0 when the solute enters into the micro-porosity domain from the macro-porosity domain and S < 0 when the solute is released from the micro-porosity domain.

Case 2

The time evolution of the eluent concentration obtained by the FSM was very well reproduced by the HM Fig. 7. The R 2 = 0.9985 is as good as in case 1. As case 1, almost no solute exchange between the two porous domains is observed after t = 6 × 10 5 s (Fig. 8), when the concentration in all the medium reached at the injection concentration (C inj = 1 g/L) and the concentration tail tended to asymptotic (Fig. 7). By normalizing the same of concentration value as in case 1, the exchange source term S with time is bigger than in case 1 by the fact of the continuous solute injection at the medium inlet. For this step-like injection, the only mechanism of the solute entering into the micro-porous domain from the macro-porous domain occurs, S > 0 (Fig. 8).

Figure 9 presents the concentration proiles inside the inclusions of the double-porosity medium. Once again, in this case, it can be seen very clearly that the solute started to introduce in the inclusions at the earlier times (Fig. 9 a) and illed in them along the medium at the inal times (Fig. 9b).

Discussion and Conclusion

Using the asymptotic homogenization theory, a homogenized model (HM) for solute transport in double-porosity media under unsaturated steady-state water low conditions was developed. The model is limited to cases with strong difusivity contrast between the micro-and macro-porous domains. These could be considered as a particular case with a very tortuous micro-porous domain causing difusion at the local scale and thus leading to a macroscopic model giving a breakthrough curve with a tailing efect, i.e. non-Fickian transport [START_REF] Royer | Time analysis of the three characteristic behaviours of dual-porosity media. I: luid low and solute transport[END_REF]. According to the deined orders of the Péclet number for diferent transport regimes at the local scale, a series of the macroscopic models for the double-porosity medium can be derived similarly as those presented in [START_REF] Auriault | Taylor dispersion in porous media: analysis by multiple scale expansions[END_REF] and [START_REF] Auriault | Difusion/adsorption/advection macrotransport in soils[END_REF].

The developed model was numerically veriied by confronting with the ine scale model (FSM) for the test cases with diferent boundary conditions. The homogenized model showed a good capacity to describe the local non-equilibrium concentration prevailing in transport processes and therefore the tailing efect. In the application of the HM to numerical test cases, the calculated Péclet number was Pe

1 = v 1c D 1c = D 1c
⟨v⟩ 1 = 0.2 for the cases 1 and 2 and the characteristic difusion time of the two cases was t c = L 2 /D 1c = O(10 6 ) s. This is much greater than the convective time O(10 4 ) s and allows to complete the local difusion process in the whole medium (Figs. 3,5). According to the magnitude of the imposed velocity, the efective longitudinal difusion coeicient was at the same order of magnitude as the difusion coeicient of the macro-porous domain D 1 . The HM can be the "richest" model (Royer and Boutin 2012), applicable in these example cases, i.e. a difusion-convection regime for the example tests. Moreover, the validity domain of the numerical examples was veriied with = L = 0.002 0.02 = 0.1:

While Eq. ( 88) is satisied, we have Q = O(10 -4 ), therefore not satisfying Eq. ( 87) when D 1c and D 2c are estimated at the same order of magnitude as D 1 and D 2 . Further simulations satisfying the entire domain of validity would require a greater macroscopic length L than 0.02 m for the numerical examples, say ≥ 0.08 m, equivalent to 40 periods. The tailing efect may even occur for the case without contrast between transport properties [START_REF] Royer | Time analysis of the three characteristic behaviours of dual-porosity media. I: luid low and solute transport[END_REF]. It must be noted that even for the numerical examples with a very low Q ratio presented here, the developed model (HM) revealed to capture fully the non-Fickian transport, although one of the conditions of Eq. ( 22) is not veriied (Eq. 87).

The implementation method used in this work for the HM is capable to simulate simultaneously both solute concentrations at two scales, using the FEM code COMSOL Multiphysics ® . To conirm the entire validity of the developed model for all orders of magnitude estimates imposed [Eq. ( 22)], other 2D and 3D tests should be performed by reemploying this implementation. The latter allows to apprehend what happens inside the inclusions. By the fact that each position of the macro-domain is considered interactive with the micro-domain, a suicient number of microstructure periods is required and thus also for the macroscopic length of the medium. This is consistent with the requirement of the small separation parameter ε [Eq. (1)]. The numerical tool elaborated in this study can be used for other two-equation models and modiied for other microstructure geometries to study solute transport in physical models of double-porosity media presented in the literature. This tool can be applied to reproduce experimental results of [START_REF] Zinn | Experiments visualization of solute transport and mass transfer processes in two dimensional conductivity ields with connected regions of high conductivity[END_REF] for tracer transport in a two-domain medium with intermediate and high contrast in hydraulic conductivity, and especially the experiments by Dalla [START_REF] Costa | Transferts d'un traceur en milieu poreux consolide et en milieu poreux issure: Expérimentations et modélisations[END_REF] mimicking solute transport in a fractured medium, using a double-porosity model chosen with appropriate D 2 /D 1 contrast. Finally, the proposed homogenization and numerical simulation approach can be employed to investigate other physical couplings such as hydro-chemical with reaction or hydro-biological in heterogeneous porous media. 

Fig. 1

 1 Fig. 1 Periodic double-porosity medium with the macro-and microscopic characteristic lengths and the microstructure with two porous ingredients

Fig. 2

 2 Fig. 2 Periodic double-porosity medium (10 periods) of the numerical test cases 1 and 2. The radius of the circular inclusions (micro-porous domain 2) is of 0.5 × 10 -3 m

Fig. 3 Fig. 4

 34 Fig. 3 Comparison of the evolution of the concentration at the outlet of medium versus time obtained by the ine scale model (reference solution, dashed curve) and predicted by the homogenized model (bold curve) for the case 1

  (87)10 -3 << Q = D 2c D 1c = O( 2 ) << 0.1 (88) 0.1 << Pe 1 = O( 0 ) << 10.

Fig. 5 Fig. 6 -Fig. 7 Fig. 8

 5678 Fig.5Comparison between the concentration proiles of the whole medium (the ine scale model) and of the micro-porosity domain (inclusions) (the homogenized model) for the case 1. Each z on AB line is implemented as the centre of the inclusions. CD line is the interface of the macro-and micro-porosity domains. AD or BC are the radius R of the inclusions (to better visualize, the r direction of the micro-porosity domain was enlarged by the factor L/R). To interpret, a concentration at a z in the inclusion from the ine scale model (at the inclusion centre of the irst period z = 0.001), for example), to be compared with a concentration at the corresponding r and z from the homogenized model (r = 0 and z = 0.001: the concentration close to A)

Fig. 9

 9 Fig.9Comparison between the concentration proiles of the whole medium (the ine scale model) and of the micro-porosity domain (inclusions) (the homogenized model) for the case 2. Each z on AB line is implemented as the centre of the inclusions. CD line is the interface of the macro-and micro-porosity domains. AD or BC are the radius R of the inclusions (to better visualize, the r direction of the microporosity domain was enlarged by the factor L/R)
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