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Abstract It is extremely useful to exploit labeled datasets not only to learn mod-
els and perform predictive analytics but also to improve our understanding of a
domain and its available targeted classes. The subgroup discovery task has been
considered for more than two decades. It concerns the discovery of patterns cov-
ering sets of objects having interesting properties, e.g., they characterize or dis-
criminate a given target class. Though many subgroup discovery algorithms have
been proposed for both transactional and numerical data, discovering subgroups
within labeled sequential data has been much less studied. First, we propose an
anytime algorithm SeqScout that discovers interesting subgroups w.r.t. a chosen
quality measure. This is a sampling algorithm that mines discriminant sequential
patterns using a multi-armed bandit model. For a given budget, it finds a col-
lection of local optima in the search space of descriptions and thus, subgroups. It
requires a light configuration and is independent from the quality measure used for
pattern scoring. We also introduce a second anytime algorithm MCTSExtent that
pushes further the idea of a better trade-off between exploration and exploitation
of a sampling strategy over the search space. To the best of our knowledge, this
is the first time that the Monte Carlo Tree Search framework is exploited in a
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sequential data mining setting. We have conducted a thorough and comprehensive
evaluation of our algorithms on several datasets to illustrate their added-value,
and we discuss their qualitative and quantitative results.

Keywords Pattern Mining, Subgroup Discovery, Upper Confidence Bound,
Monte Carlo Tree Search , Multi-Armed Bandit

1 Introduction

In many data science projects, we have to process labeled data and it is often valu-
able to discover descriptions, say patterns, that discriminate well some classes. This
can be used to support various machine learning techniques aiming at predicting
the class label for unseen objects (i.e., learning models). It is also interesting per
se since the language for descriptions is, by design, readable and interpretable by
analysts and data owners. Therefore, it can be used to explore and better un-
derstand a given phenomenon thanks to collected labeled data and it can also
provide a solid foundation for building new relevant features [43]. The search for
such patterns has been referred to under different names, among which subgroup
discovery, emerging pattern mining or contrast set mining [30]. Hereafter, we will
use the terminology of the subgroup discovery framework [38].

Labeled sequential data are ubiquitous. This makes subgroup discovery ap-
plicable to many application domains, for instance, text or video data analysis
[31], industrial process supervision [40], biomedical genomics sequential data anal-
ysis [35], web usage mining [32], video game analytics [8], etc. Let us consider a
maintenance scenario for a cloud environment. Data generated by such a system
are sequences of events, and can be labeled with failure, i.e., breakdown presence
or absence. Applying classification techniques helps answering to: “will a failure
event occur?” (see, e.g., [39]), while applying sequential event prediction helps
determining “what is the next event to occur?” (see, e.g., [25]). Nevertheless, an-
other need is to explain, or at least, to provide hypotheses on the why. Addressing
such a descriptive analytics issue is the focus of our work. Given data sequences,
labeled with classes, we aim at automatically finding discriminative patterns for
these classes. Considering again our cloud environment example, the goal is to
compute patterns “that tend to occur with breakdowns”. Such patterns provide
valuable hypotheses for a better understanding of the system. Once validated by
domain experts, the discovered patterns can then be used to support maintenance
planning tasks.

Subgroup discovery on labeled sequential data faces several challenges. Given
a dataset of object descriptions (e.g., objects described by discrete sequences), a
sequential pattern is a generalization of a description that covers a set of objects.
An unusual class distribution among the covered objects makes a pattern interest-
ing. For example, when a dataset has a 99%-1% distribution of normal-abnormal
objects, a pattern covering objects among which 50% are abnormal is highly rele-
vant (w.r.t. a quality measure like, e.g., the Weighted Relative Accuracy measure
WRAcc [23]). However, such patterns cover generally a small number of objects.
They are difficult to identify with most of the algorithms that perform an exhaus-
tive exploration of the search space with the help of a minimal frequency constraint
(see, e.g., SD-MAP [2] for categorical and numerical data only). Therefore, heuris-
tic approaches that are often based on beam search or sampling techniques are
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used to find only subsets of the interesting patterns. Another fairly open problem
concerns the computation of non-redundant patterns, avoiding to return thousands
of variations for Boolean and/or numerical patterns [7].

Heuristic methods for sequential data have not yet attracted much attention.
Diop et al. [13] introduced a sampling approach that draws patterns according
to the frequency measure only. In [16], Egho et al., propose a promising method:
the sampling method misère can be used for any quality measure when exploiting
sequences of events. Their key idea is to draw patterns as strict random general-
izations of object descriptions while a time budget enables it, and to keep a pool
of the best non-redundant patterns found so far. The strength of this algorithm is
that it finds patterns covering at least one element. However, it does not exploit
previous sampling to guide the search in the next iterations: it is an exploration-
only framework, without memory. Such a generic approach has been the starting
point of our research, though we were looking for further quality assessment of
discovered subgroups.

Our research concerns search space exploration methods for labeled sequences
of itemsets and not just sequences of items. We first describe the algorithm SeqScout

that has been introduced in our conference paper [26]. SeqScout is based on sam-
pling guided by a multi-armed bandit model followed by a generalization step and
a phase of local optimization. We show that it gives better results than an adap-
tation of misère for the case of sequences of itemsets with the same budget when
considering huge search spaces. We then present the main contributions of this
paper than can be summarized as follows:

– We introduce MCTSExtent, a significant evolution of SeqScout where the multi-
armed bandit model evolves towards a Monte Carlo Tree Search (MCTS).
Doing so, we look for a trade-off between exploration and exploitation during
the search of interesting patterns. Using MCTS for pattern discovery has been
proposed recently in [7] as a promising framework for pattern discovery in
transactional and numerical data. Defining the right policies about the different
MCTS operators remains however open even in such rather simple settings. To
the best of our knowledge, our algorithm MCTSExtent is the first attempt to
apply MCTS for pattern mining in sequential data.

– To the best of our knowledge, there is no solution for the problem of the
Longest Common Subsequence for sequences of itemsets, that is needed within
MCTSExtent when generalizing subsequences. Thus, we propose a new dynamic
programming procedure to solve it.

– We provide a thorough assessment of our claims via an exhaustive set of ex-
periments with benchmark data involving the comparison with the competitor
algorithms, namely misère, Beam Search and SeqScout.

– We describe a novel application of the problem of mining sequential discrim-
inative patterns in labeled sequences to the e-sport domain for which our al-
gorithm helps discovering actionable play patterns. It exploits Rocket League
video game data1. We make our original dataset publicly available for the
purpose of a better evaluation and reproducibility.

Both presented algorithms have several advantages: they give results anytime and
take benefits from random search to limit redundancy of results and to increase

1 https://www.rocketleague.com/

https://www.rocketleague.com/
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subgroup diversity. They are also agnostic w.r.t. the used quality measure. All
source codes, original datasets and experimental results are available online2.

The paper is organised as follows. Section 2 discusses the related work. We
formally define the problem in Section 3. We then describe our solution algorithms
SeqScout in Section 4 and MCTSExtent in Section 5. Section 6 presents an empirical
study on several datasets, including experiments with Starcraft II and Rocket
League data (game analytics). Section 7 concludes.

2 Related Work

Sequential pattern mining is now a classical data mining task and was introduced
by the pioneer contribution of Agrawal et al. [1], that tackles frequent sequential
pattern mining. It remains a challenging task due to the size of the search space,
that is, the set of all possible sequential pattern, bounded by the length of the
biggest sequence of the dataset. Thus, Räıssi and Pei have shown in [33] that

the number of sequences of length k is wk =
∑k−1
i=0 wi

( |I|
k−i
)
, with |I| being the

number of possible items. As an example, if we consider the well-known UCI
dataset promoters [14], with |I| = 4 and k = 57, the size of the search space is
approximately 1041.

Various methods have been proposed to mine interesting sequential patterns
within a constraint-based data mining approach. We review them briefly and we
discuss their relevancy when considering our need for discriminative patterns.

2.1 Enumeration-based Methods

Many enumeration techniques enable to mine patterns from Boolean, numerical,
sequential and graph data [19]. They can be adapted for the case of discrimina-
tive pattern mining. For instance, the SPADE algorithm [41] has been adapted
for sequence classification based on frequent patterns [42]. The main idea of such
methods is to visit each candidate pattern only once while pruning large parts of
the search space. Indeed, we know how to exploit formal properties (e.g., mono-
tonicity) of many user-defined constraints (and not only the minimal frequency
constraint). Their quality measure is thus computed either during or after the dis-
covery of all frequent patterns [8]. This is inefficient for the discovery of the best
discriminative patterns only. To overcome this limitation and to support pruning
the search space, upper bounds on the quality measure can be used. However, they
remain generally too optimistic and are specific to a particular measure (see, e.g.,
[31], [18]). Moreover, enumeration techniques coupled to upper bounds mainly aim
at solving the problem of finding the best pattern in the search space and not the
best pattern set. [22] also proposed an interesting approach based on search space
pruning for finding the best discriminative subsequences under a gap constraint.
However, their work is also specific to only one discriminative quality measure.
It requires to tune several parameters, including a minimum support, and it has
been designed for processing sequences of items, and not sequences of itemsets.

2 https://github.com/Romathonat/MCTSExtent

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)
https://github.com/Romathonat/MCTSExtent
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2.2 Heuristic Methods

An interesting trend to support pattern discovery is to avoid exhaustive search and
to provide high quality patterns available anytime during the search, ideally with
some guarantees on their quality. Examples of such guarantees are the distance to
the best solution pattern [5] or the guarantee that the best solution can be found
given a sufficient budget [7]. Let us discuss some of the heuristic approaches that
have been proposed so far.

Beam Search is a widely used heuristic algorithm. It traverses the search space
(often structured as a lattice) level-wise from the most general to the most specific
patterns and it restricts each level to a subset of non-redundant patterns of high
quality [15]. The greedy and exploitation-only nature of beam search is its major
drawback, yet it allows to quickly discover some interesting patterns.

Gsponer et al. used a different approach, where a linear model is trained on a set
of features extracted from sequences of the dataset [20]. Those features correspond
to the search space of all possible subsequences. By minimizing a loss function,
they can directly look at weights of their model to determine the most predictive
subsequences. However, this approach is only applied on sequences of items, with
numeric classes, and it can not choose a quality measure to optimize. For example,
using this algorithm to find patterns corresponding to a large subgroup, i.e., more
generalistic predictive rule covering many instances of the dataset with a lesser
proportion of positive element, is not possible.

Boley et al. proposed a two-step sampling approach giving the guarantee to
sample patterns (on itemsets) proportionally to different measures, namely: fre-
quency, squared frequency, area, or discriminativity [6]. However this method only
works on these measures. To consider another measure, Moens and Boley had to
design a new method [28]. Considering sequences, Diop et al. proposed an ap-
proach which guarantees that the probability of sampling a sequential pattern is
proportional to its frequency [12,13]. It focuses on the frequency measure only.

Egho et al. have proposed the measure agnostic method misère [16]. Given a
time budget, their idea is to generate random sequential patterns covering at least
one object while keeping a pool of the best patterns obtained so far. It provides
a result anytime, empirically improving over time, but there is no use of previous
sampling: this is an exploration-only strategy.

Pattern mining can be modeled as a multi-armed bandit problem enabling an
exploitation/exploration trade-off [3]. Each candidate sequence is an “arm” of a
bandit. Bosc et al. have developed such a game theory framework using Monte
Carlo Tree Search to support subgroup discovery from labeled categorical and
numerical data [7]. They proposed an approach based on sampling, where each
draw improves the knowledge about the search space. Such a drawn object guides
the search to achieve an exploitation/exploration trade-off.

To the best of our knowledge, the problem of mining discriminative sequences
of itemsets agnostic of the chosen quality measure with sampling approaches has
not been addressed yet in the literature, except in our recent conference paper [26].
Hereafter, we describe our methods SeqScout and MCTSExtent that compute top-
k non-redundant discriminative patterns. For that purpose, we want to maximize
the well known quality measure called WRAcc [23]. Even though we focus on it,
our methods are generic enough for using any quality measure, without requiring
specific properties. For instance, we report the results obtained for other measures
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Table 1: Notations

Notation Description

I set of possible items
m = |I| number of possible items
x ∈ I item
X ⊆ I itemset
D database
C set of classes
S set of all subsequences, i.e., search space

s = 〈X1...Xn〉 sequence of itemsets

Xj
i the ith itemset in sj
n size of a sequence s = 〈X1...Xn〉

l =
∑n
i=1 |Xi| length of a sequence

c ∈ C class
s v s′ s is a subsequence of s′

ext(s) extent of s
supp(s) support of s
freq(s) frequency of s
ϕ quality measure

Neighborhood(s) neighborhood of s

in Section 6.7. Note also that our algorithms do not require parameter tuning,
unlike Beam Search.

3 Formalizing the Non-redundant Subgroup Discovery Task

Let us now formalize our pattern mining task. Let I be a set of items. Each subset
X ⊆ I is called an itemset. A sequence s = 〈X1...Xn〉 is an ordered list of n > 0
itemsets. The size of a sequence s is denoted as n, and l =

∑n
i=1 |Xi| is its length.

A database D is a set of |D| sequences (see Table 2). Given a set of classes C,
we denote by Dc ⊆ D the set of sequences in D that are labeled by c ∈ C. We
summarize the notations in Table 1.

Definition 1 (Subsequence) A sequence s = 〈X1...Xns〉 is a subsequence of a
sequence s′ = 〈X ′1...X ′n′

s
〉, denoted s v s′, iff there exists 1 ≤ j1 < ... < jns ≤ n′s

such that X1 ⊆ X ′j1 ...Xns ⊆ X ′jns
. In Table 2, 〈{a}{b, c}〉 is a subsequence of s1

and s2.

Definition 2 (Positive element/sequence/object) A sequence of the database
labeled with the target class is called a positive element.

Table 2: An example database D.

id s ∈ D c
s1 〈{a}{a, b, c}{a, c}{d}{c, f}〉 +
s2 〈{a, d}{c}{b, c}{a, e}〉 +
s3 〈{e, f}{a, b}{d, f}{c}{b}〉 −
s4 〈{e}{g}{a, b, f}{c}{c}〉 −
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Definition 3 (Extent, support and frequency) The extent of a sequence
s is ext(s) = {s′ ∈ D | s v s′}. The support of a sequence s is supp(s) =
|ext(s)|. Its frequency is freq(s) = supp(s)/|D|. Given the data in Table 2, we
have ext(〈{a}{b, c}〉) = {s1, s2}.

Definition 4 (Set-extension) A sequence sb is a set-extension by x ∈ I of a
sequence sa = 〈X1X2...Xn〉 if ∃i, 1 ≤ i ≤ n+ 1 such that sb = 〈X1...{x}i...Xn+1〉.
In other words, we have inserted an itemset Xi = {x} in the ith position of sa.

Definition 5 (Item-extension) A sequence sb is an item-extension by x ∈ I
of a sequence sa = 〈X1X2...Xn〉 if ∃i, 1 ≤ i ≤ n such that sb = 〈X1...Xi ∪
{x}, ..., Xn+1〉.

For example, 〈{a}{c}{b}〉 is a set-extension of 〈{a}{b}〉 and 〈{a, b}{b}〉 is an
item-extension of 〈{a}{b}〉.

Definition 6 (Reduction) A sequence sb is a reduction of sa if sa is an set-
extension or item-extension of sb.

Definition 7 (Quality measure) Let S be the set of all possible subsequences
in a dataset. A quality measure ϕ is an application ϕ : S → R that maps every
sequence from s ∈ S with a real number to reflect its interestingness (quality score

in the data). For instance, Precision, defined by P(s→ c) = supp(s,Dc)
supp(s,D) , is a quality

measure about the association of a class label c with a sequence s.

Definition 8 (Local optimum) Let Neighborhood(s) be the neighborhood of
s, i.e., the set of all item-extensions, set-extensions and reductions of s. r? is
a local optimum of S w.r.t. the quality measure ϕ iff ∀r ∈ Neighborhood(r?),
ϕ(r?) ≥ ϕ(r).

Definition 9 (Non θ-redundant subsequences) A set of patterns Sp ⊆ S is
non θ-redundant if given θ ∈ [0; 1] and ∀s1, s2 ∈ Sp, where s1 6= s2, we have:
sim(s1, s2) ≤ θ, where sim is a similarity function. We use here the Jaccard index
as a similarity measure as in [24]:

sim(s1, s2) =
|ext(s1) ∩ ext(s2)|
|ext(s1) ∪ ext(s2)| .

We can now precisely define the considered mining task.

Problem Statement: For a databaseD, an integer k, a real number θ, a similarity
measure sim, a quality measure ϕ and a target class c ∈ C, the non redundant
subgroup discovery task consists in computing the set Sp of the best non θ-
redundant patterns of size |Sp| ≤ k, mined w.r.t the quality measure ϕ.

This problem can be illustrated in a visual more visual way. A sequence of
itemsets can be represented as shown in Fig. 1. Each vertical slice corresponds
to an itemset, and each square of colour represents an item within this item-
set. For instance, this sequence of itemsets could be written as follows: s1 =
〈{greySquare}, {greySquare, brownSquare}, {greySquare}, {greySquare,
blueSquare}...〉. A dataset of sequences of itemsets is then composed of differ-
ent sequences like represented in Fig. 1 and Fig. 2. Our goal is then to extract
patterns, i.e. subsequences, appearing in dataset, whose quality is assessed with
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Fig. 1: Sequence of itemsets seq1

Fig. 2: Sequence of itemsets seq2

Fig. 3: A pattern p appearing in sequence of itemsets s1. The items not belonging
to the pattern are given in light grey.

Fig. 4: A pattern p appearing in sequence of itemsets s2. The items not belonging
to the pattern are given in light grey.

quality measures, like the WRAcc. The pattern p (given in colour) appears in both
sequences, see Fig. 3 and Fig. 4. Visually, we can see that a pattern appears in a
sequence, if its itemsets are included in itemsets of the sequence in the same order
and with a potential gap between them.

4 SEQuential patterns Scouting

Our first algorithm is called SeqScout. It is a sampling approach that exploits gen-
eralizations of database sequences, and searches for local optima w.r.t. the chosen
quality measure. Fig. 5 provides an illustration for the method3. The main idea of
the SeqScout approach is to consider each sequence of the labeled data as an arm
of a multi-armed bandit when selecting the sequences for further generalization
using the Upper Confidence Bound (UCB) principle (see Algorithm 1). Briefly, the
idea of the UCB is to give a score to each sequence that quantifies an exploration-
exploitation trade-off, and to choose the sequence with the best one (details on
this part will be given later).

First (Lines 2-4), priority queues, π and scores, are created. π stores encoun-
tered patterns with their quality, and scores keeps in memory the list of UCB

3 In the context of sequential pattern mining, the search space is a priori infinite. However,
we can define the border of the search space (the bottom border in Fig. 5) by excluding patterns
having a null support. We can easily prove that each element of this border is a sequence within
the database. Therefore, the search space shape depends on the data.
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Fig. 5: Illustration of SeqScout.

scores of each sequence of the dataset, computed by using Equation 1 (see Section
4.1). data+ contains the list of all sequences of the dataset labeled with the target
class. Indeed, taking sequences having the target class will lead to generalizations
having at least one positive element. Then, the main procedure is launched as
long as some computational budget is available. The best sequence w.r.t. UCB is
chosen (Line 9). This sequence is ‘played ’ (Line 10), meaning that it is general-
ized (see Section 4.2) and its quality is computed (see Section 4.6). The created
pattern is added to π (Line 11). Finally, the UCB score is updated (Line 12).
As post processing steps, the top-k best non-redundant patterns are extracted
from scores using the filtering step (see Section 4.3). Finally, these patterns are
processed thanks to a local optimization procedure (see Section 4.4). Moreover,
SeqScout needs other modules that concern the selection of the quality measure
(see Section 4.5) and the quality score computation (see Section 4.6).

4.1 SELECT Policy: Sequence Selection

We propose to model each sequence of the dataset as an arm of a multi-armed
bandit slot machine. The action of playing an arm corresponds to generalizing this
sequence to obtain a pattern, and the reward then corresponds to the quality of
this pattern. Following an exploitation/exploration trade-off, sequences leading to
bad quality patterns will be avoided, leading to the discovery of better ones.

The multi-armed bandit model is well known in the game theory literature
[10]. We consider a multi-armed bandit slot machine with k arms, each arm having
its own reward distribution. Our problem is then formulated as follows. Having a
numberN of plays, what is the best strategy to maximize the reward ? The more an
arm is played, the more information about its reward distribution we get. However,
to what extent is it needed to exploit a promising arm (exploitation), instead of
trying others that could be more interesting in the long term (exploration)? Auer
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et al. proposed a strategy called UCB1 [3]. The idea is to give each arm a score,
and to choose the one that maximizes it:

UCB1(i) = x̄i +

√
2ln(N)

Ni
, (1)

where x̄i is the empirical mean of the ith arm, Ni is the number of plays of the ith

arm and N is the total number of plays. The first term encourages the exploitation
of arms with good reward, while the second encourages the exploration of less
played arms by giving less credit to the ones that have been frequently played.

Performing an exploitation/exploration trade-off for pattern mining has al-
ready been applied successfully to itemsets and numerical vectors by means of
Monte Carlo Tree Search [7]. When dealing with a huge search space, using sam-
pling guided by such a trade-off can give good results. However, contrary to [7],
we consider here the search space of extents, not the search space of all possible
patterns. Exploring the search space of extents guarantees to find patterns with
non null support while exploring the search space of all possible patterns leads
towards many patterns with a null support. This is a crucial issue when dealing
with sequences of itemsets.

4.2 ROLLOUT Policy: Pattern Generalization

After the best sequence w.r.t. UCB1 is chosen, it is generalized, meaning that a new
more general pattern is built. It enables to build a pattern with at least one positive

Algorithm 1 SeqScout

1: function SeqScout(budget)
2: π ← PriorityQueue()
3: scores← PriorityQueue()
4: data+ ← FilterData()
5: for all sequence in data+ do
6: scoresucb.add(sequence,∞)
7: end for
8: while budget do
9: seq, qual,Ni ← scores.bestUCB()

10: seqp, qualp ← PlayArm(seq)
11: π.add(seqp, qualp)

12: scores.update(seq,
Ni∗qual+qualp

Ni+1
, Ni + 1)

13: end while
14: π.add(OPTIMIZE(π))
15: return π.topKNonRedundant()
16: end function
17:
18: function OPTIMIZE(π)
19: topK ← π.topKNonRedundant()
20: for all pattern in topK do
21: while pattern is not a local optima do
22: pattern, qual← BestNeighbor(pattern)
23: end while
24: end for
25: return pattern, qual
26: end function
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element. Indeed, most of the patterns in the search space have a null support [33].
SeqScout generalizes a sequence s in the following way. It iterates through each
item within each itemset Xi ∈ s, and it removes it randomly according to the
following rule: {

remain, if z < 0.5
remove, if z ≥ 0.5

, where z ∼ U(0, 1).

The quality of the pattern is then computed, to update the UCB1 value of the
sequence from which the pattern has been generated.

4.3 Filtering Step

To limit the redundancy of found patterns, a filtering process is needed. We adopt
a well-described set covering principle from the literature (see, e.g., [7,24]) that
can be summarized as follows. First, we take the best element, and then we remove
those that are similar within our priority queue π. Then, we take the second best,
and continue this procedure until the k best non-redundant elements are extracted.

4.4 Local Optimum Search

Finally, a local optimum search is launched w.r.t. Definition 8. Various strategies
can be used. The first possible strategy is the Steepest Ascend Hill Climbing
[34]. It computes the neighborhood of the generalized pattern, i.e., all its item-
extensions, set-extensions and reductions. Then, it selects the pattern among those
of the neighborhood maximizing the quality measure. This is repeated until there
is no more patterns in the neighborhood having a better quality measure. Another
possible strategy is the Stochastic Hill Climbing [34]: a neighbor is selected at
random if its difference with the current one is “large enough”. Notice however
that it introduces a new parameter. Depending on the dataset, the branching
factor can be very important. Indeed, for m items and n itemsets in the sequence,
there are m(2n+ 1) patterns in its neighborhood (see Theorem 1). To tackle this
issue, we use First-Choice Hill Climbing [34]. We compute the neighborhood until
a better pattern is created, then we directly select it without enumerating all
neighbors.

Theorem 1 For a sequence s, let n be its size, l its length, and m the number
of possible items, the number of neighbors of s, denoted |Neighborhood(s)|, is
m(2n+ 1).

Proof The number of item-extensions is given by:

|Iext| =
n∑
i=1

|I| − |Xi| = nm−
n∑
i=1

|Xi| = nm− l.

We have now to sum the number of reductions, set-extensions and item-extensions:

|Neighborhood(s)| = l +m(n+ 1) + |Iext| = m(2n+ 1).
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4.5 Quality Measure Selection

The choice of the quality measure ϕ is application dependent. Our approach can
deal with any known measures that support class characterization, such as, among
others, the F1 score, informedness or the Weighted Relative Accuracy [23]. The
later, the WRAcc, is commonly used for discriminant pattern mining and subgroup
discovery. It compares the proportion of positive elements to the proportion of
positive elements in the whole database. Let c ∈ C be a class value and s be a
sequence,

WRAcc(s, c) = freq(s)×
(
supp(s,Dc)
supp(s,D)

− |Dc||D|

)
.

It is a weighted difference between the precisions P(s → c) and P(〈〉 → c). The
weight is defined as freq(s) to avoid the extraction of infrequent subgroups. In-
deed, finding very specific subgroups covering one positive element would result in
a perfect quality value but a useless pattern. WRAcc value ranges in [-0.25, 0.25]
in the case of a perfect balanced data set, i.e., containing 50% of positive elements.

We consider objective quality measures that are solely based on pattern sup-
port in databases (whole dataset, or restricted to a class). It enables a number of
optimizations. Using random draws makes it particularly difficult as each draw is
independent: we cannot benefit from the same data structures as classical exhaus-
tive pattern mining algorithms do (see, e.g., [4]).

4.6 Efficient Computation of Quality Scores

To improve the time efficiency of support computing, bitset representations have
been proposed. For instance, SPAM uses a bitset representation of a pattern when
computing an item- or set-extension at the end of a sequence [4]. In our case, we
consider that an element can be inserted anywhere. Therefore, we use a bitset
representation that is independent from the insertion position. Its main idea lies
in keeping all bitset representations of encountered itemsets in a hash table (mem-
oization), and then combining them to create the representation of the desired
sequence. The main idea of our strategy is given in Fig. 6. Assume we are looking
for the bitset representation of 〈{ab}, {c}〉. Let 〈{c}〉 be an already encountered
pattern (i.e., its representation is known) while 〈{ab}〉 was not. This can not be
handled by the SPAM technique as a new element has to be added before a known
sequence. The algorithm will first try to find the bitset representation of 〈{ab}〉. As
it does not exist yet, it will be generated and added to the memoization structure.
Then, position options for the next itemset are computed (Line 2 in Fig. 6). The
latter is then combined with a bitset representation of 〈{c}〉 using bitwise AND
(Line 4). The support of the generated sequence can then be computed.

5 Monte Carlo Tree Search for Sequences

We now propose an extension of SeqScout that we call MCTSExtent. It is a sig-
nificant evolution of SeqScout when looking towards a better trade-off between
exploration and exploitation of a sampling strategy over the search space. It is
based on the Monte Carlo Tree Search framework that is a founded evolution of
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Fig. 6: Bitset representation and support computing.

bandit-based methods [9]. Like for SeqScout, our idea here is to explore the search
space in a bottom-up way, contrary to classical search space exploration in pattern
discovery. Indeed, instead of beginning the exploration by selecting general pat-
terns, we start by isolating very specific patterns covering only few objects having
the target label, and we construct better ones by adding other interesting objects
of the database. In other terms, we directly explore groups of instances of the
database, i.e., extents with at least one positive element.

Fig. 7: Steps of Monte Carlo Tree Search, inspired by [9]
.

5.1 Background

Monte Carlo Tree Search is a method originally used in games to explore vast
search spaces following an exploration-exploitation trade-off. The idea is to se-
quentially sample the search space to get information about locations of promis-
ing areas (meaning good game configurations in the case of games), to guide the
search. At each iteration, the algorithm starts from the initial node, navigates
through already discovered nodes, until it finds an interesting one (SELECT).
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Then it computes a specialization of the selected node (EXPAND), samples the
search space from this expanded node (ROLLOUT) and gives back the informa-
tion about the quality of the sampled area (UPDATE). The search can be stopped
anytime. A schema of the four steps of MCTS is given in Fig. 7.

5.2 MCTSExtent Description

The pseudo-code of MCTSExtent is given in Algorithm 2. The main loop of the
algorithm runs as long as a computational budget is available (Lines 4-11) making
the algorithm anytime. Note that each node of the MCTS tree contains a list of
positive instances, in other words its extent, and a pattern covering them and only
them.

The first step is to SELECT a node (Lines 15-23), i.e, choosing the best node
in the tree following the exploration-exploitation trade-off w.r.t. UCB value. This
step helps to guide the search towards promising areas of the search space, having
good quality patterns, without ignoring that other non-explored parts can also
be interesting. Thus, at each iteration, the algorithm checks if the current node
is fully-expanded, according to Definition 10. If not, it is selected, and if yes, the
SELECT procedure continues.

Definition 10 (Fully-expanded Node) A fully-expanded node is a node which
has already been expanded in all possible ways. It means there are no positive
sequences to add to its extent to compute an unseen Longest Common Subsequence
(LCS).

Then, a new node is created with EXPAND (Lines 25-29) as follows:

– a new positive database object is added to the extent of the selected node;
– the Longest Common Subsequence (see Subsection 5.4) between this object

and the pattern of the selected node is computed;
– the extent of this LCS is then computed.

We need to perform this last step because the LCS can cover more objects of the
database than the union of the previous extent and the new positive object. It
enables to get one of the most specialized pattern covering at least selected node
objects and the new positive object. Notice that its computational cost is negligible
compared to support computation. Moreover, it creates a pattern having positive
elements: it can lead to the creation of a good quality pattern if it covers less
negative elements.

The next step is the ROLLOUT (Lines 31-38), where the node is generalized
the same way as explained in Subsection 4.2. Finally, the score of the ROLLOUT
is used to update the quality of the path followed to reach it: the expanded node,
the selected node, and all its parents until the root. This step can be seen as a
back-propagation of the result: the search space has been sampled, and we update
the quality of nodes of the tree to indicate if this area is interesting or not for the
next iterations.

Finally, once the time budget is reached, the algorithm returns the top-k
non-redundant elements, i.e., it performs the same redundancy filtering step as
SeqScout (see Subsection 4.3).



Anytime Mining of Sequential Discriminative Patterns in Labeled Sequences 15

Algorithm 2 MCTSExtent

1: function MctsExtent(budget)
2: π ← PriorityQueue()
3: create s0 empty root having all instances as children
4: while computational budget do
5: ssel ← Select(s0)
6: sexp, qualexp ← Expand(ssel)
7: sroll,∆← Rollout(sexp)
8: Update(sexp,∆)
9: π.add(sexp, qualexp)

10: π.add(sroll,∆)
11: end while
12: return π.topKNonRedundant()
13: end function
14:
15: function Select(s)
16: while s is not root do
17: if s is not fully-expanded then
18: return s
19: else
20: s← BestChild(s)
21: end if
22: end while
23: end function
24:
25: function Expand(s)
26: s+ ← randomly choose a positive instance not in s
27: sexp ← extent(LCS(s, s+))
28: return sexp, rewardsexp

29: end function
30:
31: function Rollout(s)
32: for item in each itemset in s do
33: if random > 0.5 then
34: s.remove(item)
35: end if
36: end for
37: return s, rewards
38: end function
39:
40: function Update(s,∆)
41: while s 6= s0 do

42: Q(s)← N(s)∗Q(s)+∆
N(s)+1

43: N(s)← N(s) + 1
44: end while
45: end function
46:
47: function BestChild(s)
48: return argmaxs′ in children of s UCB(s, s′)
49: end function
50:

5.3 Example

An example of MCTSExtent steps is given in Figure 9. First, the SELECT function
starts from the root node and it selects the best node to expand thanks to UCB.
Node containing Object 3 is not fully expanded, so it is selected. Then the EX-
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Fig. 8: MCTSExtent Principle.

PAND function first takes a random positive element, which is 2 in this case, and
adds it to the node. Then the LCS between the pattern of the selected node and
Object 2 is computed: the extent of the node is now {1,2,3}. From this node, we
can now make a ROLLOUT and the pattern is generalized. Finally, nodes from
the path are updated with the reward of the ROLLOUT to provide feedback about
the quality of this area of the search space.

5.4 Computing a Longest Common Subsequence

MCTSExtent needs the classical concept of Longest Common Subsequence (LCS).
Hirschberg et al. have described a dynamic programming algorithm that solves this
problem in polynomial time for sequences of items [21]. However, it does not work
on sequences of itemsets. Vlachos et al. [37] introduced an algorithm for sequences
of multidimensional real-values items, having parameters to enforce constraints on
the difference between real values. This is a different problem. Egho et al. have
proposed an algorithm to compute the number of distinct common subsequences
between two sequences of itemsets [17]. Such an algorithm does not generate the
needed longest common subsequence.

Theorem 2 Let two sequences of itemsets S1 and S2 of size n and m. We denote
S1
≤i the prefix of S1, i.e, S1

≤i = 〈X1...Xi〉. Let LCS(S1, S2) be the set of the longest
common subsequences of S1 and S2, or more formally:

LCS(S1, S2) = argmax
s∈CS(S1,S2)

length(s)

with length(s) the length of s, and CS(S1, S2) the set of all common subsequences
between S1 and S2.
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Fig. 9: Illustration of MCTSExtent.

We then have:
LCS(S1

≤i, S
2
≤j) = argmax

s∈χ
length(s)

with

χ =
⋃

LCS(S1

≤i−1, S
2
≤j−1) ∪ (X1

i ∩X2
j ) (CaseA)

LCS(S1
≤i−1, S

2
≤j) (CaseB)

LCS(S1
≤i, S

2
≤j−1) (CaseC)


Note that it generalizes the theorem of LCS for sequences of items from [21],

where X1
i ∩X2

j is an itemset of size 1. If last items are equals, LCS(S1
≤i−1, S

2
≤j)

and LCS(S1
≤i, S

2
≤j−1) are less or equally long than LCS(S1

≤i−1, S
2
≤j−1)) + 1, so

it is not necessary to look at it to compute the LCS.
To prove this theorem, we will need the following lemma.

Lemma 1 ∀s1, s2 ∈ S2, s1 v S1, s2 v S2:

LCS(s1, s2) ∈ CS(S1, S2)

This comes from the fact that LCS(s1, s2) v s1 and LCS(s1, s2) v s2, so by
transitivity, LCS(s1, s2) v S1 and LCS(s1, s2) v S2.

Proof Reductio ad absurdum: Let us assume we have an LCS which is not in a
case of this theorem. We are not in Case B, a LCS(S1

≤i−1, S
2
≤j). The LCS can then

finish with an item of X1
i . Let us assume this is the case for this demonstration.
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Symmetrically, it can finish with an item of X2
j for Case C.

The considered LCS then finishes with an itemset composed of elements from
X1
i ∪X2

j (it must be common, by definition). As it must be the longest, the last

itemset of this LCS is X = X1
i ∩X2

j . We then have a LCS of the form Y +X, with

Y /∈ LCS(S1
≤i−1, S

2
≤j−1), because we cannot be in the Case A. There is then only

two possibilities for Y : whether Y is not common to S1 and S2, or Y is smaller
than LCS(S1

≤i−1, S
2
≤j−1). In both cases, it violates the definition of LCS. Thus,

we showed by contradiction that:

LCS(S1
≤i, S

2
≤j) ⊆ A ∪B ∪ C. (2)

Knowing that S1
≤i−1 v S1

≤i and given Lemma 1, we can derive that

LCS(S1
≤i−1, S

2
≤j) ∈ CS(S1

≤i, S
2
≤j) (3)

Symmetrically,

LCS(S1
≤i, S

2
≤j−1) ∈ CS(S1

≤i, S
2
≤j) (4)

LCS(S1
≤i−1, S

2
≤j−1) ∈ CS(S1

≤i, S
2
≤j) (5)

X1
i ∩X2

j ∈ CS(S1
≤i, S

2
≤j) (6)

We can deduce from (3), (4), (5) and (6) that:

A ∪B ∪ C ⊆ CS(S1
≤i, S

2
≤j) (7)

From (2) and (7), we can conclude that the theorem is proven. ut

The pseudo-code of the dynamic programming procedure computing a LCS
of two sequences of itemsets is presented in Algorithm 3. First the matrix C is
filled with 0. Then, we use a bottom-up approach to fill the matrix with correct
values, using the previous theorem. Note that a i, j cell contains the length of
LCS(S1

≤i−1, S
2
≤j−1). Once the computation of the length of the LCS is done, a

backtracking procedure is launched, to construct the solution (Lines 1-21). We
begin by looking at the “bottom-right” of the matrix (Line 32). We then check if
there is an intersection between itemsets i and j (Line 5). If this is the case, we
check if the sub-problem at rank i− 1 or j− 1 have the same LCS (those cases are
here to check what path the LCS procedure took). Else, we add the intersection
to the LCS, and we jump to the sub-problem of size i−1, j−1. If the intersection
is null, we go to the sub-problem i− 1 or j − 1 having the maximum LCS (Lines
17-21). The procedure stops if we reach a sub-problem of 0 (Lines 2-3).

An example is given in Figure 10. The matrix is filled from the top-left cell
to the bottom-right. At each step, following the theorem, we take the maximum
value between the left cell, the upper cell, and the cell in the upper-left diagonal
plus the length of the intersection of current itemsets.

Complexity Let l1 and l2 be the length of S1 and S2. Let Xmax be the largest
itemset present in the dataset. The computing of each cell of the matrix requires to
look at 3 cells and to compute the intersection of two itemsets. This operation has a
complexity of O(3+ |Xmax|), so the time complexity of LCS is O(l1 ∗ l2 ∗ |Xmax|).
The worst case of the backtracking procedure is O(l1 + l2), which is negligible
comparing to the complexity of LCS. The space complexity is O(l1 ∗ l2).
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Fig. 10: An example of the dynamic programming for LCS

Algorithm 3 LCS

1: function backtrack LCS(C, S1, S2, i, j, lcs)
2: if i = 0 or j = 0 then
3: return
4: end if
5: inter ← S1

i ∩ S2
j

6: if inter 6= ∅ then
7: if C(i− 1, j) = C(i, j) then
8: return backtrack LCS(C, S1, S2, i− 1, j, lcs)
9: end if

10: if C(i, j − 1) = C(i, j) then
11: return backtrack LCS(C, S1, S2, i, j − 1, lcs)
12: else
13: lcs.insert(0, inter)
14: return backtrack LCS(C, S1, S2, i− 1, j − 1, lcs)
15: end if
16: else
17: if C(i, j − 1) > C(i− 1, j) then
18: return backtrack LCS(C, S1, S2, i, j − 1, lcs)
19: else
20: return backtrack LCS(C, S1, S2, i− 1, j, lcs)
21: end if
22: end if
23: end function
24:
25: function LCS(budget)
26: Initialize C with dimensions size(S1) ∗ size(S2) filled with 0’s
27: for i=1 to size(S1) + 1 do
28: for j=1 to size(S2) + 1 do
29: inter ← S1

i ∩ S2
j

30: C(i, j)← max(C(i− 1, j − 1) + length(inter), C(i− 1, j), C(i, j − 1))
31: end for
32: end for
33: final lcs← list()
34: backtrack LCS(C, S1, S2, length(S1), length(S2), final lcs)
35: return final lcs
36: end function

6 Experiments

Let us now discuss an extensive empirical evaluation of SeqScout and MCTSextent.
First, we present our evaluation protocol in terms of: (1) the datasets used (see
Section 6.1), including our original dataset on the popular “Rocket League” video
game (see Section 6.2), and (2) the baseline algorithms we use for comparison (see
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Section 6.3). We then report the results of our evaluation using multiple datasets
in Sections 6.5-6.14, and provide qualitative assessment of the performance of our
proposed algorithms on Starcraft II and Rocket League datasets in Sections 6.15
and 6.16, respectively. All the experiments were performed on a machine equipped
with Intel Core i7-8750H CPU and 16GB RAM. Algorithms mentioned hereafter
are implemented in Python 3.6. The source code of all algorithms and experiments
are available online4.

6.1 Datasets

We used several popular benchmark datasets to evaluate the behavior of our al-
gorithms, namely promoters [14], context [14], splice [14] and skating [29].

We also apply our algorithms on the real life dataset sc2 that has been used in
[8]. It was extracted from Starcraft II games. Starcraft II is a Real Time Strategy
(RTS) game that is well known within the AI community. Recently, it has attracted
more attention after the publication of the Google DeepMind AlphaStar results,
an AI defeating human players [11]. The goal of each Starcraft match is to destroy
units and buildings of the opponent. Three different factions exist, each with its
own features (i.e., combat units, buildings, strategies). Roughly speaking, there
is a duality between economy and military forces. Investing in military forces is
important to defend or attack an opponent, while building economy is important
to have more resources to invest into military forces. Sequences in sc2 correspond
to the buildings constructed during a game, and the class corresponds to the
winner’s faction. Once the target class (i.e., the winning faction) has been chosen,
our algorithm will look for patterns of construction that characterize the victory
of this faction.

We also use jmlr, a dataset consisting of abstracts of articles published in the
Journal of Machine Learning Research [36]. In this dataset, we consider sequences
of words. As class labels, we used the occurrence of the word “svm” in a sequence,
i.e., we label by “+” sequences of words containing the word “svm”, removing
words after it, and “-” for others.

Finally, we propose an original dataset rl for Rocket League5 game analytics.
Notice that e-sport will be considered for the first time at the 2021 Olympic
Games in Tokyo and a Rocket League tournament with nation-based teams will
be organized at this occasion.

Table 3 summarizes the statistics of the used datasets.

6.2 The Rocket League Use Case

Rocket League is a video game where each player controls a “rocket-powered”
car on a football field. The goal is then to score more than the adverse team by
hitting a ball into their goal. Each of the two teams can be composed of 1, 2
or 3 players. The game is very competitive, with international competitions and
professional players. Each player is ranked using a score increasing with victories
and decreasing with defeats.

4 https://github.com/Romathonat/MCTSExtent
5 https://www.rocketleague.com/

https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Promoter+Gene+Sequences)
https://archive.ics.uci.edu/ml/datasets/Protein+Data
https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+Sequences)
https://starcraft2.com
https://github.com/Romathonat/MCTSExtent
https://www.rocketleague.com/
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Table 3: Datasets

Dataset |D| |I| lmax Search Space Size

promoters [14] 106 4 57 1.59 ∗ 1041
context [14] 240 47 123 5.25 ∗ 10224
splice [14] 3,190 8 60 3.29 ∗ 1062
sc2 [8] 5,000 30 30 6.48 ∗ 1048

skating [29] 530 41 120 1.16 ∗ 10212
jmlr [36] 788 3,836 228 1.84 ∗ 10853

rl 148 16 157 2.77 ∗ 10212

One of the particularity of the game is the lack of semantics of the player
actions during the game. Indeed, players control their car by using very basic
instructions like “accelerate”, “turn left”, “jump”, “slide”, and these sequences
of instructions can create special “skills”. These skills are easily recognizable by
spectators or analysts, but the game (we mean its computer program) cannot
currently recognize them. Note that such a problem does not occur for a game like
Starcraft II where, for instance, construction of a certain building implies a single
user’s action, which is, therefore, associated to an explicit semantics (however
discovery of players strategies is similar). It is also important to note here that
the same player will not generate exactly the same sequence of controls two times
for the same skill. Indeed, positions of the ball and player’s car vary and it is
impossible for a human to be perfectly regular on a skill, her timing varies, and
there are a lot of micro-adjustments to the trajectory of the car. This is illustrated
in Fig. 1 and Fig. 2. Each sequence represents an instance of the same shot (the
”ceiling shot”), performed by the same player. Clearly, sequences from the same
class can be very different, making the discovery of interesting patterns difficult.
In other words, there is a lot of noise in collected data. However, sequences of
controls pressed by the player obviously hide patterns related to particular skills
(see pattern p in Fig. 3 and Fig. 4 for example), and that is exactly what we want
to discover here.

Extracting patterns from sequences of input is interesting to better understand
what players are performing, e.g., in terms of skills/figures, for example in the
process of learning from examples. Those patterns could also be used as features
for a classification system to automatically reward players who perform skills, or
to improve the score of the player as some skills are difficult to perform.

To generate the dataset, we implemented a key logger to get inputs of the
controller of the player. We then asked her to perform some skills among 6 different
ones. After doing a skill, we labelled the generated sequence by the selected skill.
The goal is then to extract pattern discriminative of a target skill. Note that here
we are in the case of sequences of itemsets as the player can press different controls
at the same time. For example, she can use “boost” and “jump” to make her car
fly in the air. In our study, we use a controller with sixteen buttons.

The schema given in Fig. 11 illustrates how a sequence is constructed for a
controller with two buttons a and b. The black lines correspond to the time the
buttons are pressed. We use three filling colors to depict three possible combina-
tions of buttons pressed, namely: (1) blue, when button a is pressed, (2) yellow,
when button b is pressed, and (3) red, when a and b are pressed together. The
corresponding itemsets are given underneath. The dataset is available online with
the rest of our work.
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Fig. 11: A sequence generated by two buttons

6.3 Baselines

To the best of our knowledge, we are the first to address the problem of discrimina-
tive pattern mining in sequences of itemsets, and therefore, there are not available
algorithms that can be used directly as baselines for the evaluation. However,
there are several algorithms for processing sequences of items. Therefore, to eval-
uate SeqScout and MCTSExtent, we have modified two algorithms, namely misère

[16] and BeamSearch [24], such that they process sequences of itemsets.

First, we implemented an extension of misère [16], the original version of which
was handling sequences of events only but not sequences of itemsets. Second, we
implemented BeamSearch as a sequence-oriented version of a beam search algo-
rithm. To deal with sequences of itemsets, we consider item-extensions and set-
extensions at each given depth. Moreover, for the sake of non-redundancy in the
returned patterns, we modify its best-first search nature so that the expanded
nodes get diverse as defined in [24]. Moreover, to ensure fair comparisons, we re-
moved the post-processing optimization of SeqScout that is studied more precisely
in Section 6.14.

6.4 Settings

If not stated otherwise, we use the following settings. Each algorithm has been
launched 5 times, and the reported results are averaged over these runs. For
BeamSearch, we empirically set the parameter width = 50. For all algorithms, we
set θ = 0.5, time budget =∞, iteration num = 10, 000, and top k = 5. Note that
instead of giving a fixed time budget for running an algorithm on each dataset, we
chose to limit the number of iterations iteration num, one iteration corresponding
to a single computation of the quality measure. Indeed, this computation is the
most time consuming one as such objective measures need to compute the ex-
tent w.r.t. the whole dataset. Therefore, using the same time budget on different
datasets would not provide a fair comparison: having 50,000 iterations on a small
dataset versus 50 on a larger one with the same time budget is not relevant.
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6.5 Performance Evaluation using WRAcc

To assess the performance of the algorithms, let us first use the mean of theWRAcc
of the top-k non redundant patterns computed with misère, BeamSearch, SeqScout
and MCTSExtent. Fig. 12 provides absolute results. MCTSExtent is clearly the best
solution on each dataset. Interestinly, we can note that BeamSearch is sometimes
inefficient (see on splice).

Fig. 12: Mean WRAcc of top-5 best patterns (10K iterations)

We can clearly see that MCTSExtent and SeqScout perform particularly well
on splice compared to BeamSearch. Overall, MCTSExtent provides better results.

To achieve a comprehensive evaluation, we fixed a relatively small time budget
of 60 seconds to compare the performances of algorithms, i.e., the limiting factor
here is not the number of iterations but the given time budget. Results can be
seen in Fig. 13. MCTSExtent generally outperforms other algorithms in terms of
average WRAcc. We can also note that similarly to misère, SeqScout shows a
significant decrease of performance on jmlr. Indeed, it seems that the strategy of
taking a sequence and generalizing it is not efficient in a short time budget on
this dataset. In contrast, MCTSExtent guides the search toward promising patterns
more quickly, resulting in better performances.
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Fig. 13: Mean WRAcc of top-5 best patterns (time budget: 60s)

6.6 Quality w.r.t. Number of Iterations

We show the result quality in terms of WRAcc over the number of iterations. Fig.
14-20 depict the results for the top-5 non-redundant patterns on each dataset.
Note that for the same data, the results may vary from run to run, due to the
random nature of misère and SeqScout. It explains some fluctuations of the qual-
ity. Nevertheless, for each iteration num setting, MCTSExtent has shown better
results.

6.7 Using other Quality Measures

To empirically illustrate the measure agnostic characteristic of SeqScout and
MCTSExtent, we have used other quality measures, namely F1-score and Informedness.
The results are shown in Table 4. Our algorithms generally give better results.

6.8 Performance Study under Varying θ

We also evaluate performances of the algorithms when varying the value of the
similarity threshold θ. Fig. 21 shows the performance on the dataset context
(results are similar on other datasets). We did not include the results for θ = 0
because it would mean finding patterns with totally disjoint extents. It results
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Fig. 14: Average WRAcc for top-5
patterns w.r.t. iterations (promoters)

Fig. 15: Average WRAcc for top-5
patterns w.r.t. iterations (context)

Fig. 16: Average WRAcc for top-5
patterns w.r.t. iterations (splice)

Fig. 17: Average WRAcc for top-5
patterns w.r.t. iterations (sc2)

Fig. 18: Average WRAcc for top-5
patterns w.r.t. iterations (skating)

Fig. 19: Average WRAcc for top-5
patterns w.r.t. iterations (jmlr)

Fig. 20: Average WRAcc for top-5
patterns w.r.t. iterations (rl)
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Table 4: Mean values of measures for top-5 patterns.

Dataset
Informedness F1

Algorithm misere BeamS. SeqScout MCTSExtent misere BeamS. SeqScout MCTSExtent

promoters 0.081 0.089 0.088 0.144 0.600 0.545 0.565 0.636
context 0.465 0.462 0.470 0.472 0.581 0.569 0.586 0.586
splice 0.373 0.041 0.392 0.397 0.428 0.086 0.452 0.451
sc2 0.013 0.006 0.011 0.015 0.531 0.533 0.541 0.550

skating 0.419 0.389 0.423 0.423 0.391 0.402 0.393 0.402
jmlr 0.439 0.545 0.449 0.545 0.330 0.402 0.337 0.421
rl 0.697 0.689 0.758 0.779 0.697 0.726 0.739 0.733

in finding a number of patterns lesser than k for all algorithms, such that the
mean would be misleading. We can see from the plot that relative performances
of algorithms are approximately the same for all θ values.

6.9 Performance Study under Varying k (top-k)

We investigate the performance of the search for top-k patterns when changing
the k parameter. Fig. 22 shows the results when considering the sc2 dataset (the
behaviour is similar on other datasets). MCTSExtent gives better results. Note that
the mean WRAcc decreases for all algorithms, as increasing k leads to the selection
of lower quality patterns.

6.10 Quality vs. Search Space Size

We evaluate the average WRAcc of top-5 patterns w.r.t. the maximum length of
sequences (see Fig. 24). To do so, we have truncated the dataset to control the
maximum lengths of sequences. We demonstrate it on the rl dataset. The plot
shows that MCTSExtent gives generally better mean WRAcc values whatever the
search space size is. We also note a general increase of quality when increasing
the search space size. Indeed, some patterns that are bad for a smaller maximum
length can appear in positive elements for larger maximum lengths, resulting in
an increasing quality of patterns. Note that the opposite phenomenon can also
appear.

6.11 Sequence Lengths

The pattern lengths on all datasets are reported in Fig. 23. Let us consider the
splice dataset: BeamSearch gives short patterns (max 8), which is significantly less
than MCTSExtent, SeqScout and misère. This may explain why the BeamSearch

result quality is bad on this dataset (see Fig. 12). One hypothesis could be that it
does not have enough iterations to go deep enough in the search space. Another
hypothesis is that BeamSearch cannot find good patterns having bad parents w.r.t.
WRAcc: its good patterns are short ones. Another interesting observation is that
on jmlr, the length of sequences is 1 or 2. This means that interesting patterns
of this dataset are short ones, and are in fact itemsets: that is why BeamSearch
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Fig. 21: Mean WRAcc of top-5
patterns vs. similarity
threshold θ (context)

Fig. 22: Mean WRAcc of top-k
patterns vs. k (sc2)

Fig. 23: Length of top-5 best patterns - 10K iterations

performs very well on it. In fact, using a subgroup discovery algorithm exploiting
itemset descriptions should give similar results.

6.12 Non Diversified BeamSearch

Leeuwen et Al. [24] proposed to filter redundant patterns during the beam-search

procedure. We wanted to check if this strategy remains efficient in the case of
sequences of itemsets. In fact, the main issue with the classical BeamSearch ap-
proach is that when filtering is done in post-processing, we can get less than k
patterns, depending on the configuration. In fact, a classical BeamSearch is not
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Fig. 24: Mean WRAcc w.r.t. the
maximum length of sequences on rl.

Fig. 25: Additional cost of local optima
search

BeamSearch Diversified Non-Diversified
promoters 0.075 X

context 0.073 0.073
splice 0.002 0.002
sc2 0.116 0.119

skating 0.043 0.044
jmlr 0.036 0.036

rl 0.092 0.099

Table 5: WRAcc for top-5 patterns on diversified vs. non-diversified BeamSearch

relevant to solve our problem. A comparison of the two BeamSearch strategies is
given in Table 5. We added a “X” when the number of found patterns is lower
than k.

6.13 Bitset vs. Integer Set Representation

We investigate the usefulness of bitset representation by comparing it against an
integer set representation where each item is represented by an integer. Therefore,
we have compared the number of iterations SeqScout made for a fixed time budget
on each dataset. We set time budget = 10 seconds. The results are summarized in
Table 6. We can see that the bitset representation tends to give a performance gain
for datasets with smaller search space size upper bound, but leads to a decrease
of performances for the majority of the datasets. For example, context, skating
and jmlr have sequences of large lengths leading to large bitset representations.
Those bitsets are then split into different parts to be processed by the CPU. If
the number of splits is too large, the bitset representation becomes inefficient, and
using a classical integer set representation is a better option.
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Table 6: Number of iterations in Bitset vs. Integer set representation

Dataset Integer Set Bitset Variation(%)
promoters 7,185 8,858 24

context 4,651 2,667 -47
splice 289 254 -12
sc2 943 605 -36

skating 4,001 1,283 -68
jmlr 704 31 -95

rl 8839 7799 -12

6.14 Local Optima Search

The local optima search uses more iterations. This over cost depends on the
dataset. In Fig. 25, we plot the ratio of the additional iterations necessary for
local optima search w.r.t. the number of iterations given in the main search (also
referred to as the cost). The more iterations we have, the more negligible the ra-
tio is. However, note that we did not plot the additional cost of jmlr. Indeed,
in the particular case of text data, the number of possible items is large, leading
to a very long local optima search (110,000 iterations for 5 patterns in our ex-
periments). Consequently, we note that the local optima search may not be the
relevant choice with this kind of dataset.

We also added it as a post-processing step to each of our algorithm to compare
general quality increase depicted in Fig. 26-29. As we can see, the more initial
iterations are given, the better the mean quality is, and the lesser the local optima
search is interesting. This emphasizes on the fact that MCTSExtent performs a good
exploration of the search space. Note that on some dataset, like promoters, this
local search generally leads to an important quality increase.

6.15 Qualitative Evaluation on sc2

As MCTSExtent clearly gives the best results, let us now discuss the quality of
a discovered pattern extracted from the dataset sc2. The question that we aim
at answering can be formulated as follows. Given a faction, what are the best
strategies to win? In other words, MCTSExtent will look for patterns of construction
which are characteristic to the victory of this faction.

For example, let us consider the “Terran” faction. One of the best computed
patterns is: 〈{Hatchery(Z)}, {Supply(T )}, {Factory(T )}, {Supply(T )}〉. In this
example, we use the colors as indicators of fractions, i.e., blue for “Terran” and
purple for “Zerg”. We can see that the “Terran” player is investing in military
units ({Supply(T )} and {Factory(T )}). The “Zerg” player chooses to invest in
its economy by creating a {Hatchery(T )}: she fosters the so-called late game,
sacrificing its military forces in the so-called early game. In such a scenario, the
“Terran” strikes in early game, knowing its military advantage, and she tends
to win the match. This example shows that our algorithm can provide relevant
patterns that may be useful, e.g., to identify unbalanced strategies [8].
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Fig. 26: Added value of local
optima search for 1,000 iterations

Fig. 27: Added value of local optima
search for 3,000 iterations

Fig. 28: Added value of local
optima search for 6,000 iterations

Fig. 29: Added value of local optima
search for 10,000 iterations

6.16 Qualitative Evaluation on rl

Looking at extracted patterns for the original rl dataset can also validate the
relevance of our algorithm. We recall that each sequence of the dataset is composed
of inputs of the player, and the class to the name of the skill she performed.
Sequence lengths are between 20 and 150. Moreover, as there is a lot of noise
in the data due to human behaviour (micro-adjustments of trajectory, difficulty
to replay exactly the same sequence with same timing), finding discriminative
patterns of a skill is challenging.
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Fig. 30: Decomposition of the “slide shoot”

Interestingly, MCTSExtent can cope with this problem. In the experiment, we
selected one target skill at a time. First, we focused on what we call the “slide
shoot”. The sequence of movements of a car is described in Fig. 30. The top-3
patterns obtained are:

1. 〈{boost}, {slide}, {right boost}, {boost}〉 (WRAcc = 0.102),
2. 〈{boost}, {slide}, {left boost}, {boost}〉 (WRAcc = 0.101),
3. 〈{boost}, {left}, {slide}, {boost}〉 (WRAcc = 0.098).

This example shows the interest of looking at a pattern set. Indeed, this skill
can be executed in two ways: by coming from the left part of the ball and sliding
to the right, or coming from the right and sliding to the left. These top-3 patterns
reflect this: the first one corresponds indeed to a right slide while the second one
corresponds to a left slide. Note that we removed the item “accelerate” which is
non informative because Rocket League players use it nearly all the time: it is
present in 79.3% of itemsets.
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Fig. 31: Decomposition of the “musty flick”

Another popular skill when playing Rocket League is called the musty flick.
The sequence of movements of the car is described in Fig. 31. The top-3 patterns
obtained by MCTSExtent are:

1. 〈{boost}, {boost}, {up jump}, {jump down}〉 (WRAcc = 0.131),
2. 〈{boost}, {up}, {up jump}, {jump down}〉 (WRAcc = 0.131),
3. 〈{up jump}, {down}〉 (WRAcc = 0.125).

As we can see, those sequences, particularly the first one, correspond indeed to
the performed skill. Note that commands are inverted on the vertical axis: pressing
“up” makes the car orientate to the ground.

We can also get other useful informations from those patterns. We can see that
the second pattern is interesting because it represents a part of the skill, but is
not sufficient to reproduce it. However, it is discriminative of it in this dataset,
because this sequence of inputs is present only in this skill, leading to the well-
known conclusion that data quality and variety is a top priority to extract useful
knowledge.

Moreover, one may notice that the first and the second patterns are quite
similar. However, the non-redundancy constraint garantees us that the extents of
each of the found patterns are not too much overlapping. We can deduce that
the player tends to initiate the down orientation of the car at the same time that
she jumps more often than she does it before jumping. Those examples show that
having a set of patterns is more relevant than using a single one. For the same
skill, there are variations that can be captured.

7 Conclusion

We have discussed the problem of finding dicriminative patterns in labeled se-
quences of itemsets. We have presented two algorithms SeqScout and MCTSExtent
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to discover relevant subgroups in sequences of itemsets. Though we are not aware
of available algorithms to solve the same problem, we have implemented the adap-
tations of two other algorithms, namely misère and BeamSearch, such that they
could be applied for the case of sequences of itemsets. This has been useful to
support our empirical evaluation.

Furthermore, to implement MCTSExtent, we have also introduced a new algo-
rithm to compute a Longest Common Subsequence between two sequences. Our
experiments have shown that MCTSExtent outperforms all other algorithms, with-
out the need for additional parameter tuning as needed in the case of Beam Search.

Moreover, we have created a new dataset, containing sequences of inputs of a
player of Rocket League video game, labeled with particular skills she performed.
We have used this dataset in our evaluation procedure, together with other various
benchmark datasets.

Our future work will aim at exploring the application of MCTSExtent to other
pattern languages and contexts. Indeed, the method of MCTSExtent can be easily
adapted to other pattern languages, by redefining the ”rollout” step (or general-
ization) and the ”Common pattern” step, i.e., the Longest Common Subsequence
here. Finally, in the context of game analytics, we will focus on the classification
of players’ actions, which are often recognizable only by human game experts, and
on grasping a better understanding of the system in general by extracting and
interpreting valuable patterns [27].
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