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DEGREE GROWTH OF POLYNOMIAL AUTOMORPHISMS
AND BIRATIONAL MAPS: SOME EXAMPLES

JULIE DÉSERTI

ABSTRACT. We provide the existence of new degree growths in the context of polynomial automorphisms
of Ck: if k is an integer≥ 3, then for anyℓ ≤

[

k−1
2

]

there exist polynomial automorphismsf of Ck such
that degf n ∼ nℓ. We also give counter-examples in dimensionk ≥ 3 to some classical properties satisfied by
polynomial automorphisms ofC2.

We provide the existence of new degree growths in the contextof birational maps ofPk
C

: assumek ≥ 3;
forall 0≤ ℓ≤ k there exist birational mapsφ of Pk

C
such that degφn ∼ nℓ.

1. INTRODUCTION

Let f be a polynomial automorphism ofC2, then either(degf n)n∈N is bounded, or(degf n)n∈N grows
exponentially. In higher dimensions there are intermediate growths:

Theorem A. Let k be an integer≥ 3. For anyℓ ≤
[

k−1
2

]

there exist polynomial automorphismsf of Ck

such that
degf n ∼ nℓ.

The group of polynomial automorphisms ofC2 has a structure of amalgamated product ([6]); using this
rigidity a lot of properties of polynomial automorphisms ofC2 have been established. All these properties
show a dichotomy; up to conjugacy there are two types of polynomial automorphisms ofC2: the elementary
ones and the Hénon ones. Furthermore iff andg are two polynomial automorphisms ofC2 andH∞ denotes
the line at infinity (we viewC2 in P2

C
), then

(P1) : f is algebraically stable if and only if(degf n)n∈N grows exponentially;

(P2) : for anyn ≥ 1 the equality degf n = (degf )n holds if and only if f does not preserve a fibration in
hyperplanes;

(P3) : the sequences(degf n)n∈N and(deggn)n∈N have the same growth if and only if the configurations
of
(

f (H∞), f−1(H∞), Ind( f ), Ind( f−1)
)

and
(

g(H∞),g−1(H∞), Ind(g), Ind(g−1)
)

are the same;

(P4) : degf 2 = (degf )2 if and only if degf n = (degf )n for anyn ∈ N (see [5, Proposition 3]).

Note that in(P1), (P2) and(P4) one can add "if and only iff is of Hénon type".

Fact B. We give counter-examples to Properties(P1), (P2), (P3) and(P4) in dimension≥ 3.

Nevertheless one can prove a similar result to propertyP4:

Proposition C. Let f be a polynomial automorphism ofCk. Thendegf i = (degf )i for 1≤ i ≤ k if and
only if degf n = (degf )n for anyn ≥ 1.

If φ is a birational self map ofP2
C

, then (degφn)n∈N is either bounded, or grows linearly, or grows
quadratically, or grows exponentially ([3]). In this context there exist other types of growth in higher
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dimension. Lin has studied the degree growth of monomial maps ofPk
C

(see [8]); he proves in particular
that if A is ak× k integer matrix with nonzero determinant, then there exist two constantsα ≥ β ≥ 0 and a
unique integer 0≤ ℓ≤ k−1 such that for anyn ∈ N

βρ(A)ℓnℓ ≤ degφn
A ≤ αρ(A)ℓ nℓ

whereρ(A) denotes the spectral radius ofA andφA the monomial map associated toA. Does there exist in
dimensionk birational maps ofPk

C
with growthnℓ with ℓ > k−1 ?

Theorem D. Assumek ≥ 3; forall 0≤ ℓ≤ k there exist birational mapsφ of Pk
C

such thatdegφn ∼ nℓ.

Note that there exists a birational self mapf of P3
C

such that degf n ∼ n4 (see [10]).

Acknowledgement. I am very grateful to Dominique Cerveau for his constant support.
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2. RECALLS, DEFINITIONS, NOTATIONS

2.1. The group of polynomial automorphisms of Ck. A polynomial automorphismf of Ck is a polyno-
mial map of the type

f : Ck →Ck,
(

z0,z1, . . . ,zk−1) 7→ ( f0(z0,z1, . . . ,zk−1), f1(z0,z1, . . . ,zk−1), . . . , fk−1(z0,z1, . . . ,zk−1)
)

that is bijective. The set of polynomial automorphisms ofCk form a group denoted Aut(Ck).
The automorphisms ofCk of the form( f0, f1, . . . , fk−1) where fi depends only onzi, zi+1, . . ., zk−1 are

calledelementary automorphismsand form a subgroup Ek of Aut(Ck). Moreover we have the inclusions

GL(Ck)⊂ Aff k ⊂ Aut(Ck)

where Affk denotes thegroup of affine maps

f : (z0,z1, . . . ,zk−1) 7→
(

f0(z0,z1, . . . ,zk−1), f1(z0,z1, . . . ,zk−1), . . . , fk−1(z0,z1, . . . ,zk−1)
)

with fi affine; Affk is the semi-direct product of GL(Ck) with the commutative subgroups of translations.
The subgroup Tamek ⊂ Aut(Ck) generated by Ek and Affk is called thegroup of tame automorphisms. If
k = 2 one has:

Theorem 2.1 ([6]). In dimension2 the group of tame automorphisms coincides with the whole group of
polynomial automorphism; more precisely

Aut(C2) = Aff 2∗Aff 2∩E2 E2.

But this is not the case in higher dimension: Tame3 ( Aut(C3) (see [9]).
Another important result in dimension 2 is the following:

Theorem 2.2 ([4]). Let f be an element ofAut(C2). Then, up to conjugacy,



DEGREE GROWTH OF POLYNOMIAL AUTOMORPHISMS AND BIRATIONAL MAPS: NEW EXAMPLES 3

– either f belongs toE2,
– or f can be written as

ϕℓ ◦ϕℓ−1◦ . . .ϕ1

whereϕi : (z0,z1) 7→ (z1,Pi(z1)− δiz0), δi ∈C∗, Pi ∈ C[z1], degPi ≥ 2.

We denote byH the set of polynomial automorphisms ofC2 can be written up to conjugacy as

ϕℓ ◦ϕℓ−1◦ . . .ϕ1

whereϕi : (z0,z1) 7→ (z1,Pi(z1)− δiz0), δi ∈ C∗, Pi ∈ C[z1], degPi ≥ 2. The elements ofH areof Hénon
type.

From now one we will denotef = ( f0, f1, . . . , fk−1) instead of

f : (z0,z1, . . . ,zk−1) 7→
(

f0(z0,z1, . . . ,zk−1), f1(z0,z1, . . . ,zk−1), . . . , fk−1(z0,z1, . . . ,zk−1)
)

.

Thealgebraic degreedegf of f = ( f0, f1, . . . , fk−1) ∈ Aut(Ck) is max(degf0,degf1, . . . ,degfk−1).

2.2. The Cremona group. A rational self map f of Pk
C

can be written
(

z0 : z1 : . . . : zk
)

99K
(

f0(z0,z1, . . . ,zk) : f1(z0,z1, . . . ,zk) : . . . : fk(z0,z1, . . . ,zk)
)

where thefi’s are homogeneous polynomials of the same degree≥ 1 and without common factor of positive
degree. Thedegreeof f is the degree of thefi. If there exists a rational self mapg of Pk

C
such that

f g = g f = id we say that the rational self mapf of Pk
C

is birational. The set of birational self maps ofPk
C

form a group denoted Bir(Pk
C
) and called theCremona group. Of course Aut(Ck) is a subgroup of Bir(Pk

C
).

An other natural subgroup of Bir(Pk
C
) is the group Aut(Pk

C
)≃ PGL(k+1;C) of automorphisms ofPk

C
.

Theindeterminacy setInd( f ) of f is the set of the common zeros of thefi’s. Theexceptional setExc( f )
of f is the (finite) union of subvarietiesMi of Pk

C
such thatf is not injective on any open subset ofMi.

2.3. A little bit of dynamics. Let f be a polynomial automorphism ofCk. One can seef as a birational
self map ofPk

C
still denotedf . We will say thatf is algebraically stableif for any n > 0

f n({zk = 0}r Ind( f n)
)

is not contained in Ind( f ). This is equivalent to the fact that(degf )n = degf n for anyn > 0. For instance
elements ofH are algebraically stable.

Remark 2.3. Note that in dimension 2 one usually says thatf is algebraically stable if for anyn > 0

f n({z2 = 0}r Ind( f n)
)

∩ Ind( f ) = /0.

Be careful this is not equivalent in higher dimension: consider for instance

f =
(

5z2
0+ z2

2+6z0z2+ z1,z
2
2+ z0,z2

)

;

then
– on the one hand(−1 : 0 : 1 : 0) belongs to{z3 = 0}r Ind( f ) and f (−1 : 0 : 1 : 0) = (0 : 1 : 0 : 0) ∈

Ind( f ) = {(0 : 1 : 0 : 0)}.
– on the other hand for anyn ≥ 1 degf n = (degf )n.

The algebraic degree of a birational mapf of Pn
C

(resp. a polynomial automorphism ofCk) is not a
dynamical invariant so we introduce thedynamical degree

λ( f ) = lim
n→+∞

(degf n)1/n
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which is a dynamical invariant. In other words iff ∈ Bir(Pk
C
) (resp. Aut(Ck)), then for anyg ∈ Bir(Pk

C
)

(resp.g∈Aut(Ck)) one hasλ( f ) = λ(g f g−1). For any elementf in H the algebraic and dynamical degrees
coincide; more precisely if

f = ϕℓ ◦ϕℓ−1◦ . . .◦ϕ1

whereϕi = (z1,Pi(z1)− δiz0), δi ∈C∗, Pi ∈ C[z1], degPi ≥ 2 one has ([4])

λ( f ) =
ℓ

∏
i=1

degϕi ≥ 2.

A polynomial automorphismf is in Ek if and only if for anyn ≥ 1 the equality degf = degf n holds hence
λ( f ) = 1. In other words a polynomial automorphismf of C2 belongs toH if and only if λ( f ) > 1. There
is an other characterization of the automorphisms of Hénon type:

Theorem 2.4 ([7]). The centralizer off in Aut(C2), that is
{

g ∈ Aut(C2) | f g = g f
}

, is countable if and
only if f belongs toH .

3. AUTOMORPHISMS WITH POLYNOMIAL GROWTHS

3.1. The growths of a polynomial automorphisms and its inverse. If f is a polynomial automorphism
of Ck, then(degf ,degf−1) is the bidegree off . There is a relationship between degf and degf−1 (see [1]):

{

degf−1 ≤ (degf )k−1

degf ≤ (degf−1)k−1 (3.1)

As a result if f is a polynomial automorphism ofCk, the degree growths off and f−1 are linked:

Proposition 3.1. Let f be a polynomial automorphism ofCk.
– The sequence(degf n)n∈N is bounded if and only if the sequence(degf−n)n∈N is bounded.
– The sequence(degf n)n∈N grows exponentially if and only if(degf−n)n∈N grows exponentially.
– If degf n ≃ np anddegf−n ≃ nq for some integersp, q ≥ 1, then

(p,q) ∈

{(

[q+1
k

]

,q

)

, . . . ,(kq,q)

}

.

Remark 3.2. When we write "The sequence(degf n)n∈N grows exponentially if and only if(degf−n)n∈N

grows exponentially" it does not mean that(degf n)n∈N and(degf−n)n∈N have exactly the same behavior:
the polynomial automorphism ofC3 given by f = (z2

0+ z1+ z2,z2
0+ z1,z0) satisfies foralln ≥ 1

{

degf n = 2n

degf−n = 2[
n+1

2 ]

3.2. Examples of polynomial automorphisms with new polynomial growths. Let us now give examples
of polynomial automorphisms with polynomial growths.

Lemma 3.3. Let us consider the polynomial automorphism ofC3 given by

f =
(

z1+ z0zd
2,z0,z2

)

whered ≥ 1. One hasdegf n = dn+1 anddegf n = degf−n for anyn ≥ 1.

Proof. Assumen ≥ 1. Set f n = ( f0,n, f1,n,z2) andδn = degf n. Note thatδ1 = d +1 and since

f n = f f n−1 = ( f1,n−1+ f0,n−1zd
2, f0,n−1,z2)

one has
δn = max

(

degf1,n−1,degf0,n−1+ d,degf0,n−1,1
)

.

But f1,n−1 = f0,n−2 andd ≥ 1 soδn = degf0,n−1+ d = δn−1+ d. �
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Similarly one can prove:

Lemma 3.4. Let us consider the polynomial automorphism ofC5 given by

g =
(

z1+ z0zd
2,z0,z2,z4+ zp

0z3,z3
)

wherep ≥ d ≥ 1. One has for anyn ≥ 1

deggn =
pd
2

n2+
p(2− d)

2
n+1

anddeggn = degg−n for anyn ≥ 1.
Let us consider the polynomial automorphism ofC7 given by

h =
(

z1+ z0zd
2,z0,z2,z4+ zp

0z3,z3,z6+ zℓ3z5,z5
)

whereℓ≥ p ≥ d ≥ 1. For anyn ≥ 1

deghn = 1+ ℓ

(

1−
p
2
+

pd
3

)

n+
ℓp(1− d)

2
n2+

ℓpd
6

n3

anddeghn = degh−n.

So Lemma3.3 gives an examplef of polynomial automorphism ofC3 with linear growth; from f
one gets a polynomial automorphismg of C5 such that deggn ∼ n2, and fromg one gets a polynomial
automorphismh of C7 such that deghn ∼ n3 (Lemma3.4). By repeating this process one gets the following
statement:

Proposition 3.5. There exist polynomial automorphismsf of C2k+1, k ≥ 2, such that

degf n ∼ nk.

TheoremA follows from Proposition3.5.

3.3. A consequence. Come back tof = (z1+ z0zd
2,z0,z2) and consider the birational map ofP4

C
given by

F = ( f ,zp
0z3), that isF = (z1+ z0zd

2,z0,z2,z
p
0z3). Assume thatd ≤ p. Then one can prove by induction that

for anyn ≥ 1

degFn =
pd
2

n2+
p(2− d)

2
n+1.

Let us now define the birational mapF of P5
C

by

G = (z1+ z0zd
2,z0,z2,z

p
0z3,z

ℓ
3z4);

for anyn ≥ 1 one has

degGn =
ℓpd
6

n3+

(

1−
3d
4

)

ℓpn2+

(

13
12

pd−2p+1

)

ℓn−
ℓpd
2

+ ℓp+1.

Repeating this process one gets

Proposition 3.6. If k ≥ 3, then for any0≤ ℓ≤ k−2 there exist birational mapsF of Pk
C

such that

degFn ∼ nℓ.

4. PROPERTIES(Pi)

Note that Theorem2.4can be also stated as follows: the centralizer of a polyonomial automorphismf
of C2 is countable if and only if(degf n)n∈N grows exponentially. This property is not true in higher di-
mension: there exist polynomial automorphisms ofC3 with uncountable centralizer and exponential degree
growth ([2]). Let us now that this is also the case for other properties,and in particular for(P1), (P2), (P3),
(P4).
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4.1. Property (P1). Property(P1) is not satisfied in dimension 3:

Proposition 4.1. If
f =

(

z2,(z
2
2+ z0)

2+ z2
2+ z0+ z1,z

2
2+ z0

)

then
– Ind( f ) = {z2 = z3 = 0} andz3 = 0 is blown down byf onto(0 : 1 : 0 : 0) ∈ Ind( f ),
– for all n ≥ 1 one hasdegf n = 2n+1.

4.2. Property (P2). Property(P2) does not hold in higher dimension:

Proposition 4.2. The polynomial automorphismf of C3 given by
(

z2
0+ z1,z0,z2+1

)

preserves the fibrationz2 = cst and for alln ≥ 1 the equalitydegf n = 2n holds.
The polynomial automorphismg of C3 given by

(

z2
1+ z0z1+ z2,z1+1,z0

)

preserves the fibrationz1 = cst and for alln ≥ 1 the equalitydeggn = n+1 holds.

4.3. Property (P3). Property(P3) is not satisfied in dimension 3.

Proposition 4.3. Let us consider the polynomial automorphismsf andg of C3 defined by

f =
(

z0+ z1+ z2,z
2
0+ z0+ z1,z0

)

, g =
(

z2
1+ z0+ z1+ z2,z1,z0

)

.

For all n ≥ 1 one has






degf 2n = 2n+1, degf 2n+1 = 2n+1

degf−n = 2n

deggn = degg−n = 2

The automorphismf sendsz3 = 0 onto(0 : 1 : 0 : 0) and f−1 sendsz3 = 0 onto(0 : 1 : 1 : 0). Furthermore
Ind( f ) = {z0 = z3 = 0} andInd( f−1) = {z2 = z3 = 0}.

The automorphismg sendsz3 = 0 onto(1 : 0 : 0 : 0) andg−1 sendsz3 = 0 onto(0 : 0 : 1 : 0). Besides
Ind(g) = {z1 = z3 = 0} andInd(g−1) = {z2 = z3 = 0}.

4.4. Property (P4). In [5] Furter proves that iff is a polynomial automorphism ofC2 then degf 2 =
(degf )2 if and only if degf n = (degf )n for all n ∈ N. This property does not hold in higher dimension:
consider for instance the polynomial automorphismf given by

f = (z2
1+ z5,z

2
5+ z4,z2,z1,z0,z

2
4+ z3).

One can check that degf = 2, degf 2 = 4, degf 3 = 8 but degf 4 = 8.

Let f be a polynomial automorphism ofCk. For any integern ≥ 0 setΩn = f n
(

(zk−1 = 0)r Ind( f n)
)

;
note thatΩn ⊂ (zk−1 = 0) for anyn. We say thatf is not algebraically stable afterℓ stepsif ℓ is the smallest
integer such thatΩℓ ⊂ Ind( f ).

Let us first remark that ifΩ1∩ Ind( f ) = /0, thenΩ2 = f (Ω1)⊆ Ω1 soΩ2∩ Ind( f ) = /0. By induction one
gets for anyn ≥ 1 thatΩn ∩ Ind( f ) = /0 and degf n = (degf )n, i.e. f is algebraically stable.

Let us now assume thatΩ1∩ Ind( f ) 6= /0. Then:

(1) EitherΩ1 ⊂ Ind( f ), that is f is not algebraically stable after 1 step.

(2) Or Ω1 6⊂ Ind( f ) henceΩ2 = f
(

Ω1r Ind( f )
)

⊆ Ω1.
– Either dimΩ2 = dimΩ1, soΩ2 = Ω1 and thenΩn = Ω1 for anyn; in particularΩn 6⊂ Ind( f )

for anyn and f is algebraically stable.
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– Or dimΩ2 < dimΩ1, then eitherΩ2 ⊂ Ind( f ) and f is not algebraically stable after 2 steps
or Ω2 6⊂ Ind( f ) and we come back to the previous alternative, that is either dimΩ3 = dimΩ2

or dimΩ3 < dimΩ2. Since for anyn one has 0≤ dimΩn ≤ k−1 one gets that eitherf is
algebraically stable, orf is not algebraically stable after at mostk−1 steps.

Hence one can state:

Proposition 4.4. Let f be a polynomial automorphism ofCk. Either f is algebraically stable, orf is not
algebraically stable afterℓ steps, withℓ≤ k−1.

In other wordsdegf i = (degf )i for 1≤ i ≤ k if and only if degf n = (degf )n for anyn ≥ 1.

5. BIRATIONAL MAPS WITH NEW POLYNOMIAL GROWTHS

Let us first recall that

Lemma 5.1 ([3]). The birational self mapϕ of P2
C

given in the affine chartz2 = 1 by

ϕ(z0,z1) =

(

z1+
2
3
,z0

z1−
1
3

z1+1

)

satisfiesdegϕn ∼ n2.

Denoteϕn by
(

Pn
Qn

, Rn
Sn

)

wherePn, Qn, Rn andSn denote some elements ofC[z0,z1] without common

factor. Setpn = degPn, qn = degQn, rn = degRn and sn = degSn. The following equalities hold (by
iteration)















pn = sn−1+1
qn = sn−1

rn = sn +1
degϕn = sn−1+ sn +1

Let us now consider the birational self map ofP3
C

given in the affine chartz3 = 1 by

Ψ3(z0,z1,z2) =

(

z1+
2
3
,z0

z1−
1
3

z1+1
,z0z2

)

.

One can also check that

Ψ3 =

(

Pn

Qn
,

Rn

Sn
,
Un

Vn

)

whereUn = z0z2P1P2 . . .Pn−1 andVn = Q1Q2 . . .Qn−1 have no common factor. Sincesi ∼ i2 one gets:

Lemma 5.2. The birational self mapΨ3 of P3
C

satisfies

degΨ3 ∼ n3.

Let us now consider the birational self map ofP4
C

defined in the affine chartz4 = 1 by

Ψ4(z0,z1,z2,z3) =

(

z1+
2
3
,z0

z1−
1
3

z1+1
,z0z2,z2z3

)

.

One can check thatΨ4 =
(

Pn
Qn
, Rn

Sn
, Un

Vn
, Wn

Xn

)

whereWn =W1U1U2 . . .Un−1 andXn = X1V1V2 . . .Vn−1 have

no common factor. Since degUn ∼ n3 and degVn ∼ n3 one has:

Lemma 5.3. The birational self mapΨ4 of P4
C

satisfies

degΨ4 ∼ n4.
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By repeating this process one gets:

Theorem 5.4. Let k be an integer≥ 3. There exist birational mapsφ of Pk
C

such that

degφn ∼ nk.

This statement and Lin’s result ([8]) imply TheoremD.
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