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JONQUIÈRES MAPS AND SL(2;C)-COCYCLES

by

Julie DÉSERTI

Abstract. — We start the study of the family of birational maps( fα,β) of P2
C

in [12]. For "(α,β) well
chosen" of modulus 1 the centraliser offα,β is trivial, the topological entropy offα,β is 0, there exist
two domains of linearisation : in the first one the closure of the orbit of a point is a torus, in the other
one the closure of the orbit of a point is the union of two circles. OnP1

C
×P1

C
any fα,β can be viewed

as a cocyle ; using recent results about SL(2;C)-cocycles ([1]) we determine the LYAPUNOV exponent
of the cocyle associated tofα,β.

2010Mathematics Subject Classification. —37F10, 14E07

Introduction

In this article we deal with a family of birational maps( fα,β) given by

fα,β : P2
C 99K P2

C (x : y : z) 99K
(
(αx+y)z : βy(x+z) : z(x+z)

)

whereα, β denote two complex numbers with modulus 1, case where we knowalmost nothing
about the dynamics. Let us consider the setΩ of pairs of complex numbers of modulus 1 that
satisfy diophantine condition. The family( fα,β) satisfies the following properties ([12]):

• for (α,β) ∈ Ω the centraliser offα,β, that is the set of birational maps ofP2
C that commutes

with fα,β, is isomorphic toZ;
• the topological entropy offα,β is 0;
• rotation domains of ranks 1 and 2 coexist: there is a domain oflinearisation where the orbit

of a generic point underfα,β is a torus, and there is an other domain of linearisation where
the orbit of a generic point underf 2

α,β is a circle.

We can also seefα,β onP1
C×P1

C

(
since all the computations of [12] have been done in an affine

chart they may all be carried onP1
C×P1

C

)
; the setsP1

C× S1
ρ, whereS1

ρ = {y ∈ C | |y| = ρ}, are
invariant.

http://arxiv.org/abs/1304.6242v4
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Let us defineAα,ρ
n : S1

ρ → M(2;C) given in terms ofAα,ρ(y) =

[
α y
1 1

]
by

Aα,ρ
n (·) = Aα,ρ(βn ·)Aα,ρ(βn−1 ·) . . .Aα,ρ(β ·)Aα,ρ(·).

To computef n
α,β(x,y) is equivalent to computeAα,ρ

n (y) as soon asf k
α,β(x,y) 6= (−1,α) for any

1≤ k≤ n.

Using [1] we are able to determine the LYAPUNOV exponent of the cocycle(Aα,ρ,β):

Theorem A. — The LYAPUNOV exponent of(Aα,ρ,β) is
• positive as soon asρ > 1;
• zero as soon asρ ≤ 1.

More preciselyfα,β is semi conjugate to
(

αx+y2

x+1 ,β1/2y
)

and theLYAPUNOV exponent of the

cocycle
(
Bα,ρ,β1/2

)
, where

Bα,ρ(y) =

[
α y2

1 1

]
,

is equal tomax(0, lnρ).

In the next section we introduce the family( fα,β) and its properties (§1). Then we deal with the
recent works of AVILA on SL(2;C)-cocyles. In the last section we give the proof of TheoremA
(see§2). Let us explain the sketch of it. We associate to

(
Bα,ρ,β1/2

)
a cocycle

(
B̃α,ρ,β1/2

)
that

belongs to SL(2;C). We first determine

lim
ρ→0

L
(
B̃α,ρ,β1/2),

and then

lim
ρ→+∞

L
(
B̃α,ρ,β1/2)

whereL(C,γ) denotes the LYAPUNOV exponent of the SL(2;C)-cocyle(C,γ). In both cases, we
get 0. Using [1, Theorem 5] we obtain thatL

(
B̃α,ρ,β1/2

)
vanishes everywhere; it allows us to

determineL
(
Aα,ρ,β

)
since

L
(
Bα,ρ(y),β1/2)= L

(
B̃α,ρ(y),β1/2)+max(0, lnρ),

and since
(
Aα,ρ,β

)
and

(
β1/2,Bα,ρ) are conjugate.

Acknowledgment. — I would like to thank Artur AVILA for very helpful discussions, Dominique
CERVEAU for his constant support, and Serge CANTAT for his remarks. Thanks also to the referee
whose comments help me to improve the text.
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1. Some properties of the family( fα,β)

A rational mapφ from P2
C into itself is a map of the form

(x : y : z) 99K
(
φ0(x,y,z) : φ1(x,y,z) : φ2(x,y,z)

)
,

where theφi ’s are some homogeneous polynomials of the same degree without common factor;φ
is birational if it admits an inverse of the same type. We will denote by Bir(P2

C) the group of
birational maps ofP2

C, also called theCREMONA group. The degreeof φ, denoted degφ, is
the degree of theφi ’s. The degree is not a birational invariant: degψφψ−1 6= degφ for generic
birational mapsφ andψ. Thefirst dynamical degreeof φ given by

λ(φ) = lim
n→+∞

(
degφn)1/n

,

is a birational invariant; it is strongly related to the topological entropyhtop(φ) of φ (see[17, 20])

htop(φ) ≤ logλ(φ) (1.1)

Any birational mapφ admits a resolution

S
π2

��
❅❅

❅❅
❅❅

❅❅

π1

��⑧⑧
⑧⑧
⑧⑧
⑧

P2
C φ

//❴❴❴❴❴❴❴ P2
C,

whereπ1, π2 : S→ P2
C are sequences of blow-ups (see[3] for example). The resolution isminimal

if and only if no (−1)-curve of S is contracted by bothπ1 andπ2. Thebase-pointsof φ are the
points blown-up inπ1, which can be points ofP2

C or infinitely near points. We denote byb(φ) the
number of such points, which is also equal to the difference of the ranks of Pic(S) and Pic(P2

C),
and thus equals tob(φ−1). The dynamical number of base-points ofφ introduced in [8] is by
definition

µ(φ) = lim
n→+∞

b(φn)

n
;

it is a real positive number that satisfiesµ(φn) = |nµ(φ)| for any n ∈ Z, µ(ψφψ−1) = µ(φ), and
allows us to give a characterization of birational maps conjugate to automorphisms:

Theorem 1.1([8]). — Let S be a smooth projective surface; the birational mapφ ∈ Bir(S) is
conjugate to an automorphism of a smooth projective surfaceif and only if µ(φ) = 0.

The behavior ofφ ∈ Bir(P2
C) is strongly related to the behavior of

(
degφn

)
n∈N (see[16, 15, 8]);

up to birational conjugacy exactly one of the following holds:

1. the sequence
(

degφn
)

n∈N is bounded and eitherφ is of finite order, orφ is an automorphism
of P2

C;

2. there exists an integerk such that

lim
n→+∞

degφn

n
= k2 µ(φ)

2
andφ is not an automorphism;
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3. there exists an integerk≥ 3 such that

lim
n→+∞

degφn

n2 = k2 κ(φ)
9

whereκ(φ) ∈Q is a birational invariant, andφ is an automorphism;

4. the sequence
(

degφn
)

n∈N grows exponentially (see[15] for more precise dynamical pro-
perties).

In the first three casesλ(φ) = 1, in the last oneλ(φ) > 1. In case 2. (resp. 3.) the mapφ
preserves a unique fibration which is rational (resp. elliptic).

In case 1. (resp. 2., resp. 3, resp. 4) we say thatφ is elliptic (resp. aJONQUIÈRES twist, resp.
anHALPHEN twist, resp.hyperbolic).

Let us give some examples. Let

φ(x,y) =
(

a(y)x+b(y)
c(y)x+d(y)

,
αy+β
γy+δ

)

be an element of theJONQUIÈRES group PGL(2;C(y))⋊PGL(2;C); either φ is elliptic (for
instanceφ : (x : y : z) 99K (yz: xz: xy)), or φ is a JONQUIÈREStwist (for exampleφ : (x : y : z) 99K
(xz: xy : z2) for which the unique invariant fibration isy/z= constant). The map

φ : P2
C 99K P2

C (x : y : z) 99K
(
(2y+z)(y+z) : x(2y−z) : 2z(y+z)

)

is an HALPHEN twist ([15, Proposition 9.5]). HÉNON automorphisms give by homogeneization
examples of hyperbolic maps.

Clearly elliptic birational maps have a poor dynamical behavior contrary to hyperbolic ones.
The study of automorphisms of positive entropy is strongly related with birational maps ofP2

C:

Theorem 1.2([9]). — Let S be a compact complex surface that carries an automorphismφ of
positive topological entropy.

• Either theKODAIRA dimension ofS is zero andφ is conjugate to an automorphism on the
unique minimal model ofS that necessarily is a torus, or a K3 surface or anENRIQUES

surface;
• or the surfaceS is a non-minimal rational one, isomorphic toP2

C blown up atn points,n≥ 10,
andφ is conjugate to a birational map ofP2

C.

This yields many examples of hyperbolic birational maps forwhich we can establish a lot of
dynamical properties ([18, 4, 5, 6, 7, 14, 13]).

Another way to measure chaos is to look at the size of centralisers. Let us give two examples.
The polynomial automorphisms ofC2 having rich dynamics are HÉNON maps; furthermore a
polynomial automorphism ofC2 is a HÉNON one if and only if its centraliser is countable. Let us
now consider rational maps onS1; if the centraliser of such maps is not trivial(1), then the JULIA

set is "special". The centraliser of an elliptic birationalmap of infinite order is uncountable ([8]).
The centralisers of HALPHEN twists are described in [16]. The centraliser of an hyperbolic map is
countable ([10]). In [11] we end the story by studying centralisers of JONQUIÈRES twists. If the

1. The centraliser of a mapφ is trivial if it coincides with the iterates ofφ.
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fibration is fiberwise invariant, then the centraliser is uncountable ; but if it isn’t, then generically
the centraliser is isomorphic toZ. We don’t know a lot about dynamics of these maps, in this
article we will thus focus on a family of such maps. We consider the JONQUIÈRESmaps

fα,β : P2
C 99K P2

C (x : y : z) 99K
(
(αx+y)z : βy(x+z) : z(x+z)

)

whereα, β denote two complex numbers with modulus 1. The base-points of fα,β are

(1 : 0 : 0), (0 : 1 : 0), (−1 : α : 1).

Any fα,β preserves a rational fibration (the fibrationy= constant in the affine chartz= 1). Each
element of the family( fα,β) has first dynamical degree 1 hence topological entropy zero (1.1);
more precisely one has ([8, Example 4.3])

µ( fα,β) =
1
2

so fα,β is not conjugate to an automorphism (Theorem1.1). The centralizer offα,β is isomorphic
to Z (see[12, Theorem 1.6]). The idea of the proof is the following: the point p= (1 : α : 1) is
blown-up onto a fiber of the fibrationy= constant. Letψ be an element of

Cent( fα,β) =
{

g∈ Bir(P2
C) |g◦ fα,β = fα,β ◦g

}
;

sinceψ blows down a finite number of curves there exists a positive integerk (chosen minimal)
such thatf k

α,β(p) is not blown down byψ. Replacingψ by ψ̃ = ψ f k−1
α,β one gets that̃ψ(p) is an

indeterminacy point offα,β. In other words̃ψ permutes the indeterminacy points offα,β. A more
precise study allows us to establish thatp is fixed byψ̃. The pair(α,β) being inΩ, the closure of
the negative orbit ofp under the action offα,β is ZARISKI dense; sincẽψ fixes any element of the
orbit of p one obtains̃ψ = id.

Let us recall that ifψ is an automorphism on a compact complex manifold M, theFATOU

setF (ψ) of ψ is the set of points that have a neighborhoodV such that
{

f n
|V

|n∈ N
}

is a normal
family. Set

G(U) =
{

φ : U → U |φ = lim
nj→+∞

ψnj
}

;

we say thatU is a rotation domain if G(U) is a subgroup of Aut(U). An equivalent definition
is the following: a componentU of F (ψ) which is invariant byψ is a rotation domain ifψ|U

is conjugate to a linear rotation. IfU is a rotation domain,G(U) is a compact LIE group, and
the action ofG(U) on U is analytic real. SinceG(U) is a compact, infinite, abelian LIE group,
the connected component of the identity ofG(U) is a torus of dimension 0≤ d ≤ dimCM. The
integerd is therank of the rotation domain. The rank coincides with the dimension of the closure
of a generic orbit of a point inU.

We can also seefα,β onP1
C×P1

C and that is what we will do in the sequel
(
since all the com-

putations of [12] have been done in an affine chart they may all be carried onP1
C ×P1

C

)
; the

setsP1
C× S1

ρ are invariant. In [12] we show that there are two rotation domains forf 2
α,β, one of
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rank 1, and the other one of rank 2(2); in the first case we give here a more precise statement than
in [12]:

Theorem 1.3. — Assume that(α,β) belongs toΩ.
There exists a strictly positive real numberr such that fα,β is conjugate to(αx,βy) on

P1
C × D(0, r) whereD(0, r) denotes the disk centered at the origin with radiusr.

There exists a strictly positive real numberr̃ such thatf 2
α,β is conjugate to

(
x
β ,

z
β2

)
on P1

C ×

D(0, r̃).

Remark 1.4. — The point(α−1,0) is also a fixed point offα,β where the behavior offα,β is the
same as near(0,0).

Proof. — The first assertion is proved in [12].

Let us consider the mapψ(x,z) =
(

a(z)x+b(z)
c(z)x+1 ,z

)
. The equation

ψ−1 f 2
α,βψ =

(
x
β
,

z
β2

)

yields

βa
(
β−2z

)
c(z)+βa

(
β−2z

)
a(z)−c

(
β−2z

)
a(z)+αa

(
β−2z

)
a(z)

+z
(
α2 a

(
β−2z

)
c(z)−αc

(
β−2z

)
c(z)−c

(
β−2z

)
c(z)−c

(
β−2z

)
a(z)

)
= 0, (1.2)

βa
(
β−2z

)
−βa(z)+z

(
α2a

(
β−2z

)
−αβc(z)−βc(z)−βa(z)−αc

(
β−2z

)
−c

(
β−2z

))

+β(α+β)a(z)b
(
β−2z

)
+(α+β)b(z)a

(
β−2z

)
+β2b

(
β−2z

)
c(z)−b(z)c

(
β−2z

)

+z
(
α2 βb

(
β−2z

)
c(z)−b(z)c

(
β−2z

))
= 0 (1.3)

and

(α+1)z+b(z)−βb
(
β−2z

)
−α2zb

(
β−2z

)
+zb(z)− (α+β)b

(
β−2z

)
b(z) = 0 (1.4)

Let us set
a(z) = ∑

i≥0

aiz
i , b(z) = ∑

i≥0

biz
i , c(z) = ∑

i≥0

ciz
i .

We easily geta0 = 1−β, b0 = 0 andc0 = α+β.
Relation (1.4) implies that

b1 =
β(1+α)

1−β
& βbν

(
1−β1−2ν)+Fi(bi | i < ν) = 0 ∀ν > 1,

(1.3) yields

aν
(
β1−2ν −β

)
+bν

(
(α+β)a0

(
1+β1−2ν

)
+c0

(
β2−2ν −1

))
+Gi(ai , bi , ci | i < ν) = 0

and (1.2) to

cνa0
(
β−β−2ν)+aν

(
(α+β)a0

(
1+β−2ν

)
+c0

(
β1−2ν −1

))
+Hi(ai , bi , ci | i < ν) = 0

2. There already exists an example of automorphism of positive entropy with rotation domains of rank 1 and 2 (see
[5]), but fα,β is not conjugate to an automorphism on a rational surface.
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where theFi ’s, Gi ’s and Hi ’s denote universal polynomials; this allows to computebν, aν and
cν. Thus we get a formal conjugacy off 2

α,β to its linear part. Since this linear part satisfies a
Rüssmann condition (see[19, Theorem 2.1] condition (2)), according to [19, Theorem 2.1] any
formal linearizing map conjugatingf 2

α,β to its linear part is convergent on a polydisc.

2. About SL(2;C)-cocycles

A (one-frequency, analytic)quasiperiodicSL(2;C)-cocycleis a pair(A,β), whereβ ∈ R and

A: S1
1 → SL(2;C)

is analytic, and defines a linear skew product acting onC2×S1
1 by

(x,y) 7→ (A(y) ·x,βy).

The iterates of the cocyle are given by(An,nβ) whereAn is given by

An(y) = A
(
βn−1y

)
. . .A(y) n≥ 1, A0(y) = id, A−n(y) = An(β−ny)−1.

TheLYAPUNOV exponentL(A,β) of a quasiperiodic SL(2;C)-cocycle(A,β) is given by

lim
n→+∞

1
n

∫
S1

1

ln ||An(y)||dy.

A quasiperiodic SL(2;C)-cocycle(A,β) is uniformly hyperbolic if there exist analytic functions

u, s: S1
1 → P2

C,

called theunstable and stable directions, andn≥ 1 such that for anyy∈ S1
1,

A(y) ·u(y) = u(βy) A(y) ·s(y) = s(βy),

and for any unit vectorx∈ s(y) (resp.x∈ u(y)) we have||An(y) · x|| < 1 (resp.||An(y) · x|| > 1).
The unstable and stable directions are uniquely characterized by those properties, and clearly
u(y) 6= s(y) for anyy∈ S1

1. If (A,β) is uniformly hyperbolic, thenL(A,β)> 0. Let us denote by

UH ⊂Cω(SL(2;C),S1
1

)

the set ofA such that(A,β) is uniformly hyperbolic. Uniform hyperbolicity is a stableproperty:
UH is open, andA 7→ L(A,β) is analytic overUH (regularity properties of the LYAPUNOV expo-
nent are consequence of the regularity of the unstable and stable directions which depend smoothly
on both variables).

Definition. — Let (A,β) be a quasiperiodic SL(2;C)-cocycle. IfL(A,β) > 0 but (A,β) 6∈ UH ,
then(A,β) is nonuniformly hyperbolic.

If A∈Cω(SL(2;C),S1
1

)
admits a holomorphic extension to|Imy| < δ then for|ε| < δ we can

defineAε ∈Cω(SL(2;C),S1
1

)
by

Aε(y) = A(y+ iε).
The LYAPUNOV exponentL(Aε,β) is a convex function ofε. We can thus introduce the following
notion. Theaccelerationof a quasiperiodic SL(2;C)-cocyle(A,β) is given by

ω(A,β) = lim
ε→0+

1
2πε

(
L(Aε,β)−L(A,β)

)
.
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Remark 2.1. — The convexity of the LYAPUNOV exponent in function ofε implies that the ac-
celeration is decreasing.

Since the LYAPUNOV exponent is a convex and continuous function the acceleration is an upper
semi-continuous function inR\Q×Cω(SL(2;C),S1

1

)
. The acceleration is quantized:

Theorem 2.2([1]). — If (A,β) is aSL(2;C)-cocycle withβ ∈ RrQ, thenω(A,β) is always an
integer.

A direct consequence is the following:

Corollary 2.3. — The functionε 7→ L(Aε,β) is a piecewise affine function ofε.

It is thus natural to introduce the notion of regularity. A cocycle

(A,β) ∈Cω(SL(2;C),S1
1

)
×R\Q

is regular if L(Aε,β) is affine forε in a neighborhood of 0. In other words(A,β) is regular if the
equality

L(Aε,β)−L(A,β) = 2πεω(A,β)
holds for allε small, and not only for the positive ones. Regularity is equivalent to the acceleration
being locally constant near(A,β). It is an open condition inCω(SL(2;C),S1

1

)
×R \Q. The

following statement gives a characterization of the dynamics of regular cocycles with positive
LYAPUNOV exponent:

Theorem 2.4([1]). — Let (A,β) be aSL(2;C)-cocycle withβ ∈RrQ. Assume thatL(A,β)> 0;
then(A,β) is regular if and only if(A,β) is UH .

One striking consequence is the following:

Corollary 2.5([1]). — For any(A,β) in Cω(SL(2;C),S1
1

)
×R\Q there existsε0 such that

• L(Aε,β) = 0 (andω(A,β) = 0) for every0< ε < ε0,

• or (Aε,β) ∈ UH for every0< ε < ε0.

Remark 2.6. — Let us mention that there is a link between SL(2;C)-cocycles and SCHRÖDINGER

operators (see[1] for more details).

3. Proof of TheoremA

Suppose thatρ 6= 1, and let us consider the cocycle(Bα,ρ,β1/2) where

Bα,ρ(y) =

[
α y2

1 1

]
.

Since (
αx+y
x+1

,βy

)
(x,y2) = (x,y2)

(
αx+y2

x+1
,β1/2y

)
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the cocycles(Aα,ρ,β) and (Bα,ρ,β1/2) have the same behavior. Using two different arguments
of monodromy (one forρ < 1, and the other one forρ > 1) we see that there is a continuous
determination for the square root of detBα,ρ(y) = α−y2. Let us set

B̃α,ρ(y) =
1√

α−y2
Bα,ρ(y) ∈ SL(2;C)

that is thus defined on two different domains of analyticity.
According to Theorem1.3one hasL

(
B̃α,ρ,β1/2

)
= 0 whenρ is close to both 0 and∞.

Assume thatL
(
B̃α,ρ,β1/2

)
is non constant. WheñBα,ρ is holomorphic, so in particular when

ρ < 1 andρ > 1, the acceleration is decreasing (Remark2.1); furthermore the acceleration is
positive forρ < 1 and negative forρ > 1 (becauseL is continuous). Theorem2.2thus implies

ω
(
B̃α,1+ ,β1/2)−ω

(
B̃α,1− ,β1/2)≤−2.

By definition ofB̃α,ρ we have

L
(
B̃α,ρ(y),β1/2) = L

(
Bα,ρ(y),β1/2)−

∫
S1

ρ

ln
√

α−y2dy

= L
(
Bα,ρ(y),β1/2)−max(0, lnρ).

Even though
(
Bα,ρ(y),β1/2

)
is not a SL(2;C)-cocycle, the LYAPUNOV exponent is still a convex

function of logρ (see for example[2]). The jump ofω(Bα,ρ(y),β1/2) is thus≥ 0, and the jump
for the second term of the right member is−1. Therefore the jump ofL

(
B̃α,ρ(y),β1/2

)
is ≥ −1:

contradiction.
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