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. For "(α, β) well chosen" of modulus 1 the centraliser of f α,β is trivial, the topological entropy of f α,β is 0, there exist two domains of linearisation : in the first one the closure of the orbit of a point is a torus, in the other one the closure of the orbit of a point is the union of two circles. On P 1 C × P 1 C any f α,β can be viewed as a cocyle ; using recent results about SL(2; C)-cocycles ([1]) we determine the LYAPUNOV exponent of the cocyle associated to f α,β .

Introduction

In this article we deal with a family of birational maps ( f α,β ) given by f α,β : P 2 where α, β denote two complex numbers with modulus 1, case where we know almost nothing about the dynamics. Let us consider the set Ω of pairs of complex numbers of modulus 1 that satisfy diophantine condition. The family ( f α,β ) satisfies the following properties ( [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF]):

• for (α, β) ∈ Ω the centraliser of f α,β , that is the set of birational maps of P 2 C that commutes with f α,β , is isomorphic to Z;

• the topological entropy of f α,β is 0;

• rotation domains of ranks 1 and 2 coexist: there is a domain of linearisation where the orbit of a generic point under f α,β is a torus, and there is an other domain of linearisation where the orbit of a generic point under f 2 α,β is a circle.

We can also see f α,β on P 1 C × P 1 C since all the computations of [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF] have been done in an affine chart they may all be carried on P 1 C × P 1 C ; the sets P 1 C × S 1 ρ , where S 1 ρ = {y ∈ C | |y| = ρ}, are invariant.

Let us define A α,ρ n : S 1 ρ → M(2; C) given in terms of A α,ρ (y) = α y 1 1 by

A α,ρ n (•) = A α,ρ (β n •)A α,ρ (β n-1 •) . . . A α,ρ (β •)A α,ρ (•).
To compute f n α,β (x, y) is equivalent to compute A α,ρ n (y) as soon as f k α,β (x, y) = (-1, α) for any 1 ≤ k ≤ n.

Using [START_REF] Avila | Global theory of one-frequency Schrödinger operators[END_REF] we are able to determine the LYAPUNOV exponent of the cocycle (A α,ρ , β):

Theorem A. -The LYAPUNOV exponent of (A α,ρ , β) is
• positive as soon as ρ > 1;

• zero as soon as ρ ≤ 1.

More precisely f α,β is semi conjugate to αx+y 2 x+1 , β 1/2 y and the LYAPUNOV exponent of the cocycle B α,ρ , β 1/2 , where

B α,ρ (y) = α y 2 1 1 ,
is equal to max(0, ln ρ).

In the next section we introduce the family ( f α,β ) and its properties ( §1). Then we deal with the recent works of AVILA on SL(2; C)-cocyles. In the last section we give the proof of Theorem A (see §2). Let us explain the sketch of it. We associate to B α,ρ , β 1/2 a cocycle B α,ρ , β 1/2 that belongs to SL(2; C). We first determine lim ρ→0 L B α,ρ , β 1/2 , and then

lim ρ→+∞ L B α,ρ , β 1/2
where L(C, γ) denotes the LYAPUNOV exponent of the SL(2; C)-cocyle (C, γ). In both cases, we get 0. Using [1, Theorem 5] we obtain that L B α,ρ , β 1/2 vanishes everywhere; it allows us to determine L A α,ρ , β since

L B α,ρ (y), β 1/2 = L B α,ρ (y), β 1/2 + max(0, ln ρ),
and since A α,ρ , β and β 1/2 , B α,ρ are conjugate.
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Some properties of the family ( f α,β )

A rational map φ from P 2 C into itself is a map of the form (x : y : z) φ 0 (x, y, z) :

φ 1 (x, y, z) : φ 2 (x, y, z) ,
where the φ i 's are some homogeneous polynomials of the same degree without common factor; φ is birational if it admits an inverse of the same type. We will denote by Bir(P 2 C ) the group of birational maps of P 2 C , also called the CREMONA group. The degree of φ, denoted deg φ, is the degree of the φ i 's. The degree is not a birational invariant: deg ψφψ -1 = deg φ for generic birational maps φ and ψ. The first dynamical degree of φ given by

λ(φ) = lim n→+∞ deg φ n 1/n ,
is a birational invariant; it is strongly related to the topological entropy h top (φ) of φ (see [START_REF] Gromov | On the entropy of holomorphic maps[END_REF][START_REF] Yomdin | Volume growth and entropy[END_REF])

h top (φ) ≤ log λ(φ) (1.1)
Any birational map φ admits a resolution

S π 2 ❅ ❅ ❅ ❅ ❅ ❅ ❅ ❅ π 1 ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ ⑧ P 2 C φ / / ❴ ❴ ❴ ❴ ❴ ❴ ❴ P 2 C ,
where π 1 , π 2 : S → P 2 C are sequences of blow-ups (see [START_REF] Beauville | Complex algebraic surfaces[END_REF] for example). The resolution is minimal if and only if no (-1)-curve of S is contracted by both π 1 and π 2 . The base-points of φ are the points blown-up in π 1 , which can be points of P 2 C or infinitely near points. We denote by b(φ) the number of such points, which is also equal to the difference of the ranks of Pic(S) and Pic(P 2 C ), and thus equals to b(φ -1 ). The dynamical number of base-points of φ introduced in [START_REF] Blanc | Degree growth of birational maps of the plane[END_REF] is by definition

µ(φ) = lim n→+∞ b(φ n ) n ;
it is a real positive number that satisfies µ(φ n ) = |n µ(φ)| for any n ∈ Z, µ(ψφψ -1 ) = µ(φ), and allows us to give a characterization of birational maps conjugate to automorphisms:

Theorem 1.1 ([8]

). -Let S be a smooth projective surface; the birational map φ ∈ Bir(S) is conjugate to an automorphism of a smooth projective surface if and only if µ(φ) = 0.

The behavior of φ ∈ Bir(P 2 C ) is strongly related to the behavior of deg φ n n∈N (see [START_REF] Gizatullin | Rational G-surfaces[END_REF][START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF][START_REF] Blanc | Degree growth of birational maps of the plane[END_REF]); up to birational conjugacy exactly one of the following holds:

1. the sequence deg φ n n∈N is bounded and either φ is of finite order, or φ is an automorphism of P 2 C ; 2. there exists an integer k such that

lim n→+∞ deg φ n n = k 2 µ(φ)
2 and φ is not an automorphism;

there exists an integer

k ≥ 3 such that lim n→+∞ deg φ n n 2 = k 2 κ(φ)
9 where κ(φ) ∈ Q is a birational invariant, and φ is an automorphism; 4. the sequence deg φ n n∈N grows exponentially (see [START_REF] Diller | Dynamics of bimeromorphic maps of surfaces[END_REF] for more precise dynamical properties). In the first three cases λ(φ) = 1, in the last one λ(φ) > 1. In case 2. (resp. 3.) the map φ preserves a unique fibration which is rational (resp. elliptic).

In case 1. (resp. 2., resp. 3, resp. 4) we say that φ is elliptic (resp. a JONQUIÈRES twist, resp. an HALPHEN twist, resp. hyperbolic).

Let us give some examples. Let

φ(x, y) = a(y)x + b(y) c(y)x + d(y) , αy + β γy + δ
be an element of the JONQUIÈRES group PGL(2; C(y)) ⋊ PGL(2; C); either φ is elliptic (for instance φ : (x : y : z) (yz : xz : xy)), or φ is a JONQUIÈRES twist (for example φ : (x : y : z) (xz : xy : z 2 ) for which the unique invariant fibration is y/z = constant). The map φ : Clearly elliptic birational maps have a poor dynamical behavior contrary to hyperbolic ones. The study of automorphisms of positive entropy is strongly related with birational maps of P 2 C : Theorem 1. 2 ([9]). -Let S be a compact complex surface that carries an automorphism φ of positive topological entropy.

P 2 C P 2 C (x : y : z) (2y + z)(y + z) : x(2y -z) : 2z(y + z)
• Either the KODAIRA dimension of S is zero and φ is conjugate to an automorphism on the unique minimal model of S that necessarily is a torus, or a K3 surface or an ENRIQUES surface; • or the surface S is a non-minimal rational one, isomorphic to P 2

C blown up at n points, n ≥ 10, and φ is conjugate to a birational map of P 2 C . This yields many examples of hyperbolic birational maps for which we can establish a lot of dynamical properties ([18, 4, 5, 6, 7, 14, 13]).

Another way to measure chaos is to look at the size of centralisers. Let us give two examples. The polynomial automorphisms of C 2 having rich dynamics are HÉNON maps; furthermore a polynomial automorphism of C 2 is a HÉNON one if and only if its centraliser is countable. Let us now consider rational maps on S 1 ; if the centraliser of such maps is not trivial (1) , then the JULIA set is "special". The centraliser of an elliptic birational map of infinite order is uncountable ( [START_REF] Blanc | Degree growth of birational maps of the plane[END_REF]). The centralisers of HALPHEN twists are described in [START_REF] Gizatullin | Rational G-surfaces[END_REF]. The centraliser of an hyperbolic map is countable ( [START_REF] Cantat | Sur les groupes de transformations birationnelles des surfaces[END_REF]). In [START_REF] Cerveau | Centralisateurs dans le groupe de Jonquières[END_REF] we end the story by studying centralisers of JONQUIÈRES twists. If the 1. The centraliser of a map φ is trivial if it coincides with the iterates of φ.

fibration is fiberwise invariant, then the centraliser is uncountable ; but if it isn't, then generically the centraliser is isomorphic to Z. We don't know a lot about dynamics of these maps, in this article we will thus focus on a family of such maps. We consider the JONQUIÈRES maps

f α,β : P 2 C P 2 C (x : y : z) (αx + y)z : βy(x + z) : z(x + z)
where α, β denote two complex numbers with modulus 1. The base-points of f α,β are

(1 : 0 : 0), (0 : 1 : 0), (-1 : α : 1).

Any f α,β preserves a rational fibration (the fibration y = constant in the affine chart z = 1). Each element of the family ( f α,β ) has first dynamical degree 1 hence topological entropy zero (1.1); more precisely one has ([8, Example 4.3])

µ( f α,β ) = 1 2
so f α,β is not conjugate to an automorphism (Theorem 1.1). The centralizer of f α,β is isomorphic to Z (see [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF]Theorem 1.6]). The idea of the proof is the following: the point p = (1 : α : 1) is blown-up onto a fiber of the fibration y = constant. Let ψ be an element of

Cent( f α,β ) = g ∈ Bir(P 2 C ) | g • f α,β = f α,β • g ;
since ψ blows down a finite number of curves there exists a positive integer k (chosen minimal) such that f k α,β (p) is not blown down by ψ. Replacing ψ by ψ = ψ f k-1 α,β one gets that ψ(p) is an indeterminacy point of f α,β . In other words ψ permutes the indeterminacy points of f α,β . A more precise study allows us to establish that p is fixed by ψ. The pair (α, β) being in Ω, the closure of the negative orbit of p under the action of f α,β is ZARISKI dense; since ψ fixes any element of the orbit of p one obtains ψ = id.

Let us recall that if ψ is an automorphism on a compact complex manifold M, the FATOU set F (ψ) of ψ is the set of points that have a neighborhood V such that f n We can also see f α,β on P 1 C × P 1 C and that is what we will do in the sequel since all the computations of [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF] have been done in an affine chart they may all be carried on P 1 C × P 1 C ; the sets P 1 C × S 1 ρ are invariant. In [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF] we show that there are two rotation domains for f 2 α,β , one of rank 1, and the other one of rank 2 (2) ; in the first case we give here a more precise statement than in [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF]:

|V | n ∈ N is a normal family. Set G(U) = φ : U → U | φ = lim n j →+∞ ψ n j ; we say that U is a rotation domain if G(U) is a subgroup of Aut(U). An equivalent definition is the following: a component U of F (ψ) which is invariant by ψ is a rotation domain if ψ |U is conjugate to a linear rotation. If U is a rotation domain, G(U) is a compact LIE group
Theorem 1.3. -Assume that (α, β) belongs to Ω.
There exists a strictly positive real number r such that f α,β is conjugate to (αx, βy) on P 1

C × D(0, r) where D(0, r) denotes the disk centered at the origin with radius r.

There exists a strictly positive real number r such that

f 2 α,β is conjugate to x β , z β 2 on P 1 C × D(0, r).
Remark 1.4. -The point (α -1, 0) is also a fixed point of f α,β where the behavior of f α,β is the same as near (0, 0).

Proof. -The first assertion is proved in [START_REF] Déserti | Expériences sur certaines transformations birationnelles quadratiques[END_REF].

Let us consider the map ψ(x, z) = a(z)x+b(z) c(z)x+1 , z . The equation

ψ -1 f 2 α,β ψ = x β , z β 2 yields β a β -2 z c(z) + β a β -2 z a(z) -c β -2 z a(z) + α a β -2 z a(z) +z α 2 a β -2 z c(z) -α c β -2 z c(z) -c β -2 z c(z) -c β -2 z a(z) = 0, (1.2)
β a β -2 z -β a(z) + z α 2 a β -2 z -αβ c(z) -β c(z) -β a(z) -α c β -2 z -c β -2 z +β(α + β) a(z)b β -2 z + (α + β) b(z)a β -2 z + β 2 b β -2 z c(z) -b(z)c β -2 z +z α 2 βb β -2 z c(z) -b(z)c β -2 z = 0 (1.3)
and

(α + 1) z + b(z) -β b β -2 z -α 2 zb β -2 z + zb(z) -(α + β) b β -2 z b(z) = 0 (1.4)
Let us set

a(z) = ∑ i≥0 a i z i , b(z) = ∑ i≥0 b i z i , c(z) = ∑ i≥0 c i z i .
We easily get a 0 = 1 -β, b 0 = 0 and c 0 = α + β.

Relation (1.4) implies that b 1 = β(1 + α) 1 -β & β b ν 1 -β 1-2ν + F i (b i | i < ν) = 0 ∀ ν > 1, (1.3) 
yields

a ν β 1-2ν -β + b ν (α + β)a 0 1 + β 1-2ν + c 0 β 2-2ν -1 + G i (a i , b i , c i | i < ν) = 0 and (1.2) to c ν a 0 β -β -2ν + a ν (α + β)a 0 1 + β -2ν + c 0 β 1-2ν -1 + H i (a i , b i , c i | i < ν) = 0
2. There already exists an example of automorphism of positive entropy with rotation domains of rank 1 and 2 (see [START_REF] Bedford | Dynamics of rational surface automorphisms: linear fractional recurrences[END_REF]), but f α,β is not conjugate to an automorphism on a rational surface.

where the F i 's, G i 's and H i 's denote universal polynomials; this allows to compute b ν , a ν and c ν . Thus we get a formal conjugacy of f 2 α,β to its linear part. Since this linear part satisfies a Rüssmann condition (see [START_REF] Rüssmann | Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition[END_REF]Theorem 2.1] condition (2)), according to [19, Theorem 2.1] any formal linearizing map conjugating f 2 α,β to its linear part is convergent on a polydisc.

About SL(2; C)-cocycles

A (one-frequency, analytic) quasiperiodic SL(2; C)-cocycle is a pair (A, β), where β ∈ R and A : S 1 1 → SL(2; C) is analytic, and defines a linear skew product acting on C 2 × S 1 1 by (x, y) → (A(y) • x, βy).

The iterates of the cocyle are given by (A n , nβ) where A n is given by

A n (y) = A β n-1 y . . . A(y) n ≥ 1, A 0 (y) = id, A -n (y) = A n (β -n y) -1 . The LYAPUNOV exponent L(A, β) of a quasiperiodic SL(2; C)-cocycle (A, β) is given by lim n→+∞ 1 n S 1 1 ln ||A n (y)|| dy.
A quasiperiodic SL(2; C)-cocycle (A, β) is uniformly hyperbolic if there exist analytic functions u, s : S 1 1 → P 2 C , called the unstable and stable directions, and n ≥ 1 such that for any y ∈ S UH is open, and A → L(A, β) is analytic over UH (regularity properties of the LYAPUNOV exponent are consequence of the regularity of the unstable and stable directions which depend smoothly on both variables).

Definition. -Let (A, β) be a quasiperiodic SL(2; C)-cocycle.

If L(A, β) > 0 but (A, β) ∈ UH , then (A, β) is nonuniformly hyperbolic. If A ∈ C ω SL(2; C), S 1 
1 admits a holomorphic extension to |Im y| < δ then for |ε| < δ we can define A ε ∈ C ω SL(2; C), S 1 1 by A ε (y) = A(y + iε). The LYAPUNOV exponent L(A ε , β) is a convex function of ε. We can thus introduce the following notion. The acceleration of a quasiperiodic SL(2; C)-cocyle (A, β) is given by

ω(A, β) = lim ε→0 + 1 2πε L(A ε , β) -L(A, β) . Remark 2.1.
-The convexity of the LYAPUNOV exponent in function of ε implies that the acceleration is decreasing.

Since the LYAPUNOV exponent is a convex and continuous function the acceleration is an upper semi-continuous function in R \ Q ×C ω SL(2; C), S 1 1 . The acceleration is quantized:

Theorem 2.2 ([1]). -If (A, β) is a SL(2; C)-cocycle with β ∈ R Q, then ω(A, β) is always an integer.
A direct consequence is the following:

Corollary 2.3. -The function ε → L(A ε , β) is a piecewise affine function of ε.
It is thus natural to introduce the notion of regularity. A cocycle

(A, β) ∈ C ω SL(2; C), S 1 1 × R \ Q is regular if L(A ε , β) is affine for ε in a neighborhood of 0. In other words (A, β) is regular if the equality L(A ε , β) -L(A, β) = 2πεω(A, β)
holds for all ε small, and not only for the positive ones. Regularity is equivalent to the acceleration being locally constant near (A, β).

It is an open condition in C ω SL(2; C), S 1 1 × R \ Q. The following statement gives a characterization of the dynamics of regular cocycles with positive LYAPUNOV exponent:

Theorem 2.4 ([1]

). -Let (A, β) be a SL(2; C)-cocycle with β ∈ R Q. Assume that L(A, β) > 0; then (A, β) is regular if and only if (A, β) is UH .

One striking consequence is the following:

Corollary 2.5 ([1]

). -For any (A, β) in C ω SL(2; C), S 1 1 × R \ Q there exists ε 0 such that • L(A ε , β) = 0 (and ω(A, β) = 0) for every 0 < ε < ε 0 ,

• or (A ε , β) ∈ UH for every 0 < ε < ε 0 .

Remark 2.6. -Let us mention that there is a link between SL(2; C)-cocycles and SCHRÖDINGER operators (see [START_REF] Avila | Global theory of one-frequency Schrödinger operators[END_REF] for more details).

Proof of Theorem A

Suppose that ρ = 1, and let us consider the cocycle (B α,ρ , β 1/2 ) where B α,ρ (y) = α y 2 1 1 .

Since αx + y

x + 1 , βy (x, y 2 ) = (x, y 2 ) αx + y 2

x + 1 , β 1/2 y the cocycles (A α,ρ , β) and (B α,ρ , β 1/2 ) have the same behavior. Using two different arguments of monodromy (one for ρ < 1, and the other one for ρ > 1) we see that there is a continuous determination for the square root of det B α,ρ (y) = αy 2 . Let us set B α,ρ (y) = 1 αy 2 B α,ρ (y) ∈ SL(2; C) that is thus defined on two different domains of analyticity.

According to Theorem 1.3 one has L B α,ρ , β 1/2 = 0 when ρ is close to both 0 and ∞.

Assume that L B α,ρ , β 1/2 is non constant. When B α,ρ is holomorphic, so in particular when ρ < 1 and ρ > 1, the acceleration is decreasing (Remark 2.1); furthermore the acceleration is positive for ρ < 1 and negative for ρ > 1 (because L is continuous). Theorem 2.2 thus implies ω B α,1 + , β 1/2 -ω B α,1 -, β 1/2 ≤ -2.

By definition of B α,ρ we have L B α,ρ (y), β 1/2 = L B α,ρ (y), β 1/2 -S 1 ρ ln αy 2 dy = L B α,ρ (y), β 1/2max(0, ln ρ).

Even though B α,ρ (y), β 1/2 is not a SL(2; C)-cocycle, the LYAPUNOV exponent is still a convex function of log ρ (see for example [START_REF] Avila | Complex one-frequency cocycles[END_REF]). The jump of ω(B α,ρ (y), β 1/2 ) is thus ≥ 0, and the jump for the second term of the right member is -1. Therefore the jump of L B α,ρ (y), β 1/2 is ≥ -1: contradiction.

C P 2 C

 2 (x : y : z) (αx + y)z : βy(x + z) : z(x + z)

  is an HALPHEN twist ([15, Proposition 9.5]). HÉNON automorphisms give by homogeneization examples of hyperbolic maps.

  , and the action of G(U) on U is analytic real. Since G(U) is a compact, infinite, abelian LIE group, the connected component of the identity of G(U) is a torus of dimension 0 ≤ d ≤ dim C M. The integer d is the rank of the rotation domain. The rank coincides with the dimension of the closure of a generic orbit of a point in U.

1 1 ,

 1 A(y) • u(y) = u(βy) A(y) • s(y) = s(βy), and for any unit vector x ∈ s(y) (resp. x ∈ u(y)) we have ||A n (y) • x|| < 1 (resp. ||A n (y) • x|| > 1). The unstable and stable directions are uniquely characterized by those properties, and clearly u(y) = s(y) for any y ∈ S 1 1 . If (A, β) is uniformly hyperbolic, then L(A, β) > 0. Let us denote by UH ⊂ C ω SL(2; C), S 1 1 the set of A such that (A, β) is uniformly hyperbolic. Uniform hyperbolicity is a stable property: