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DEGREE GROWTH OF POLYNOMIAL AUTOMORPHISMS AND BIRATIONAL MAPS: SOME EXAMPLES

We provide the existence of new degree growths in the context of polynomial automorphisms of C k : if k is an integer ≥ 3, then for any ℓ ≤ k-1 2 there exist polynomial automorphisms f of C k such that deg f n ∼ n ℓ . We also give counter-examples in dimension k ≥ 3 to some classical properties satisfied by polynomial automorphisms of C 2 .

We provide the existence of new degree growths in the context of birational maps of P k C : assume k ≥ 3; forall 0 ≤ ℓ ≤ k there exist birational maps φ of P k C such that deg φ n ∼ n ℓ .

INTRODUCTION

Let f be a polynomial automorphism of C 2 , then either (deg f n ) n∈N is bounded, or (deg f n ) n∈N grows exponentially. In higher dimensions there are intermediate growths:

Theorem A. Let k be an integer ≥ 3. For any ℓ ≤ k-1 2 there exist polynomial automorphisms

f of C k such that deg f n ∼ n ℓ .
The group of polynomial automorphisms of C 2 has a structure of amalgamated product ( [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF]); using this rigidity a lot of properties of polynomial automorphisms of C 2 have been established. All these properties show a dichotomy; up to conjugacy there are two types of polynomial automorphisms of C 2 : the elementary ones and the Hénon ones. Furthermore if f and g are two polynomial automorphisms of C 2 and H ∞ denotes the line at infinity (we view C 2 in P 2 C ), then (P 1 ) : f is algebraically stable if and only if (deg f n ) n∈N grows exponentially; (P 2 ) : for any n ≥ 1 the equality deg f n = (deg f ) n holds if and only if f does not preserve a fibration in hyperplanes; (P 3 ) : the sequences (deg f n ) n∈N and (deg g n ) n∈N have the same growth if and only if the configurations of f (H ∞ ), f -1 (H ∞ ), Ind( f ), Ind( f -1 ) and g(H ∞ ), g -1 (H ∞ ), Ind(g), Ind(g -1 ) are the same; (P 4 ) : deg f 2 = (deg f ) 2 if and only if deg f n = (deg f ) n for any n ∈ N (see [START_REF] Furter | On the degree of iterates of automorphisms of the affine plane[END_REF]Proposition 3]). Note that in (P 1 ), (P 2 ) and (P 4 ) one can add "if and only if f is of Hénon type".

Fact B.

We give counter-examples to Properties (P 1 ), (P 2 ), (P 3 ) and (P 4 ) in dimension ≥ 3.

Nevertheless one can prove a similar result to property P 4 :

Proposition C. Let f be a polynomial automorphism of C k . Then deg f i = (deg f ) i for 1 ≤ i ≤ k if and only if deg f n = (deg f ) n for any n ≥ 1.
If φ is a birational self map of P 2 C , then (deg φ n ) n∈N is either bounded, or grows linearly, or grows quadratically, or grows exponentially ( [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF]). In this context there exist other types of growth in higher dimension. Lin has studied the degree growth of monomial maps of P k C (see [START_REF] Lin | Algebraic stability and degree growth of monomial maps[END_REF]); he proves in particular that if A is a k × k integer matrix with nonzero determinant, then there exist two constants α ≥ β ≥ 0 and a unique integer 0 ≤ ℓ ≤ k -1 such that for any n ∈ N β ρ(A) ℓ n ℓ ≤ deg φ n A ≤ α ρ(A) ℓ n ℓ where ρ(A) denotes the spectral radius of A and φ A the monomial map associated to A. Does there exist in dimension k birational maps of P k C with growth n ℓ with ℓ > k -1 ? Theorem D. Assume k ≥ 3; forall 0 ≤ ℓ ≤ k there exist birational maps φ of P k C such that deg φ n ∼ n ℓ . Note that there exists a birational self map f of P 3

C such that deg f n ∼ n 4 (see [START_REF] Urech | Remarks on the degree growth of birational transformations[END_REF]). 
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f : C k → C k , z 0 , z 1 , . . . , z k-1 ) → ( f 0 (z 0 , z 1 , . . . , z k-1 ), f 1 (z 0 , z 1 , . . . , z k-1 ), . . . , f k-1 (z 0 , z 1 , . . . , z k-1 )
that is bijective. The set of polynomial automorphisms of C k form a group denoted Aut(C k ).

The automorphisms of C k of the form ( f 0 , f 1 , . . . , f k-1 ) where f i depends only on z i , z i+1 , . . ., z k-1 are called elementary automorphisms and form a subgroup E k of Aut(C k ). Moreover we have the inclusions

GL(C k ) ⊂ Aff k ⊂ Aut(C k )
where Aff k denotes the group of affine maps

f : (z 0 , z 1 , . . . , z k-1 ) → f 0 (z 0 , z 1 , . . . , z k-1 ), f 1 (z 0 , z 1 , . . . , z k-1 ), . . . , f k-1 (z 0 , z 1 , . . . , z k-1 )
with f i affine; Aff k is the semi-direct product of GL(C k ) with the commutative subgroups of translations. The subgroup Tame k ⊂ Aut(C k ) generated by E k and Aff k is called the group of tame automorphisms. If k = 2 one has: Theorem 2.1 ([6]). In dimension 2 the group of tame automorphisms coincides with the whole group of polynomial automorphism; more precisely

Aut(C 2 ) = Aff 2 * Aff 2 ∩E 2 E 2 .
But this is not the case in higher dimension: Tame 3 Aut(C 3 ) (see [START_REF] Shestakov | The tame and the wild automorphisms of polynomial rings in three variables[END_REF]).

Another important result in dimension 2 is the following: [START_REF] Friedland | Dynamical properties of plane polynomial automorphisms[END_REF]). Let f be an element of Aut(C 2 ). Then, up to conjugacy, -either f belongs to E 2 , -or f can be written as

Theorem 2.2 ([
ϕ ℓ • ϕ ℓ-1 • . . . ϕ 1
where

ϕ i : (z 0 , z 1 ) → (z 1 , P i (z 1 ) -δ i z 0 ), δ i ∈ C * , P i ∈ C[z 1 ], deg P i ≥ 2.
We denote by H the set of polynomial automorphisms of C 2 can be written up to conjugacy as

ϕ ℓ • ϕ ℓ-1 • . . . ϕ 1
where

ϕ i : (z 0 , z 1 ) → (z 1 , P i (z 1 ) -δ i z 0 ), δ i ∈ C * , P i ∈ C[z 1 ], deg P i ≥ 2.
The elements of H are of Hénon type.

From now one we will denote f = (

f 0 , f 1 , . . . , f k-1 ) instead of f : (z 0 , z 1 , . . . , z k-1 ) → f 0 (z 0 , z 1 , . . . , z k-1 ), f 1 (z 0 , z 1 , . . . , z k-1 ), . . . , f k-1 (z 0 , z 1 , . . . , z k-1 ) .
The algebraic degree deg

f of f = ( f 0 , f 1 , . . . , f k-1 ) ∈ Aut(C k ) is max(deg f 0 , deg f 1 , . . . , deg f k-1 ).

The Cremona group.

A rational self map f of P k C can be written z 0 : z 1 : . . . :

z k f 0 (z 0 , z 1 , . . . , z k ) : f 1 (z 0 , z 1 , . . . , z k ) : . . . : f k (z 0 , z 1 , . . . , z k )
where the f i 's are homogeneous polynomials of the same degree ≥ 1 and without common factor of positive degree. The degree of f is the degree of the f i . If there exists a rational self map g of P k C such that f g = g f = id we say that the rational self map f of 

P k C is birational. The set
(P k C ) ≃ PGL(k + 1; C) of automorphisms of P k C . The indeterminacy set Ind( f ) of f is the set of the common zeros of the f i 's. The exceptional set Exc( f ) of f is the (finite) union of subvarieties M i of P k
C such that f is not injective on any open subset of M i .

A little bit of dynamics.

Let f be a polynomial automorphism of C k . One can see f as a birational self map of P k C still denoted f . We will say that f is algebraically stable if for any n > 0

f n {z k = 0} Ind( f n )
is not contained in Ind( f ). This is equivalent to the fact that (deg f ) n = deg f n for any n > 0. For instance elements of H are algebraically stable.

Remark 2.3. Note that in dimension 2 one usually says that f is algebraically stable if for any n > 0

f n {z 2 = 0} Ind( f n ) ∩ Ind( f ) = / 0.
Be careful this is not equivalent in higher dimension: consider for instance

f = 5z 2 0 + z 2 2 + 6z 0 z 2 + z 1 , z 2 2 + z 0 , z 2 ; then
-on the one hand (-1 : 0 : 1 : 0) belongs to {z 3 = 0} Ind( f ) and f (-1 : 0 :

1 : 0) = (0 : 1 : 0 : 0) ∈ Ind( f ) = {(0 : 1 : 0 : 0)}. -on the other hand for any n ≥ 1 deg f n = (deg f ) n .
The algebraic degree of a birational map f of P n C (resp. a polynomial automorphism of C k ) is not a dynamical invariant so we introduce the dynamical degree

λ( f ) = lim n→+∞ (deg f n ) 1/n
which is a dynamical invariant. In other words if f ∈ Bir(P k C ) (resp. Aut(C k )), then for any g ∈ Bir(P k C )

(resp. g ∈ Aut(C k )) one has λ( f ) = λ(g f g -1 )
. For any element f in H the algebraic and dynamical degrees coincide; more precisely if

f = ϕ ℓ • ϕ ℓ-1 • . . . • ϕ 1 where ϕ i = (z 1 , P i (z 1 ) -δ i z 0 ), δ i ∈ C * , P i ∈ C[z 1 ], deg P i ≥ 2 one has ([4]) λ( f ) = ℓ ∏ i=1 degϕ i ≥ 2. A polynomial automorphism f is in E k if and only if for any n ≥ 1 the equality deg f = deg f n holds hence λ( f ) = 1.
In other words a polynomial automorphism f of C 2 belongs to H if and only if λ( f ) > 1. There is an other characterization of the automorphisms of Hénon type:

Theorem 2.4 ([7]). The centralizer of f in Aut(C 2 ), that is g ∈ Aut(C 2 ) | f g = g f
, is countable if and only if f belongs to H .

AUTOMORPHISMS WITH POLYNOMIAL GROWTHS

3.1. The growths of a polynomial automorphisms and its inverse.

If f is a polynomial automorphism of C k , then (deg f , deg f -1
) is the bidegree of f . There is a relationship between deg f and deg f -1 (see [START_REF] Bass | The Jacobian conjecture and inverse degrees[END_REF]):

deg f -1 ≤ (deg f ) k-1 deg f ≤ (deg f -1 ) k-1 (3.1)
As a result if f is a polynomial automorphism of C k , the degree growths of f and f -1 are linked:

Proposition 3.1. Let f be a polynomial automorphism of C k . -The sequence (deg f n ) n∈N is bounded if and only if the sequence (deg f -n ) n∈N is bounded.
-The sequence (deg f n ) n∈N grows exponentially if and only if (deg f -n ) n∈N grows exponentially.

-If deg f n ≃ n p and deg f -n ≃ n q for some integers p, q ≥ 1, then (p, q) ∈ q + 1 k , q , . . . , (kq, q) . Remark 3.2. When we write "The sequence (deg f n ) n∈N grows exponentially if and only if (deg f -n ) n∈N grows exponentially" it does not mean that (deg f n ) n∈N and (deg f -n ) n∈N have exactly the same behavior: the polynomial automorphism of C 3 given by f = (z

2 0 + z 1 + z 2 , z 2 0 + z 1 , z 0 ) satisfies forall n ≥ 1 deg f n = 2 n deg f -n = 2 [ n+1 2 ]

Examples of polynomial automorphisms with new polynomial growths. Let us now give examples of polynomial automorphisms with polynomial growths.

Lemma 3.3. Let us consider the polynomial automorphism of C 3 given by

f = z 1 + z 0 z d 2 , z 0 , z 2 where d ≥ 1. One has deg f n = dn + 1 and deg f n = deg f -n for any n ≥ 1. Proof. Assume n ≥ 1. Set f n = ( f 0,n , f 1,n , z 2 ) and δ n = deg f n . Note that δ 1 = d + 1 and since f n = f f n-1 = ( f 1,n-1 + f 0,n-1 z d 2 , f 0,n-1 , z 2 ) one has δ n = max deg f 1,n-1 , deg f 0,n-1 + d, deg f 0,n-1 , 1 . But f 1,n-1 = f 0,n-2 and d ≥ 1 so δ n = deg f 0,n-1 + d = δ n-1 + d.
Similarly one can prove: Lemma 3.4. Let us consider the polynomial automorphism of C 5 given by

g = z 1 + z 0 z d 2 , z 0 , z 2 , z 4 + z p 0 z 3 , z 3 where p ≥ d ≥ 1. One has for any n ≥ 1 deg g n = pd 2 n 2 + p(2 -d) 2 n + 1 and deg g n = deg g -n for any n ≥ 1.
Let us consider the polynomial automorphism of C 7 given by

h = z 1 + z 0 z d 2 , z 0 , z 2 , z 4 + z p 0 z 3 , z 3 , z 6 + z ℓ 3 z 5 , z 5 where ℓ ≥ p ≥ d ≥ 1. For any n ≥ 1 deg h n = 1 + ℓ 1 - p 2 + pd 3 n + ℓp(1 -d) 2 n 2 + ℓpd 6 n 3 and deg h n = deg h -n .
So Lemma 3.3 gives an example f of polynomial automorphism of C 3 with linear growth; from f one gets a polynomial automorphism g of C 5 such that deg g n ∼ n 2 , and from g one gets a polynomial automorphism h of C 7 such that deg h n ∼ n 3 (Lemma 3.4). By repeating this process one gets the following statement:

Proposition 3.5. There exist polynomial automorphisms

f of C 2k+1 , k ≥ 2, such that deg f n ∼ n k .
Theorem A follows from Proposition 3.5.

A consequence.

Come back to f = (z 1 + z 0 z d 2 , z 0 , z 2 ) and consider the birational map of P 4 C given by F = ( f , z p 0 z 3 ), that is F = (z 1 + z 0 z d 2 , z 0 , z 2 , z p 0 z 3 ). Assume that d ≤ p. Then one can prove by induction that for any n ≥ 1

degF n = pd 2 n 2 + p(2 -d) 2 n + 1.
Let us now define the birational map

F of P 5 C by G = (z 1 + z 0 z d 2 , z 0 , z 2 , z p 0 z 3 , z ℓ 3 z 4 ); for any n ≥ 1 one has deg G n = ℓpd 6 n 3 + 1 - 3d 4 ℓpn 2 + 13 12 pd -2p + 1 ℓn - ℓpd 2 + ℓp + 1.
Repeating this process one gets Proposition 3.6. If k ≥ 3, then for any 0 ≤ ℓ ≤ k -2 there exist birational maps

F of P k C such that deg F n ∼ n ℓ .

PROPERTIES (P i )

Note that Theorem 2.4 can be also stated as follows: the centralizer of a polyonomial automorphism f of C 2 is countable if and only if (deg f n ) n∈N grows exponentially. This property is not true in higher dimension: there exist polynomial automorphisms of C 3 with uncountable centralizer and exponential degree growth ( [START_REF] Bisi | On commuting polynomial automorphisms of C k , k ≥ 3[END_REF]). Let us now that this is also the case for other properties, and in particular for (P 1 ), (P 2 ), (P 3 ), (P 4 ).

4.1. Property (P 1 ). Property (P 1 ) is not satisfied in dimension 3:

Proposition 4.1. If f = z 2 , (z 2 2 + z 0 ) 2 + z 2 2 + z 0 + z 1 , z 2 2 + z 0 then -Ind( f ) = {z 2 = z 3 = 0} and z 3 = 0 is blown down by f onto (0 : 1 : 0 : 0) ∈ Ind( f ), -for all n ≥ 1 one has deg f n = 2 n+1 .
4.2. Property (P 2 ). Property (P 2 ) does not hold in higher dimension:

Proposition 4.2. The polynomial automorphism f of C 3 given by z 2 0 + z 1 , z 0 , z 2 + 1 preserves the fibration z 2 = cst and for all n ≥ 1 the equality deg f n = 2 n holds.

The polynomial automorphism g of C 3 given by z 2 1 + z 0 z 1 + z 2 , z 1 + 1, z 0 preserves the fibration z 1 = cst and for all n ≥ 1 the equality deg g n = n + 1 holds. 4.3. Property (P 3 ). Property (P 3 ) is not satisfied in dimension 3. Proposition 4.3. Let us consider the polynomial automorphisms f and g of C 3 defined by

f = z 0 + z 1 + z 2 , z 2 0 + z 0 + z 1 , z 0 , g = z 2 1 + z 0 + z 1 + z 2 , z 1 , z 0 . For all n ≥ 1 one has    deg f 2n = 2 n+1 , deg f 2n+1 = 2 n+1 deg f -n = 2 n deg g n = deg g -n = 2
The automorphism f sends z 3 = 0 onto (0 : 1 : 0 : 0) and f -1 sends z 3 = 0 onto (0 : 1 : 1 : 0). Furthermore Ind( f ) = {z 0 = z 3 = 0} and Ind( f -1 ) = {z 2 = z 3 = 0}.

The automorphism g sends z 3 = 0 onto (1 : 0 : 0 : 0) and g -1 sends z 3 = 0 onto (0 : 0 : 1 : 0). Besides Ind(g) = {z 1 = z 3 = 0} and Ind(g -1 ) = {z 2 = z 3 = 0}. 4.4. Property (P 4 ). In [START_REF] Furter | On the degree of iterates of automorphisms of the affine plane[END_REF] Furter proves that if f is a polynomial automorphism of C 2 then deg f 2 = (deg f ) 2 if and only if deg f n = (deg f ) n for all n ∈ N. This property does not hold in higher dimension: consider for instance the polynomial automorphism f given by

f = (z 2 1 + z 5 , z 2 5 + z 4 , z 2 , z 1 , z 0 , z 2 4 + z 3 ). One can check that deg f = 2, deg f 2 = 4, deg f 3 = 8 but deg f 4 = 8.
Let f be a polynomial automorphism of C k . For any integer n ≥ 0 set Ω n = f n (z k-1 = 0) Ind( f n ) ; note that Ω n ⊂ (z k-1 = 0) for any n. We say that f is not algebraically stable after ℓ steps if ℓ is the smallest integer such that Ω ℓ ⊂ Ind( f ).

Let us first remark that if

Ω 1 ∩ Ind( f ) = / 0, then Ω 2 = f (Ω 1 ) ⊆ Ω 1 so Ω 2 ∩ Ind( f ) = / 0. By induction one gets for any n ≥ 1 that Ω n ∩ Ind( f ) = / 0 and deg f n = (deg f ) n , i.e. f is algebraically stable.
Let us now assume that Ω 1 ∩ Ind( f ) = / 0. Then:

(1) Either Ω 1 ⊂ Ind( f ), that is f is not algebraically stable after 1 step.

(

) Or Ω 1 ⊂ Ind( f ) hence Ω 2 = f Ω 1 Ind( f ) ⊆ Ω 1 . 2 
-Either dim Ω 2 = dim Ω 1 , so Ω 2 = Ω 1 and then Ω n = Ω 1 for any n; in particular Ω n ⊂ Ind( f ) for any n and f is algebraically stable.

-Or dim Ω 2 < dim Ω 1 , then either Ω 2 ⊂ Ind( f ) and f is not algebraically stable after 2 steps or Ω 2 ⊂ Ind( f ) and we come back to the previous alternative, that is either dim

Ω 3 = dim Ω 2 or dim Ω 3 < dim Ω 2 .
Since for any n one has 0 ≤ dim Ω n ≤ k -1 one gets that either f is algebraically stable, or f is not algebraically stable after at most k -1 steps.

Hence one can state: Proposition 4.4. Let f be a polynomial automorphism of C k . Either f is algebraically stable, or f is not algebraically stable after ℓ steps, with ℓ ≤ k -1.

In other words deg

f i = (deg f ) i for 1 ≤ i ≤ k if and only if deg f n = (deg f ) n for any n ≥ 1.

BIRATIONAL MAPS WITH NEW POLYNOMIAL GROWTHS

Let us first recall that One can also check that

Ψ 3 = P n Q n , R n S n , U n
V n where U n = z 0 z 2 P 1 P 2 . . . P n-1 and V n = Q 1 Q 2 . . . Q n-1 have no common factor. Since s i ∼ i 2 one gets: Let us now consider the birational self map of P 4 C defined in the affine chart z 4 = 1 by

Ψ 4 (z 0 , z 1 , z 2 , z 3 ) = z 1 + 2 3 , z 0 z 1 -1 3 z 1 + 1 , z 0 z 2 , z 2 z 3 .
One can check that 

Ψ 4 = P n Q n , R n S n , U n V n , W n X n where W n = W 1 U 1 U 2 . . .U n-1 and X n = X 1 V 1 V 2 . . .V

Lemma 5 . 1 (, z 0 z 1 -1 3 z 1 + 1 satisfies deg ϕ n ∼ n 2 . 3 , z 0 z 1 -1 3 z 1 + 1 , z 0 z 2 .

 5113112313112 [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF]). The birational self map ϕ of P 2 C given in the affine chart z 2 = 1 byϕ(z 0 , z 1 ) = z 1 + 2 3 Denote ϕ n by P n Q n , R n S n where P n , Q n , R n and S n denote some elements of C[z 0 , z 1 ] without common factor. Set p n = deg P n , q n = deg Q n , r n = deg R n and s n = deg S n . The following equalities hold (by iteration) s n-1 + 1 q n = s n-1 r n = s n + 1 deg ϕ n = s n-1 + s n + 1Let us now consider the birational self map of P 3 C given in the affine chart z 3 = 1 by Ψ 3 (z 0 , z 1 , z 2 ) = z 1 + 2

Lemma 5 . 2 .

 52 The birational self mapΨ 3 of P 3 C satisfies deg Ψ 3 ∼ n 3 .

The group of polynomial automorphisms of C k . A polynomial automorphism f

  Dominique Cerveau for his constant support.
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  n-1 have no common factor. Since degU n ∼ n 3 and degV n ∼ n 3 one has: Lemma 5.3. The birational self map Ψ 4 of P 4 C satisfies deg Ψ 4 ∼ n 4 .

By repeating this process one gets: Theorem 5.4. Let k be an integer ≥ 3. There exist birational maps φ of P k C such that degφ n ∼ n k . This statement and Lin's result ( [START_REF] Lin | Algebraic stability and degree growth of monomial maps[END_REF]) imply Theorem D.