N

N

DEGREE GROWTH OF POLYNOMIAL
AUTOMORPHISMS AND BIRATIONAL MAPS:
SOME EXAMPLES

Julie Déserti

» To cite this version:

Julie Déserti. DEGREE GROWTH OF POLYNOMIAL AUTOMORPHISMS AND BIRATIONAL
MAPS: SOME EXAMPLES. European Journal of Mathematics, 2018. hal-03000548

HAL Id: hal-03000548
https://hal.science/hal-03000548

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03000548
https://hal.archives-ouvertes.fr

arxXiv:1602.04642v4 [math.DS] 14 Jul 2016

DEGREE GROWTH OF POLYNOMIAL AUTOMORPHISMS
AND BIRATIONAL MAPS: SOME EXAMPLES

JULIE DESERTI

ABSTRACT. We provide the existence of new degree growths in the comegolynomial automorphisms
of CK: if k is an integer> 3, then for any/ < [k;zl} there exist polynomial automorphisnfsof CK such
that degf” ~ n’. We also give counter-examples in dimenslok 3 to some classical properties satisfied by
polynomial automorphisms dt?.

We provide the existence of new degree growths in the cowtelirational maps oﬁ”é: assumek > 3;
forall 0 < ¢ < k there exist birational mapgof P& such that deg’ ~ .

1. INTRODUCTION

Let f be a polynomial automorphism @2, then eitherdegf "),y is bounded, ofdegf")ncn grows
exponentially. In higher dimensions there are intermediabwths:

Theorem A. Letk be an integep 3. For anyl < [%1] there exist polynomial automorphisriof CK
such that
degf" ~n’.

The group of polynomial automorphisms@f has a structure of amalgamated produé})([using this
rigidity a lot of properties of polynomial automorphisms@f have been established. All these properties
show a dichotomy; up to conjugacy there are two types of ptyial automorphisms f?: the elementary
ones and the Hénon ones. Furthermorfeahdg are two polynomial automorphisms®f andH., denotes
the line at infinity (we viewC? in P2), then

() : fis algebraically stable if and only {flegf")ny grows exponentially;

() : foranyn > 1 the equality de@" = (degf)" holds if and only iff does not preserve a fibration in

hyperplanes;

() : the sequenceslegf")nen and(degg™)neny have the same growth if and only if the configurations

of (f(He), f (He),Ind(f),Ind(f 1)) and(g(He), g *(He), Ind(g),Ind(g~?)) are the same;

(P4) : degf? = (degf)? if and only if degf" = (degf)" for anyn € N (see[5, Proposition 3]).

Note that in(), (?2) and(?4) one can add "if and only if is of Hénon type".

Fact B. We give counter-examples to Properti@s), (%), (Ps) and(®s) in dimensior> 3.

Nevertheless one can prove a similar result to propBty

Proposition C. Let f be a polynomial automorphism @¥. Thendegf' = (degf)' for 1 <i <k if and
only if degf" = (degf )" for anyn > 1.

If @is a birational self map OP((Z:, then (deg@")nen is either bounded, or grows linearly, or grows
quadratically, or grows exponentially3[). In this context there exist other types of growth in highe
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dimension. Lin has studied the degree growth of monomialsrmmi;ﬁ’)("C (see [8]); he proves in particular
that if A is ak x k integer matrix with nonzero determinant, then there exist¢onstantst > 3 >0 and a
unique integer &< ¢ < k— 1 such that for anyp € N

Bp(A)'n’ < degyl < ap(A)'n’
wherep(A) denotes the spectral radiusAdBnd@, the monomial map associatedAo Does there exist in
dimensiork birational maps oP¥ with growthn’ with £ > k—1?
Theorem D. Assumek > 3; forall 0 < ¢ < k there exist birational mapgof ]P’(kC such thatlegg” ~ n’.

Note that there exists a birational self mapf ]P’% such that deg" ~ n* (see[10]).

Acknowledgement. | am very grateful to Dominique Cerveau for his constant supp
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O~NOTADNBE

2. RECALLS, DEFINITIONS, NOTATIONS

2.1. Thegroup of polynomial automorphismsof C*. A polynomial automorphismf of CK is a polyno-
mial map of the type

f:Ck—Ck, (20,21,....%1) = (fo(20, 21, ..., 2 1), o (20,20, B 1), -, e (2002, 2 1)

that is bijective. The set of polynomial automorphism&bfiorm a group denoted A(EX).
The automorphisms dEk of the form(fo, f1,..., fk_1) wheref; depends only o@;, 71, ..., % 1 are
calledelementary automorphismand form a subgroupyf Aut(CX). Moreover we have the inclusions

GL(CY) c Affy  Aut(CY)
where Aff; denotes thgroup of affine maps
f:(20,21,...,21) = (fo(20,21, ..., %-1), f1(20, 21, -, Z-1), - - fue1 (20,20, Zce1))

with f; affine; Affy is the semi-direct product of GIC¥) with the commutative subgroups of translations.
The subgroup Tame- Aut(C¥) generated by Eand Affy is called thegroup of tame automorphismsif
k=2 one has:

Theorem 2.1 ([6]). In dimension2 the group of tame automorphisms coincides with the wholeigaf
polynomial automorphism; more precisely

AUt(C?) = Aff 2 aff i, E2.

But this is not the case in higher dimension: TameAut(C3) (see[9]).
Another important result in dimension 2 is the following:

Theorem 2.2 ([4]). Letf be an element odkut(C?). Then, up to conjugacy,
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— eitherf belongs tde,,
— orf can be written as

drodr_10...01
wherebi: (20,21) — (z1,P.(z1) — 8iz0), & € C*, B € C[z1], degR, > 2.

We denote byH the set of polynomial automorphisms@f can be written up to conjugacy as

drobp_10...01

wheredi: (z0,21) — (z1,P(z1) — 8iz0), 6 € C*, B € C[z], degP?, > 2. The elements aof{ areof Hénon

type
From now one we will denoté = (fo, f1,..., fk_1) instead of

f:(20,21,....21) — (fo(20,21,...,%-1), f1(20,21,. .., Z-1), - -, Fe1(20, 20, .- Zco1)).
Thealgebraic degreelegf of f = (fo, f1,..., fk_1) € Aut(C¥) is maxdegfo,degfy,...,degfy_1).

2.2. TheCremonagroup. A rational self mapf of IP’("C can be written

(02 z) - (fo(zo,21,. ., 2) * Fau(20,20,. 7)1 0 Tu(20, 21, )

where thef;’s are homogeneous polynomials of the same degréand without common factor of positive

degree. Thealegreeof f is the degree of thd;. If there exists a rational self magp of ]P’(‘é such that

fg=gf =id we say that the rational self mé&pof IP’("C is birational. The set of birational self maps BE

form a group denoted BiPX ) and called the€remona group Of course AutCX) is a subgroup of BifPX ).

An other natural subgroup of SIP("C) is the group Au(tIP’("C) ~ PGL(k+ 1;C) of automorphisms dP(kC.
Theindeterminacy setnd( f) of f is the set of the common zeros of this. Theexceptional seExc(f)

of f is the (finite) union of subvarietiéd; of ]P’(‘é such thatf is not injective on any open subsetidf.

2.3. A little bit of dynamics. Let f be a polynomial automorphism @. One can seé as a birational
self map oﬂP’(kC still denotedf. We will say thatf is algebraically stablef for anyn > 0

f'({z« =0}~ Ind(f"))

is not contained in Ingf). This is equivalent to the fact thadegf )" = degf" for anyn > 0. For instance
elements ofH are algebraically stable.

Remark 2.3. Note that in dimension 2 one usually says thas algebraically stable if for any > 0
f"({z2 =0} \Ind(f")) NInd(f) = 0.

Be careful this is not equivalent in higher dimension: cdasfor instance
f=(52+2Z+6202+2,2+20,2);

then
— ontheone han@-1:0:1:0 belongs to{zz =0}~ Ind(f) andf(-1:0:1:0=(0:1:0:0 ¢
Ind(f) ={(0:1:0:0}.
— on the other hand for any> 1 degf" = (degf)".

The algebraic degree of a birational mawf P{. (resp. a polynomial automorphism @¥) is not a
dynamical invariant so we introduce tbignamical degree

A(f) = nirﬂm(degf”)l/”
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which is a dynamical invariant. In other wordsfife Bir(PX) (resp. AutC¥)), then for anyg € Bir(P¥.)
(resp.g € Aut(CX)) one has\(f) = A(gfg~1). For any element in # the algebraic and dynamical degrees
coincide; more precisely if

f :¢go¢g,lo...o¢l
where¢; = (z1,P (z1) — 8iz0), 6i € C*, P, € C[z1], degP, > 2 one has d])

A(f) ﬁdegq:i > 2.

A polynomial automorphisni is in Eg if and only if for anyn > 1 the equality ded = degf" holds hence
A(f) = 1. In other words a polynomial automorphignof C? belongs ta{ if and only if A(f) > 1. There
is an other characterization of the automorphisms of Héype:t

Theorem 2.4 ([7]). The centralizer of in Aut(C?), that is{ge Aut(C?)|fg=gf }, is countable if and
only if f belongs taH .
3. AUTOMORPHISMS WITH POLYNOMIAL GROWTHS

3.1. The growths of a polynomial automorphisms and itsinverse. If f is a polynomial automorphism
of CX, then(degf,degf —1) is the bidegree of. There is a relationship between degnd ded —* (see[1]):

degf ! < (degf)k?1
degf < (degf ~1)k1

As a result iff is a polynomial automorphism @, the degree growths dfand f 1 are linked:

(3.1)

Proposition 3.1. Let f be a polynomial automorphism 6F.
— The sequencdalegf")ncr is bounded if and only if the sequen@egf "),y is bounded.

— The sequence@legf™)ney grows exponentially if and only ifdegf —")nen grows exponentially.
— If degf" ~ nP anddegf ~" ~ n for some integerp, q > 1, then

(p.a) € {([ikl}q) ,---,(kq,Q)}-

Remark 3.2. When we write "The sequencdegf")ncry grows exponentially if and only ifdegf ~")nen
grows exponentially” it does not mean thidegf"),n and(degf ")nen have exactly the same behavior:
the polynomial automorphism @ given by f = (z% +z1+ zz,z% + 71,2p) satisfies foralh > 1

degf" =2"
degf "= 21"

3.2. Examplesof polynomial automor phismswith new polynomial growths. Let us now give examples
of polynomial automorphisms with polynomial growths.

Lemma 3.3. Let us consider the polynomial automorphisnifgiven by
f=(z+2d,2,2)

whered > 1. One haslegf" = dn+ 1 anddegf" = degf " for anyn > 1.
Proof. Assumen > 1. Setf" = (fon, f1n,22) andd, = degf". Note thatd; = d + 1 and since

"= Ff" 1= (fn 1+ fon 14, fon-1,22)
one has

dn = max(degfin-1,degfon-1+d,degfon-1,1).

But f1’n71 = fol’nfz andd > 1 sod, = degfo,nfl +d=20%y1+d. O
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Similarly one can prove:
Lemma3.4. Let us consider the polynomial automorphisnSfgiven by
9= (2 +208,2,22,24+ 2)23,23)
wherep > d > 1. One has foranp > 1

pd 5 p2-d)

n+1
2 2 +

degg" =

anddegg" = degg™" for anyn > 1.
Let us consider the polynomial automorphisnidfgiven by
h=(z+ 28,20, 22, 24+ 2323, 23, 2 + 2375, 75)
wherel > p>d>1. Foranyn>1

degh” = 1+£<1—2+p—d) n+7€p(12*d> n? +

lpd 5
3 n

6
anddegh" = degh™".

So Lemma3.3 gives an exampld of polynomial automorphism of® with linear growth; fromf
one gets a polynomial automorphigmof C® such that deg” ~ n?, and fromg one gets a polynomial
automorphisnh of C” such that deg" ~ n® (Lemma3.4). By repeating this process one gets the following
statement:

Proposition 3.5. There exist polynomial automorphisrigf C3**1, k > 2, such that
degf" ~ nk.
TheoremA follows from Propositior8.5.

3.3. A consequence. Come back tof = (zl+zoﬁ,zo,22) and consider the birational map]% given by
F = (f,Zyzs), thatisF = (z1 + 204, 2,2, Z)z3). Assume thatl < p. Then one can prove by induction that
foranyn>1

p(2—d)

n+ 1.
> =+

degF" = %d n? 4
Let us now define the birational m&pof Pg by

G=(a+208,2,2,42,22);
for anyn > 1 one has
{pd 3d 13 {pd
n_ *M4 3 it 2 - o i
degG" = 6 n®-+ (1 4)£pn +<12pd 2p+1) n 5 +/p+1.
Repeating this process one gets

Proposition 3.6. If k > 3, then for anyd < ¢ < k— 2 there exist birational mags of IP’("C such that
degF" ~n’.
4. PROPERTIES(R)

Note that Theorem2.4 can be also stated as follows: the centralizer of a polyoabaitomorphisnf
of C? is countable if and only ifdegf™)nn grows exponentially. This property is not true in higher di-
mension: there exist polynomial automorphism&dfwith uncountable centralizer and exponential degree
growth ([2]). Let us now that this is also the case for other properéied,in particular fo?), (%), (Ps),
(Pa).
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4.1. Property (1). Property(4) is not satisfied in dimension 3:
Proposition 4.1. If

f= (2, B+ +E+n+2a,2+2)
then

— Ind(f) = {z = z3 = 0} andz; = 0 is blown down byf onto(0:1:0:0 € Ind(f),
— foralln> 1 one haslegf" = 2"+1,

4.2. Property (). Property(,) does not hold in higher dimension:
Proposition 4.2. The polynomial automorphismof C2 given by

(23—1—21720 2+1)
preserves the fibratiam = cst and for alh > 1 the equalitydegf" = 2" holds.
The polynomial automorphismof C2 given by
(Z+2021+2,21+1,20)
preserves the fibratian = cst and for alh > 1 the equalitydegg” = n+ 1 holds.

4.3. Property (73). Property(®s) is not satisfied in dimension 3.
Proposition 4.3. Let us consider the polynomial automorphistrandg of C2 defined by

f=(n+a+23+0+2z,2), 9= (B+nt+n+2,2,2).
For alln> 1 one has

degf "=
degg" =degg "=
The automorphisrh sendsz = 0 onto(0:1:0: 0 andf ! sendsz =0onto(0:1:1:0. Furthermore
Ind(f) = {20 =23 = 0} andind(f 1) = {zo = 3 = 0}.
The automorphisng sendszs =0 onto(1:0:0:0 andg™! sendszz =0 onto(0:0:1: 0. Besides
Ind(g) = {zz = z3 =0} andind(g™!) = {z» = z3 = 0}.

4.4, Property (?4). In [5] Furter proves that iff is a polynomial automorphism df? then degf? =
(degf)? if and only if degf" = (degf)" for all n € N. This property does not hold in higher dimension:
consider for instance the polynomial automorphisigiven by
f=(Z+2,2+u, 22,21,20,224—23).
One can check that dég= 2, degf? = 4, degf3 = 8 but degf* =
Let f be a polynomial automorphism @*. For any integen > 0 setQ, = f"((z1 = 0) \ Ind(f"));

note thatQ, C (z_1 = 0) for anyn. We say thaf is not algebraically stable aftef stepsf ¢ is the smallest
integer such tha®, C Ind(f).

Let us first remark that i1 NInd(f) = 0, thenQ, = f(Q1) C Q1 s0Q2NInd(f) = 0. By induction one
gets for anyn > 1 thatQ,NInd(f) = 0 and deg" = (degf)", i.e. f is algebraically stable.

Let us now assume th&t; NInd(f) # 0. Then:

{dengn 2n+l degf2n+l 2n+1

(1) EitherQj C Ind(f), thatisf is not algebraically stable after 1 step.
(2) OrQi ¢ Ind(f) henceQ, = f(Q1\Ind(f)) C Qu.
— Either dimQz = dimQ1, s0oQ = Q; and therQ,, = Q4 for anyn; in particularQ, ¢ Ind(f)
foranynandf is algebraically stable.
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— OrdimQ; < dimQ;y, then eitheiQ, C Ind(f) and f is not algebraically stable after 2 steps
or Q, ¢ Ind(f) and we come back to the previous alternative, that is eitinefdd = dimQ>
or dimQsz < dimQy. Since for anyn one has X dimQ, < k— 1 one gets that eithefr is
algebraically stable, of is not algebraically stable after at maést 1 steps.

Hence one can state:

Proposition 4.4. Let f be a polynomial automorphism @¥. Eitherf is algebraically stable, o is not
algebraically stable aftérsteps, withl < k— 1.
In other wordslegf' = (degf)' for1 <i <k ifand only ifdegf" = (degf)" for anyn > 1.

5. BIRATIONAL MAPS WITH NEW POLYNOMIAL GROWTHS

Let us first recall that

Lemma5.1 ([3]). The birational self map of IP% given in the affine cha, = 1 by

1
0(20,21) = <Zl+§7202 3)

z7+1

satisfieddegp” ~ n.

Denote¢" by (%, %) whereP,, Qn, Ry and S, denote some elements @z, z;] without common

factor. Setp, = degk,, 0, = degQn, rmh = degR, ands, = degS,. The following equalities hold (by
iteration)

Ph=S-1+1
Oh = S-1
Mm=s+1

degd" =sh1+s+1
Let us now consider the birational self mapRjf given in the affine cha; = 1 by

3 z+1
Pn Ra Un>
Yi = ~N ' '\/
’ <Qn SV

whereU,, = 29zP1Ps ... Ph_1 andV,, = Q1Q-.... Q,_1 have no common factor. Singe~ i one gets:

2 217%
W3(20,21,22) = | a+ 5, 0——, 2022 | -

One can also check that

Lemma5.2. The birational self maj3 of ]P’% satisfies
dequg ~ n3.
Let us now consider the birational self mapﬁéf defined in the affine char; = 1 by

2 217%
W 21,7 =|\za+=,20——2,200,7 .
4(20,21,22,73) <1+3,Zozl+1,20 2, 2073

One can check thap, — (%, %, 3—2, %) whereW, = WiU U5 . ..Un_1 andX, = X3V4Vs.. . Vi1 have
no common factor. Since delg ~ n® and dey,, ~ n® one has:
Lemmab5.3. The birational self majs of P¢. satisfies

dequ4 ~n?.
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By repeating this process one gets:

Theorem 5.4. Letk be an integer 3. There exist birational mapsof ]P’(kC such that

degy” ~ n.

This statement and Lin’s resulid]) imply TheoremD.
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