Quartz Ore Beneficiation By Reverse Flotation For Silicon Production

Sidali MEDJAHED¹, <u>Abdelkrim KHELOUFI</u>¹*, Ema BOBOCIOIU², Aissa KEFAIFI ¹, Fouad Kerkar¹, Kheirreddine LEBBOU³

*Corresponding author: Abdelkrim Kheloufi kheloufi@yahoo.co.uk

¹Centre de Recherche en Technologie des semi-conducteurs pour l'Energétique, Bd Frantz Fanon BP 140 Alger, 7 Merveilles 16038 Algérie,

² Ecole Normale Supérieure de Lyon, 46, Allée d'Italie 69364 Lyon Cedex 07,

³ Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.

Figures

Fig. 1 Localization of Draissa Deposit (Geological map of Algeria modified after Geopangea Research Group Indonesia). https://gprgindonesia.wordpress.com/geologicalsetting-of-algeria. (Accessed July 4th 2013) [25]

Fig. 2 Laboratory flotation cell DENVER

Fig. 3 Mineralogical composition of sandstones from Draissa Deposits: **a** – Development of quartz cement with different granulometrys; **b** – Image in cathodoluminiscence marking overgrowth zones without luminescence (black) in quartz; **c** – Quartz with granophyric structure (GrStr); **d** – Development of intergranular cement; **e** – Feldspar granoclasts (AltFed) alterated in clayminerals. Some crystals can easily reach sizes of 0.5-1 mm; **f** – Alkalin feldspar (microcline) impurity in quartz.; **g** – Microfissures in quartz marked by secondary crystallization of carbonate (red); **h** – Clay matrix associated with Fe oxides. TL – transmised light image; CL – cathodolumenescence image

Fig. 4 Raman spectra of some mineral impurities in Draissa quartz

Compound	SiO ₂	Al ₂ O ₃	SO ₃	Cl	CaO	Fe ₂ O ₃	CdO K ₂ O	SnO ₂
Average content, [%]	93.637	5,74	0.028	0.171	0.15	0.16	0.001 0.07	0.006

Table 1 X-ray fluorescence analysis of raw material from Draissa Deposits

Fig. 5 SIMS profile of Draissa quartz samples using Oxygen and Cesium sources

High purity silica 99.65% SiO2

Fig. 6 Quartz reverse flotation Flow-sheet of Draissa deposit

Fig. 7 Contact measurement as function of pH before and after adding DDA collector. a) Before adding DDA, b) After adding DDA

Fig. 8 Mica removal efficiency in the first flotation stage at pH=2-3

Fig. 9 Fe-oxides removal efficiency

Fig. 11 Feldspar and quartz removal efficiency