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We give some properties of the subgroup G n (C) of the group of birational self-maps of P n C generated by the standard involution and the group of automorphisms of P n C . We prove that there is no nontrivial finite-dimensional linear representation of G n (C). We also establish that G n (C) is perfect, and that G n (C) equipped with the Zariski topology is simple. Furthermore if ϕ is an automorphism of Bir(P n C ), then up to birational conjugacy, and up to the action of a field automorphism ϕ |G n (C) is trivial.

Introduction

The group Bir(P 2 C ) of birational self-maps of P 2 C , also called the Cremona group of rank 2, has been the object of a lot of studies. For finite subgroups let us mention for example [START_REF] Blanc | Linearisation of finite abelian subgroups of the Cremona group of the plane[END_REF][START_REF] Dolgachev | Finite subgroups of the plane Cremona group[END_REF][START_REF] Bogomolov | On stable conjugacy of finite subgroups of the plane Cremona group[END_REF]; other subgroups have been dealt with ( [START_REF] Déserti | Sur les automorphismes du groupe de Cremona[END_REF][START_REF] Déserti | Sur les sous-groupes nilpotents du groupe de Cremona[END_REF]), and some group properties have been established ( [START_REF] Déserti | Sur les automorphismes du groupe de Cremona[END_REF][START_REF] Déserti | Le groupe de Cremona est hopfien[END_REF][START_REF] Déserti | Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer[END_REF][START_REF] Cerveau | Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés[END_REF][START_REF] Cantat | Sur les groupes de transformations birationnelles des surfaces[END_REF][START_REF] Cantat | Normal subgroups in the Cremona group[END_REF][START_REF] Blanc | Groupes de Cremona, connexité et simplicité[END_REF][START_REF] Blanc | Simple relations in the Cremona group[END_REF][START_REF] Blanc | Sous-groupes algébriques du groupe de Cremona[END_REF]). One can also find a lot of properties between algebraic geometry and dynamics ([26, 13, 7]). The Cremona group in higher dimension is far less well known; let us mention some references about finite subgroups ( [START_REF] Prokhorov | Simple finite subgroups of the Cremona group of rank 3[END_REF][START_REF] Yu | On birational involutions of P 3[END_REF][START_REF] Prokhorov | p-elementary subgroups of the Cremona group of rank 3[END_REF][START_REF] Popov | Jordan groups and automorphism groups of algebraic varieties[END_REF][START_REF] Mundet I Riera | Finite group actions on homology spheres and manifolds with nonzero euler characteristic[END_REF]), about algebraic subgroups of maximal rank ( [START_REF] Demazure | Sous-groupes algébriques de rang maximum du groupe de Cremona[END_REF][START_REF] Vinberg | Algebraic transformation groups of maximal rank[END_REF][START_REF] Umemura | Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables[END_REF][START_REF] Umemura | On the maximal connected algebraic subgroups of the Cremona group[END_REF][START_REF] Umemura | Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type[END_REF]), about other subgroups ( [START_REF] Popov | Some subgroups of the Cremona groups[END_REF][START_REF] Popov | Tori in the Cremona groups[END_REF]), about (abstract) homomorphisms from PGL(r + 1; C) to the group Bir(M) where M denotes a complex projective variety ( [START_REF] Cantat | Morphisms between Cremona groups and a characterization of rational varieties[END_REF]), and about maps of small bidegree ( [START_REF] Pan | Une remarque sur la génération du groupe de Cremona[END_REF][START_REF] Pan | Transformations birationnelles quadratiques de l'espace projectif complexe à trois dimensions[END_REF][START_REF] Pan | Sur les transformations de Cremona de bidegré (3, 3)[END_REF][START_REF] Hudson | Cremona Transformations in Plane and Space[END_REF][START_REF] Déserti | On cubic birational maps of P 3 C[END_REF]).

In this article we consider the subgroup of birational self-maps of P n C introduced by Coble in [START_REF] Coble | Point sets and allied Cremona groups[END_REF] G n (C) = σ n , Aut(P n C ) where σ n denotes the involution (z 0 : z 1 : . . . :

z n )    n ∏ i=0 i =0 z i : n ∏ i=0 i =1 z i : . . . : n ∏ i=0 i =n z i    .
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Hudson also deals with this group ( [START_REF] Hudson | Cremona Transformations in Plane and Space[END_REF]): "For a general space transformation, there is nothing to answer either to a plane characteristic or Noether theorem. There is however a group of transformations, called punctual because each is determined by a set of points, which are defined to satisfy an analogue of Noether theorem, and possess characteristics, and for which we can set up parallels to a good deal of the plane theory."

Note that the maps of G 3 (C) are in fact not so "punctual" ( [8, §8]). It follows from Noether theorem ( [START_REF] Alberich-Carramiñana | Geometry of the plane Cremona maps[END_REF][START_REF] Šafarevič | Algebraic surfaces[END_REF]) that G 2 (C) coincides with Bir(P 2 C ); it is not the case in higher dimension where G n (C) is a strict subgroup of Bir(P n C ) (see [START_REF] Hudson | Cremona Transformations in Plane and Space[END_REF][START_REF] Pan | Une remarque sur la génération du groupe de Cremona[END_REF]). However the following theorems show that G n (C) shares good properties with G 2 (C) = Bir(P 2 C ). In [START_REF] Cerveau | Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés[END_REF] we proved that for any integer n ≥ 2 the group Bir(P n k ), where k denotes an algebraically closed field, is not linear; we obtain a similar statement for G n (k), n ≥ 2:

Theorem A.
-If k is an algebraically closed field, there is no nontrivial finite-dimensional linear representation of G n (k) over any field.

The group G n (C) contains some "big" subgroups:

Proposition B. -
-The group of polynomial automorphisms of C n generated by the affine automorphisms and the Jonquières ones is a subgroup of G n (C).

-If g 0 , g 1 , . . ., g k are some generic automorphisms of

P n C , then g 0 σ n , g 1 σ n , . . . , g k σ n ⊂ G n (C) is a free subgroup of G n (C).
Remark 1.1. -For the meaning of "generic" see the proof of Proposition 4.3.

In [START_REF] Cerveau | Transformations birationnelles de petit degré, volume 19 of Cours Spécialisés[END_REF] we establish that

G 2 (C) = Bir(P 2 C ) is perfect, i.e. [G 2 (C), G 2 (C)] = G 2 (C)
; the same holds for any n:

Theorem C. -If k is an algebraically closed field, G n (k) is perfect.
In [START_REF] Déserti | Sur les automorphismes du groupe de Cremona[END_REF] we determine the automorphisms group of G 2 (C) = Bir(P 2 C ); in higher dimensions we have a similar description. Before giving a precise result, let us introduce some notation: the group of the field automorphisms acts on Bir(P n C ): if f is an element of Bir(P n C ), and κ is a field automorphism we denote by κ f the element obtained by letting κ acting on f . Theorem D. -Let ϕ be an automorphism of Bir(P n C ). There exist κ an automorphism of the field C, and ψ a birational map of

P n C such that ϕ( f ) = κ (ψ f ψ -1 ) ∀ f ∈ G n (C).
The question "is the Cremona group simple ?" is a very old one; Cantat and Lamy recently gave a negative answer in dimension 2 (see [START_REF] Cantat | Normal subgroups in the Cremona group[END_REF]). One can consider the same question when G 2 (k) is equipped with the Zariski topology (k denotes here an algebraically closed field) ; Blanc looked at it, and obtained a positive answer ( [START_REF] Blanc | Groupes de Cremona, connexité et simplicité[END_REF]). What about G n (k) ? Proposition E. -If k is an algebraically closed field, the group G n (k), equipped with the Zariski topology, is simple.

Organisation of the article. -We first recall a result of Pan about the set of group generators of Bir(P n C ), n ≥ 3 (see §2); we then note that as soon as n ≥ 3, there are birational maps of degree n = deg σ n that do not belong to G n (C). In §3 we prove Theorem A, and in §4 Proposition B. Let us remark that the fact that the group of tame automorphisms is contained in G n (C) implies that G n (C) contains maps of any degree, it was not obvious a priori. In §5 we study the normal subgroup in G n (C) generated by σ n (resp. by an automorphism of P n C ); it allows us to establish Theorem C. We finish §5 with the proofs of Theorem D, and Proposition E.

Acknowledgments. -I would like to thank D. Cerveau for his helpful and continuous listening. Thanks to the referee that helps me to improve the exposition. Thanks to I. Dolgachev for pointing out me that Coble introduced the group G n (C) in [START_REF] Coble | Point sets and allied Cremona groups[END_REF], and to J. Blanc, J. Diller, F. Han, M. Jonsson, J.-L. Lin for their remarks and comments.

About the set of group generators of

Bir(P n C ), n ≥ 3 2.1. Some definitions. -A polynomial automorphism ϕ of C n is a map C n → C n of the type (z 0 , z 1 , . . . , z n-1 ) → ϕ 0 (z 0 , z 1 , . . . , z n-1 ), ϕ 1 (z 0 , z 1 , . . . , z n-1 ), . . . , ϕ n-1 (z 0 , z 1 , . . . , z n-1 ) , with ϕ i ∈ C[z 0 , z 1 , . . . , z n-1 ], that is bijective; we denote ϕ by ϕ = (ϕ 0 , ϕ 1 , . . . , ϕ n-1 ). A rational self-map φ : P n C P n
C is given by (z 0 : z 1 : . . .

: z n ) φ 0 (z 0 , z 1 , . . . , z n ) : φ 1 (z 0 , z 1 , . . . , z n ) : . . . : φ n (z 0 , z 1 , . . . , z n )
where the φ i are homogeneous polynomials of the same positive degree, and without common factor of positive degree. Let us denote by C[z 0 , z 1 , . . . , z n ] d the set of homogeneous polynomials in z 0 , z 1 , . . ., z n of degree d. The degree of φ is by definition the degree of the φ i . A birational self-map of P n C is a rational self-map that admits a rational inverse. The set of polynomial automorphisms of C n (resp. birational self-maps of P n C ) form a group denoted Aut(C n ) (resp. Bir(P n C )).

2.2.

A result of Pan. -Let us recall a construction of Pan ( [START_REF] Pan | Une remarque sur la génération du groupe de Cremona[END_REF]) which, given a birational self-map of P n C , allows one to construct a birational self-map of

P n+1 C . Let P ∈ C[z 0 , z 1 , . . . , z n ] d , Q ∈ C[z 0 , z 1 , . . . , z n ] ℓ , and let R 0 , R 1 , . . ., R n-1 ∈ C[z 0 , z 1 , . . . , z n-1 ] d-ℓ be some homogeneous poly- nomials. Denote by Ψ P,Q,R : P n C P n C and Ψ : P n-1 C P n-1
C the rational maps defined by

Ψ P,Q,R = QR 0 : QR 1 : . . . : QR n-1 : P & Ψ R = R 0 : R 1 : . . . : R n-1 . Lemma 2.1 ([35]). -Let d, ℓ be some integers such that d ≥ ℓ+1 ≥ 2. Take Q in C[z 0 , z 1 , . . . , z n ] ℓ , and P in C[z 0 , z 1 , . . . , z n ] d without common factors. Let R 1 , . . ., R n be some elements of C[z 0 , z 1 , . . . , z n-1 ] d-ℓ . Assume that P = z n P d-1 + P d Q = z n Q ℓ-1 + Q ℓ with P d-1 , P d , Q ℓ-1 , Q ℓ ∈ C[z 0 , z 1 , . . . , z n-1 ] of degree d -1, resp. d, resp. ℓ -1, resp. ℓ and such that (P d-1 , Q ℓ-1 ) = (0, 0). The map Ψ P,Q,R is birational if and only if Ψ R is birational.
Let us give the motivation of this construction:

Theorem 2.2 ([29, 35]

). -Any set of group generators of Bir(P n C ), n ≥ 3, contains uncountably many non-linear maps.

We will give an idea of the proof of this statement.

Lemma 2.3 ([35]

). -Let n ≥ 3. Let S be an hypersurface of

P n C of degree ℓ ≥ 1 having a point p of multiplicity ≥ ℓ -1.
Then there exists a birational self-map of P n C of degree d ≥ ℓ + 1 that blows down S onto a point.

Proof. -One can assume without loss of generality that p = (0 : 0 : . . . : 0 : 1). Denote by q ′ = 0 the equation of S, and take a generic plane passing through p given by the equation h = 0. Finally Proof of Theorem 2.2. -Let us consider the family of hypersurfaces given by q(z 1 , z 2 , z 3 ) = 0 where q = 0 defines a smooth curve C q of degree ℓ on {z 0 = z 4 = z 5 = . . . = z n = 0}. Let us note that q = 0 is birationally equivalent to P n-2

choose P = z n P d-1 + P d such that • P d-1 = 0; • pgcd (P, hq ′ ) = 1. Now set Q = h d-ℓ-1 q ′ , R i = z i ,
C × C q . Furthermore q = 0 and q ′ = 0 are birationally equivalent if and only if C q and C q ′ are isomorphic. Note that for ℓ = 2 the set of isomorphism classes of smooth cubics is a 1-parameter family, and that according to Lemma 2.3 for any C q there exists a birational self-map of P n C that blows down C q onto a point. Hence any set of group generators of Bir(P n C ), n ≥ 3, has to contain uncountably many non-linear maps. One can take d = ℓ + 1 in Lemma 2.3. In particular Corollary 2.4. -As soon as n ≥ 3, there are birational maps of degree n = deg σ n that do not belong to G n (C).

Remark 2.5. -The maps Ψ P,Q,R that are birational form a subgroup of Bir(P n C ) denoted by J 0 (1; P n C ), and studied in [START_REF] Pan | Cremona maps[END_REF] : in particular J 0 (1; P 3 C ) inherits the property of Theorem 2.2.

2.3.

A first remark. -Let φ be a birational map of

P 3 C . A regular resolution of φ is a morphism π : Z → P 3 C which is a sequence of blow-ups π = π 1 • . . . • π r along smooth irreducible centers, such that -φ • π : Z → P 3 C is a birational morphism, -and each center B i of the blow-up π i : Z i → Z i-1 is contained in the base locus of the induced map Z i-1 P 3 
C . It follows from Hironaka that such a resolution always exists. If B is a smooth irreducible center of a blow-up in a smooth projective complex variety of dimension 3, then B is either a point, or a smooth curve. We define the genus of B as follows: it is 0 if B is a point, the usual genus otherwise. Frumkin defines the genus of φ to be the maximum of the genera of the centers of the blow-ups in the resolution of φ (see [START_REF] Frumkin | A filtration in the three-dimensional Cremona group[END_REF]), and shows that this definition does not depend on the choice of the regular resolution. In [START_REF] Lamy | On the genus of birational maps between 3-folds[END_REF] an other definition of the genus of a birational map is given. Let us recall that if E is an irreducible divisor contracted by a birational map between smooth projective complex varieties of dimension 3, then E is birational to P 1 C × C , where C denotes a smooth curve ( [START_REF] Lamy | On the genus of birational maps between 3-folds[END_REF]). The genus of a birational map φ of P 3

C is the maximum of the genera of the irreducible divisors in P 3

C contracted by φ. Lamy proves that these two definitions of genus agree ( [START_REF] Lamy | On the genus of birational maps between 3-folds[END_REF]). Let φ be in Bir(P 3 C ), and let H be an irreducible hypersurface of P 3 C . We say that H is φexceptional if φ is not injective on any open subset of H (or equivalently if there is an open subset of H which is mapped into a subset of codimension ≥ 2 by φ). Let φ 1 , . . ., φ k be in Bir(P 3 C ), and

let φ = φ k • . . . • φ 1 . Let H be an irreducible hypersurface of P 3 C . If H is φ-exceptional, then there exists 1 ≤ i ≤ k and a φ i -exceptional hypersurface H i such that -φ i-1 • . . . • φ 1 realizes a birational isomorphism from H to H i ; -φ i contracts H i .
In particular one has the following statement.

Proposition 2.6. -The group G 3 (C) is contained in the subgroup of birational self-maps of P 3 C of genus 0.

Non-linearity of G n (C)

If V is a finite dimensional vector space over C there is no faithful linear representation Bir(P n C ) → GL(V ) (see [ The image by ρ of these maps satisfy Birkhoff Lemma so p ≤ n: contradiction. In any dimension we have the same property: G n (C) is not linear, i.e. if V is a finite dimensional vector space over C there is no faithful linear representation G n (C) → GL(V ). Actually G n (C) satisfies a more precise property due to Cornulier in dimension 2 (see [START_REF] Cornulier | Nonlinearity of some subgroups of the planar Cremona group[END_REF]):

Proposition 3.1.
-The group G n (C) has no non-trivial finite dimensional representation.

Lemma 3.2. -The map ς = z 0 z n-1 : z 1 z n-1 : . . . : z n-2 z n-1 : z n-1 z n : z 2 n belongs to G n (C). Proof. -We have ς = a 1 σ n a 2 σ n a 3 where a 1 = z 2 -z 1 : z 3 -z 1 : . . . : z n -z 1 : z 1 : z 1 -z 0 , a 2 = z n-1 + z n : z n : z 0 : z 1 : . . . : z n-2 , a 3 = z 0 + z n : z 1 + z n : . . . : z n-2 + z n : z n-1 -z n : z n .
Proof of Proposition 3.1. -We adapt the proof of [START_REF] Cornulier | Nonlinearity of some subgroups of the planar Cremona group[END_REF].

Let us now work in the affine chart

z n = 1. By Lemma 3.2 in G n (C) there is a natu- ral copy of H = (C * ) n ⋊ Z; indeed ς = z 0 z n-1 , z 1 z n-1 , . . . , z n-2 z n-1 , z n-1 ≃ Z acts on (α 0 z 0 , α 1 z 1 , . . . , α n-1 z n-1 ) | α i ∈ C * ≃ (C *
) n and H is the group of maps

(α 0 z 0 z k n-1 , α 1 z 1 z k n-1 , . . . , α n-2 z n-2 z k n-1 , α n-1 z n-1 ) | α i ∈ C * , k ∈ Z .
Consider any linear representation ρ : H → GL(k; C). If p is prime, and if ξ p is a primitive p-root of unity, set g p = (ξ p z 0 , ξ p z 1 , . . . , ξ p z n-1 ), h p = (ξ p z 0 , ξ p z 1 , . . . , ξ p z n-2 , z n-1 ).

Then h p = [ς, g p ] commutes with both φ and g p . By [2, Lemma 1] if ρ(g p ) = 1, then k ≥ p.

Picking p to be greater than k, this shows that if we have an arbitrary representation f : G n (C) → GL(k; C), the restriction f |PGL(n+1;C) is not faithful. Since PGL(n + 1; C) is simple, this implies that f is trivial on PGL(n + 1; C). We conclude by using the fact that the two involutions -id and σ n are conjugate via the map ψ given by

z 0 + 1 z 0 -1 , z 1 + 1 z 1 -1 , . . . , z n-1 + 1 z n-1 -1
and ψ = a 1 σ n a 2 where a 1 and a 2 denote the two following automorphisms of

P n C a 1 = z 0 + 1, z 1 + 1, . . . , z n-1 + 1 , a 2 = z 0 -1 2 , z 1 -1 2 , . . . , z n-1 -1 2 . Remark 3.3. -Proposition 3.1 is also true for G n (k)
where k is an algebraically closed field.

Subgroups of G n (C)

4.1. The tame automorphisms. -The automorphisms of C n written in the form (φ 0 , φ 1 , . . . , φ n-1 ) where

φ i = φ i (z i , z i+1 , . . . , z n-1 )
depends only on z i , z i+1 , . . ., z n-1 form the Jonquières subgroup J n ⊂ Aut(C n ). A polynomial automorphism (φ 0 , φ 1 , . . . , φ n-1 ) where all the φ i are linear is an affine transformation. Denote by Aff n the group of affine transformations; Aff n is the semi-direct product of GL(n; C) with the commutative unipotent subgroup of translations. We have the following inclusions

GL(n; C) ⊂ Aff n ⊂ Aut(C n ).
The subgroup Tame n ⊂ Aut(C n ) generated by J n and Aff n is called the group of tame automorphisms. For n = 2 one has Tame 2 = Aut(C 2 ), this follows from the fact that Aut(C 2 ) = J 2 * J 2 ∩Aff 2 Aff 2 (see [START_REF] Jung | Über ganze birationale Transformationen der Ebene[END_REF]). The group Tame 3 does not coincide with Aut(C 3 ): the Nagata automorphism is not tame ( [START_REF] Shestakov | The tame and the wild automorphisms of polynomial rings in three variables[END_REF]). Derksen gives a set of generators of Tame n (see [START_REF] Van Den Essen | Polynomial automorphisms and the Jacobian conjecture[END_REF] for a proof): 

+ z 2 1 , z 1 , z 2 , . . . , z n-1 belongs to G n (C). But z 0 z n + z 2 1 : z 1 z n : z 2 z n : . . . : z n-1 z n : z 2 n = g 1 σ n g 2 σ n g 3 σ n g 2 σ n g 4
where

g 1 = z 2 -z 1 + z 0 : 2z 1 -z 0 : z 3 : z 4 : . . . : z n : z 1 -z 0 ,
g 2 = z 0 + z 2 : z 0 : z 1 : z 3 : z 4 : . . . : z n , g 3 =z 1 : z 0 + z 2 -3z 1 : z 0 : z 3 : z 4 : . . . : z n ,

g 4 = z 1 -z n : -2z n -z 0 : 2z n -z 1 :
-z 2 : -z 3 : . . . : -z n-1 .

Free groups and G n (C).

-Following the idea of [14, Proposition 5.7] we prove that:

Proposition 4.3.
-Let g 0 , g 1 , . . ., g k be some generic elements of Aut(P n C ). The group generated by g 0 , g 1 , . . ., g k , and σ n is the free product k+1 Z * . . . * Z * (Z/2Z), the g i 's and σ n being the generators for the factors of this free product.

In particular the subgroup g 0 σ n , g 1 σ n , . . . , g k σ n of G n (C) is a free group. If g, σ n is not isomorphic to Z * Z/2Z, then there exists a word M g in Z * Z/2Z such that M g (g, σ n ) = id. Note that the set of words M g is countable, and that for a given word M the set

R M = g M(g, σ n ) = id is algebraic in Aut(P n C ).
Consider an automorphism g written in the following form αz 0 + βz 1 : γz 0 + δz 1 : z 2 : z 3 : . . . : z n where α β γ δ ∈ PGL(2; C). Since the pencil z 0 = tz 1 is invariant by both σ n and g, one inherits a linear representation g, σ n → PGL(2; C) defined by

g : t → αt + β γt + δ , σ n : t → 1 t .
But the group generated by α β γ δ and 0 1 1 0 is generically isomorphic to Z * Z/2Z

(see [START_REF] De La Harpe | Topics in geometric group theory[END_REF]). Hence the complements R C M are dense open subsets, and their intersection is dense by Baire property.

Some algebraic properties of G n (C)

5.1. The group G n (C) is perfect. -If G is a group, and if g is an element of G, we denote by

N(g; G) = f g f -1 | f ∈ G .
the normal subgroup generated by g in G.

Proposition 5.1. -The following assertions hold:

1. N(g; PGL(n + 1; C)) = PGL(n + 1; C) for any g ∈ PGL(n + 1; C) {id}; 2. N(σ n ; G n (C)) = G n (C); 3. N(g; G n (C)) = G n (C) for any g ∈ PGL(n + 1; C) {id}.
Proof. -Let us work in the affine chart z n = 1.

1. Since PGL(n + 1; C) is simple one has the first assertion.

2. Let φ be in G n (C); there exist g 0 , g 1 , . . .,

g k in Aut(P n C ) such that φ = (g 0 ) σ n g 1 σ n . . . σ n g k (σ n ). As PGL(n + 1; C) is simple N(-id; PGL(n + 1; C)) = PGL(n + 1; C),
and for any 0 ≤ i ≤ k there exist f i,0 , f i,1 , . . ., f i,ℓ i in PGL(n + 1; C) such that

g i = f i,0 -id f -1 i,0 f i,1 -id f -1 i,1 . . . f i,ℓ i -id f -1
i,ℓ i . We conclude by using the fact that -id and σ n are conjugate via an element of G n (C) (see the proof of Proposition 3.1).

3. Fix g in PGL(n + 1; C) {id}. Since N(g; PGL(n + 1; C)) = PGL(n + 1; C), the involution -id can be written as a composition of some conjugates of g. The maps -id and σ n being conjugate one has

σ n = ( f 0 g f -1 0 ) ( f 1 g f -1 1 ) . . . ( f ℓ g f -1 ℓ ) for some f i in G n (C). So N(σ n ; G n (C)) ⊂ N(g; G n (C))
, and one concludes with the second assertion.

Corollary 5.2. -The group G n (C) satisfies the following properties:

1. G n (C) is perfect, i.e. [G n (C), G n (C)] = G n (C); 2. for any φ in G n (C) there exist g 0 , g 1 , . . ., g k automorphisms of P n C such that φ = (g 0 σ n g -1 0 )(g 1 σ n g -1 1 ) . . . (g k σ n g -1 k )
Proof. -1. The third assertion of Proposition 5.1 implies that any element of G n (C) can be written as a composition of some conjugates of t = z 0 : z 1 + z n : z 2 + z n : . . . : z n-1 + z n : z n . As t = z 0 : 3z 1 : 3z 2 : . . . : 3z n-1 : z n , (2z 0 : z 1 + z n : z 2 + z n : . . . :

z n-1 + z n : 2z n ) , the group G n (C) is perfect.
2. For any α 0 , α 1 , . . ., α n in C * set d(α 0 , α 1 , . . . , α n ) = (α 0 z 0 : α 1 z 1 : . . . : α n z n ), and let us define H as follows:

H = g 0 σ n g -1 0 g 1 σ n g -1 1 . . . g ℓ σ n g -1 ℓ | g i ∈ PGL(n + 1; C), ℓ ∈ N .
The second assertion of the Corollary is then equivalent to H = G n (C). Let us remark that H is a group that contains σ n , and that PGL(n + 1; C) acts by conjugacy on it. One can check that

d α σ n d -1 α = d 2 α σ n = σ n d -2 α .
(5.1) Hence for each g in PGL(n + 1; C) we have gd α σ n d -1 α g -1 = (gd 2 α g -1 )(gσ n g -1 ), so gd 2 α g -1 belongs to H. Since any automorphism of P n C can be written as a product of diagonalizable matrices, PGL(n + 1; C) ⊂ H. Indeed, write C as the algebraic closure of a purely transcendental extension Q(x i , i ∈ I) of Q; if f : I → I is an injective map, then there exists a field morphism κ :

On the restriction of automorphisms of the group birational maps to

C → C x i → x f (i) .
Note that such a morphism is surjective if and only if f is onto.

In 2006, using the structure of amalgamated product of Aut(C 2 ), the automorphisms of this group have been described:

Theorem 5.3 ([20]

). -Let ϕ be an automorphism of Aut(C 2 ). There exist a polynomial automorphism ψ of C 2 , and a field automorphism κ such that

ϕ( f ) = κ (ψ f ψ -1 ) ∀ f ∈ Aut(C 2 ).
Then, in 2011, Kraft and Stampfli show that every automorphism of Aut(C n ) is inner up to field automorphisms when restricted to the group Tame n :

Theorem 5.4 ([31]

). -Let ϕ be an automorphism of Aut(C n ). There exist a polynomial automorphism ψ of C n , and a field automorphism κ such that

ϕ( f ) = κ (ψ f ψ -1 ) ∀ f ∈ Tame n .
Even if Bir(P 2 C ) hasn't the same structure as Aut(C 2 ) (see Appendix of [START_REF] Cantat | Normal subgroups in the Cremona group[END_REF]) the automorphisms group of Bir(P 2 C ) can be described, and a similar result as Theorem 5.3 is obtained ( [START_REF] Déserti | Sur les automorphismes du groupe de Cremona[END_REF]). There is no such result in higher dimension; nevertheless in [START_REF] Cantat | Morphisms between Cremona groups and a characterization of rational varieties[END_REF] Cantat classifies all (abstract) homomorphisms from PGL(k + 1; C) to the group Bir(M) of birational maps of a complex projective variety M, provided k ≥ dim C M. Before recalling his statement let us introduce some notation. Given g in Aut(P n C ) = PGL(n + 1; C) we denote by t g the linear transpose of g. The involution g → g ∨ = ( t g) -1

determines an exterior and algebraic automorphism of the group Aut(P n C ) (see [START_REF] Dieudonné | La géométrie des groupes classiques[END_REF]). Theorem 5.5 ([11]). -Let M be a smooth, connected, complex projective variety, and let n be its dimension. Let k be a positive integer, and let ρ : Aut(P k C ) → Bir(M) be an injective morphism of groups. Then n ≥ k, and if n = k there exists a field morphism κ : C → C, and a birational map

ψ : M P n C such that either ψ ρ(g) ψ -1 = κ g ∀ g ∈ Aut(P n C ) or ψ ρ(g) ψ -1 = ( κ g) ∨ ∀ g ∈ Aut(P n C ); in particular M is rational. Moreover, κ is an automorphism of C if ρ is an isomorphism.
Let us give the proof of Theorem D: Theorem 5.6. -Let ϕ be an automorphism of Bir(P n C ). There exists a birational map ψ of P n C , and a field automorphism κ such that ϕ

(g) = κ (ψgψ -1 ) ∀ g ∈ G n (C).
Proof. -Let us consider ϕ ∈ Aut(Bir(P n C )). Theorem 5.5 implies that up to birational conjugacy and up the action of a field automorphism either ϕ

(g) = g ∀ g ∈ Aut(P n C ) or ϕ(g) = g ∨ ∀ g ∈ Aut(P n C ). (5.3) 
In other words up to birational conjugacy and up to the action of a field automorphism one cas assume that either ϕ |Aut(P n C ) : g → g, or ϕ |Aut(P n C ) : g → g ∨ . Now determine ϕ(σ n ). Let us work in the affine chart z n = 1. For 0 ≤ i ≤ n -2 denote by τ i the automorphism of P n C that permutes z i and z n-1

τ i = z 0 , z 1 , . . . , z i-1 , z n-1 , z i+1 , z i+2 , . . . , z n-2 , z i .
Let η be given by

η = z 0 , z 1 , . . . , z n-2 , 1 z n-1 .
One has

σ n = τ 0 ητ 0 τ 1 ητ 1 . . . τ n-2 ητ n-2 η so ϕ(σ n ) = ϕ(τ 0 )ϕ(η)ϕ(τ 0 ) ϕ(τ 1 )ϕ(η)ϕ(τ 1 ) . . . ϕ(τ n-2 )ϕ(η)ϕ(τ n-2 ) ϕ(η).
Since any τ i belongs to Aut(P n C ) one can, thanks to (5.3), compute ϕ(τ i ), and one gets: ϕ(τ i ) = τ i . Let us now focus on ϕ(η). We will distinguish the two cases of (5.3). Assume that ϕ |PGL(n+1;C) = id. For any α = (α 0 , α 1 , . . . , α n-1 ) in (C * ) n set d α = (α 0 z 0 , α 1 z 1 , . . . , α n-1 z n-1 ); the involution η satisfies for any α = (α 0 , α 1 , . . . , α n-1 ) ∈ (C * ) n d β η = ηd α where β = (α 0 , α 1 , . . . , α -1 n-1 ). Hence ϕ(η) = ±z 0 , ±z 1 , . . . , ±z n-2 , α z n-1 for α ∈ C * . As η commutes with t = z 0 + 1, z 1 + 1, . . . , z n-2 + 1, z n-1 , the image ϕ(η) of η commutes to ϕ(t) = t. Therefore ϕ(η) = z 0 , z 1 , . . . , z n-2 , α z n-1 .

If 

h n = z 0 z 0 -1 , z 0 -z 1 z 0 -1 , z 0 -z 2 z 0 -1 , . . . , z 0 -z n-1 z 0 -1 then ϕ(h n ) =

  and conclude with Lemma 2.1.

14 ,

 14 Proposition 5.1]). The proof of this statement is based on the following Lemma due to Birkhoff ([2, Lemma 1]): if a, b and c are three elements of GL(n; C) such that [a, b] = c, [a, c] = [b, c] = id, c p = id for some p prime then p ≤ n. Assume that there exists an injective homomorphism ρ from Bir(P 2C ) to GL(n; C). For any p > n prime consider in the affine chart z 2 = 1 the maps (exp(2iπ/p)z 0 , z 1 ), (z 0 , z 0 z 1 ), (z 0 , exp(-2iπ/p)z 1 ).

Remark 4 . 4 .

 44 -The meaning of "generic" is explained in the proof below. Proof. -Let us show the statement for k = 0 (in the general case it is sufficient to replace the free product Z * Z/2Z by Z * Z * . . . * Z * Z/2Z).

  G n (C). -If M is a projective variety defined over a field k ⊂ C the group Aut k (C) of automorphisms of the field extension C/k acts on M(C), and on both Aut(M) and Bir(M) as follows κ ψ(p) = (κψκ -1 )(p) (5.2) for any κ in Aut k (C), any ψ in Bir(M), and any point p in M(C) for with both sides of (5.2) are well defined. Hence Aut k (C) acts by automorphisms on Bir(M). If κ : C → C is a morphism field, this contruction gives an injective morphism Aut(P n C ) → Aut(P n C ) g → g ∨ .

5 . 3 .

 53 h n , and (h n σ n )3 = id implies that ϕ(σ n ) = σ n . If ϕ |PGL(n+1;C) coincides with g → g ∨ , a similar argument yields ϕ(h n )ϕ(σ n ) 3 = id. Simplicity of G n (C). -An algebraic family of Bir(P n C ) is the data of a rational map φ : M × P n C P n C , where M is a C-variety, defined on a dense open subset U such that -for any m ∈ M the intersection U m = U ∩ ({m} × P n C ) is a dense open subset of {m} × P n C , -and the restriction of id × φ to U is an isomorphism of U on a dense open subset of M × P n C . For any m ∈ M the birational map z φ(m, z) represents an element φ m in Bir(P n C ); the map M → Bir(P n C ), m → φ m is called morphism from M to Bir(P n C ). These notions yield the natural Zariski topology on Bir(P n C ), introduced by Demazure ([18]) and Serre ([45]): the subset Ω of Bir(P n C ) is closed if for any C-variety M, and any morphism M → Bir(P n C ) the preimage of Ω in M is closed. Note that in restriction to Aut(P n C ) one obtains the usual Zariski topology of the algebraic group Aut(P n C ) = PGL(n + 1; C). Let us recall the following statement: Proposition 5.7 ([5]). -Let n ≥ 2. Let H be a non-trivial, normal, and closed subgroup of Bir(P n C ). Then H contains Aut(P n C ) and PSL 2; C(z 0 , z 1 , . . . , z n-2 ) . In our context we have a similar statement: Proposition 5.8. -Let n ≥ 2. Let H be a non-trivial, normal, and closed subgroup of G n (C). Then H contains Aut(P n C ) and σ n .

  Theorem 4.1. -Let n ≥ 3 be a natural integer. The group Tame n is generated by Aff n , and the Jonquières map z 0 + z 2 1 , z 1 , z 2 , . . . , z n-1 . Proposition 4.2. -The group G n (C) contains the group of tame polynomial automorphisms of C n .

	Proof. -The inclusion Aff n ⊂ Aut(P n C ) is obvious; according to Theorem 4.1 we thus just have
	to prove that z 0

Proof. -A similar argument as in [START_REF] Blanc | Groupes de Cremona, connexité et simplicité[END_REF] allows us to prove that Aut(P n C ) is contained in H. The fact -id and σ n are conjugate in G n (C) (see Proof of Proposition 3.1) yields the conclusion.

The proof of Proposition E follows from Proposition 5.8 and Corollary 5.2.