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Abstract

We investigated the environmental conditions that prevailed in continental ecosystems 

recorded in sedimentary deposits of Japan during the Cretaceous through the analysis of oxygen and 

carbon isotope compositions of phosphate (δ18Op) and apatite-bound carbonate (δ18Oc and  δ13Cc) of 

vertebrate teeth and bones. Local surface water δ18Ow values were calculated using known 

phosphate-water isotope fractionation equations. Anomalously low δ18Ow values of local waters 

strongly suggest a significant contribution of high-altitude precipitation from nearby mountains to 

local surface waters. Mean air temperatures were estimated using a global meteoric water δ18Omw 

value – Mean Annual Air Temperature relationship, and compared to surface water temperatures 

estimated from fish apatite δ18Op values. Local mean annual precipitations (MAP) were estimated 

using the known relationship existing between MAP and C3 plant δ13Cp value, the latter being 

calculated using apatite-diet 13C-enrichment applied to plant-eating sauropod and ornithopod 

dinosaur δ13Cc values. Reconstructed environmental conditions suggest that climate changed from 

cool temperate to warm temperate, being relatively cold and dry during the Late Hauterivian and 

Barremian to warmer and seasonally more humid during the Aptian and Albian, and even warmer 

during the Cenomanian-Coniacian. Proposed thermal evolution during the Early Cretaceous is 

compatible with the absence of thermophilic taxa such as crocodylomorphs before the Aptian in the 

fossil record of Japan. 

Keywords: Vertebrates; Cretaceous; Japan; stable isotopes; paleoenvironment, paleoecology

1 Introduction

During the Cretaceous, Southwest Japan was located at mid latitude in the eastern margin of 

the Asian continent (Hisada et al., 2008; Lee, 2008; Maruyama et al., 1997; Nakama et al., 2010).  

Cretaceous continental deposits of Japan have yielded rich vertebrate assemblages, the most 

documented one being the Tetori Biota that flourished during the Early Cretaceous (see Sano and 
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Yabe (2017) for a review). Some faunal assemblages of the Tetori Biota have attracted much 

attention as they were almost coeval with the Jehol Biota of Northeastern China that yielded 

numerous feathered dinosaurs (Zhou et al., 2003; Zhou and Wang, 2017). Despite being located 

within the same latitudinal belt and distant of about a thousand kilometers during the Cretaceous, 

these two biotas shared only very few faunal and floral elements with each other, as well as with 

other contemporaneous faunas of East Asia (Fernandez et al., 2009; Sano and Yabe, 2017). 

Differences in paleoclimatic and paleogeographic conditions have been proposed to explain the 

strong provincialism that characterizes East Asian faunas during the Early Cretaceous, such as a 

strong latitudinal thermal gradient (Amiot et al., 2011) or differences in humidity and amount of 

precipitations (Amiot et al., 2015) linked to regional paleotopography (Liu et al., 2015) and marine 

influence (Matsukawa et al., 1993). The associated phytocenoses suggest that the biogeographical 

partitioning was induced by a longitudinal gradient of continentality (Oh et al., 2011). Another 

peculiar aspect of the temporal evolution of the Tetori Biota is the change from choristoderan 

occurrences without crocodilyforms in the Okurodani and Kuwajima formations to crocodilyform 

occurrence without choristoderes in the Kitadani Formation, suggesting climatic change from cool 

to hot (Matsumoto et al., 2015). This change is also documented by the vegetation that changed 

from the Oguchi Flora flourishing in temperate and moderate humid conditions (Yabe et al., 2003) 

to the Kitadani Flora containing elements reflecting warmer and possibly drier climatic conditions 

(Yabe and Shibata, 2011). Interestingly, these climatic changes inferred from both vertebrate and 

flora compositions have not been recognized in the Jehol Biota that remained somewhat stable up to 

the deposition of the Aptian-Albian Fuxin and Shahai formations (Amiot et al., 2011, 2010; Sano 

and Yabe, 2017). Stable oxygen and carbon isotope compositions of apatite vertebrate constitute 

valuable proxies to explore the differences in environmental conditions between The Jehol and 

Tetori biotas. 

Indeed, the oxygen isotope compositions of apatite phosphate (δ18Op) and carbonate (δ18Oc) 

from vertebrate bones, teeth and fish scales depend on the δ18Obw value of the animal body water as 
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well as on its body temperature (Kolodny et al., 1983; Longinelli, 1984; Luz et al., 1984). The 

δ18Obw value is linked to the δ18Ow value of ingested water and to the animal ecology and 

physiology. For most continental vertebrates, the main source of ingested water is drinking surface 

waters or plant water, the ultimate source of which is meteoric water (D’Angela and Longinelli, 

1990; Kohn, 1996; Langlois et al., 2003; Luz et al., 1984). By using phosphate-water isotope 

fractionation equations established for extant species, it is possible to estimate the δ18Ow values of 

ingested water by a vertebrate from its apatite phosphate δ18Op value (Amiot et al., 2017, 2007; 

Barrick et al., 1999; Lécuyer et al., 2013). These equations have been successfully applied to 

Mesozoic faunas that include dinosaurs, crocodilians, turtles and freshwater fishes (Amiot et al., 

2011, 2009, 2004; Barrick et al., 1999; Domingo et al., 2015; Suarez et al., 2012). In turn, the 

δ18Omw value of meteoric waters depends on climate parameters such as air temperature, humidity 

and amount of precipitation (Dansgaard, 1964; Fricke and O’Neil, 1999; Gat, 1996; Grafenstein et 

al., 1996). Vertebrates thus record in their phosphatic tissues the climatic conditions of their living 

environment. However, the δ18Ow value of surface waters can significantly differ from that of 

precipitations due to local processes such as evaporation, mixing with ground waters or with river 

drainage catchments having different water oxygen isotope compositions. Such processes 

complicate the interpretations in terms of climatic reconstructions. It is also worth noting that 

ecological specificities such as plant-water use among herbivorous communities also affect the 

δ18Op value of vertebrates. Indeed, large differences in δ18Op values have been observed between 

coexisting herbivorous mammals that drink surface waters and those that only rely on water in 

plants, usually enriched in 18O by several per mil relative to surface waters (Kohn et al., 1996). 

Carbon isotope compositions of apatite (δ13Cc) from air-breathing vertebrates primarily 

reflect animal diets, with a 13C-enrichment relative to 12C that varies depending on the animal 

digestive physiology (Passey et al., 2005). The δ13Cc value of plant-eating vertebrates thus records 

the δ13C value of the plant tissues they have ingested, mainly leaves. In turn, plants have carbon 

isotope compositions mainly controlled by their photosynthetic pathway (see Ehleringer and 
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Monson (1993) for a review). The C3 pathway is the most common one, occurring in all trees, most 

shrubs and herbs, and grasses in regions with a cool growing season. Today, C3 plants have a mean 

δ13C value of -27‰ (range from -35‰ to -22‰), reflecting both the δ13C value of atmospheric 

carbon dioxide and local environmental conditions. C4 photosynthesis operates in grasses from 

regions with a warm growing season, and in some sedges and dicots. Finally, crassulacean acid 

metabolism (CAM) occurs in succulent plants. Because C4 and CAM plants were most likely absent 

in Early Cretaceous ecosystems as they only appeared in abundance during the Cenozoic, they will 

not be discussed any further. Abiotic factors such as variations in light intensity, water and osmotic 

stress, local temperature and pCO2, influence the carbon isotopic compositions of C3 plants by 

affecting leaf stomatal conductance, which in turn constrains the magnitude of CO2 diffusion 

through plant epidermis. All these parameters results in variations in the δ13C values of C3 plants 

(Ehleringer and Monson, 1993). A significant relationship has been established between the δ13C 

values of modern terrestrial C3 plants and the mean annual precipitations (MAP; (Diefendorf et al., 

2010; Kohn, 2010). The carbon isotope compositions of local plants ingested by the herbivorous 

vertebrates can be retrieved from the δ13Cc value of their apatite carbonate. Consequently, the 

combined use of the apatite-diet carbon heavy isotope enrichment (∆13Cap-diet) of those plant-eating 

vertebrates and the MAP-δ13CC3 plant relationship allow the amount of precipitation to be estimated if 

the ∆13Cap-diet can be determined with a satisfactory level of confidence. Tejada-Lara et al. (2018) 

have shown that the ∆13Cap-diet is mainly controlled by the body mass of the animal and its digestive 

system. At the first-order, ∆13Cap-diet increases with body mass and the highest documented values for 

extant mammals reach about 15‰ (e.g. elephants). In agreement with this relationship, apatite-diet 

13C-enrichments of about 18‰ have been estimated for two ornithischian dinosaurs, the 

ceratopsians and hadrosaurs (Fricke et al., 2008; Fricke and Pearson, 2008), and of about 15-16‰ 

for one saurischian group, the sauropods (Domingo et al., 2015; Tütken, 2011). For example, such 

relationships have been successfully applied to plant-eating dinosaurs (Amiot et al., 2015).
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In this study, vertebrate apatites recovered from four Early and one early Late Cretaceous 

localities have been analyzed for their oxygen and carbon isotope compositions of phosphate (δ18Op) 

and apatite-bound carbonate (δ18Oc and δ13Cc). Local climatic conditions were inferred from stable 

isotopes and discussed in the light of the biogeographical context of East Asian faunas and Floras 

and their dynamics during the Cretaceous. 

2 Material and methods

2.1 Sample identification and origin

Fifty-three samples of tooth and bone from dinosaurs, crocodylomorphs, turtles, tritylodonts 

and scales from bony fish have been collected from five Early to Late Cretaceous localities in Japan 

(Fig. 1, 2) and analyzed for their oxygen and carbon isotope compositions of apatite phosphate and 

structural carbonate. 

Indeterminate iguanodontid teeth (Hasegawa et al., 1995), turtle shell bone (Evans et al., 

1998) and lepisosteid scales come from the Okurodani Formation cropping out at a locality near the 

village of Shokawa, Gifu Prefecture. It consists of a matrix of dark gray silty-sandstone deposited as 

part of an extensive floodplain characterized by a network of stagnant pools or “ox-bow” lakes, rich 

in organic matter and choked with silts (Evans et al., 1998). The depositional age of the Okurodani 

Formation is still controversial, being either considered as Barremian-Aptian according to 

tuffaceous mudstone zircons U-Pb age of 117.5±0.7 (2 SE) Ma determined by Kusuhashi et al. 

(2006), and of 129.2±0.4 (95% CI) Ma (Nagata et al., 2019), or as Late Hauterivian or younger 

according to Sano and Yabe (2017). 

Teeth of an indeterminate styracosternan iguanodontian (Barrett and Ohashi, 2016), teeth of 

the tritylodont Montirictus kuwajimaensis (Matsuoka et al., 2016), shell bones of Trionychoid 

turtles (Hirayama, 2000) and scales attributed to the freshwater fish genus Sinamia (Yabumoto, 

2005) have been recovered from the “Kuwajima Kaseki-kabe” site. It constitutes an outcrop of the 
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Lower Cretaceous Kuwajima Formation of the Tetori Group, in Shiramine District, Hakusan City, 

Ishikawa Prefecture, central Japan. This outcrop of the uppermost part of the Kuwajima Formation 

consists of alternating fine- to coarse-grained arkoses, fine-grained sandstones, and mudstones, 

which are interpreted as channel and interchannel deposits of braided rivers (Isaji et al., 2005). The 

depositional age of the Kuwajima Formation remains ambiguous, the most recent papers 

considering it either between the Barremian and Aptian (Matsuoka et al., 2016), or within the 

Hauterivian – Barremian interval (Barrett and Ohashi, 2016). It must be noted that Matsumoto et al. 

(2006) and Nagata et al. (2019) reported tuffaceous mudstone zircons U-Pb age of 130.7 ± 0.8 (2 

SE) Ma and of 129.1±1.5 (95% CI) Ma for the base of the Kuwajima Formation, respectively, and 

Sakai et al. (2019) reported from tuff beds zircons U-Pb age of 121.2±1.1 (95% CI) Ma from the 

Akaiwa Fm that is thought to conformably overlie the Kuwajima Fm. This would better fit with a 

Barremian to Aptian age for the Kuwajima Formation. 

Teeth of indeterminate theropods, titanosauriform sauropods (Azuma and Shibata, 2010), 

iguanodontians (Kobayashi and Azuma, 2003) and goniopholidid crocodylomorphs (Azuma, 2003), 

as well as turtle shell bones and ganoid fish scales (Azuma, 2003), come from the Kitadani 

Formation at Kitadani Dinosaur Quarry on the Sugiyama River in the northern part of the city of 

Katsuyama, Fukui, Japan. The fossil layers consist of alternating beds of mudstone and medium-

grained sandstone, likely deposited by ancient meandering rivers (Azuma, 2003; Legrand et al., 

2013), and this part of the formation is considered as early Aptian in age based on molluscan, 

ostracod and charophyte biostratigraphy (Cao, 1996; Isaji, 1993; Kozai et al., 2002; Kubota, 2005), 

as well as on geological correlation with coeval strata (Sano, 2015; Sano and Yabe, 2017). 

Indeterminate theropod, titanosauriform, iguanodontian and ornithopod teeth have been 

collected from the Ohyamashimo Formation of Sasayama Group at the locality of Kamitaki near 

Tamba City, Hyogo (Saegusa et al., 2010; Saegusa and Ikeda, 2014; Saegusa and Tomida, 2011). 

The Ohyamashimo Formation (Hayashi et al., 2017) is mainly composed of conglomerate, 

sandstone, and mudstone intercalating several tuff beds, it is considered as early Albian in age based 
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on U–Pb dating of tuff beds zircons providing an age of 112.1±0.4 Ma (95% CI) (Kusuhashi et al., 

2013). 

A neosuchian crocodyliform tooth (Ikegami, 2003) as well as adocid and anosteirin turtle 

shell bones (Hirayama, 1998) come from the “Upper Formation” of the Mifune Group near Mifune 

(locality named Kumamoto). The “Upper Formation” is characterised by red mudstone, greyish 

green sandstone and more than a dozen tuff beds indicating a floodplain deposit that includes 

calcareous nodules and a palaeosol structure interpreted as reflecting semi-arid subtropical to warm-

temperate climatic conditions (Lee et al., 2003). Dating the Mifune Group is still problematic. 

Ammonites and bivalves date the “Lower Formation” of the Mifune Group as Cenomanian 

(Tamura, 1979; Tamura and Matsumura, 1974),  and the Mifune Group if covered by the Lower 

Santonian Gankaizan Formation. Fission-track dating has been tentatively performed on tuff beds 

zircons from both the “Lower Formation” providing two ages of 93.1±4.4 Ma and 89.8±4.0 Ma and 

the “Upper Formation” providing two ages of 83.6±3.1Ma and 82.1±11.1 Ma, which would range 

the Mifune Group between the Turonian and the Campanian (Ikegami et al., 2007). Because of the 

large uncertainties associated with FT dating and the incongruence of these results with the age of 

the overlying Gankaizan Formation, an age between the Cenomanian and Coniacian is considered 

for the “Upper Formation” (Ikegami, 2016). 

2.2 Analytical technique

3.2.1Oxygen isotope analysis of biogenic apatite phosphate samples

Apatite powders have been treated following the wet chemistry protocol described by 

Crowson et al. (1991) and slightly modified by Lécuyer et al. (1993). This protocol consists in the 

isolation of phosphate (PO4
3-) from apatite as silver phosphate (Ag3PO4) crystals using acid 

dissolution and anion-exchange resin. For each sample, 20-30 mg of enamel powder was dissolved 

in 2 mL of 2 M HF. The CaF2 residue was separated by centrifugation and the solution was 

neutralized by adding 2.2 mL of 2 M KOH. Amberlite™ anion-exchange resin beads were added to 
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the solution to isolate the PO4
3− ions. After 24 h, the solution was removed, the resin was rinsed and 

eluted with 6 mL of 0.5 M NH4NO3. After 4 h, 0.5 mL of NH4OH and 15 mL of an ammonia 

solution of AgNO3 were added and the solutions were placed in a thermostatic bath at 70 °C for 7 h 

allowing the precipitation of Ag3PO4 crystals. Oxygen isotope compositions of silver phosphate 

crystals were measured using a high temperature elemental analyzer equipped with “purge and trap” 

technology interfaced in continuous flow mode to an isotopic ratio mass spectrometer (Fourel et al., 

2011) at the Laboratoire de Géologie de Lyon (UMR 5276, Université Claude Bernard Lyon 1). For 

each sample, 5 aliquots of 300 μg of Ag3PO4 were mixed with 300 μg of pure graphite powder 

loaded in silver foil capsules. Pyrolysis was performed at 1450 °C with a glassy carbon reactor 

using a varioPYROcubeTM Elemental Analyzer interfaced in Continuous Flow mode with an 

IsoprimeTM Isotopic Ratio Mass Spectrometer. Measurements have been calibrated against silver 

phosphate precipitated from the NBS120c (natural Miocene phosphorite from Florida), as well as 

with the NBS127 (Barium sulfate precipitated using seawater from Monterey Bay, California, 

USA). The value of NBS120c was fixed at 21.7‰ (V-SMOW; Vienna Standard Mean Ocean Water) 

accordingly to Lécuyer et al. (1993), and that of NBS127 set at the value of 9.3‰ V-SMOW (Hut, 

1987) for correction of instrumental mass fractionation during CO isotopic analysis. Silver 

phosphate precipitated from standard NBS120c along with the silver phosphate samples derived 

from fossil bioapatites was repeatedly analyzed (δ18Op = 21.75 ±0.35‰, n = 13) to ensure that no 

isotopic fractionation occurred during the wet chemistry. Data are reported as δ18O values vs. V-

SMOW (in ‰ δ units; 1‰ = 1mUr). 

2.2.2 Oxygen and carbon isotope analysis of biogenic apatite carbonate samples

In order to remove potential organic contaminant as well as secondarily precipitated calcite, 

about 10 mg of apatite powder was pre-treated using the protocol of Koch et al. (1997). Powders 

were washed with a 2% NaOCl solution to remove organic matter, then rinsed five times with 

double deionized water and air-dried at 40 °C for 24 hours. 0.1 M acetic acid was then added and 
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left for 24 hours, after which the powder was again rinsed five times with double deionized water 

and air-dried at 40 °C for 24 hours. For both treatments, the powder/solution ratio was kept constant 

at 0.04 g mL-1. Stable isotope ratios were determined using a Gasbench II system connected online 

in continuous flow mode to a MAT253 isotope ratio mass spectrometer (Thermo Fisher Scientific-

Germany) at the Lab for Environmental Isotope Geochemistry of the Institute of Geology and 

Geophysics (Chinese Academy of Sciences, China). For each sample, two aliquots of 2 mg of pre-

treated apatite were reacted with 5 drops of supersaturated orthophosphoric acid at 72 °C for one 

hour under a He atmosphere. The CO2 produced during the reaction was then transferred to the 

ConfloIII interface and analyzed by cycles of 10 measurements from each aliquot with the mass 

spectrometer. The measured oxygen isotopic compositions were normalized relative to the NBS-19 

marble calibrated material (Hut, 1987) and have a reproducibility better than ±0.2‰. Isotopic 

compositions are quoted in the standard δ notation relative to V-SMOW for oxygen and V-PDB 

(Vienna Pee Dee Belemnite) for carbon.

3 Results

For the whole vertebrate dataset, oxygen isotope compositions of phosphate range from 

9.1‰ to 14.9‰ V-SMOW, from 10.9‰ to 17.5‰ V-SMOW for apatite-bound carbonates and and 

carbon isotope compositions range from -12.1‰ to +2.8‰ V-PDB for carbon (Table 1; Fig. 3). 

Local surface waters have been calculated by applying to dinosaur δ18Op values the 

phosphate-water isotope fractionation equation determined for extant birds, their nearest living 

relatives (Amiot et al., 2017):

δ18Ow = 1.119±0.040 δ18Op – 24.222±0.644, (σest = 0.45) (1), 
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Where σest corresponds to the mean standard error for the estimated parameter (δ18Ow). The 

phosphate-water fractionation equation of extant crocodilians has been applied to crocodylomorphs 

(Amiot et al., 2007): 

δ18Ow = 0.823±0.062 δ18Op – 19.129±1.076, (σest = 1.13) (2), 

to turtles the phosphate-water fractionation equation of their extant living (Barrick et al. (1999), 

updated in Pouech et al. (2014)): 

δ18Ow = 0.994±0.046 δ18Op – 21.197±0.755, (σest = 0.89) (3),

and to tritylodonts the phosphate-water fractionation equation of extant plant-eating mammals 

considered as their closest living relatives has been used (Amiot et al., 2004): 

δ18Ow = 1.113±0.003 δ18Op – 26.441±0.051, (σest = 0.28) (4).

Calculated local water δ18Ow value and associated uncertainties (2σ) range from -13.3±1‰ 

to -11.1±1.8‰ V-SMOW for the Shokawa locality, from -12.8±0.6‰ to -8.2±1.8‰ for the 

Kuwajima Kaseki-kabe locality, from -11.3±1.0‰ to -7.8±2.2‰ for the Kitadani Dinosaur Quarry, 

from -12.3±1.0‰ to -8.4±1.0‰ for the Kamitaki locality, and from -7.6±1.8‰ to -6.4±1.8‰ for the 

Early Late Cretaceous locality of Kumamoto (Table 2, Fig. 4). Using the global MAT-δ18Ow 

relationship proposed by Lécuyer (2014): 

δ18Ow = 0.481±0.02 T(°C) – 14.254±0.261 (5),
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Mean Air Temperatures (MAT) and associated uncertainties (2σ) derived from these δ18Ow values 

respectively range from 2±2°C to 7±4°C,  from 3±2°C to 13±4°C,  from 6±2°C to 13±4°C and from 

4±2°C to 12±2°C, and  from 14±4°C to 16±4°C (Fig. 5; Table 2). For the three localities of 

Shokawa, Kuwajima Kaseki-Kabe and Kitadani Dinosaur Quarry (Fig. 5; Table 2), surface water 

temperatures derived from fish δ18Op values have been calculated using local water δ18Ow values 

estimated from dinosaurs, crocodylomorphs and turtles δ18Op values and the phosphate-water 

temperature scale established for extant fish (Lécuyer et al., 2013):

T(°C) = 117.4±9.5 – 4.50±0.43 (δ18Op – δ18Ow) (6).

Calculated water temperatures are globally higher than mean air temperatures, ranging from 

17±8°C to 27±8°C for the Shokawa locality, from 3±5°C to 27±8°C for the Kuwajima Kaseki-Kabe 

locality, and from 11±8°C to 36±10°C for the Kitadani Dinosaur Quarry (Table 2; Fig. 5). It must 

be noted that the large ranges of calculated temperatures using fish δ18Op values do not reflects real 

temperature variability, as fish δ18Op variability is quite low, but variability in calculated water δ18Ow 

values from other vertebrates. 

Carbon isotope compositions of local plants ingested by sauropod and ornithischian 

dinosaurs has been estimated from their δ13Cc values and the apatite-diet 13C-enrichment determined 

by Tütken (2011), Fricke and Pearson (2008) and Fricke et al. (2008). In turn, Mean Annual 

Precipitation (MAP) has been estimated using the MAP-Δ13CC3 plant  relationship established for 

gymnosperms by Diefendorf et al. (2010), modified in Amiot et al. (2015):

Log (MAP) = 0.0802±0.0102 * Δ13CC3 plant + 1.3726±0.1875 (7),

with MAP in mm, Δ13CC3 plant = (δ13Catm – δ13Cplant) / (1 + 10-3 * δ13Cplant) and atmospheric CO2 δ13Catm 

values calculated by Barral et al. (2017) for the studied Cretaceous time periods. Estimated MAPs 
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and associated uncertainties (2σ) range from 497±17 mm to 560±50mm, from 397±12 mm to 

542±40 mm, from 782±35mm to 1162±78 mm and from 717±27 mm to 1235±72 mm for the 

localities of Shokawa, Kuwajima Kaseki-kabe, Kitadani Dinosaur Quarry, Kamitaki and 

Kumamoto, respectively (Table 2; Fig. 5).  

4 Discussion

4.1 Primary preservation of the stable carbon and oxygen isotope compositions

Biotic and abiotic processes leading to the decomposition, burial and fossilization of living 

organisms may alter the original isotopic composition of bioapatite through processes of secondary 

precipitation, ion adsorption or dissolution-recrystallization of bioapatite (Blake et al., 1997; 

Kolodny et al., 1996; Lécuyer et al., 2003; Trueman et al., 2003; Zazzo et al., 2004b, 2004a). 

Therefore, pristine preservation of the isotopic records needs to be assessed before discussing the 

ecological and climatic significance of the oxygen and carbon isotope compositions of fossil 

vertebrate apatites.  Although no method can definitely demonstrate whether the original isotopic 

compositions have been kept, several ways to assess the preservation state of the isotopic record 

have been considered (Fricke et al., 1998; Iacumin et al., 1996; Kolodny et al., 1996; Lécuyer et al., 

2003; Pucéat et al., 2004; Tütken et al., 2008; Zazzo et al., 2004b). Both phosphate and carbonate in 

apatite have δ18O values reflecting that of the animal’s body water, but with a different mineral-

water 18O enrichment.  Consequently, a positive linear correlation between the δ18Op and the δ18Oc 

values with a slope close to unity has been observed on extant vertebrates (Bryant et al., 1996; 

Chenery et al., 2012; Iacumin et al., 1996; Lécuyer et al., 2010) and used as a test for primary 

preservation of fossil vertebrate apatites (Amiot et al., 2015; Tütken et al., 2008; Zazzo et al., 

2004b). Due to the limited range of apatite δ18O values within each Japanese locality, no significant 

correlation between phosphate and carbonate can be observed. However, a comparison of the 

distribution of δ18Op and δ18Oc pairs with those of other East Asian Early Cretaceous vertebrates 
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reveals similar isotopic ranges (Fig. 6), suggesting at least a partial preservation of the oxygen 

isotope compositions. 

A strong case in favor of the preservation of the isotope compositions is the distribution 

within each locality of the δ13C and δ18O values of co-existing vertebrates showing significant 

differences between taxa (Fig. 3). Such a pattern would be a result of differences in ecology, 

digestive physiology, water strategies and thermophysiologies between taxa rather than diagenetic 

processes that would have more randomly distributed the values. However, the narrow range in δ13C 

values observed between taxa of the Kamitaki and Shokawa localities may point to some diagenetic 

alteration of the carbon isotope composition that would reflect the δ13C value of the diagenetic 

carbon source. Therefore, δ13C values from these two localities must be considered with caution. 

Another clue to primary isotopic preservation is that the carbon isotope compositions of plant diet 

estimated from plant-eating dinosaurs fall within a range typical of C3 plants considering the 

relatively high δ13Catm value of atmospheric CO2 that was, according to Barral et al. (2017), about 

3‰ higher than the present-day value of about -8‰ (Table 2). It is noteworthy that sample SH20 

has a δ13Cc value anomalously high pointing to a possible diagenetic alteration. This value is treated 

as an outlier and not considered for subsequent interpretations (Fig. 3).

Finally, the weight percentage of carbonate in analysed fossil apatites, which ranges from 

1% to 7%, lies within the expected biological range of modern vertebrate apatites (Brudevold and 

Soremark, 1967; Rink and Schwarcz, 1995; Tarnowski et al., 2002; Vennemann et al., 2001).

From all these lines of evidence, we consider that vertebrate apatites have kept most of their 

original isotopic compositions, allowing them to be interpreted in terms of paleoclimate and 

paleoecology.

4.2 Environmental conditions recorded in Cretaceous deposits of Southwest Japan and 

adjacent areas
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Fossil plant and vertebrate records within the Tetori Biota hint at a climatic change between 

the Barremian Kuwajima Formation and the Early Aptian Kitadani Formation. According to 

differences in floristic composition and physiognomy between the Oguchi flora (found in the 

Okurodani and Kuwajima formations) and Kitadani flora, a change to warmer and possibly dryer 

climate has been proposed (Yabe et al., 2003). In contrast with its lower part (Okurodani and 

Kuwajima formations) which only features the boreal fossil wood genus Xenoxylon, the upper part 

of the Tetori group (Kitadani Formation) yielded beside Xenoxylon two more genera, Brachyoxylon 

and Podocarpoxylon  (Terada and Yabe, 2011; Yamazaki et al., 1990), which thrived under warmer 

climates (Philippe et al., 2017). A similar switch from Xenoxylon-exclusive or dominated fossil 

wood floras to warmer wood floras with Agathoxylon and Brachyoxylon is also reported in 

Southern Korea at the Barremian to Aptian transition (Philippe et al., 2011). Warmer conditions 

have also been suggested from the occurrence of crocodylomorphs in the Kitadani Formation, 

whereas they were absent from the underlying Kuwajima and Okurodani formations (Amiot et al., 

2011; Matsumoto et al., 2015). Amiot et al. (2011) used a generic phosphate-water oxygen isotope 

relationship (Amiot et al., 2004) to infer average local meteoric water δ18O value from the average 

δ18Op value of continental vertebrates. Cool temperate climatic conditions with MAT of 10±4°C 

recorded at mid latitudes in East Asia were thus inferred from the oxygen isotope compositions of 

vertebrates from the Late Barremian Yixian Formation of the Jehol Biota as well as from the 

Kuwajima Formation. In our study, we have applied available phosphate-water oxygen isotope 

fractionation equations determined for extant vertebrates (birds, mammals, crocodilians and turtles) 

to their Cretaceous relatives (dinosaurs, tritylodonts, crocodylomorphs and turtles, Fig. 4) and 

estimated mean air temperature ranges and surface water temperatures using freshwater fish δ18Op 

values (Table 2, Fig. 6). Air temperature increase is observed from the Hauterivian to the early Late 

Cretaceous, however, temperature values comprised between 4°C and 13°C for the Aptian Kitadani 

Formation and Albian  Ohyamashimo Formation seem too low to be considered as realistic 

estimates. Indeed, the occurrence of crocodylomorphs with a minimum mean living temperature 
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requirement of 14.2°C (Markwick, 1998) indicates that mean air temperatures are largely 

underestimated. During the Mesozoic, intense tectonic activity linked to the subduction of the 

Izanagi plate led terranes constituting Japanese Islands to form a segment of the Mesozoic 

subduction-related orogen that grew along East Asian margin at least since the Jurassic time 

(Charvet, 2013; Isozaki et al., 2010). The proximity of these high mountain ranges most probably 

supplied the river systems with high-altitude waters, which seasonally fed lakes and ponds of the 

sedimentary basin with low δ18O waters. These waters characterized by elevated temporal variations 

of  δ18Ow values would ultimately be ingested by the vertebrate fauna that would in turn show highly 

variable δ18O values between and within coexisting taxa (Suarez et al., 2014) as observed in the 

present dataset (Fig. 4). A study of the lithofacies assemblages of the Sasayama Group also 

concluded that they were deposited in an inter-montane basin (Hayashi et al., 2017). According to 

the conglomerate facies analysis of the Sasayama Group, Hayashi et al. interpreted that only the 

distal part of the alluvial fan was preserved. Such preservation suggests that mountains surrounding 

the basin were high and distant, and that the basin may have been far larger than the present 

distribution of the Sasayama Group seems to indicate. Alternatively, mountains may have been low 

and close to the center of the basin, and the alluvial fan was of small size (Hayashi et al., 2017). It is 

noteworthy that the first hypothesis better fits with measured oxygen isotope compositions. The 

regional topography may therefore explain why air temperatures inferred from the δ18Op of 

vertebrates are underestimated because of this isotopic altitude effect. Of peculiar interest is the case 

of fish that recorded in situ temperatures of their aquatic living environment characterized by the 

same low δ18Omw of water ingested by terrestrial vertebrates. Using equation (6), fish δ18Op values 

allowed us to calculate surface water temperatures that were much higher than those inferred from 

the global δ18Omw – MAT relationship (Fig. 5). This result, however, needs to be tempered 

considering that the optimal growth period of freshwater fish such as lepisosteids occurs during the 

warm season (Love, 2004). If the climatic regime was characterized by a marked seasonality in air 

temperatures, such calculated temperatures might not represent MAAT but those of the warm 
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season only. Because during the warm season meteoric water δ18Ow values are higher than during 

winter, the most accurate water temperatures recorded by the fish δ18Op values should be those of 

the high part of temperature ranges. However, the available dataset does not allow to better 

constrain calculated water temperatures. 

Carbon isotope compositions of local vegetation ingested by plant-eating dinosaurs range 

from about -21‰ to -26‰ V-PDB. They are comparable to the range of organic matter δ13C values 

measured from the contemporaneous sediments of the Tateyama section located nearby the 

localities of Kuwajima Kaseki-Kabe, Kitadani Dinosaur Quarry and Shokawa localities (Hasegawa 

and Hibino, 2006). Carbon isotope composition of local plants remained constant during the 

deposition of the Okurodani and Kuwajima formations but shifted by about -3‰ between the 

Barremian and Early Aptian and remained stable during the deposition of the Kitadani and 

Ohyamashimo formations (Table 2). Applying the MAP-Δ13CC3 plant relationship to these values, 

reconstructed MAP changed from about 500±100 mm during the deposition of the Okurodani and 

Kuwajima formations to about 1500±300 mm during the deposition of the Kitadani Formation and 

the Ohyamashimo Formation (Fig. 5). 

According to both δ18O and δ13C values of vertebrate apatites, climate became warmer and 

wetter around the period of the Barremian-Aptian boundary. This result is only partially in 

agreement with paleobotanical and palynological studies that inferred warmer but also possibly 

drier conditions during the deposition of the Kitadani Formation (Terada and Yabe, 2011; Yabe and 

Shibata, 2011). Legrand et al. (2013) proposed an alternative scenario with humid and warm-

temperate climatic conditions with locally dry environments. This apparent contradiction is also 

documented by the co-occurrence of three fossil wood genera within the Kitadani Formation. 

Whereas Xenoxylon, which was a water-demanding tree (Oh et al., 2015; Philippe et al., 2009; 

Philippe and Thévenard, 1996) is common and exclusive in the underlying Itoshiro subgroup of the 

Tetori Group, the Kitadani Formation of the Akaiwa subgroup yielded two more wood genera, 

Brachyoxylon  and Podocarpoxylon (Terada and Yabe, 2011; Yamazaki et al., 1990). The two latter 
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both suggest a tropophilous climate with a marked dry season and are only rarely associated to 

Xenoxylon (Oh et al., 2015), possibly only in environments where beside riparian forests existed 

drier settings. A similar mixture of Xenoxylon and more thermophilous element was reported from 

the coeval Nakdong Formation in South Korea (Jeong et al., 2014).  A paleobotanical study of the 

Sawada Formation of the Sasayama Group documented a flora related to those of the Ryoseki-type 

usually recorded in the Outer Zone of Japan, with an abundance of xerophytic microphyllous taxa 

such as Brachyphyllum spp. and Pseudofrenelopsis sp. (Yamada et al., 2018). These floristic 

components, together with the overall rarity of fern remains, would indicate the prevalence of a 

seasonaly arid tropophilous climate. The wood genus Brachyoxylon was also reported from the 

Sawada Formation (Terada, 2012), similarly suggesting a subtropical tropophilous climate (Philippe 

et al., 2017). This interpretation is supported by sedimentary facies observed at the locality of 

Kamitaki as well as in the Ohyamashimo Formation cropping out at Sasayama city (Hayashi et al., 

2017). Mudstone shows features seen in vertisols such as a strong development of slickensides and 

high smectite content (Saegusa et al., 2010), suggesting that high amount of precipitation occurred 

during the rainy season, as well as the occurrence of strong shrinkage of clay rich soil indicating a 

intense dry seasons. The possible intense dry season is also supported by the presence of caliche in 

other mudstone layers in Kamitaki (Saegusa et al., 2010). Vertebrates from the Ohyamashimo 

Formation of the Sasayama Group have low apatite carbonate δ13Cc values that reflect large 

amounts of annual precipitation compatible with the existence of a “wet and dry” tropophilous 

climate. 

Compared with the Jehol Biota, estimated MATs from the Kuwajima Fm., Kitadani Fm. and 

the Ohyamashimo Fm. are similar to those estimated for the Late Barremian Yixian, and the Aptian-

Albian Fuxin formations (Amiot et al., 2011). As discussed above, MAT estimated from δ18Op 

values of Cretaceous vertebrates of Japan might be underestimated due to the contribution of high-

altitude meteoric waters, whereas in Northeastern China, the persistent absence of crocodylomorphs 

suggests that low air temperatures still prevailed. Mean Annual Precipitation values estimated from 
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both Yixian and Kuwajima formations are within a similar range of 500-600 mm, but significant 

differences in MAP are observed with Aptian-Albian Fuxin Formation being drier (about 500 mm) 

than the Aptian Kitadani Formation and Albian Sasayama Group (about 1000 mm). 

According to a study based on the reconstruction of spatio-temporal changes in the 

latitudinal distribution of desert deposits and the prevailing surface-wind patterns recorded in the 

Asian interior, a humid zone should have existed at mid latitudes during the mid-Cretaceous, as 

documented by the coal-bearing deposits observed in the Gobi basin of Mongolia (Hasegawa et al., 

2012). This would be compatible with the amount of precipitations calculated from the Aptian 

Kitadani and Albian Sasayama vertebrate δ13C values, but not with the drier environments inferred 

from the Fuxin vertebrates (Amiot et al., 2015). Far-East Asia fossil wood record for the Cretaceous 

is consistent with the hypothesis that regional paleogeography might explain this peculiar climate 

pattern (Oh et al., 2011). Indeed, Northeastern China was then bordered on the southeast by the Su-

Lu mountain range, locally producing a “rain shadow” that limited air moisture from the Pacific 

Ocean to enter from the East inlandward. Such topography may have contributed to constitute 

continental-like climatic conditions with a thermal seasonality enough contrasted to be unsuitable 

for the presence of crocodylomorphs. Further ecological and environmental studies might elucidate 

the apparent contradiction between isotopic and paleobotanical data from the Aptian Kitadani and 

Albian Sasayama fossil assemblages, and help to better understand the mosaic environments that 

seem to have characterized East Asia during the Cretaceous. 

5 Conclusion

Oxygen and carbon isotope compositions of Early and early-Late Cretaceous continental 

vertebrate apatites recovered from five Japanese localities have been analysed. Using existing 

phosphate-water oxygen isotope fractionation equations, the δ18Ow values of local environmental 

waters ingested by studied vertebrates were calculated as well as local surface temperatures based 

on modern MAT- δ18Ow relationships. Using published apatite-diet 13C-enrichment estimated for 
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sauropod and ornithopod dinosaurs, the δ13C values of consumed local plants have been calculated 

and converted into Mean Annual Precipitation based on the existing MAP-δ13CC3 plant relationship. 

The following results are underlined: 

a significant contribution of 18O-depleted waters from high altitude to local surface waters 

support the inter-montane origin of some early Cretaceous continental basins in Central Japan. 

Regional climate may have changed from cool to warm temperate, being relatively cold and 

dry during the Late Hauterivian and Barremian to warmer and seasonally more humid during the 

Aptian and Albian, and even warmer during the Cenomanian-Coniacian. 

The peculiar paleogeographic and climatic characteristics of Central Japan during the 

Cretaceous may at least partly account for the observed faunal and floral differences with the 

neighboring Cretaceous continental deposits of northeastern China. 
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Figure captions

Figure 1: Geographic location of the studied localities. 1: Shokawa; 2: Kuwajima Kaseki-Kabe; 3: 

Kitadani Dinosaur Quarry; 4: Kamitaki, Tamba City; 5: Kumamoto.

Figure 2: Stratigraphy of the 5 Cretaceous units in the Japanese Islands bearing the studied 

localities sampled for vertebrate remains and their tentative correlation (see text for detail). 

Figure 3: Oxygen isotope compositions of vertebrate apatite phosphate (δ18Op) reported against the 

carbon isotope compositions of structural carbonate (δ13Cc) for the five studied Cretaceous 

localities. Numbers in brackets refer to the locality described in Figure 1. Sample SH20 having an 

anomalously high δ13Cc value is treated as an outlier and not used for subsequent MAP calculations. 

Figure 4: Taxon-averaged drinking water δ18Ow value and associated standard deviation (horizontal 

bars) estimated for each studied locality.

Figure 5: Temporal variations of surface temperature and amount of precipitation ranges estimated 

from vertebrate apatite δ18Op and δ13Cc values. Numbers refer to the localities described in Figure 1. 

Published indicators of qualitative environmental conditions described in the text are figured as 

symbols.  

Figure 6: Oxygen isotope compositions of carbonate (δ18Oc) of all analyzed vertebrates plotted 

against their corresponding oxygen isotope compositions of phosphate (δ18Op), and compared to the 

published δ18Op- δ18Oc pairs for Early Cretaceous East Asian localities (Amiot et al., 2015). Dashed 

line with a slope of unity is drawn for reference. 
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Table captions

Table 1: Oxygen and carbon isotope compositions of apatite phosphate and carbonate from 

vertebrates reported along with the weight percent of apatite-bound carbonate, sample number, 

apatite material, identification, provenance and geological age. 

Table 2: Left side: For each locality, surface water δ18O range estimated from vertebrate δ18Op 

values using phosphate-water isotopic fractionation equations (1 to 4; see text) are reported along 

with Mean Air Temperature (MAT) range calculated from equation (5), and surface water 

temperatures calculated using equation (6). Right side: Plant δ13C range estimated from the δ13Cc 

values of plant-eating dinosaurs using their known apatite-diet 13C-enrichment factor, are reported 

along with the corresponding δ13Catm value of atmospheric CO2 from Barral et al. (2017), the plant 

carbon discrimination (see text) and the calculated Mean Annual Precipitation using equation (7). 
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