Xia-Qing Shi 
  
Giordano Fausti 
  
Hugues Chaté 
  
Cesare Nardini 
  
Alexandre Solon 
  
Self-Organized Critical Coexistence Phase in Repulsive Active Particles

We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion. We show that the resulting dense phase contains gas bubbles distributed algebraically up to a typically large cutoff scale. At large enough system size and/or global density, all the gas may be contained inside the bubbles, at which point the system is microphase-separated with a finite cut-off bubble scale. We observe that the ordering is anomalous, with different dynamics for the coarsening of the dense phase and of the gas bubbles. This phenomenology is reproduced by a "reduced bubble model" that implements the basic idea of reverse Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)].

Self-propelled particles interacting solely with steric repulsion are well known to be able to spontaneously separate into a macroscopic dense cluster and a residual gas, in spite of the absence of explicit attraction forces. This motility-induced phase separation (MIPS) [START_REF] Cates | Motility-Induced Phase Separation[END_REF] of active particles has become a cornerstone of the physics of dry active matter (in which the fluid surrounding particles is neglected). As such, it has driven many theoretical works [START_REF] Tailleur | Statistical mechanics of interacting run-and-tumble bacteria[END_REF][START_REF] Stenhammar | Continuum theory of phase separation kinetics for active brownian particles[END_REF][START_REF] Wittkowski | Scalar phi4 field theory for active-particle phase separation[END_REF][START_REF] Solon | Pressure and Phase Equilibria in Interacting Active Brownian Spheres[END_REF][START_REF] Solon | Generalized thermodynamics of phase equilibria in scalar active matter[END_REF][START_REF] Tjhung | Cluster phases and bubbly phase separation in active fluids: Reversal of the ostwald process[END_REF] as well as countless numerical studies (see, e.g. [START_REF] Fily | Athermal phase separation of self-propelled particles with no alignment[END_REF][START_REF] Redner | Structure and dynamics of a phase-separating active colloidal fluid[END_REF][START_REF] Speck | Effective Cahn-Hilliard equation for the phase separation of active Brownian particles[END_REF][START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF][START_REF] Digregorio | Full phase diagram of active Brownian disks: From melting to motilityinduced phase separation[END_REF][START_REF] Klamser | Thermodynamic phases in two-dimensional active matter[END_REF][START_REF] Mandal | Motilityinduced temperature difference in coexisting phases[END_REF][START_REF] Caprini | Spontaneous velocity alignment in motility-induced phase separation[END_REF] to name a few prominent ones). The motility reduction resulting from persistent collisions, which leads to MIPS, is a generic ingredient encountered both in living and synthetic active matter [START_REF] Liu | Self-Driven Phase Transitions Drive Myxococcus xanthus Fruiting Body Formation[END_REF][START_REF] Buttinoni | Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles[END_REF][START_REF] Geyer | Freezing a flock: Motility-induced phase separation in polar active liquids[END_REF][START_REF] Van Der Linden | Interrupted motility induced phase separation in aligning active colloids[END_REF].

Despite its purely non-equilibrium origin, MIPS was initially described as a conventional phase separation between two homogeneous macroscopic phases. It was first predicted in models of quorum-sensing particles [START_REF] Tailleur | Statistical mechanics of interacting run-and-tumble bacteria[END_REF] where particle speed decreases with the local density, without two-body interactions. In this case, equilibrium-like thermodynamics can be constructed to account quantitatively for phase coexistence [START_REF] Solon | Generalized thermodynamics of motilityinduced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF]. For systems of repulsive disks, attempts were made to model the speed reduction due to collisions by a quorum-sensing interaction [START_REF] Stenhammar | Continuum theory of phase separation kinetics for active brownian particles[END_REF][START_REF] Fily | Athermal phase separation of self-propelled particles with no alignment[END_REF][START_REF] Speck | Effective Cahn-Hilliard equation for the phase separation of active Brownian particles[END_REF], but the results are not satisfactory, due to fundamental differences between the two cases [START_REF] Solon | Pressure and Phase Equilibria in Interacting Active Brownian Spheres[END_REF][START_REF] Solon | Pressure is not a state function for generic active fluids[END_REF].

There is indeed mounting evidence that more complex physics is at play in systems of repulsive disks. In particular, the surface tension between the dense phase and the gas, defined via the Laplace law, has been measured to be negative [START_REF] Solon | Generalized thermodynamics of motilityinduced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF][START_REF] Bialké | Negative interfacial tension in phase-separated active brownian particles[END_REF][START_REF] Patch | Curvature-dependent tension and tangential flows at the interface of motility-induced phases[END_REF], triggering a spate of controversy [24]. This was rationalized at field theoretical level by including terms that break detailed balance in the classical theory for equilibrium liquid-gas phase separation. In this active Model B+ (AMB+), surface tension can become negative for some parameter values, in which case Ostwald ripening is reversed for vapor bubbles while still remaining normal for liquid droplets. This means that small vapor bubbles, contrary to the standard scenario, grow at the expense of larger ones due to a diffusion flux.

When this happens, simulations of AMB+ lead to either a bubbly fluid interpreted as microphase separation, or to the coexistence of a dense phase populated of bubbles with an outer gas [START_REF] Tjhung | Cluster phases and bubbly phase separation in active fluids: Reversal of the ostwald process[END_REF]. There is in fact incidental evidence for such a bubbly liquid at particle level [START_REF] Redner | Structure and dynamics of a phase-separating active colloidal fluid[END_REF][START_REF] Stenhammar | Phase behaviour of active Brownian particles: the role of dimensionality[END_REF][START_REF] Digregorio | Full phase diagram of active Brownian disks: From melting to motilityinduced phase separation[END_REF][START_REF] Solon | Generalized thermodynamics of motilityinduced phase separation: phase equilibria, Laplace pressure, and change of ensembles[END_REF][START_REF] Bialké | Negative interfacial tension in phase-separated active brownian particles[END_REF], but it has not yet been studied per se. Very recently, Caporusso et al [START_REF] Caporusso | Micro and macro motilityinduced phase separation in a two-dimensional active brownian particle system[END_REF] have shown more clearly that in systems with hard-core interactions, the dense phase is made of hexatic subdomains and interstitial gas regions.

In this Letter we show, within two standard particle models displaying MIPS, that not only the dense phase is endowed with bubbles, but also that these are distributed algebraically up to some cutoff scale that we observe to grow with system size. Finite-size scaling based on this observation suggests that, as system size increases, more and more of the gas is contained in bubbles. At large densities, we are able to observe the vanishing of the macroscopic gas reservoir, and the system is then microphase-separated with bubbles of all sizes up to a maximal bubble size that depends on the average density. Moreover, the coarsening of bubbles is anomalous with the typical length scale growing as t 0.22 . We elucidate the basic mechanisms at play, and show, within a reduced model implementing reversed Ostwald ripening for gas bubbles, that they indeed lead to a self-organized critical dynamics.

Self-organized critical phase coexistence. We first consider the paradigmatic active brownian particles (ABPs) introduced in [START_REF] Fily | Athermal phase separation of self-propelled particles with no alignment[END_REF]. Self-propelled by a force of constant magnitude F 0 along its internal polarity u i = (cos θ i , sin θ i ), particle i evolves according to the overdamped Langevin equations governing its position r i and polar angle θ i :

ṙi = µ i (F 0 u i + F i ) + η i ; θi = η i (1) 
where F i =j =i ∇V (r ir j ) is the force exerted on particle i by the other particles. We choose the pair potential to be a short-range harmonic repulsion repulsive strength and σ = 1 the interaction radius. In contrast to previous studies, we allow the mobility tensor µ i and the translational noise η i to be anisotropic, as expected generically for active particles:

V (r) = k 2 (σ -r) 2 if
µ i = µ u i u i + µ ⊥ (I -u i u i ), η i = 2τ µ ξ i u i + √ 2τ µ ⊥ ξ ⊥ i (u i × z)
, and η i = √ 2τ µ θ ξ θ i with τ a parameter controlling the noise strength, z the unit vector perpendicular to the plane of motion, and the ξ i 's Gaussian white noises with unit variance.

All simulations below are of large two-dimensional domains with periodic boundary conditions. Numerical details are given in [26]. At phase coexistence, we observe, inside the macroscopic dense domain, persistent bubbles with a range of sizes, surrounded by a liquid. Bubbles are more prominent when the mobility is anisotropic [27]. Typical snapshots for µ = 4µ ⊥ and µ θ = 6µ ⊥ are shown in Fig. 1(a,b) for systems only differing by their size. Clearly, doubling system size increases the size of the bubbles. Fig. 1(c) shows, at different system sizes, n(a), the average number of bubbles of area a, normalized by S , the total area of the liquid in which bubbles live. The distributions collapse on an increasing range, span several orders of magnitude, and decay approximately as a power law n(a) ∼ a -α with α ≈ 1.75 terminated by a cutoff that increases with system size.

The ABP simulations reported above only show a rather short scaling range. Numerically, the main limitation is not so much system size than the huge times needed to obtain clean averages [28]. We thus implemented an active lattice gas [START_REF] Thompson | Lattice models of nonequilibrium bacterial dynamics[END_REF][START_REF] Soto | Self-assembly of catalytically active colloidal molecules: Tailoring activity through surface chemistry[END_REF][START_REF] Sepúlveda | Wetting transitions displayed by persistent active particles[END_REF][START_REF] Whitelam | Phase separation and large deviations of lattice active matter[END_REF][START_REF] Partridge | Critical motility-induced phase separation belongs to the Ising universality class[END_REF]: on an hexagonal lattice [START_REF] Partridge | Critical motility-induced phase separation belongs to the Ising universality class[END_REF], particles carrying an internal polarity pointing to one of the 6 lattice directions attempt to perform one of 3 moves (see [26] for details). (i) With a rate r P they perform a 'self-propelled' jump to the nearest site along their internal polarity direction. (ii) They undergo spatial diffusion to any neighboring site at rate r D , and (iii) rotational diffusion (changing their polarity to one of its two neighboring orientations) at rate r R . For optimal efficiency, we impose strict exclusion and parallel updating.

In the following, we use r P = 1, r D = 2 and r R = 0.032, typical values leading to phase separation (a study of the phase diagram will be presented elsewhere). Persistent bubbles are clearly visible (Fig. 2(a-d)). The bubble area distribution in the globally phase-separated regime is similar to that observed for ABPs but with a much larger scaling region (Fig. 2(e)): n(a) ∝ a -α with α = 1.75 [START_REF] Solon | Pressure and Phase Equilibria in Interacting Active Brownian Spheres[END_REF]. This region extends to a cut-off size a c that grows with the total liquid area as a c ∝ S γ with γ = 1.40 [START_REF] Solon | Pressure and Phase Equilibria in Interacting Active Brownian Spheres[END_REF]. The distributions can thus be collapsed on a master curve using these two exponents (Fig. 2(f)).

In both models presented, we find that whenever the system is globally phase separated, the dense phase contains bubbles. This phase bears the hallmarks of selforganized criticality (SOC) (for recent overviews, see [START_REF] Pruessner | Self-Organised Criticality[END_REF][START_REF] Buendía | Feedback mechanisms for self-organization to the edge of a phase transition[END_REF]). Small bubbles are nucleated inside the liquid, diffuse and grow by merging with other bubbles. This process get slower and slower with increasing bubble size. Bubbles are eventually expelled into the reservoir of outside gas upon touching the boundary, in sudden, avalanche-like events, providing separation of timescales (see movie in [26]). As in typical SOC systems, avalanches occur at all accessible scales.

The SOC-like mechanisms leading to an algebraic distribution of bubbles do not invalidate the global picture of a phase separation between gas and liquid with fixed densities ρ g and ρ independent of system size up to small finite-size corrections. However, the gaseous part of the system is formed here of the outside gas reservoir and of the bubbles. With this definition, the gas fraction x g fluctuates very little and is independent of system size to a good approximation (Fig. 3(a)). Moreover, x g varies linearly with the average density ρ 0 (Fig. 3(b)) so that the lever rule still applies: For ρ g < ρ 0 < ρ , the average density sets the fraction of liquid and gas in the system x g = (ρ -ρ 0 )/(ρ -ρ g ) and x = 1-x g . The fluctuations of x b , the fraction of the system occupied by bubbles, in contrast to the gentle ones of x g , are large, intermittent, and increase with system size. (Note the huge timescales over which fluctuations of x b occur even at the modest sizes shown in Fig. 3(a).) Their stronger and stronger peaks reflect the larger and larger avalanches (expulsion of bubbles) (Fig. 3

(a), insets).

Microphase-separated bubbly liquid. The lever rule immediately tells us that the SOC scaling evidenced above cannot continue asymptotically when system size S → ∞. Indeed, the bubble area fraction grows with system size:

x b ≡ 1 S ∞ 0 a n(a)da ≈ S S ac 0 a 1-α da ∝ x S γ(2-α) , (2) 
where we used the scalings of n(a) and a c (S ). Our numerical data confirm this (Fig. 3(c)). Surely, Eq. ( 2)
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× 256 ceases to be possible once all the gas is contained in the bubbles, x b = x g , which happens at a typical crossover size S * ∝ (x g /x ) 1/[γ(2-α)] /x . The cutoff on bubble size then reads

a * c ≡ a c (S * ) ∝ (x g /x ) 1/(2-α) . (3) 
Equation ( 3) implies that S * and a * c depend on the average density ρ 0 through x g and x and that they diverge near the gas binodal ρ 0 → ρ g . On the other hand they get smaller when approaching the liquid binodal. Beyond S * the system settles in a micro-phase separated state, a homogeneous liquid with bubbles of all sizes up to a * c , SOC scaling then breaks down, and n(a) becomes independent of system size.

Using our lattice gas model at high enough ρ 0 , we are able to reach system sizes where all the gas is contained in bubbles, and the system settles in the micro-phase separated state (Fig. 2). Our data are in agreement with our scaling arguments: n(a) is then independent of system size and is cut off at some scale that depends only on the average density (Fig. 2(g)). Plotting n(a/a * c ) collapses the distributions for different ρ 0 , confirming the validity of Eq. (3) (Fig. 2(h)), at least close to the liquid binodal.

Reduced bubble model. The AMB+ field theory of Ref. [START_REF] Tjhung | Cluster phases and bubbly phase separation in active fluids: Reversal of the ostwald process[END_REF] suggests that bubbles exist because of reverse Ostwald ripening, which causes large bubbles to shrink at the advantage of small ones, thus competing with coalescence. To test whether these ingredients are sufficient to reproduce the phenomenology described above, we implemented them in a reduced model whose degrees of freedom are the positions and radii of bubbles that we assume to be perfectly circular [START_REF]For a similar approach in a different context[END_REF] The bubble-particles evolve in continuous time in a continuous domain. New bubbles with radius r 0 = 1 are nucleated in the liquid at a small rate k n per unit area. In line with the reverse Ostwald scenario, the new bubbles are nucleated at the expense of the larger ones: all other bubbles shrink by an amount κr(1r 0 /r) (where r is their current radius), with κ chosen such that the total area of gas is conserved. (Note that this neglects spatial effects: In principle, bubbles would equilibrate in priority with neighboring ones.) Bubbles chosen randomly among the current n(t) existing ones diffuse with a coefficient D, that for simplicity we assume constant. If the move brings the bubble into contact with another, they merge into a single one located at their "center of mass", conserving total area. To have the same geometry as in globally phase-separated microscopic models, we also add the possibility to have a gas reservoir outside two parallel interfaces that move along the dynamics to insure that x remains constant. While a complete presentation of the behavior of this reduced model and some variants will be reported elsewhere, here we show that it typically yields a phenomenology remarkably similar to that described above. Fixing D = 1 and k n = 10 -4 , we vary x g the total gas fraction and the system size S. At high x g or small system size S, we observe the SOC coexistence between a bubbly liquid and a gas reservoir (Fig. 4(a,b)). The bubble size distribution scales as in Fig. 2(f) with exponent values close to those of the lattice gas (α = 1.77 [START_REF] Tailleur | Statistical mechanics of interacting run-and-tumble bacteria[END_REF] and γ = 1.48(5)), but preliminary results (not shown) suggest that they are not universal. Decreasing x g or increasing S, the gas reservoir becomes smaller and smaller until it disappears, at which point we have a microphase separated regime with n(a) independent of system size (Fig. 4(c,d)). Despite its simplicity, our bubble model thus captures the essential phenomenology described here.

Coarsening process. We finally study the growth of order following random initial conditions, considering the characteristic length extracted from the structure factor [26]. We only present results for our active lattice gas (Fig. 5), but similar ones, albeit of lesser quality, were obtained for ABPs. When the liquid is the majority phase, after an initial transient, the coarsening is dominated by vapor bubbles and follows an anomalous t 0.22 law. We currently lack an analytical explanation of such law. Instead, when the liquid is the minority phase, it is dominated by liquid droplets and coarsening is normal t 1/3 as expected both from Ostwald ripening and coalescence in models with conserved order parameter [START_REF] Bray | Theory of phase-ordering kinetics[END_REF].

In fact, within the liquid droplets we expect the bubbles to coarsen as well with the anomalous law above. However, being slower than the liquid coarsening, it is not surprising that this is not visible in our data.

Conclusion.

We have shown, using two very different models of active particles interacting strictly by pairwise repulsion, that the dense phase resulting from MIPS is critical, containing bubbles of gas distributed algebraically up to some cutoff scale. We observe at high density that, as long as an outer gas phase is present, this cutoff increases as a power of system size. At large enough system size and/or global density, the gas reservoir may disappear and the cutoff scale becomes independent of system size. This asymptotic regime is thus microphase separated. A "reduced bubble model" captures this essential phenomenology within a minimal framework that implements the basic idea of reverse Ostwald ripening put forward in Ref. [START_REF] Tjhung | Cluster phases and bubbly phase separation in active fluids: Reversal of the ostwald process[END_REF].

In the models presented here, the asymptotic cutoff scale a * c grows very fast with ρ 0 . Numerically, we are only able to access the asymptotic regime at rather high density (Fig. 2). What happens asymptotically at low densities thus remains unknown, but extrapolating the scaling laws uncovered here lead us to speculate that our scenario remains valid in the whole phase coexistence region ρ g < ρ 0 < ρ . This Letter leaves several important open questions. In particular, whether the scenario described here is observed whenever pairwise repulsion is present, and whether the critical exponents are universal could be addressed numerically by considering other models showing MIPS, the AMB+ field theory, and reduced bubble models with different parameters. In this context, the very recent work of Caporusso et al [START_REF] Caporusso | Micro and macro motilityinduced phase separation in a two-dimensional active brownian particle system[END_REF], where a very hard potential between ABPs leads to crystalline clus-ters that aggregate to form a dense phase with interstitial gas, might be understood within our scenario. Finally, in regards to the current controversy about the nature of the critical point of MIPS [START_REF] Partridge | Critical motility-induced phase separation belongs to the Ising universality class[END_REF][START_REF] Siebert | Critical behavior of active Brownian particles[END_REF], our results make it unlikely that it belongs to the Ising universality class, but this hard problem remains thus unsettled.

FIG. 1 .

 1 FIG. 1. Active Brownian particles. Typical snapshots in steady state at system size S = 1440 × 360 (a) and S = 2880 × 720 (b). (Colors represent the packing fraction calculated over 2 × 2 boxes, from 0 (dark blue) to 1 (red).) (c): Rescaled distribution of bubble area n(a)/S at various system sizes (indicated in legends). Parameters: ρ0 = N π 4S = 0.6, τ = 0.01, µ ⊥ = 1/4, µ = 1, µ θ = 3/2, F0 = 1 and k = 20. Typical averaging time is 4 × 10 6 after a transient of 10 6 .
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 23 FIG. 2. Active lattice gas. (a-d) Snapshots in the steady state at ρ0 = 0.8 in systems of different sizes from S = 384 × 256 to S = 1532 × 1024 (colors as in Fig. 1(a,b)). For the two biggest sizes (c,d), the system is in the microphase-separated regime. (e-h) bubble area distribution in the SOC scaling regime (e,f: ρ0 = 0.6) and in the microphase-separated regime (g,h). (e) n(a)/S at various system sizes (indicated by the legends in (f)). Typical averaging time is 10 10 timesteps after discarding a transient of 10 8 . (f): same as (e), but as function of a/S γ with γ = 1.40. (g): n(a)/S at different ρ0 values for S = 768 × 1024 (dashed lines) and S = 1536 × 2048 (solid lines). (h): same as (g), but rescaled according to Eq. (3). The grey dashed lines have slope -α = -1.75.
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 4 FIG. 4. Reduced bubble model. (a,c): Typical snapshots at xg = 0.7 in the SOC coexistence regime (a) and at xg = 0.05 in the microphase regime (c). System size S = 600×400. The liquid and gas are represented in red and black respectively. (b,d) Bubble area distribution in the two regimes, rescaled using α = 1.77, γ = 1.48. For all panels D = 1, kn = 10 -4 .
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 5 FIG. 5. Coarsening process in the active lattice gas (S = 8192×6144). (a) Timeseries of the typical lengthscale L starting from random initial conditions at different ρ0 values. (b,c) Snapshots of the system taken at t = 10 7 for ρ0 = 0.5 (b) and 0.7 (c). At all times shown here, L √ S.
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