ON CUBIC BIRATIONAL MAPS OF P3
Julie Déserti, Frédéric Han

To cite this version:
Julie Déserti, Frédéric Han. ON CUBIC BIRATIONAL MAPS OF P3. Bulletin de la société mathématique de France, 2016. hal-03000549

HAL Id: hal-03000549
https://hal.science/hal-03000549
Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON CUBIC BIRATIONAL MAPS OF \(\mathbb{P}^3_{\mathbb{C}} \)

JULIE DÉSERTI AND FRÉDÉRIC HAN

ABSTRACT. We study the birational maps of \(\mathbb{P}^3_{\mathbb{C}} \). More precisely we describe the irreducible components of the set of birational maps of bidegree \((3,3)\) (resp. \((3,4)\), resp. \((3,5)\)).

1. INTRODUCTION

The CREMONA group, denoted Bir\((\mathbb{P}^3_{\mathbb{C}})\), is the group of birational maps of \(\mathbb{P}^3_{\mathbb{C}} \) into itself. If \(n = 2 \) a lot of properties have been established (see [4, 7] for example). As far as we know the situation is much more different for \(n \geq 3 \) (see [12, 3] for example). If \(\psi \) is an element of Bir\((\mathbb{P}^3_{\mathbb{C}})\) then \(\deg \psi = \deg \psi^{-1} \). It is not the case in higher dimensions; if \(\psi \) belongs to Bir\((\mathbb{P}^3_{\mathbb{C}})\) we only have the inequality \(\deg \psi^{-1} \leq (\deg \psi)^2 \) so one introduces the bidegree of \(\psi \) as the pair \((\deg \psi, \deg \psi^{-1})\).

For \(n = 2 \), Bir\(_d(\mathbb{P}^2_{\mathbb{C}})\) is the set of birational maps of the complex projective plane of degree \(d \); for \(n \geq 3 \) denote by Bir\(_{d,d'}(\mathbb{P}^n_{\mathbb{C}})\) the set of elements of Bir\((\mathbb{P}^n_{\mathbb{C}})\) of bidegree \((d,d')\), and by Bir\(_d(\mathbb{P}^n_{\mathbb{C}})\) the union \(\bigcup_{d'} \text{Bir}_{d,d'}(\mathbb{P}^n_{\mathbb{C}}) \).

In [5] the sets Bir\(_2(\mathbb{P}^2_{\mathbb{C}})\), and Bir\(_3(\mathbb{P}^2_{\mathbb{C}})\) are described: Bir\(_2(\mathbb{P}^2_{\mathbb{C}})\) is smooth, and irreducible in the space of quadratic rational maps of the complex projective plane whereas Bir\(_3(\mathbb{P}^2_{\mathbb{C}})\) is irreducible, and rationally connected. Besides, Bir\(_d(\mathbb{P}^2_{\mathbb{C}})\) is not irreducible as soon as \(d > 3 \) (see [2]). In [6] CREMONA studies three types of generic elements of Bir\(_2(\mathbb{P}^3_{\mathbb{C}})\). Then there were some articles on the subject, and finally a precise description of Bir\(_2(\mathbb{P}^3_{\mathbb{C}})\); the left-right conjugacy is the following one

\[
\text{PGL}(4; \mathbb{C}) \times \text{Bir}(\mathbb{P}^3_{\mathbb{C}}) \times \text{PGL}(4; \mathbb{C}) \to \text{Bir}(\mathbb{P}^3_{\mathbb{C}}), \quad (A, \psi, B) \mapsto A\psi B^{-1}.
\]

PAN, RONGA and VUST give quadratic birational maps of \(\mathbb{P}^3_{\mathbb{C}} \) up to left-right conjugacy, and show that there are only finitely many biclasses ([13, Theorems 3.1.1, 3.2.1, 3.2.2, 3.3.1]). In particular they show that Bir\(_2(\mathbb{P}^3_{\mathbb{C}})\) has three irreducible components of dimension 26, 28, 29; the component of dimension 26 (resp. 28, resp. 29) corresponds to birational maps of bidegree \((2,4)\) (resp. \((2,3)\), resp. \((2,2)\)). We will see that the situation is slightly different for Bir\(_3(\mathbb{P}^3_{\mathbb{C}})\); in particular we cannot expect such an explicit list of biclasses because there are infinitely many biclasses (already the dimension of the family \(\mathcal{E}_2 \) of the classic cubo-cubic example is 39 that is strictly larger that \(\dim(\text{PGL}(4; \mathbb{C}) \times \text{PGL}(4; \mathbb{C})) = 30 \). That’s why the approach is different.

We do not have such a precise description of Bir\(_d(\mathbb{P}^3_{\mathbb{C}})\) for \(d \geq 4 \). Nevertheless we can find a very fine and classical contribution for Bir\(_3(\mathbb{P}^3_{\mathbb{C}})\) due to HUDSON ([9]); in §A we reproduce Table VI of [9]. HUDSON introduces there some invariants to establish her classification. But it gives rise to many cases, and we also find examples where invariants take values that do not

First author partially supported by ANR Grant ” BirPol” ANR-11-JS01-004-01.
appear in her table. We do not know references explaining how her families fall into irreducible
components of Bir$_{3,d}(\mathbb{P}^3_C)$ so we focus on this natural question.

Definition. An element ψ of Bir$_{3,d}(\mathbb{P}^3_C)$ is *ruled* if the strict transform of a generic plane under ψ^{-1} is a ruled cubic surface.

Denote by rule$\mathcal{D}_{3,d}$ the set of $(3,d)$ ruled maps. Let us remark that there are no ruled birational maps of bidegree $(3,d)$ with $d \geq 6$. We detail $\text{rule}\mathcal{D}_{3,d}$ in Lemma 2.3.

We describe the irreducible components of Bir$_{3,d}(\mathbb{P}^3_C)$ for $3 \leq d \leq 5$. Let us recall that the inverse of an element of Bir$_{3,2}(\mathbb{P}^3_C)$ is quadratic and treated in [13].

Theorem A. Assume that $2 \leq d \leq 5$. The set rule$\mathcal{D}_{3,d}$ is an irreducible component of Bir$_{3,d}(\mathbb{P}^3_C)$.

In bidegree $(3,3)$ (resp. $(3,4)$) there is only another irreducible component; in bidegree $(3,5)$ there are three others.

The set rule$\mathcal{D}_{3,3}$ intersects the closure of any irreducible component of Bir$_{3,4}(\mathbb{P}^3_C)$ (the closures being taken in Bir$_{3,4}(\mathbb{P}^3_C)$).

Notations 1.1. Consider a dominant rational map ψ from \mathbb{P}^3_C into itself. For a generic line ℓ, the preimage of ℓ by ψ is a complete intersection Γ_ℓ; let C_ℓ be the union of the irreducible components of Γ_ℓ supported in the base locus of ψ. Define C_1 by liaison from C_ℓ in Γ_ℓ. Remark that if ψ is birational, then $C_1 = \psi^{-1}(\ell)$. Let us denote by $p_a(C_i)$ the arithmetic genus of C_i.

It is difficult to find a uniform approach to classify elements of Bir$_{3,4}(\mathbb{P}^3_C)$. Nevertheless in small genus we succeed to obtain some common detailed results; before stating them, let us introduce some notations.

Let us remark that the inequality $\deg \psi^{-1} \leq (\deg \psi)^2$ mentioned previously directly follows from

$$(\deg \psi)^2 = \deg \psi^{-1} + \deg C_2.$$

Proposition B. Let ψ be a $(3,d)$ birational map.

Assume that ψ is not ruled, and $p_a(C_1) = 0$, i.e. C_1 is smooth. Then

- $d \leq 6$;
- and C_2 is a curve of degree $9 - d$, and arithmetic genus $9 - 2d$.

Suppose $p_a(C_1) = 1$, and $2 \leq d \leq 6$. Then

- there exists a singular point p of C_1 independent of the choice of C_1;
- if $d \leq 4$, all the cubic surfaces of the linear system Λ_p are singular at p;
- the curve C_2 is of degree $9 - d$, of arithmetic genus $10 - 2d$, and lies on a unique quadric Q;

more precisely $I_{C_2} = (Q, S_1, \ldots, S_{d-2})$ where the S_i’s are independent cubics modulo Q.

We denote by Bir$_{3,d,p_2}(\mathbb{P}^3_C)$ the subset of non-ruled $(3,d)$ birational maps such that C_2 is of degree $9 - d$, and arithmetic genus p_2. One has the following statement:

Theorem C. If $p_2 \in \{3,4\}$, then Bir$_{3,3,p_2}(\mathbb{P}^3_C)$ is non-empty, and irreducible; Bir$_{3,3,p_1}(\mathbb{P}^3_C)$ is empty as soon as $p_2 \notin \{3,4\}$.

If $p_2 \in \{1,2\}$, then Bir$_{3,4,p_2}(\mathbb{P}^3_C)$ is non-empty, and irreducible; Bir$_{3,4,p_1}(\mathbb{P}^3_C)$ is empty as soon as $p_2 \notin \{1,2\}$.

The set Bir$_{3,5,p_2}(\mathbb{P}^3_C)$ is empty as soon as $p_2 \notin \{-1,0,1\}$ and

- if $p_2 = -1$, then Bir$_{3,5,p_1}(\mathbb{P}^3_C)$ is non-empty, and irreducible;
• if \(p_2 = 0 \), then Bir_{3,5}((\mathbb{P}_C^3)) is non-empty, and has two irreducible components;
• if \(p_2 = 1 \), then Bir_{3,5}((\mathbb{P}_C^3)) is non-empty, and has three irreducible components.

Organization of the article. In §2 we explain the particular case of ruled birational maps and set some notations. Then §3 is devoted to liaison theory that plays a big role in the description of the irreducible components of Bir_{3,3}(\mathbb{P}_C^3) (see §4), Bir_{3,4}(\mathbb{P}_C^3) (see §5) and Bir_{3,5}(\mathbb{P}_C^3) (see §6). In the last section we give some illustrations of invariants considered by HUDSON, especially concerning the local study of the preimage of a line. Since HUDSON’s book is very old, let us recall her classification in the first part of the appendix.

Acknowledgment. The authors would like to thank Jérémy BLANC and the referee for their helpful comments.

2. Definitions, Notations and First Properties

2.1. Definitions and notations. Let \(\psi : \mathbb{P}_C^3 \dashrightarrow \mathbb{P}_C^3 \) be a rational map given, for some choice of coordinates, by
\[
(z_0 : z_1 : z_2 : z_3) \dashrightarrow (\psi_0(z_0, z_1, z_2, z_3) : \psi_1(z_0, z_1, z_2, z_3) : \psi_2(z_0, z_1, z_2, z_3) : \psi_3(z_0, z_1, z_2, z_3))
\]
where the \(\psi_i \)'s are homogeneous polynomials of the same degree \(d \), and without common factors. The map \(\psi \) is called a Cremona transformation or a birational map of \(\mathbb{P}_C^3 \) if it has a rational inverse \(\psi^{-1} \). The degree of \(\psi \), denoted \(\deg \psi \), is \(d \). The pair \((\deg \psi, \deg \psi^{-1}) \) is the bidegree of \(\psi \). We say that \(\psi \) is a \((\deg \psi, \deg \psi^{-1})\) birational map. The indeterminacy set of \(\psi \) is the set of the common zeros of the \(\psi_i \)'s. Denote by \(I_\psi \) the ideal generated by the \(\psi_i \)'s, and by \(\Lambda_\psi \subset H^1(\mathcal{O}_{\mathbb{P}_C^3}(d)) \) the subspace of dimension 4 generated by the \(\psi_i \), and by \(\deg I_\psi \) the degree of the scheme defined by the ideal \(I_\psi \). The scheme whose ideal is \(I_\psi \) is denoted \(F_\psi \). It is called base locus of \(\psi \). If \(\dim F_\psi = 0 \) than \(F_\psi = \emptyset \), otherwise \(F_\psi \) is the maximal subscheme of \(F_\psi \) of dimension 1 without isolated point, and without embedded point. Furthermore if \(C \) is a curve, then \(\omega_C \) is its dualizing sheaf.

Remark 2.1. The second condition can also be stated as follows: \(\mathbb{P}_C^3 \dashrightarrow |J(3)| = \mathbb{P}_C^{3+k} \) has an image of dimension 3, and degree \(k+1 \).

Let us give a few comments about Table VI of [9]. For any subscheme \(X \) of \(\mathbb{P}_C^3 \), denote by \(I_X \) the ideal of \(X \) in \(\mathbb{P}_C^3 \). Let \(\psi \) be a \((3, d)\) birational map. A point \(p \) is a double point if all the cubic surfaces of \(\Lambda_\psi \) are singular at \(p \). A point \(p \) is a binode if all the cubic surfaces of \(\Lambda_\psi \) are singular at \(p \) with order 2 approximation at \(p \) a quadratic form of rank \(\leq 2 \) (but this quadratic form is allowed to vary in \(\Lambda_\psi \)). In other words \(p \) is a binode if there is a degree 1 element \(h \) of \(I_p \) such that all the cubics belong to \((h \cdot I_p) + I_p^2 \). A point \(p \) is a double point of contact if the general element of \(\Lambda_\psi \) is singular at \(p \) with order 2 approximation at \(p \) a quadratic form generically constant on \(\Lambda_\psi \). In other words \(p \) is a double point of contact if all the cubics belong to \(I_p^2 + (Q) \) with \(Q \) of degree 2 and singular at \(p \). A point \(p \) is a point of contact if all the cubics belong to \(I_p^3 + (S) \) where \(S \) is a cubic smooth at \(p \). A point \(p \) is a point of osculation if all the cubics belong to \(I_p^3 + (S) \) where \(S \) is a cubic smooth at \(p \).

Notations 2.2. We will denote by \(E_i \) the \(i \)-th family of Table VI and by \(\mathbb{C}[z_0, z_1, \ldots, z_n]_d \) the set of homogeneous polynomials of degree \(d \) in the variables \(z_0, z_1, \ldots, z_n \).
2.2. First properties. Let us now focus on particular birational maps that cannot be dealt as the others: the ruled birational maps of \(\mathbb{P}^3_{\mathbb{C}} \). Recall that there are two projective models of irreducible ruled cubic surfaces; they both have the same normalization: \(\mathbb{P}^3_{\mathbb{C}} \) blown up at one point which can be realized as a cubic surface in \(\mathbb{P}^4_{\mathbb{C}} \) (see [8, Chapter 10, introduction of § 4.4], [8, Chapter 9, § 2.1]).

Lemma 2.3. Assume that \(2 \leq d \leq 5 \).
- The set \(\text{ruled}_{3,d} \) is irreducible.
- Let \(\psi \) be a general element of \(\text{ruled}_{3,d} \) and let \(\Delta \) be the common line to all elements of \(\{ \text{Sing} S \mid S \in \Lambda_{\psi} \} \); then

\[
I_{\psi} = I_{\mathbb{C}}^{2} \cap I_{\Delta_{1}} \cap I_{\Delta_{2}} \cap \ldots \cap I_{\Delta_{5-d}} \cap I_{K}
\]

where \(\Delta_{i} \) are disjoint lines that intersect \(\Delta \) at a unique point, and \(K \) is a general reduced scheme of length \(2d - 4 \).

Proof. Let \(\psi \) be an element of \(\text{ruled}_{3,d} \). Recall that \(F_{\psi}^{1} \) is the maximal subscheme of \(F_{\psi} \) of dimension 1 without isolated point, and without embedded point, i.e. \(F_{\psi}^{1} \) is a curve locally COHEN-MACAULAY. Let us define \(I_{K} \) by: \(I_{K} = (I_{\psi} : I_{F_{\psi}^{1}}) \).

An irreducible element \(S \) of \(\Lambda_{\psi} \) is a ruled surface; it is also the projection of a ruled surface \(\tilde{S} \) of \(\mathbb{P}^{4}_{\mathbb{C}} \). Recall that \(\tilde{S} \) is also the blow-up \(\mathbb{P}^{2}_{\mathbb{C}}(p) \) of \(\mathbb{P}^{2}_{\mathbb{C}} \) at \(p \) embedded by \(|I_{p}(2h)| \), where \(h \) is the class of an hyperplane in \(\mathbb{P}^{2}_{\mathbb{C}} \). Let us denote by \(\pi \) the projection \(\tilde{S} \to S \), by \(H \) the class of an hyperplane of \(\mathbb{P}^{4}_{\mathbb{C}} \), and by \(E_{p} \) the exceptional divisor associated to the blow-up of \(p \). Set \(\tilde{\Delta} = \pi^{-1}\Delta \), \(\tilde{C}_{1} = \pi^{-1}(C_{1}) \), and \(\tilde{F}_{\psi}^{1} = \pi^{-1}(F_{\psi}^{1}) \). One has

\[
\tilde{\Delta} = h, \quad H = 2h - E_{p}, \quad f = h - E_{p}, \quad \tilde{F}_{\psi}^{1} = 2\tilde{\Delta} + D
\]

where \(D \) is an effective divisor. As \(\tilde{C}_{1} + \tilde{F}_{\psi}^{1} = 3H, \tilde{C}_{1} \cdot f = 1 \) and \(\tilde{C}_{1} \cdot H = d \) one gets \(D \cdot f = 0 \), and \(D \cdot H = 5 - d \); therefore \(D = (5 - d)f \). And we conclude that \(\psi \) has a residual base scheme of length \(2d - 4 \) from \(\tilde{C}_{1}^{2} = 2d - 3 \).

Conversely, take a general element of \(|O_{\tilde{S}}(f)\cap I_{\tilde{S}}(5 - d)\cap I_{\tilde{S}} | \) and 2d - 4 general points on \(\tilde{S} \) of ideal \(I \).

We have \(h^{0}(I(\tilde{C}_{1})) = 3 \), and thanks to the surjection \(H^{0}O_{\mathbb{P}^{3}_{\mathbb{C}}}(3) \to H^{0}O_{\tilde{S}}(3) \) we get an element of \(\text{ruled}_{3,d} \).

Lemma 2.4. The following inclusions hold:

\[
\text{ruled}_{3,2} \subset \text{ruled}_{3,3}, \quad \text{ruled}_{3,3} \subset \text{ruled}_{3,4}, \quad \text{ruled}_{3,4} \subset \text{ruled}_{3,5}.
\]

Proof (with the notations introduced in the proof of Lemma 2.3). Let us start with an element of \(\text{ruled}_{3,5} \) with base curve \(\tilde{\Delta}^{2} \) and 6 base points \(p_{i} \) in general position as described in Lemma 2.3. Then move two of the \(p_{i} \), for instance \(p_{1}, p_{2} \) until the line \((p_{1}p_{2}) \) intersects \(\Delta \). The line \((p_{1}p_{2}) \) is now automatically in the base locus of the linear system \(\Lambda_{\psi} \), and we obtain like this a generic element of \(\text{ruled}_{3,4} \).

A similar argument allows to prove the two other inclusions. \(\square \)
Let us recall the notion of genus of a birational map ([9, Chapter IX]). The genus \(g_\psi \) of \(\psi \in \text{Bir}(\mathbb{P}^3_C) \) is the geometric genus of the curve \(h \cap \psi^{-1}(h') \) where \(h \) and \(h' \) are generic hyperplanes of \(\mathbb{P}^3_C \). The equality \(g_\psi = g_{\psi^{-1}} \) holds.

Remark 2.5. If \(\psi \) is a birational map of \(\mathbb{P}^3_C \) of degree 1 (resp. 2, resp. 3) then \(g_\psi = 0 \) (resp. \(g_\psi = 0 \), resp. \(g_\psi \leq 1 \)).

One can give a characterization of ruled maps of \(\text{Bir}_{3,d}(\mathbb{P}^3_C) \) in terms of the genus.

Proposition 2.6. Let \(\psi \) be in \(\text{Bir}_{3,d}(\mathbb{P}^3_C) \), \(2 \leq d \leq 5 \). The genus of \(\psi \) is zero if and only if \(\psi \) is ruled.

Proof. On the one hand the base scheme of an element of \(\text{Bir}_{3,d}(\mathbb{P}^3_C) \) has at most isolated singularities if and only if the map is not ruled; on the other hand \(g_\psi = 0 \) if and only if for generic hyperplanes \(h, h' \) of \(\mathbb{P}^3_C \) the curve \(h \cap \psi^{-1}(h') \) is a singular rational cubic. \(\square \)

3. Liaison

According to [14] we say that two curves \(\Gamma_1 \) and \(\Gamma_2 \) of \(\mathbb{P}^3 \) are **geometrically linked** if

- \(\Gamma_1 \cup \Gamma_2 \) is a complete intersection,
- \(\Gamma_1 \) and \(\Gamma_2 \) have no common component.

Let \(\Gamma_1 \) and \(\Gamma_2 \) be two curves geometrically linked. Recall that \(I_{\Gamma_1 \cup \Gamma_2} = I_{\Gamma_1} \cap I_{\Gamma_2} \). According to [14, Proposition 1.1] one has \(\frac{I_{\Gamma_1 \cup \Gamma_2}}{I_{\Gamma_1}} = \text{Hom}(O_{\Gamma_2}, O_{\Gamma_1 \cup \Gamma_2}) \). Since the kernel of \(O_{\Gamma_1 \cup \Gamma_2} \to O_{\Gamma_2} \) is the ideal \(I_{\Gamma_1 \cup \Gamma_2} \), one gets the following fundamental statement: if \(\Gamma_1, \Gamma_2 \) are two curves geometrically linked, then

\[
0 \to \omega_{\Gamma_1} \to \omega_{\Gamma_1 \cup \Gamma_2} \to \omega_{\Gamma_2} \otimes \omega_{\Gamma_1 \cup \Gamma_2} \to 0.
\]

Lemma 3.1. Let \(\psi \) be a rational map of \(\mathbb{P}^3_C \) of degree 3. We have

\[
\omega_{C \cup C} = O_{C \cup C}(2h),
\]

where \(h \) denotes an hyperplane of \(\mathbb{P}^3_C \), and for \(i \in \{1, 2\} \)

\[
0 \to \omega_C \to O_{C \cup C_i}(2h) \to O_{C \cup C_i}(2h) \to 0 \tag{3.1}
\]

and

\[
0 \to I_{C \cup C_i}(3h) \to I_C(3h) \to \omega_{C \cup C_i}(h) \to 0 \tag{3.2}
\]

The first exact sequence (3.1) directly implies the following equalities \((i \in \{1, 2\}) \)

\[
H^0(\omega_C(-h)) = H^0(I_{C \cup C_i}(h)), \quad H^0(\omega_C) = H^0(I_C(2h)),
\]

\[
h^0(\omega_C(h) + 2 = h^0(I_{C \cup C_i}(3h)), \quad H^0(\omega_C(h)) = \frac{H^0(I_{C \cup C_i}(3h))}{H^0(I_C(3h))}.
\]

Corollary 3.2. Let \(\psi \) be a rational map of \(\mathbb{P}^3_C \) of degree 3. The ideal \(I_{C \cup C_i} \) is generated by cubics if and only if \(\omega_C(h) \) is globally generated.

Proof. It directly follows from the exact sequence (3.2). \(\square \)
Corollary 3.3. Let ψ be a rational map of \mathbb{P}^3_C of degree 3. Then
\[\deg C_2 - \deg C_1 = p_a(C_2) - p_a(C_1). \]

Proof. Taking the restriction of (3.1) to C_i for $i = 1, 2$ gives
\[\deg \omega_{C_i} = 2 \deg C_i - \deg (C_1 \cap C_2), \]
and hence
\[\deg C_2 - \deg C_1 = p_a(C_2) - p_a(C_1). \]

Furthermore when C_1 and C_2 have no common component, and ω_C is locally free, then $\text{length}(C_1 \cap C_2) = \deg \omega_C(2h)$, i.e.
\[\sum_{p \in C_1 \cap C_2} \text{length}(C_1 \cap C_2)_{\{p\}} = 2 \deg C_i - 2p_a(C_i) + 2. \]

In the preimage of a generic point of \mathbb{P}^3_C by ψ, the number of points that do not lie in the base locus is given by
\[3 \deg C_1 - \sum_{p \in C_1 \cap C_2} \text{length}(S \cap C_1)_{\{p\}} - \sum_{p \in \Theta} \text{length}(S \cap C_1)_{\{p\}} \]
where $S \in \Lambda_\psi$ is non-zero modulo $H^0(I_{C_1 \cup C_2}(3h))$, and where Θ denotes the set of irreducible components of dimension 0 of the base locus F_ψ of ψ.

Lemma 3.4. Let ψ be a rational map of \mathbb{P}^3_C of degree 3. Let Θ denote the set of irreducible components of dimension 0 of F_ψ. The map ψ is birational if and only if
\[1 = 3 \deg C_1 - \sum_{p \in C_1 \cap C_2} \text{length}(S \cap C_1)_{\{p\}} - \sum_{p \in \Theta} \text{length}(S \cap C_1)_{\{p\}}. \]

Remark that the computation of $\text{length}(S \cap C_1)_{\{p\}}$ depends on the nature of the singularity of the cubic surface and on the behavior of C_2 in that point (see §7).

Lemma 3.5. Let ψ be a $(3, d)$ Cremona map. Assume that $d \geq 4$, then C_1 is not contained in a plane.

Proof. Suppose for example that $d = 4$; then C_1 is contained in an irreducible cubic surface S. If C_1 is contained in a plane P then all the lines in P are quadrisecant to S: contradiction with the irreducibility of S. □

Lemma 3.6. Let ψ be a $(3, d)$ birational map, and let p be a point on C_1. Assume that the degree of the tangent cone of C_1 at p is strictly less than 4. If any S in Λ_ψ is singular at p, then p belongs to C_2.

Proof. If any S in Λ_ψ is singular at p, then the degree of the tangent cone of the complete intersection $C_1 \cap C_2$ at p is at least 4 so p has to belong to C_2. □

Lemma 3.7. Let ψ be a non-ruled $(3, d)$ birational map, and let C_1 be a general element of Λ_ψ. The support of $\text{Sing} C_1$ is independent of the choice of C_1.
Proof. Let us show that there is a singular point independent of the choice of C_1. Let us consider an element S of Λ_ψ with finite singular locus. Let $\pi: \tilde{S} \to S$ be a minimal desingularization of S, and let \tilde{C}_1 be the strict transform of C_1. The elements of Λ_ψ give a linear system in $|O_\tilde{S}^*(\tilde{C}_1)|$ whose base locus denoted Ω is finite. According to Bertini’s theorem applied on \tilde{S} one has the inclusion $\text{Sing} \tilde{C}_1 \subset \pi(\Omega) \cup \text{Sing} S$. The first assertion thus follows from the fact that $\Omega \cup \text{Sing} S$ is finite. □

Theorem 3.8. Let ψ be a $(3,d)$ birational map, $2 \leq d \leq 6$, that is not ruled. Assume that $p_a(C_1) = 1$. Then

- there exists a singular point p of C_1 independent of the choice of C_1;
- if $d \leq 4$, all the cubic surfaces of the linear system Λ_ψ are singular at p;
- the curve C_2 is of degree $9 - d$, of arithmetic genus $10 - 2d$, and lies on a unique quadric Q; more precisely $I_{C_2} = (Q,S_1,\ldots,S_{d-2})$ where the S_i's are independent cubics modulo Q.

Remark 3.9. As soon as $d = 5$ the second assertion is not true. Indeed for $d = 5$ we obtain two families: one for which all the elements of Λ_ψ are singular, and another one for which it is not the case ($\S 6$).

Proof. The first assertion directly follows from Lemma 3.7.

Since $p_a(C_1) = 1$, the curve C_2 lies on a unique quadric Q. The arithmetic genus of C_2 is obtained from $\deg C_2 - \deg C_1 = p_a(C_2) - p_a(C_1)$ (Corollary 3.3).

As $p_a(C_1) = 1$, $\omega_{C_1}(h)$ has no base point, and I_{C_2} is generated by cubics (Corollary 3.2). The number of cubics containing C_2 independent modulo the multiple of Q is $d - 2$: the liaison sequence (Lemma 3.1) becomes

$$0 \longrightarrow O_{C_1}(h) \longrightarrow O_{C_1 \cup C_2}(3h) \longrightarrow O_{C_2}(3h) \longrightarrow 0$$

one gets that

$$h^0 O_{C_2}(3h) = h^0 O_{C_1 \cup C_2}(3h) - h^0 O_{C_1}(h) = 18 - d.$$

This implies that

$$h^0 I_{C_2}(3h) = 20 - h^0 O_{C_2}(3h) = d + 2.$$

If we put away the four multiples of Q one obtains $d + 2 - 4 = d - 2$ cubics, and finally $I_{C_2} = (Q,S_1,\ldots,S_{d-2})$.

Corollary 3.3 and Theorem 3.8 imply Proposition B.

Proposition 3.10. For $2 \leq d \leq 5$ the set $\nu \cdot \partial_{3, d}$ is an irreducible component of $\text{Bir}_{3,d}(\mathbb{P}_C^3)$.

Proof. Let us use the notations introduced in Lemma 2.3. Note that $F^1_\psi \subset C_2$. If $\psi \in \text{Bir}_{3,d}(\mathbb{P}_C^3)$ is not ruled then at a generic point $p \in F^1_\psi$ there exists an element of Λ_ψ smooth at p. Hence F^1_ψ is locally complete intersection at p and $\deg F^1_\psi = \deg C_2$. In particular $\deg I_\psi = 9 - d$.

Consider now an element ψ in $\nu \cdot \partial_{3, d}$. There is a line ℓ such that $\ell \subset \text{Sing} S$ for any $S \in \Lambda_\psi$; the set F^1_ψ has an irreducible component whose ideal is I^1_ℓ and F^1_ψ is not locally complete intersection. This multiple structure has to be contained in C_2 but since C_2 is locally complete intersection the inequality $\deg C_2 > \deg F^1_\psi$ holds; it can be rewritten $\deg I_\psi < 9 - d$.

The number $\deg I_\psi$ cannot decrease by specialization so we cannot specialize a non-ruled birational map into a ruled one while staying in the same bidegree\(^1\).

Elements of Λ_ψ when ψ is a ruled birational map have no isolated singularities whereas general elements of Λ_ψ when ψ is a non-ruled birational map have at most isolated singularities, it is impossible to specialize a ruled birational map into a non-ruled one. □

Corollary 3.11. Let ψ be a $(3, \cdot)$ birational map of \mathbb{P}^3_C; if the general element of Λ_ψ is smooth or if the singularities of a general element of Λ_ψ are isolated, then $\deg F_\psi^1 = \deg C_\psi$.

4. (3,3)-CREMONA TRANSFORMATIONS

4.1. Some known results.

4.1.1. In the literature one can find different points of view concerning the classification of $(3,3)$ birational maps. For example HUDSON introduced many invariants related to singularities of families of surfaces and gave four families described in §A; nevertheless we do not understand why the family $\mathcal{E}_{3,5}$ defined below does not appear. PAN chose an other point of view and regrouped $(3,3)$ birational maps into three families. A $(3,3)$ birational map ψ of \mathbb{P}^3_C is called **determinantal** if there exists a 4×3 matrix M with linear entries such that ψ is given by the four 3×3 minors of the matrix M; the inverse ψ^{-1} is also determinantal. Let us denote by $\mathcal{T}_{3,3}^D$ the set of determinantal maps. A $(3,3)$ CREMONA transformation is a **DE JONQUIÈRES** one if and only if the strict transform of a general line under ψ^{-1} is a singular plane rational cubic curve whose singular point is fixed. For such a map there is always a quadric contracted onto a point, the corresponding fixed point for ψ^{-1} which is also a **DE JONQUIÈRES** transformation. The **DE JONQUIÈRES** transformations form the set $\mathcal{T}_{3,3}^D$. PAN established the following ([11, Theorem 1.2]):

$$\mathbf{Bir}_{3,3}(\mathbb{P}^3_C) = \mathcal{T}_{3,3}^D \cup \mathcal{T}_{3,3}^I \cup \mathfrak{ruled}_{3,3};$$

in other words an element of $\mathbf{Bir}_{3,3}(\mathbb{P}^3_C)$ is a determinantal map, or a **DE JONQUIÈRES** map, or a ruled map.

Remark 4.1. One has $\mathcal{T}_{3,3}^D = \mathbf{Bir}_{3,3}(\mathbb{P}^3_C)$ and $\mathcal{T}_{3,3}^I = \mathbf{Bir}_{3,3,4}(\mathbb{P}^3_C)$; hence $\mathbf{Bir}_{3,3,p_2}(\mathbb{P}^3_C)$ is irreducible for $p_2 \in \{3, 4\}$ (see [11]).

Remark 4.2. The birational involution $$(\zeta_0 \zeta_1^2 : \zeta_0^2 \zeta_1 : \zeta_0^3 \zeta_2 : \zeta_1^3 \zeta_3)$$ is determinantal, the matrix being

$$\begin{bmatrix}
z_0 & z_3 & 0 \\
-z_1 & 0 & z_2 \\
0 & 0 & -z_1 \\
0 & -z_0 & 0
\end{bmatrix},$$

and also ruled: all the partial derivatives of the components of the map vanish on $z_0 = z_1 = 0$. The CREMONA transformation $$(\zeta_0^2 : \zeta_0^2 \zeta_1 : \zeta_0^2 \zeta_2 : \zeta_1^2 \zeta_3)$$ is a **DE JONQUIÈRES** and a ruled one.

One has ([10])

$$\mathcal{T}_{3,3}^D \cap \mathcal{T}_{3,3}^I = \emptyset, \quad \mathcal{T}_{3,3}^D \cap \mathfrak{ruled}_{3,3} \neq \emptyset, \quad \mathcal{T}_{3,3}^I \cap \mathfrak{ruled}_{3,3} \neq \emptyset.$$
We deal with the natural description of the irreducible components of Bir$_{3,3}$ which does not coincide with PAN’s point of view since one of his family is contained in the closure of another one.

4.2. Irreducible components of the set of $(3,3)$ birational maps.

4.2.1. General description of $(3,3)$ birational maps. One already describes an irreducible component of Bir$_{3,3}(\mathbb{P}^3_C)$, the one that contains $(3,3)$ ruled birational maps (Proposition 3.10). Hence let us consider the case where the linear system Λ_p associated to $\psi \in$ Bir$_{3,3}(\mathbb{P}^3_C)$ contains a cubic surface without double line.

- If C_1 is smooth then it is a twisted cubic, we are in family E_2 of Table VI (see §B). In that case ψ is determinantal; more precisely a $(3,3)$ birational map is determinantal if and only if its base locus scheme is an arithmetically Cohen-Macaulay curve of degree 6 and (arithmetic) genus 3 (see [1, Proposition 1]).

- Otherwise $\mathcal{O}_{C_1} = \mathcal{O}_{C_1'}$, and ψ belongs to the irreducible family $T^I_{3,3}$ of Jonquières maps (E_3 in terms of HUDSON’s classification). The curve C_1 lies on a quadric described by the quadratic form Q. According to Theorem 3.8 the ideal of C_2 is (Q,S), and there exists a point p such that $p \in Q$, and p is a singular point of S. Furthermore $I_p = I_pQ + (S)$. Reciprocally such a triplet (p,Q,S) induces a birational map.

The family $T^I_{3,3}$ is stratified as follows by HUDSON (all the cases belong to E_3):

- **Description of E_3**. The general element of $I_pQ + (S)$ has an ordinary quadratic singularity at p (configuration $(2,2)$ of Table 1 (see §7)), and the generic cubic is singular at p with a quadratic form of rank 3.

- **Description of $E_{3,5}$**. The point p lies on Q (p is a smooth point or not) and the generic cubic is singular at p with a quadratic form of rank 2. In other words p is a binode and this happens when one of the two biplanes is contained in T_pQ, it corresponds to the configuration $(2,3)'$ of Table 1 (see §7). The generic cubic is singular at p with a quadratic form of rank 2; this case does not appear in Table VI (see §B). Let us denote by $E_{3,5}$ the set of the associated $(3,3)$ birational maps. The curve C_2 has degree 6 and a triple point (in Q).

- **Description of E_4**. The point p is a double point of contact, it corresponds to configuration $(2,4)$ of Table 1 (see §7).

Proposition 4.3. One has

$$\dim E_2 = 39, \quad \dim E_3 = 38, \quad \dim E_{3,5} = 35, \quad \dim E_4 = 35, \quad \dim E_5 = 31,$$

and

$$\overline{E}_3 = T^I_{3,3}, \quad \hat{E}_{3,5} \subset \overline{E}_3, \quad \hat{E}_4 \subset \overline{E}_3, \quad \hat{E}_4 \not\subset \overline{E}_{3,5}, \quad \hat{E}_{3,5} \not\subset \overline{E}_4.$$

Proof. Let us justify the equality $\dim E_3 = 38$. We have to choose a quadric Q and a point p on Q, this gives $9 + 2 = 11$. Then we take a cubic surface singular at p that yields to $19 - 4 = 15$; since we look at this surface modulo pQ one gets $15 - 3 = 12$ so

$$\dim E_3 = 11 + 12 + 15 = 38.$$

Let us deal with $\dim E_4$. We take a singular quadric Q this gives 8. Then we take a cubic singular at p, modulo pQ and this yields to $19 - 4 - 3 = 12$, and finally one obtains $12 + 8 + 15 = 35$. □
4.2.2. Irreducible components.

Theorem 4.4. The set \(\text{rule} \mathcal{O}_{3, 3} \) is an irreducible component of \(\text{Bir}_{3, 3}(\mathbb{P}^3) \), and there is only one another irreducible component in \(\text{Bir}_{3, 3}(\mathbb{P}^3) \). More precisely the set of the Jonquières maps \(\mathcal{E}_3 \) is contained in the closure of determinantal ones \(\mathcal{E}_2 \) whereas \(\text{rule} \mathcal{O}_{3, 3} \not\subset \mathcal{E}_2 \).

Proof. Let us consider the matrix \(A \) given by

\[
\begin{bmatrix}
0 & 0 & 0 \\
-z_1 & -z_2 & 0 \\
z_0 & 0 & -z_2 \\
0 & z_0 & z_1
\end{bmatrix}
\]

and let \(A_i \) denote the matrix \(A \) minus the \((i+1)\)-th line. If \(i > 0 \), the \(2 \times 2 \) minors of \(A_i \) are divisible by \(z_{i-1} \).

Consider the \(3 \times 4 \) matrix \(B \) given by \([b_{ij}]_{1 \leq i \leq 4, 1 \leq j \leq 3} \) with \(b_{ij} \in H^0(\mathcal{O}_{\mathbb{P}^3}(1)) \); as previously, \(B_i \) is the matrix \(B \) minus the \((i+1)\)-th line. Denote by \(\Delta^{jk} \) the determinant of the matrix \(A_0 \) minus the \(j \)-th line and the \(k \)-th column. The \(\Delta^{jk} \) generate \(\mathbb{C}[z_0, z_1, z_2]_2 \). One has

\[
det(A_0 + tB_0) = t \cdot S \quad [t^2]
\]

where

\[
S = (b_{21} + b_{43})\Delta^{1,1} - (b_{31} - b_{42})\Delta^{2,1} + (b_{33} - b_{22})\Delta^{1,2} + b_{23}\Delta^{1,3} + b_{32}\Delta^{2,2} + b_{41}\Delta^{3,1}
\]

is a generic cubic of the ideal \((z_0, z_1, z_2)^2\). For \(i > 0 \)

\[
det(A_i + tB_i) = detA_i + t \cdot (z_{i+1}Q)(-1)^{i+1} = t \cdot (z_{i+1}Q)(-1)^{i+1} \quad [t^2]
\]

where \(Q = b_{1, i}z_2 - b_{1, 2}z_1 + b_{1, 3}z_0 \) is the equation of a generic quadric that contains \((0, 0, 0, 1)\). So the map

\[
\begin{bmatrix}
\frac{\det(A_0 + tB_0)}{t} \\
\frac{\det(A_1 + tB_1)}{t} \\
\frac{\det(A_2 + tB_2)}{t} \\
\frac{\det(A_3 + tB_3)}{t}
\end{bmatrix}
\]

allows to go from \(\mathcal{E}_2 \) to a general element of \(\mathcal{E}_3 \).

Furthermore \(\mathcal{E}_3 \) and \(\text{rule} \mathcal{O}_{3, 3} \) are different components (Proposition 3.10). \(\Box \)

5. \((3, 4)\)-Cremona transformations

5.1. **General description of \((3, 4)\) birational maps.** The ruled maps \(\text{rule} \mathcal{O}_{3, 4} \) give rise to an irreducible component (Proposition 3.10). Let us now focus on the case where the linear system \(\Lambda_\psi \) associated to \(\psi \in \text{Bir}_{3, 4}(\mathbb{P}^3) \) contains a cubic surface without double line.

- First case: \(C_1 \) is smooth. From \(h^0(\mathcal{O}_{\mathbb{C}}(h)) = 3 \) one gets that \(C_2 \) lies on five cubics. Since \(h^0(\mathcal{O}_{C_2}(2h)) = 0 \) the curve \(C_1 \) lies on a quadric, and \(h^0(\mathcal{O}_{C_2}) = 1 \) thus \(\omega_{C_2} = \mathcal{O}_{C_2} \). This configuration corresponds to \(\mathcal{E}_6 \).
Second case: C_1 is a singular curve of degree 4 not contained in a plane (see Lemma 3.5) so $o_{C_1} = O_{C_1}$. The curve C_1 lies on two quadrics and C_2 on six cubics (H0O$_{C_1}$ (h) = 4). Let p be the singular point of C_1; all elements of Λ_ψ are singular at p (Theorem 3.8), and p belongs to C_2 (Lemma 3.6). The curve C_2 lies on a unique quadric Q (Theorem 3.8), is linked to a line ℓ in a (2, 3) complete intersection $\mathcal{Q} \cap S_1$ (with deg $Q = 2$ and deg $S_1 = 3$), and $I_{C_2} = (Q, S_1, S_2)$ with deg $S_2 = 3$ (Theorem 3.8).

Since C_1 is of degree 4 and arithmetic genus 1, one has $H^0(O_{C_1}(h)) = H^0(O_{\mathbb{P}^3}(1))$. Let us consider $L = H^0(I_{C_1 \cup C_2}(3h)) \subset \Lambda_\psi$ and the map

$$H^0(O_{C_1}(h)) \to \frac{H^0(I_{C_2}(3h))}{L}, \quad h \mapsto Qh;$$

it is injective. Indeed dim$(C_1 \cap Q) = 0$ thus modulo Q the cubics defining C_1 are independent. Therefore Λ_ψ is contained in $(Q I_p, S_1, S_2)$. For $p' \in \mathbb{P}^3 - Q$ one has

$$H^0((Q I_p, S_1, S_2) \cap I_{p'}(3)) = \Lambda_\phi$$

for some birational map ϕ, and ψ belongs to the closure of the set defined by all such maps ϕ.

Reciprocally let Q be a quadric, p be a point on Q, S_1 be a cubic singular at p and that contains a line ℓ of Q. If C_2 is the residual of ℓ in (Q, S_1), then there exists S_2 singular at p such that $I_{C_2} = (Q, S_1, S_2)$. Set

$$\Lambda = H^0((I_{p_1} \cap (Q I_p, S_1, S_2))(3)).$$

Let L be a 2-dimensional general element of Λ; the general linked curve to C_2 in L, denoted $C_{1, L}$, is of degree 4, is singular at p, lies on two quadrics; furthermore the linear system induced by Λ on $C_{1, L}$ has the two following properties:

- its base locus contains p and p_1,
- it is birational.

In other words, $\Lambda = \Lambda_\psi$ for a (3, 4)-birational map ψ.

Let us give some explicit examples, the generic one and the degeneracies considered by Hudson:

- **Description of \mathcal{E}_2.** The quadric Q is smooth at p, and the rank of Q is maximal. Hence the point p is an ordinary quadratic singularity of the generic element of Λ_ψ, we are in the configuration (2, 2) of Table 1 (see §7).
- **Description of \mathcal{E}_7.** In that case, p is a binode, Q is smooth at p and one of the two biplanes is contained in $T_p \mathcal{Q}$; we are in the configuration (2, 3)’ of Table 1 (see §7). The set of such maps is denoted \mathcal{E}_7, this case does not appear in Table VI but should appear.
- **Description of \mathcal{E}_8.** The second way to obtain a binode is the following one: Q is an irreducible cone with vertex p. This corresponds to the configuration (2, 3) of Table 1 (see §7).
- **Description of \mathcal{E}_9.** The rank of Q is 2, and the point p is a double point of contact; we are in the configuration (2, 4) of Table 1 (see §7).
• Description of \mathcal{E}_{10}. The general element of Λ_{ψ} has a double point of contact and a binode (configurations (2,4) and (1,4) of Table 1, see §7). HUDDON details this case carefully ([9, Chap. XV]).

Proposition 5.1. One has the following properties:

$$\dim \mathcal{E}_6 = 38, \quad \mathcal{E}_7 \cup \mathcal{E}_8 \subset \overline{\mathcal{E}_7}$$

and

- a generic element of $\mathcal{E}_{7,5}$ is not a specialization of a generic element of \mathcal{E}_8;
- a generic element of \mathcal{E}_8 is not a specialization of a generic element of $\mathcal{E}_{7,5}$;
- a generic element of \mathcal{E}_9 is a specialization of a generic element of \mathcal{E}_8.

Proof. The arguments to establish $\dim \mathcal{E}_6 = 38$ are similar to those used in the proof of Proposition 4.3.

Let us justify that a generic element of $\mathcal{E}_{7,5}$ is not a specialization of a generic element of \mathcal{E}_8 (we take the notations of §5.1): as we see when $\psi \in \mathcal{E}_8$ the quadric Q is always singular whereas it is not the case when $\psi \in \mathcal{E}_{7,5}$. Conversely if ψ belongs to $\mathcal{E}_{7,5}$ then C_2 is reducible but if ψ belongs to \mathcal{E}_8 the curve C_2 can be irreducible and reduced; hence a generic element of \mathcal{E}_8 is not a specialization of a generic element of $\mathcal{E}_{7,5}$.

Theorem 5.2. The set rule$\mathcal{E}_{3,4}$ is an irreducible component of Bir$\mathcal{E}_{3,4}(\mathbb{P}_C^3)$. There is only one another irreducible component in Bir$\mathcal{E}_{3,4}(\mathbb{P}_C^3)$.

Proof. According to Proposition 3.10 the set rule$\mathcal{E}_{3,4}$ is an irreducible component of Bir$\mathcal{E}_{3,4}(\mathbb{P}_C^3)$.

Any element ψ of $\mathcal{E}_7 \cup \mathcal{E}_{7,5} \cup \mathcal{E}_8 \cup \mathcal{E}_9 \cup \mathcal{E}_{10}$ satisfies the following property:

$$\Lambda_{\psi} = H^0(((Q L_p, S_1, S_2) \cap I_p))$$

where p belongs to Q, p_1 is an ordinary base point, and

$$Q = \det \begin{bmatrix} L_0 & L_1 \\ L_2 & L_3 \end{bmatrix}, \quad S_1 = L_0 Q_1 + L_1 Q_2, \quad S_2 = L_2 Q_1 + L_3 Q_2$$

with $L_i \in \mathbb{C}[z_0, z_1, z_2, z_3]$, $Q_i \in \mathbb{C}[z_0, z_1, z_2]$. So \mathcal{E}_7, $\mathcal{E}_{7,5}$, \mathcal{E}_8, \mathcal{E}_9 and \mathcal{E}_{10} belong to the same irreducible component \mathcal{E}.

It remains to show that $\mathcal{E} = \overline{\mathcal{E}_6}$: let us consider

$$J = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}, \quad N = \begin{bmatrix} 0 & -z_2 & z_3 & L_0 \\ z_2 & 0 & L_1 & L_2 \\ -z_3 & -L_1 & 0 & L_3 \\ -L_0 & -L_2 & -L_3 & 0 \end{bmatrix}, \quad v = \begin{bmatrix} z_2 \\ z_1 \\ z_0 \\ t z_3 \end{bmatrix}$$

with L_i linear forms and

$$M_i = \begin{bmatrix} J v \\ N v \end{bmatrix} = \begin{bmatrix} t z_3 & z_0 & -z_1 & -z_2 \\ t z_3 L_0 + Q & q_1 & q_2 & q_3 \end{bmatrix}$$

with

$$Q = z_0 z_3 - z_1 z_2, \quad q_1 = z_2^2 + z_0 L_1 + t z_3 L_2, \quad q_2 = -z_2 z_3 - z_1 L_1 + t z_3 L_3, \quad q_3 = -z_2 L_0 - z_1 L_2 - z_0 L_3.$$
For generic L_i's and $t \neq 0$ the 2×2 minors of M_i generate the ideal of a generic elliptic quintic curve as in \mathcal{E}_0. For M_0 the 2×2 minors become $Qz_0, Qz_1, Qz_2, S_1, S_2,$ and S_3 with

$$S_1 = -z_2Q,$$
$$S_2 = -z_1q_3 + z_2q_2,$$
$$S_3 = z_0q_3 + z_2q_1.$$

Therefore the ideal \mathcal{M}_2 generated by these minors is

$$(Qz_0, Qz_1, Qz_2, S_2, S_3).$$

Denote by ℓ the line defined by $I_{\ell} = (z_1, z_3)$. According to

$$z_3S_3 = -z_2S_2 + Q(q_3 + L_1z_2) \quad \& \quad z_1S_3 = -z_0S_2 - z_2^2Q$$

\mathcal{M}_2 is the ideal of the residual of ℓ in the complete intersection of ideals (Q, S_2).

It only remains to prove that one can obtain the generic element of \mathcal{E}_7 with a good choice of the L_i's; in other words it remains to prove that S_2 is generic among the cubics singular at p that contain ℓ. Modulo Q one can assume that $q_3 = -z_3a + b$, with a (resp. b) an element of $\mathbb{C}[z_1, z_2]_1$ (resp. $\mathbb{C}[z_0, z_1, z_2]_2$). Then

$$S_2 = -z_3(z_1a + z_2^2) + z_1(b - z_2L_1);$$

in conclusion $S_2 = z_3A + z_2B$ for generic A and B in $\mathbb{C}[z_0, z_1, z_2]_2$. \square

5.2. Relations between $\text{Bir}_{3,3}(\mathbb{P}^3_C)$ and $\text{Bir}_{3,4}(\mathbb{P}^3_C)$. One can now state the following result:

Proposition 5.3. The set rule$\partial_{3,3}$ intersects the closure of any irreducible component of $\text{Bir}_{3,4}(\mathbb{P}^3_C)$.

Proof. According to Lemma 2.4 it is sufficient to prove that rule$\partial_{3,3}$ intersects the closure of $(3, 4)$ birational maps that are non-ruled.

Let us consider an element ψ of $\text{Bir}_{3,4}(\mathbb{P}^3_C)$ whose C_2 is the union of the lines of ideals

$$I_0 = (z_0, z_1^2), \quad (z_0 - \varepsilon z_2, z_1), \quad I_1 = (z_0, z_3), \quad I_2 = (z_1, z_2).$$

Denote by $J_0 = (z_0, z_1^2) \cap (z_0 - \varepsilon z_2, z_1) \cap (z_0, z_3) \cap (z_1, z_2)$. One can check that

$$J_0 = (z_0 z_1, z_0^2 z_2 + \varepsilon z_0 z_2^2, z_1^2).$$

Set $I_\varepsilon = z_0 z_1 (z_0, z_1, z_2) + (z_0^2 z_2 + \varepsilon z_0 z_2^2, z_1^2 z_3)$. For a general p_2 the map ψ_ε defined by $\Lambda_{\psi_\varepsilon} = H^0((I_\varepsilon \cap I_{p_2}, (3)))$ is birational; furthermore

- $\psi_\varepsilon \in \text{Bir}_{3,4}(\mathbb{P}^3_C) \setminus \text{rule}_{3,4}$ for $\varepsilon \neq 0$;
- $\psi_0 \in \text{rule}_{3,3}$.

As in the case of $(3, 3)$ birational maps one has the following statement:

Theorem 5.4. If $p_2 \in \{1, 2\}$, then $\text{Bir}_{3,4,p_2}(\mathbb{P}^3_C)$ is non-empty and irreducible.

6. $(3, 5)$-CREMONA TRANSFORMATIONS

6.1. General description of $(3, 5)$ birational maps. We already find an irreducible component of the set of $(3, 5)$ birational maps: rule$\partial_{3,5}$ (Proposition 3.10). Let us now consider a $(3, 5)$-CREMONA transformation ψ such that Λ_{ψ} contains a cubic surface without double line.
6.1.1. Case: C_1 smooth. In that situation $\deg \omega_C(h) = 3$ so according to (3.2) the map ψ has two ordinary base points. The curve C_2 has genus -1 and does not lie on a quadric; C_2 is the disjoint union of a twisted cubic and a line, that is ψ belongs to \mathcal{E}_{12}. Indeed suppose that $\psi \notin \mathcal{E}_{12}$, then C_2 is the union of two smooth conics Γ_1 and Γ_2 that do not intersect. Any Γ_i is contained in a plane \mathcal{P}_i. Denote by ℓ the intersection $\mathcal{P}_1 \cap \mathcal{P}_2$. As $\#(\ell \cap (\Gamma_1 \cup \Gamma_2)) = 4$, all the cubic surfaces that contain $\Gamma_1 \cup \Gamma_2$ contain ℓ. So $\ell \subset C_2$: contradiction.

6.1.2. Case: C_1 not smooth. So $p_a(C_1) \geq 1$, and

$$p_a(C_2) = \deg C_2 - \deg C_1 + p_a(C_1) = -1 + p_a(C_1) \geq 0.$$

Since C_1 is not in a plane, $p_a(C_1) \leq 2$. Therefore we only have to distinguish the eventualities $p_a(C_1) = 1$ and $p_a(C_1) = 2$. Before looking at any of these eventualities let us introduce the set

$$\mathcal{C} = \{\text{irreducible curves of } \mathbb{P}^3_C \text{ of degree 5 and geometric genus 0}\}$$

- Assume first that $p_a(C_1) = 1$. Then $O_{C_1} = \omega_{C_1}$. We will denote by $\pi: \mathbb{P}^1_C \to C_1$ the normalization of C_1.

 a1) Suppose first that all the elements of Λ_ψ are singular at $p \in \mathbb{P}^3_C$. Denote by L the 2-dimensional vector space $\Lambda_\psi \cap H^0((I_p^2 \cap I_{C_1})(3h))$ defining C_1 and C_2. By the liaison sequence (3.2) of Lemma 3.1 $\frac{\Lambda_\psi}{R_p}$ gives a vector subspace u of $H^0(\omega_{C_1}(h)) = H^0(O_{C_1}(h))$ of dimension 2. It induces a projection from C_1 to $[u]_p$ that coincides with the restriction of ψ to C_1: hence this projection has degree 1. Moreover, via the identification $H^0(O_{C_1}(h)) = H^0(\pi^* O_{C_1}(h))$, u is included in the set V_1 of sections of $O_{\mathbb{P}^1_C}(5)$ whose base locus contains $\pi^{-1}(p)$; there are two other ordinary base points.

 We would like to show that C_2 moves in an irreducible family. We will do this by deforming ψ and C_2 while C_1 is fixed. So, $p \in \mathbb{P}^3_C$ being fixed, let us consider

$$\mathcal{R}_{p,1} = \{C \in \mathcal{C} \mid \{p\} = \text{Sing } C, p_a(C) = 1\};$$

the set $\mathcal{R}_{p,1}$ is an irreducible one. Remark that $H^0(I_C(3h)) = \deg C + p_a(C) - 1 = 5$ and $H^0((I_p^2 \cap I_C)(3h))) = 5 - 1 = 4$ because C has a double point at p for all C in $\mathcal{R}_{p,1}$.

Let us denote by F_1 the set of $(C, L, u) \in \mathcal{R}_{p,1} \times H^0((I_p^2 \cap I_C)(3h)) \times V_1$ defined by

- $L \subset H^0((I_p^2 \cap I_C)(3h))$ of dimension 2 such that the residual of C in the complete intersection defined by L has no common component with C and C is geometrically linked to a curve denoted by C_2L,

- $u \subset V_1$ of dimension 2 such that $\mathbb{P}^1_{\mathbb{P}^3_C} \dashrightarrow [u]_p$ has degree 1.

The set F_1 is irreducible since the choice of C is irreducible, and thus the choices of L and u too.

If (C, L, u) belongs to F_1, let us set

$$h_L: H^0(I_{C_2L}(3h)) \to H^0(\omega_C(h))$$

(recall that $H^0(I_{C_2L}(3h)) \simeq H^0(\omega_C(h))$). Consider the map

$$\kappa_1: F_1 \to \mathbb{G}(4; H^0(O_{\mathbb{P}^3}(3))), \quad (C, L, u) \mapsto h_L^{-1}(u).$$
By construction of F_1 if ψ is birational, if all elements of Λ_ψ are singular at p, and $p_u(C_1) = 1$, then Λ_ψ is in the image of κ_1.

Lemma 6.1. The general element of $\text{im}\kappa_1$ coincides with Λ_ψ for some birational map ψ of \mathcal{E}_{14}.

Proof. As F_1 is irreducible it is enough to show that $h_L^{-1}(u)$ is a birational system when (C, L, u) is general in F_1. In that situation $C_{2, L}$ is a curve of degree 4, arithmetic genus 0, singular at p, lying on a smooth quadric. Therefore $C_{2, L}$ is reducible; more precisely it is the union of a twisted cubic and a line of this smooth quadric. All the elements of $h_L^{-1}(u)$ are cubic surfaces singular at p because $C_{2, L}$ has a double point at p, and the residual pencil $u \subset H^0(\omega_C(h))$ vanishes at p by definition of F_1. From definition of u, $h_L^{-1}(u)$ has two ordinary base points p_1 and p_2. Hence let C_1 be the residual of $C_{2, L}$ in the intersection of two general cubics of $h_L^{-1}(u)$. Then C_1 is singular at p, $\psi_{C, L, u}$ has degree 5 on C_1, sends C_1 onto a line, is birational, and its base locus contains p, p_1, p_2. \qed

Let us remark that the previous irreducibility result asserts that the following example (belonging to family \mathcal{E}_{18}) that is not on a smooth quadric is nevertheless a deformation of elements of \mathcal{E}_{14}.

Example 6.2. Let C_2 be the union of a line doubled on a smooth quadric with two other lines, such that all these lines contain a same point p. Set

$$Q = z_0z_3 - z_1z_2, \quad I_p = (z_0, z_1, z_2);$$

then $I_{C_2} = ((z_2, z_0)^2 + (Q)) \cap (z_1, z_2) \cap (z_0, z_2, z_1, z_2)$. Now chose a double point of contact (note that the tangent cone must contain the tangent cone of C_2):

$$I_{dpc} = (z_2^2z_3 - z_0z_1z_3) + (z_0, z_1, z_2)^3,$$

and let p_1 and p_2 be two general points. Define I_ψ by $I_{C_2} \cap I_{dpc} \cap I_{p_1} \cap I_{p_2}$. So I_ψ is the intersections of $I_{p_1} \cap I_{p_2}$ with

$$I_{C_2} \cap I_{dpc} = (z_1z_2^3 - z_2, z_0z_2^3 - z_3, z_1z_3^2 - z_2 - z_0z_1z_3 + z_2z_3, z_0z_1z_2 - z_2, z_0z_2^2 - z_3, z_0z_1^3 - z_2).$$

The tangent cone of C_2 at p has degree 4 but the tangent cone of $C_1 \cup C_2$ at p has degree 6, so C_1 belongs to $\mathcal{G}_{p, 1}$.

$b_1)$ Suppose now that Λ_ψ contains a smooth element at p. Then p is a point of contact, all the cubic surfaces are tangent at p; $C_2 \subset Q$ is linked to a curve of degree 2 and genus -1. In that case we have no restriction on the curves of genus 0 and degree 4 contrary to the previous case. Hence in general Q is smooth, and C_2 is a smooth rational curve on Q. Set $Q = z_0z_3 - z_1z_2, I_{t_1} = (z_0, z_1)$, and $I_{t_2} = (z_2, z_3)$; one has

$$J = I_{t_1} \cup I_{t_2} = (z_0z_2, z_0z_3, z_1z_2, z_1z_3).$$

Let S_0 be the element of J given by

$$a_0z_2 + b_0z_3 + c_1z_3, \quad a, b, c \in \mathbb{C}[z_0, z_1, z_2, z_3];$$

one has $I_{C_2} = ((S_0, Q) : J) = (Q, S_0, S_1, S_2)$ with

$$S_1 = z_0a + z_0z_1b + z_1c, \quad S_2 = z_2a + z_2z_3b + z_3c.$$
The dimension of $H^0(I_{C_3}(3h))$ is 7; indeed one has the following seven cubics:

$$I_{C_3} = \langle Q_{z0}, Q_{z1}, Q_{z2}, Q_{z3}, S_0, S_1, S_2 \rangle.$$

The map ψ has no base point. Indeed $u = \frac{\Lambda_p}{H^0(I_{C_3}(3h))}$ is contained in the sections of $O_{\mathbb{P}^3}(5)$ whose base locus contains $2\pi^{-1}(p)$; we thus already have an isomorphism between $P^1_{\mathbb{C}} \cup (u^\vee)$ and $|u^\vee|$. The map ψ belongs to E_{31}.

- Suppose that $p_d(C_1) = 2$. Then $p_d(C_2) = 1$, C_1 lies on a quadric and $H^0(I_{C_3}(3)) = 6$. We will still denote by $\pi: P^1_{\mathbb{C}} \to C_1$ the normalization of C_1.

 a_2) Assume first that C_1 has a triple point p. The curve C_1 is linked to a line by a complete intersection (C, S_0) where C (resp. S_0) is a cone (resp. a cubic) singular at p. We can write the normalization π as follows $(\alpha, \alpha \beta)$, $\beta A, B)$ with $A \subset C[\alpha, \beta][1], B \subset C[\alpha, \beta][3], A, B$ without common factors. Then $Q = z_1^2 - z_0z_2$, and $H^0(I_{C_1}(n))$ can be identified with $H^0(I_1(2)^{\prime})$, where $I_1 = (z_0, z_1)$. So $H^0(I_{C_1}(h))$ is the 6-dimensional subspace W of $H^0(O_{\mathbb{P}^3}(6))$ spanned by $(\alpha, \beta), (\alpha^2, \alpha \beta A, \beta^2, A, B)$. Let us consider the subspace $V_A = W \cap (A)$ of W. Let L be the 2-dimensional vector space $\Lambda_p \cap H^0(I_{C_3}(3h))$. Then Λ_p gives a 2-dimensional vector subspace u of V_A. The restriction of ψ to C_1 gives a birational map $P^1_{\mathbb{C}} \dasharrow |u^\vee|$ induced by $u \subset V_A \subset H^0(O_{\mathbb{P}^3}(6))$. Furthermore ψ has two ordinary base points. We would like to show that in that case C_2 moves in an irreducible family whose general element is the complete intersection of two quadrics. We thus fix a point $p \in P^3_{\mathbb{C}}$ and introduce the irreducible set

$$\mathcal{L}_{p, 2} = \{C \subset \mathcal{L} \mid \{p\} = \text{Sing } C, p_d(C) = 2\}.$$

We define the set F_2 as the $(C, L, u) \in \mathcal{L}_{p, 2} \times H^0(I_{C_3}(3h)) \times V_A$ given by

- $L \subset H^0(I_{C_3}(3h))$ of dimension 2 such that the residual of C in the complete intersection defined by L has no common component with C, and C is geometrically linked to a curve denoted by $C_2 L$.

- $u \subset V_A$ of dimension 2 such that $P^1_{\mathbb{C}} \dasharrow |u^\vee|$ is birational and whose base locus contains $\pi^{-1}(p)$.

Let us consider the map

$$\kappa_2: F_2 \to \mathcal{L}(4; H^0(O_{\mathbb{P}^3}(3))), \quad (C, L, u) \mapsto h_L^{-1}(u).$$

If ψ is birational, if $p_d(C_1) = 2$, and C_1 has a triple point then ψ belongs to $\text{im } \kappa_2$.

Lemma 6.3. The general element of $\text{im } \kappa_2$ coincides with Λ_p for some birational map ψ of E_{13}.

Proof. As F_2 is irreducible one can consider a general element of F_2, and then $C_{2,L}$ is a curve of degree 4, genus 1 and is the complete intersection of two smooth quadrics. The map ψ has two ordinary base points p_1, p_2, and belongs to E_{13}. More precisely $\Lambda_p = H^0(I_{C_2,L} \cap I_{p_1} \cap I_{p_2}(3))$. □

Note that this irreducibility result asserts that the following example, where C_2 is not a complete intersection of two quadrics is nevertheless a deformation of elements of E_{13}.
Example 6.4. Let \(C_2 \) be the union of a plane cubic \(C_3 \) singular at \(p \) and a line \(\ell \) containing \(p \) but not in the plane spanned by \(C_3 \). For instance take \(I_p = (z_0, z_1, z_2) \), \(I_\ell = (z_1, z_2) \), \(I_{C_3} = (z_1 - z_0, (z_1 - z_2)z_1z_2 + z_0^3 + z_2^3) \). Let \(I_{dpc} \) be a double point of contact at \(p \). (As we have already chose \(C_2 \), we must take a quadric cone containing the tangent cone to \(C_2 \). For instance one can take: \(I_{dpc} = (z_1^2 - z_0z_2) + I_p^2 \), and let

\[
\mathcal{J} = I_{C_2} \cap I_{dpc} = (z_0z_2^2 - z_1z_2^2, z_0z_1z_2 - z_1^2z_2, z_0^2z_2 - z_1^2z_2, 2z_1^3 + z_1^2z_3 - z_0z_2z_3, 2z_0z_1^2 + z_1^2z_3 - z_0z_2z_3)
\]

chose two general points \(p_1 \) and \(p_2 \) and define by \(I_q \) the ideal generated by the 4 cubics of \(\mathcal{J} \cap I_{p_1} \cap I_{p_2} \). The tangent cone of \(C_2 \) at \(p \) has degree 3, the tangent cone of \(C_1 \cup C_2 \) at \(p \) has degree 6 (because \(p \) is a double point of contact); hence \(C_1 \) has also a triple point at \(p \), and belongs to \(\mathcal{R}_{p,2} \).

\(b_2 \) Suppose now that \(C_1 \) hasn’t a triple point; \(C_1 \) has thus two distinct double points. Fix two distinct points \(p \) and \(q \) in \(\mathbb{P}^3 \), and set

\[
\mathcal{R}_{p,q,2} = \{ C \in \mathcal{C} \mid \{ p, q \} = \text{Sing} \ C, p_a(C) = 2 \}.
\]

Let \(V_3 \) (resp. \(V_4 \)) be the sections of \(O_{\mathbb{P}^3}(7) \) whose base locus contains \(\pi^{-1}(p) \) and \(\pi^{-1}(q) \) (resp. \(\pi^{-1}(p) \) and \(2\pi^{-1}(q) \)). The set \(\mathcal{R}_{p,q,2} \) is irreducible. Remark that for all \(C \) in \(\mathcal{R}_{p,q,2} \) one has

\[
h^0(I_C(3h)) = 6, \quad h^0((I_C \cap I_p^2) (3h)) = 5, \quad h^0((I_C \cap I_p^2 \cap I_q^2) (3h)) = 4.
\]

Remark 6.5. One cannot have two distinct points of contact. Assume by contradiction that there are two distinct points of contact \(p \) and \(q \). Denote by \(\pi: \tilde{C}_1 \to C_1 \) the normalization of \(C_1 \). One would have \(\pi^* \omega_{C_1} (h) = O_{\mathbb{P}^3}(7) \) but the linear system induced by \(\psi \) would contain in the base locus \(2\pi^{-1}(p) + 2\pi^{-1}(q) \) which is of length 8: contradiction with the fact that \(\psi(C_1) \) is a line.

So one has the following alternative:

\(b_2 \) i) Either all the cubics of \(\Lambda_q \) are singular at \(p \) and \(q \). One can then define the set \(F_3 \) of

\[
(C, L, u) \in \mathcal{R}_{p,q,2} \times H^0((I_C \cap I_p^2 \cap I_q^2)(3h)) \times V_3 \text{ given by}
\]

\[
- L \subset H^0((I_C \cap I_p^2 \cap I_q^2)(3h)) \text{ of dimension 2 such that the residual of } C \text{ in the complete intersection defined by } L \text{ has no common component with } C;
\]

\[
u \subset V_3 \text{ of dimension 2 such that } C \dashrightarrow |u| \text{ has degree 1}.
\]

Let us consider the map

\[
\kappa_3: F_3 \to \mathbb{G}(4; H^0(O_{\mathbb{P}^3}(3))), \quad (C, L, u) \mapsto h_L^{-1}(u).
\]

If \(\psi \) is birational, if \(p_a(C_1) = 2 \), if \(C_1 \) has two distinct double points at \(p \) and \(q \) and if all the cubics of \(\Lambda_q \) are singular at \(p \) and \(q \), then \(\Lambda_q \) belongs to \(\text{im} \kappa_3 \).

Lemma 6.6. The general element of \(\text{im} \kappa_3 \) coincides with \(\Lambda_q \) for some birational map \(\psi \) of \(\mathcal{E}_{19} \).
Proof. As F_3 is irreducible one can consider a general element (C, L, u) of F_3 and then $C_{2,L}$ is a curve of degree 4 and genus 1, is singular at p and q, lies on a smooth quadric, and is reducible: $C_{2,L}$ is the union of a twisted cubic Γ and the line $\ell = (pq)$. Moreover all the elements of $h^{-1}_L(u)$ are singular at p and q (by definition of V_3 and by the fact that $C_{2,L}$ is singular at p and q).

In this situation as all the cubic surfaces are singular at p and q,

$$h^{-1}_L(u) = H^0((I_\ell \cdot I_{p_1} \cap I_{p_2})(3))$$

where p_1, p_2 are two ordinary base points; ψ belongs to E_{19}.

(b2) ii) Or one of the cubic of Λ_ψ is smooth at (for instance) q. Let us introduce the set F_4 of pairs $(C, L) \in R_{p,q,2} \times H^0((I_{C} \cap I_{p}^2)(3h))$ satisfying: $L \subset H^0((I_{C} \cap I_{p}^2)(3h))$ of dimension 2 such that the residual of C in the complete intersection defined by L has no common component with C.

Let us consider the map

$$\kappa_4: F_4 \rightarrow \mathbb{G}(4; H^0(O_{\mathbb{P}^3}(3))), \quad (C, L) \mapsto h^{-1}_L(V_4);$$

that dim $V_4 = 2$.

If ψ is birational, if $p_u(C_1) = 2$, C_1 hasn’t a triple point and one of the cubic of Λ_ψ is smooth at (for instance) q, then Λ_ψ belongs to $\text{im} \kappa_4$.

Lemma 6.7. The general element of $\text{im} \kappa_4$ coincides with Λ_ψ for some birational map ψ of E_{24}.

Proof. As F_4 is irreducible one can consider a general element of F_4, and then $C_{2,L}$ is a curve of degree 4, genus 1, singular at p, and is the complete intersection of two quadrics. The map ψ has no base point and belongs to E_{24}.

6.2. Irreducible components. The following statement, and Theorems 4.4 and 5.2 imply Theorem A.

Theorem 6.8. One has the inclusions: $E_{14} \subset \overline{E_{12}}$, $E_{24} \subset \overline{E_{23}}$, and $E_{19} \subset \overline{E_{12}}$.

The set $\text{Bir}_{3,5}(\mathbb{P}^3_C)$ has four irreducible components: E_{12}, E_{13}, E_{23}, and $E_{27} = \text{null}_{3,5}$.

Proof. Let us first prove that $E_{14} \subset \overline{E_{12}}$. If ψ belongs to E_{12}, or to E_{14}, the curve C_2 is the union of a line ℓ and a twisted cubic Γ such that length $(\ell \cap \Gamma) \leq 1$. Let I_ℓ (resp. I_Γ) be the ideal of ℓ (resp. Γ). We have $I_{\psi} \subset I_\ell \cap I_\Gamma$. If ψ belongs to E_{12}, then $\ell \cap \Gamma = \emptyset$, and $I_\ell \cap I_\ell = I_\ell$. And if ψ is in E_{14}, then all the cubics are singular at $p = \ell \cap \Gamma$ so I_{ψ} is again in $I_\ell \cdot I_\ell$.

Prove now that $E_{24} \subset \overline{E_{23}}$. Consider a general element ψ of E_{24}; the curve C_2 is the complete intersection of a quadric $Q' = a_2 z_2 + b_2 z_0 + c_2 z_1$ passing through the double point p and a cone $Q_0 = z_1 z_2 - z_0^2$. Furthermore all the cubics of Λ_ψ are singular at p, and $I_{\psi} \subset J_p^0 = (Q_0, z_0 Q', z_1 Q', z_2 Q')$.

Let c_t_q be the ideal of the point of contact q; one has $c_t_q = I_q^2 + (H_q)$ where H_q is a plane passing through q. Denote by I_0 the intersection of J_p^0 and c_t_q. Set

$$Z_0 = z_0 + t z_3, \quad Z_1 = z_1, \quad Z_2 = z_2, \quad Z_3 = z_0 - t z_3,$$
\[
Q_t = Z_1Z_2 - Z_0Z_3, \quad S_0 = aZ_0Z_2 + bZ_0Z_3 + cZ_1Z_3, \\
S_1 = aZ_0^2 + bZ_0Z_1 + cZ_1^2, \quad S_2 = aZ_2^2 + bZ_2Z_3 + cZ_3^2.
\]

Hence \(J_t = (Q_t, S_0, S_1, S_2) \) is the ideal of a rational quartic if \(t \neq 0 \) (cf. the equations in §6.1.1). The ideal \(I_t = J_t \cap \mathfrak{c}_t \) is the ideal \(I_\psi \) of \(\psi \in \mathcal{E}_{23} \). Remark that if \(t = 0 \), then
\[
J_0 = (Q_0, z_0Q', az_0^2 + bz_0z_1 + cz_1^2, az_2^2 + bz_0z_2 + cz_0^2)
\]
but \(az_0^2 + bz_0z_1 + cz_1^2 = z_1Q' \mod Q \), and \(az_2^2 + bz_0z_2 + cz_0^2 = z_2Q' \mod Q \), that is \(J'_0 = J_0 \). Therefore \(I_t \) tends to \(I_0 \) as \(t \) tends to 0.

The inclusion \(\mathcal{E}_{19} \subset \overline{\mathcal{E}_{12}} \) follows from \(\Lambda_\psi = H^0((I_t \cdot I_t' \cap I_{p_1} \cap I_{p_2})(3)) \) found in \(b_2 \).

Note that \(\mathcal{E}_{12} \not\subset \overline{\mathcal{E}_{13}} \) (resp. \(\mathcal{E}_{12} \not\subset \overline{\mathcal{E}_{23}} \)): if \(\psi \) is in \(\mathcal{E}_{12} \) then the associated \(\mathcal{C}_2 \) does not lie on a quadric whereas if \(\psi \) belongs to \(\mathcal{E}_{13} \) (resp. \(\mathcal{E}_{23} \)) then \(\mathcal{C}_2 \) lies on two quadrics (resp. one quadric).

Conversely \(\mathcal{E}_{13} \not\subset \overline{\mathcal{E}_{12}} \) (resp. \(\mathcal{E}_{23} \not\subset \overline{\mathcal{E}_{12}} \)): if \(\psi \) is an element of \(\mathcal{E}_{13} \) (resp. \(\mathcal{E}_{23} \)), then \(\mathcal{C}_2 \) is smooth and irreducible whereas the associated \(\mathcal{C}_2 \) of a general element of \(\mathcal{E}_{12} \) is the disjoint union of a twisted cubic and a line.

Let us now justify that \(\mathcal{E}_{23} \not\subset \overline{\mathcal{E}_{13}} \): the linear system of an element of \(\mathcal{E}_{23} \) has a smooth surface whereas the linear system of an element of \(\mathcal{E}_{13} \) does not. Conversely \(\mathcal{E}_{13} \not\subset \overline{\mathcal{E}_{23}} \): indeed \(h^0I_{\mathcal{C}_3}(3h) = 6 \) for a birational map of \(\mathcal{E}_{13} \) and \(h^0I_{\mathcal{C}_3}(3h) = 7 \) for a birational map of \(\mathcal{E}_{23} \). \(\square \)

In bidegree \((3, 5) \) the description of \(\text{Bir}_{3,5, p_2}(P^3_\mathbb{C}) \) is very different from those of smaller bidegrees. Let us now prove Theorem C.

Theorem 6.9. The set \(\text{Bir}_{3,5, p_2}(P^3_\mathbb{C}) \) is empty as soon as \(p_2 \not\in \{-1, 0, 1\} \) and

- if \(p_2 = -1 \), then \(\text{Bir}_{3,5, p_2}(P^3_\mathbb{C}) \) is non-empty, and irreducible;
- if \(p_2 = 0 \), then \(\text{Bir}_{3,5, p_2}(P^3_\mathbb{C}) \) is non-empty, and has two irreducible components: one formed by the birational maps of \(\mathcal{E}_{14} \), and the other one by the elements of \(\mathcal{E}_{23} \);
- if \(p_2 = 1 \), then \(\text{Bir}_{3,5, p_2}(P^3_\mathbb{C}) \) is non-empty, and has three irreducible components: one formed by the birational maps of \(\mathcal{E}_{13} \), a second one formed by the birational maps of \(\mathcal{E}_{19} \), and a third one by the elements of \(\mathcal{E}_{24} \).

Proof.
- Assume \(p_2 = -1 \). In that case only one family appears: \(\mathcal{E}_{12} \) (see §6.1.1), and according to Theorem 6.8 the family \(\mathcal{E}_{12} \) is already an irreducible component of \(\text{Bir}_{3,5}(P^3_\mathbb{C}) \) so an irreducible component of \(\text{Bir}_{3,5, -1}(P^3_\mathbb{C}) \).
- Suppose \(p_2 = 0 \). We found two families: \(\mathcal{E}_{14} \) (case \(a_1 \)) of §6.1.1, and \(\mathcal{E}_{23} \) (case \(b_1 \)) of §6.1.2). Note that for \(\psi \) general in \(\mathcal{E}_{23} \) \(\Lambda_\psi \) contains smooth cubics whereas all cubics of \(\Lambda_\psi \) are singular as soon as \(\psi \) belongs to \(\mathcal{E}_{14} \). Hence \(\mathcal{E}_{23} \not\subset \overline{\mathcal{E}_{14}} \).

Take a general element of \(\mathcal{E}_{14} \); it hasn’t a base scheme of dimension 0, connected and of length \(\geq 3 \) whereas elements of \(\overline{\mathcal{E}_{23}} \) have. Therefore \(\mathcal{E}_{14} \not\subset \overline{\mathcal{E}_{23}} \).

- Assume last that \(p_2 = 1 \). Our study gives three families: \(\mathcal{E}_{13}, \mathcal{E}_{19} \) and \(\mathcal{E}_{24} \) (cases \(a_2 \), \(b_2 \)) of §6.1.2). The general element of \(\mathcal{E}_{19} \) has two double points whereas a general element of \(\mathcal{E}_{13} \) (resp. \(\mathcal{E}_{24} \)) has only one; thus \(\mathcal{E}_{19} \not\subset \overline{\mathcal{E}_{13}} \) and \(\mathcal{E}_{19} \not\subset \overline{\mathcal{E}_{24}} \).

Take a general element in \(\mathcal{E}_{13} \); its base locus is a smooth curve. On the contrary if \(\psi \) belongs to \(\mathcal{E}_{19} \) (resp. \(\mathcal{E}_{24} \)), then the base locus of \(\psi \) is a singular curve. Thus \(\mathcal{E}_{13} \not\subset \overline{\mathcal{E}_{19}} \) (resp. \(\mathcal{E}_{13} \not\subset \overline{\mathcal{E}_{24}} \).

If ψ is a general element of E_{24} its base locus is an irreducible curve that is not the case if $\psi \in E_{19}$ so $E_{24} \not\subseteq E_{19}$.

Let us now consider a general element of E_{24}, the tangent plane at all cubic surfaces at the point of contact doesn’t contain the double point p; hence if we denote by Q_1 and Q_2 the quadrics containing C_2 there doesn’t exist a plane h passing through p such that $(hQ_1, hQ_2) \subset \Lambda_\psi$. But if we take ψ in E_{13} then $\Lambda_\psi = H^0((I_{C_2} \cdot I_p \cap I_{p_1} \cap I_{p_2})(3))$ with p_1, p_2 two ordinary base points, and p the triple point lying on C_1. If h is the plane passing through p, p_1 and p_2, if $I_{C_5} = (Q_1, Q_2)$, then $(hQ_1, hQ_2) \subset \Lambda_\psi$. Thus $E_{24} \not\subseteq E_{13}$. □

7. Relations with Hudson’s invariants

To prove the birationality of a linear system of cubics, the local properties of C_1 and C_2 are required. For instance to apply Lemma 3.4 one needs to understand the support of $C_1 \cup C_2$ and the local intersection of C_1 with a general element of Λ_ψ at any point of $C_1 \cup C_2$. So in the following table we make a schematic picture of the tangent cone of $C_1 \cup C_2$ at one of its singular point in the different cases considered by HUDSON. Let us note that the degree of the tangent cone of $C_1 \cup C_2$ at a point of $C_1 \cup C_2$ varies from 1 to 6. In particular if the linear system has a double point (resp. a double point of contact), then it is a complete intersection of two quadric cones (resp. of one quadric cone and one cubic cone). We draw pictures only when the quadric cone is irreducible.

If the linear system has a binode, the tangent cone of $C_1 \cup C_2$ has degree 5; more precisely for a binode at $p = (z_0, z_1, z_2)$ whose fixed plane is z_0, i.e. $I_\psi \subset I_p \cdot (z_0)$, then the ideal of the tangent cone of $C_1 \cup C_2$ at p is (z_0z_1, z_0z_2, P) where P denotes an element of $C[z_1, z_2]_4$. In our pictures the marked plane of the binode is vertical.

Convention. If the point is black (resp. white) then C_2 does not pass (resp. passes through) through the point. For all cases mentioned in the paper we precise $(\tilde{d}_1, \tilde{d}_2)$ where \tilde{d}_i is the degree of the tangent cone of C_i at p.

Let us mention that this table in which we propose local illustrations could help the reader to visualize the different examples but the proofs are not based on it.
<table>
<thead>
<tr>
<th>D.p. of contact</th>
<th></th>
<th></th>
<th></th>
<th>(2, 4)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>binode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 3)</td>
<td>(2, 3)′</td>
<td>(1, 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.p.'s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2, 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pt of osculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pt of contact</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
APPENDIX A. HUDSON’S TABLE

In this appendix we give a reproduction of what HUDSON called “Cubic Space Transformations”. The first (resp. second, resp. third, resp. fourth) table concerns birational maps of bidegrees \((3, 2)\), \((3, 3)\) and \((3, 4)\) (resp. \((3, 5)\), resp. \((3, 6)\), resp. \((3, 7)\), \((3, 8)\) and \((3, 9)\)).
<table>
<thead>
<tr>
<th>number</th>
<th>degrees</th>
<th>D.p. of contact</th>
<th>D. p.’s</th>
<th>pt of osculation</th>
<th>pt of contact</th>
<th>ordinary pts</th>
<th>F-curves</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3–2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>l^2, l_1, l_2, l_3</td>
<td>3 generators meet double line</td>
</tr>
<tr>
<td>2</td>
<td>3–3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ω_6 (genus 3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$\omega_6 \equiv O^2$ (genus 3)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$\omega_6 \equiv O^4$ (rational)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>l^2, l_1, l_2</td>
<td>2 generators meet double line</td>
</tr>
<tr>
<td>6</td>
<td>3–4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>ω_5 (genus 1)</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>$\omega_5 \equiv O^2$ (genus 1)</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>$\omega_5 \equiv O^2(2)$ (rational)</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>$\omega_5 \equiv O^2$, $l_1 \equiv O_1$, $l_2 \equiv O_1$</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>$\omega_2 \equiv O_1O_2$, $l \equiv O_1O_2$ (osculation) (φ) touch plane along l</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>l^2, l_1</td>
<td>generator meets double line</td>
</tr>
<tr>
<td>number</td>
<td>D.p. of contact</td>
<td>binode</td>
<td>D. p.'s</td>
<td>pt of osculation</td>
<td>pt of contact</td>
<td>ordinary pts</td>
<td>F-curves</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>ω_3 (rational), l</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$\omega_4 \equiv O_1$ (genus 1)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_3 \equiv O_1$ (rational), $l \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_4 \equiv O_1^2(2)$</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_2 \equiv O_1(1), l_1 \equiv O_1(1), l_2 \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_3 \equiv O_1^2, l_1 \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>$l \equiv O_1$ (contact), $l_1 \equiv O_1, l_2 \equiv O_1$</td>
<td>(ϕ) touch quadric</td>
</tr>
<tr>
<td>19</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_3 \equiv O_1O_2$ (rational), $l \equiv O_1O_2$</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_2 \equiv O_1(1)O_2, l_1 \equiv O_1O_2, l_2 \equiv O_1(1)$</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$l \equiv O_1O_2$ (contact), $l_1 \equiv O_1, l_2 \equiv O_1$</td>
<td>(ϕ) touch plane</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$l \equiv O_1O_2(1)$ (osculation), $l_1 \equiv O_1$</td>
<td>(ϕ) touch plane</td>
</tr>
<tr>
<td>23</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>ω_4 (rational)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>$\omega_4 \equiv O_1^2$</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>$\omega_3 \equiv O_1^2(1), l \equiv O_1(1)$</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>$l_1 \equiv O_1, l_2 \equiv O_1, l_3 \equiv O_1, l_4 \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>l^2</td>
<td></td>
</tr>
</tbody>
</table>

Cubic Space Transformations of bidegree $(3, 5)$
<table>
<thead>
<tr>
<th>number</th>
<th>D.p. of contact</th>
<th>binode</th>
<th>D. p.'s</th>
<th>pt of osculation</th>
<th>pt of contact</th>
<th>ordinary pts</th>
<th>F-curves</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>l (contact), l_1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>ω_3 (plane, genus 1)</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>ω_2, $l \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1$ (contact), l_1</td>
<td>(φ) touch quadric</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1$ (osculation)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$\omega_2 \equiv O_1(1)$, $l \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$\omega_3 \equiv \Omega^2_1$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1$ (contact), $l_1 \equiv O_1$</td>
<td>(φ) touch quadric</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$\omega_2 \equiv O_1$, $l \equiv O_1O_2$</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$\omega_2 \equiv O_1(1)O_2$, $l \equiv O_1O_2$</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1O_2$, $l_1 \equiv O_1(1)$, $l_2 \equiv O_1(1)$</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1O_2$ (contact), $l_1 \equiv O_1$</td>
<td>(φ) touch plane</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>$l \equiv O_1O_2(1)$ osculation</td>
<td>(φ) touch plane</td>
</tr>
<tr>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>l_1, l_2, l_3</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$\omega_3 \equiv O_1$ (rational)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l_1 \equiv O_1$, $l_2 \equiv O_1, l_3$</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$\omega_3 \equiv \Omega^2_1(1)$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$\omega_2 \equiv O_1(1), l \equiv O_1(1)$</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l \equiv O_1(1)$ (contact), $l_1 \equiv O_1$</td>
<td>(φ) touch quadric</td>
</tr>
<tr>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l_1 \equiv O_1, l_2 \equiv O_1, l_3 \equiv O_1$</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l \equiv O_1O_2$, $l_1 \equiv O_1, l_2 \equiv O_2$</td>
<td>(φ) touch plane</td>
</tr>
<tr>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l \equiv O_1(1)O_2$ (contact), $l_2 \equiv O_1$</td>
<td>(φ) touch plane</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$l_1 \equiv O_2O_3$, $l_2 \equiv O_3O_1, l_3 \equiv O_1O_2$</td>
<td>O_2 on fixed plane at O_1</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>ω_3 (rational)</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>$\omega_3 \equiv \Omega^2_1$</td>
<td></td>
</tr>
</tbody>
</table>

Cubic Space Transformations of bidegree $(3, 6)$
<table>
<thead>
<tr>
<th>number</th>
<th>degrees</th>
<th>D.p. of contact</th>
<th>binode</th>
<th>D. p.’s</th>
<th>point of osculation</th>
<th>point of contact</th>
<th>ordinary points</th>
<th>F-curves</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>3–7</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>$l \equiv O_1$ (contact)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>-</td>
<td>4</td>
<td>$l \equiv O_1O_2$, l_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>$l \equiv O_1O_2$, $l_1 \equiv O_1(1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>$l \equiv O_1O_2$ (contact)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>ω_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$\omega_2 \equiv O_1(1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$l_1 \equiv O_1$, $l_2 \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$l \equiv O_1$, l_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$l_1 \equiv O_1(1)$, $l_2 \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$l \equiv O_1(1)$ (contact)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>$l \equiv O_1O_2$, $l_1 \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$l_1 \equiv O_1(1)O_2$ (contact)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\omega_2 \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$l \equiv O_1(1)$, $l_2 \equiv O_1(1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>3–8</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>$l \equiv O_1O_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>$l \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>$l \equiv O_1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>l</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>$l \equiv O_1(1)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>3–9</td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>4-point contact at O_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ON CUBIC BIRATIONAL MAPS OF \mathbb{P}^3_C

REFERENCES

E-mail address: julie.deserti@imj-prg.fr

E-mail address: frederic.han@imj-prg.fr

Univ Paris Diderot, Sorbonne Paris Cité, Institut de Mathématiques de Jussieu-Paris Rive Gauche, UMR 7586, CNRS, Sorbonne Universités, UPMC Univ Paris 06, F-75013 Paris, France.