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Abstract. — We recall some properties, unfortunately not all, of the Cremona group.
We first begin by presenting a nice proof of the amalgamated product structure of the well-

known subgroup of the Cremona group made up of the polynomialautomorphisms ofC2. Then
we deal with the classification of birational maps and some applications (Tits alternative, non-
simplicity...) Since any birational map can be written as a composition of quadratic birational
maps up to an automorphism of the complex projective plane, we spend time on these special
maps. Some questions of group theory are evoked: the classification of the finite subgroups
of the Cremona group and related problems, the description of the automorphisms of the Cre-
mona group and the representations of some lattices in the Cremona group. The description
of the centralizers of discrete dynamical systems is an important problem in real and complex
dynamic, we make a state of art of this problem in the Cremona group.

Let Z be a compact complex surface which carries an automorphismf of positive topolo-
gical entropy. Either the Kodaira dimension ofZ is zero andf is conjugate to an automorphism
on the unique minimal model ofZ which is either a torus, or a K3 surface, or an Enriques
surface, orZ is a non-minimal rational surface andf is conjugate to a birational map of the
complex projective plane. We deal with results obtained in this last case: construction of such
automorphisms, dynamical properties (rotation domains...) are touched on.



vi



vii

Dear Pat,
You came upon me carving some kind of little figure out of wood

and you said: "Why don’t you make something for me ?"
I asked you what you wanted, and you said, "A box."
"What for ?"
"To put things in."
"What things ?"
"Whatever you have," you said.
Well, here’s your box. Nearly everything I have is in it, and it is

not full. Pain and excitement are in it, and feeling good or bad and
evil thoughts and good thoughts – the pleasure of design and some
despair and the indescribable joy of creation.

And on top of these are all the gratitude and love I have for you.
And still the box is not full.

John

J. Steinbeck
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INTRODUCTION

The study of the Cremona group Bir(P2), i.e. the group of birational maps fromP2(C) into
itself, started in the XIXth century. The subject has known alot of developments since the
beginning of the XXIth century; we will deal with these most recent results. Unfortunately we
will not be exhaustive.

We introduce a special subgroup of the Cremona group: the group Aut(C2) of polynomial
automorphisms of the plane. This subgroup has been the object of many studies along the
XXth century. It is more rigid and so, in some sense, easier tounderstand. Indeed Aut(C2)
has a structure of amalgamated product so acts non triviallyon a tree (Bass-Serre theory); this
allows to give properties satisfied by polynomial automorphisms. There are a lot of different
proofs of the structure of amalgamated product. We present one of them due to Lamy in
Chapter 2; this one is particularly interesting for us because Lamy considers Aut(C2) as a
subgroup of the Cremona group and works in Bir(P2) (see[136]).

A lot of dynamical aspects of a birational map are controlledby its action on the cohomo-
logy H2(X,R) of a "good" birational modelX of P2(C). The construction of such a model is
not canonical; so Manin has introduced the space of infinite dimension of all cohomological
classes of all birational models ofP2(C). Its completion for the bilinear form induced by the
cup product defines a real Hilbert spaceZ(P2) endowed with an intersection form. One of the
two sheets of the hyperboloid{[D]∈Z(P2) | [D]2 = 1} owns a metric which yields a hyperbolic
space (Gromov sense); let us denote it byHZ . We get a faithful representation of Bir(P2)
into Isom(HZ). The classification of isometries into three types has an algrebraic-geometric
meaning and induces a classification of birational maps ([47]); it is strongly related to the
classification of Diller and Favre ([77]) built on the degree growth of the sequence{degf n}n∈N.
Such a sequence either is bounded (elliptic maps), or grows linearly (de Jonquières twists),
or grows quadratically (Halphen twists), or grows exponentially (hyperbolic maps). We give
some applications of this construction: Bir(P2) satisfies the Tits alternative ([47]) and is not
simple ([50]).

One of the oldest results about the Cremona group is that any birational map of the complex
projective plane is a product of quadratic birational maps up to an automorphism of the complex
projective plane. It is thus natural to study the quadratic birational maps and also the cubic
ones in order to make in evidence some direct differences ([56]). In Chapter 4 we present a
stratification of the set of quadratic birational maps. We recall that this set is smooth. We also
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give a geometric description of the quadratic birational maps and a criterion of birationality for
quadratic rational maps. We then deal with cubic birationalmaps; the set of such maps is not
smooth anymore.

While Nœther was interested in the decomposition of the birational maps, some people stu-
died finite subgroups of the Cremona group ([27, 130, 184]). A strongly related problem is
the characterization of the birational maps that preserve curves of positive genus. In Chapter
5 we give some statements and ideas of proof on this subject; people recently went back to
this domain [14, 17, 18, 31, 65, 83, 35, 159, 78], providing new results about the number
of conjugacy classes in Bir(P2) of birational maps of ordern for example ([65, 29]). We
also present another construction of birational involutions related to holomorphic foliations of
degree 2 onP2(C) (see[54]).

A classical question in group theory is the following: let G be a group, what is the auto-
morphisms group Aut(G) of G ? For example, the automorphisms of PGLn(C) are, forn≥ 3,
obtained from the inner automorphisms, the involutionu 7→ tu−1 and the automorphisms of the
field C. A similar result holds for the affine group of the complex lineC; we give a proof of it
in Chapter 6. We also give an idea of the description of the automorphisms group of Aut(C2),
resp. Bir(P2) (see[70, 71]).

Margulis studies linear representations of the lattices ofsimple, real Lie groups of real rank
strictly greater than 1; Zimmer suggests to generalize it tonon-linear ones. In that spirit we
expose the representations of the classical lattices SLn(Z) into the Cremona group ([69]). We
see, in Chapter 7, that there is a description of embeddings of SL3(Z) into Bir(P2) (up to con-
jugation such an embedding is the canonical embedding or theinvolution u 7→ tu−1); therefore
SLn(Z) cannot be embedded as soon asn≥ 4.

The description of the centralizers of discrete dynamical systems is an important problem
in dynamic; it allows to measure algebraically the chaos of such a system. In Chapter 8 we
describe the centralizer of birational maps. Methods are different for elliptic maps of infinite
order, de Jonquières twists, Halphen twists and hyperbolicmaps. In the first case, we can
give explicit formulas ([34]); in particular the centralizer is uncountable. In the second case,
we do not always have explicit formulas ([55])... When f is an Halphen twist, the situation
is different: the centralizer contains a subgroup of finite index which is abelian, free and of
rank≤ 8 (see[47, 104]). Finally for a hyperbolic mapf the centralizer is an extension of a
cyclic group by a finite group ([47]).

The study of automorphisms of compact complex surfaces withpositive entropy is strongly
related with birational maps of the complex projective plane. Let f be an automorphism of
a compact complex surface S with positive entropy; then either f is birationally conjugate
to a birational map of the complex projective plane, or the Kodaira dimension of S is zero
and then f is conjugate to an automorphism of the unique minimal model of S which has
to be a torus, a K3 surface or an Enriques surface ([44]). The case of K3 surfaces has been
studied in [45, 143, 155, 172, 183]. One of the first example given in the context of rational
surfaces is due to Coble ([61]). Let us mention another well-known example: let us consider
Λ = Z[i] andE =C/Λ. The group SL2(Λ) acts linearly onC2 and preserves the latticeΛ×Λ;
then any elementA of SL2(Λ) induces an automorphismfA on E× E which commutes with
ι(x,y) = (ix, iy). The automorphismfA lifts to an automorphism̃fA on the desingularization of
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the quotient(E×E)/ι, which is a Kummer surface. This surface is rational and the entropy
of f̃A is positive as soon as one of the eigenvalues ofA has modulus> 1.

We deal with surfaces obtained by blowing up the complex projective plane in a finite num-
ber of points. This is justified by Nagata theorem (see[147, Theorem 5]): let S be a rational
surface and letf be an automorphism on S such thatf∗ is of infinite order; then there exists a
sequence of holomorphic applicationsπ j+1 : Sj+1 → Sj such that S1 = P2(C), SN+1 = S and
π j+1 is the blow-up ofp j ∈ Sj . Such surfaces are calledbasic surfaces. Nevertheless a surface
obtained fromP2(C) by generic blow-ups has no non trivial automorphism ([120, 131]).

Using Nagata and Harbourne works McMullen gives an analogous result of Torelli’s Theo-
rem for K3 surfaces ([144]): he constructs automorphisms on rational surfaces prescribing the
action of the automorphisms on the cohomological groups of the surface. These surfaces are
rational ones having, up to a multiplicative factor, a unique 2-formΩ such thatΩ is meromor-
phic andΩ does not vanish. Iff is an automorphism on S obtained via this construction,f ∗Ω
is proportional toΩ and f preserves the poles ofΩ. We also have the following property: when
we project S on the complex projective plane,f induces a birational map which preserves a
cubic (Chapter 10).

In [21, 22, 23] the authors consider birational maps ofP2(C) and adjust the coefficients
in order to find, for any of these mapsf , a finite sequence of blow-upsπ : Z → P2(C) such
that the induced mapfZ = π−1 f π is an automorphism ofZ. Some of their works are inspired
by [119, 118, 176, 177, 178]. More precisely Bedford and Kim produce examples which
preserve no curve and also non trivial continuous families (Chapter 11). They prove dynamical
properties such as coexistence of rotation domains of rank 1and 2 (Chapter 11).

In [73] the authors study a family of birational maps(Φn)n≥2; they construct, for anyn, two
points infinitely nearP̂1 and P̂2 having the following property:Φn induces an isomorphism
betweenP2(C) blown up inP̂1 andP2(C) blown up inP̂2. Then they give general conditions
on Φn allowing them to give automorphismsϕ of P2(C) such thatϕΦn is an automorphism
of P2(C) blown up inP̂1, ϕ(P̂2), (ϕΦn)ϕ(P̂2), . . . , (ϕΦn)

k ϕ(P̂2) = P̂1. This construction does
not work only forΦn, they apply it to other maps (Chapter 12). They use the theoryof de-
formations of complex manifolds to describe explicitely the small deformations of rational
surfaces; this allows them to give a simple criterion to determine the number of parameters of
the deformation of a given basic surface ([73]). We end by a short scholium about the construc-
tion of automorphisms with positive entropy on rational non-minimal surfaces obtained from
birational maps of the complex projective plane.
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remercie Serge Cantat, en particulier pour nos discussionsconcernant le Chapitre 8. Merci à
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CHAPTER 1

FIRST STEPS

1.1. Divisors and intersection theory

Let X be an algebraic variety. Aprime divisoron X is an irreducible closed subset ofX of
codimension 1.

Examples 1.1.1. — • If X is a surface, the prime divisors ofX are the irreducible curves
that lie on it.

• If X = Pn(C) then prime divisors are given by the zero locus of irreducible homogeneous
polynomials.

A Weil divisoronX is a formal finite sum of prime divisors with integer coefficients
m

∑
i=1

aiDi, m∈ N, ai ∈ Z, Di prime divisor ofX.

Let us denote by Div(X) the set of all Weil divisors onX.
If f ∈C(X)∗ is a rational function andD a prime divisor we can define themultiplicity ν f (D)

of f atD as follows:
• ν f (D) = k> 0 if f vanishes onD at the orderk;
• ν f (D) =−k if f has a pole of orderk on D;
• andν f (D) = 0 otherwise.
To any rational functionf ∈ C(X)∗ we associate a divisor div( f ) ∈ Div(X) defined by

div( f ) = ∑
D prime
divisor

ν f (D)D.

Note that div( f ) ∈ Div(X) sinceν f (D) is zero for all but finitely manyD. Divisors obtained
like that are calledprincipal divisors. As div( f g) = div( f )+div(g) the set of principal divisors
is a subgroup of Div(X).

Two divisorsD, D′ on an algebraic variety arelinearly equivalentif D−D′ is a principal
divisor. The set of equivalence classes corresponds to the quotient of Div(X) by the subgroup of
principal divisors; whenX is smooth this quotient is isomorphic to thePicard groupPic(X). (1)

1. ThePicard groupof X is the group of isomorphism classes of line bundles onX.
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Example 1.1.2. — Let us see that Pic(Pn) = ZH whereH is the divisor of an hyperplane.
Consider the homorphism of groups given by

Θ : Div(Pn)→ Z, D of degreed 7→ d.

Let us first remark that its kernel is the subgroup of principal divisors. LetD = ∑aiDi be a
divisor in the kernel, where eachDi is a prime divisor given by an homogeneous polynomial
fi ∈C[x0, . . . ,xn] of some degreedi . Since∑aidi = 0, f = ∏ f ai

i belongs toC(Pn)∗. We have by
constructionD = div( f ) soD is a principal divisor. Conversely any principal divisor isequal
to div( f ) where f = g/h for some homogeneous polynomialsg, h of the same degree. Thus
any principal divisor belongs to the kernel.

Since Pic(Pn) is the quotient of Div(Pn) by the subgroup of principal divisors, we get, by
restrictingΘ to the quotient, an isomorphism Pic(Pn) → Z. We conclude by noting that an
hyperplane is sent on 1.

We can define the notion of intersection.

Proposition 1.1.3([115]). — Let S be a smooth projective surface. There exists a unique bi-
linear symmetric form

Div(S)×Div(S)→ Z, (C,D) 7→C ·D
having the following properties:

• if C and D are smooth curves meeting transversally then C·D = #(C∩D);
• if C and C′ are linearly equivalent then C·D =C′ ·D.

In particular this yields an intersection form

Pic(S)×Pic(S)→ Z, (C,D) 7→C ·D.

Given a pointp in a smooth algebraic varietyX of dimensionn we say thatπ : Y → X is a
blow-upof p∈ X if Y is a smooth variety, if

π|Y\{π−1(p)} : Y \{π−1(p)} → X \{p}

is an isomorphism and ifπ−1(p) ≃ Pn−1(C). SetE = π−1(p); E is called theexceptional
divisor.

If π : Y → X and π′ : Y′ → X are two blow-ups of the same pointp then there exists an
isomorphismϕ : Y →Y′ such thatπ = π′ϕ. So we can speak abouttheblow-up of p∈ X.

Remark 1.1.4. — Whenn = 1, π is an isomorphism but whenn ≥ 2 it is not: it contracts
E = π−1(p)≃ Pn−1(C) onto the pointp.

Example 1.1.5. — We now describe the blow-up of(0 : 0 : 1) in P2(C). Let us work in the
affine chartz= 1, i.e. in C2 with coordinates(x,y). Set

Bl(0,0)P
2 =

{(
(x,y),(u : v)

)
∈C2×P1

∣∣xv= yu
}
.

The morphismπ : Bl(0,0)P
2 → C2 given by the first projection is the blow-up of(0,0):
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• First we can note thatπ−1(0,0) =
{(

(0,0),(u : v)
) ∣∣(u : v) ∈ P1

}
so E = π−1(0,0) is

isomorphic toP1;
• Let q= (x,y) be a point ofC2\{(0,0)}. We have

π−1(q) =
{(

(x,y),(x : y)
)}

∈ Bl(0,0)P
2\ E

soπ|Bl(0,0)P2\E is an isomorphism, the inverse being

(x,y) 7→
(
(x,y),(x : y)

)
.

How to compute ? In affine charts: letU (resp. V) be the open subset of Bl(0,0)P
2 where

v 6= 0 (resp.u 6= 0). The open subsetU is isomorphic toC2 via the map

C2 →U, (y,u) 7→
(
(yu,y),(u : 1)

)
;

we can see thatV is also isomorphic toC2. In local coordinates we can define the blow-up by

C2 → C2, (y,u) 7→ (yu,y), E is described by{y= 0}

C2 → C2, (x,v) 7→ (x,xv), E is described by{x= 0}

Let π : BlpS→ S be the blow-up of the pointp ∈ S. The morphismπ induces a mapπ∗

from Pic(S) to Pic(BlpS) which sends a curveC on π−1(C). If C ⊂ S is irreducible, thestrict
transform C̃ of C is C̃ = π−1(C\{p}).

We now recall what is themultiplicity of a curve at a point. If C ⊂ S is a curve andp is
a point of S, we can define the multiplicitymp(C) of C at p. Let m be the maximal ideal of
the ring of functionsOp,S

(2). Let f be a local equation ofC; thenmp(C) can be defined as the
integerk such thatf ∈mk \mk+1. For example if S is rational, we can find a neighborhoodU
of p in S with U ⊂ C2, we can assume thatp = (0,0) in this affine neighborhood, andC is
described by the equation

n

∑
i=1

Pi(x,y) = 0, Pi homogeneous polynomials of degreei in two variables.

The multiplicity mp(C) is equal to the lowesti such thatPi is not equal to 0. We have
• mp(C)≥ 0;
• mp(C) = 0 if and only if p 6∈C;
• mp(C) = 1 if and only if p is a smooth point ofC.
Assume thatC and D are distinct curves with no common component then we define an

integer(C ·D)p which counts the intersection ofC andD at p:
• it is equal to 0 if eitherC or D does not pass throughp;
• otherwise letf , resp.g be some local equations ofC, resp.D in a neighborhood ofp and

define(C ·D)p to be the dimension ofOp,S/( f ,g).
This number is related toC ·D by the following statement.

2. Let us recall that ifX is a quasi-projective variety and ifx is a point ofX, thenOp,X is the set of equivalence
classes of pairs(U, f ) whereU ⊂ X is an open subsetx∈U and f ∈ C[U ].
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Proposition 1.1.6([115], Chapter V, Proposition 1.4). — If C and D are distinct curves with-
out any common irreducible component on a smooth surface, wehave

C ·D = ∑
p∈C∩D

(C ·D)p;

in particular C·D ≥ 0.

Let C be a curve in S,p= (0,0) ∈ S. Let us take local coordinatesx, y at p and let us set
k= mp(C); the curveC is thus given by

Pk(x,y)+Pk+1(x,y)+ . . .+Pr(x,y) = 0,

wherePi denotes a homogeneous polynomial of degreei. The blow-up ofp can be viewed as
(u,v) 7→ (uv,v); the pull-back ofC is given by

vk(pk(u,1)+vpk+1(u,1)+ . . .+vr−kpr(x,y)
)
= 0,

i.e. it decomposes intok times the exceptional divisorE = π−1(0,0) = (v= 0) and the strict
transform. So we have the following statement:

Lemma 1.1.7. — Letπ : BlpS→ Sbe the blow-up of a point p∈ S. We have inPic(BlpS)

π∗(C) = C̃+mp(C)E

whereC̃ is the strict transform of C and E= π−1(p).

We also have the following statement.

Proposition 1.1.8([115], Chapter V, Proposition 3.2). — Let S be a smooth surface, let p
be a point ofS and letπ : BlpS→ S be the blow-up of p. We denote by E⊂ BlpS the curve
π−1(p)≃ P1. We have

Pic(BlpS) = π∗Pic(S)+ZE.

The intersection form onBlpS is induced by the intersection form onS via the following for-
mulas

• π∗C ·π∗D =C ·D for any C, D ∈ Pic(S);
• π∗C ·E = 0 for any C∈ Pic(S);
• E2 = E ·E =−1;
• C̃2 =C2−1 for any smooth curve C passing through p and whereC̃ is the strict transform

of C.

If X is an algebraic variety, thenef coneNef(X) is the cone of divisorsD such thatD ·C≥ 0
for any curveC in X.
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1.2. Birational maps

A rational mapfrom P2(C) into itself is a map of the following type

f : P2(C) 99K P2(C), (x : y : z) 99K ( f0(x,y,z) : f1(x,y,z) : f2(x,y,z))

where thefi ’s are homogeneous polynomials of the same degree without common factor.
A birational mapfrom P2(C) into itself is a rational map

f : P2(C) 99K P2(C)

such that there exists a rational mapψ from P2(C) into itself satisfyingf ◦ψ = ψ◦ f = id.
The Cremona groupBir(P2) is the group of birational maps fromP2(C) into itself. The

elements of the Cremona group are also calledCremona transformations. An element f
of Bir(P2) is equivalently given by(x,y) 7→ ( f1(x,y), f2(x,y)) whereC( f1, f2) = C(x1,x2),
i.e.

Bir(P2)≃ AutC(C(x,y)).

Thedegreeof f : (x : y : x) 99K ( f0(x,y,z) : f1(x,y,z) : f2(x,y,z)) ∈ Bir(P2) is equal to the
degree of thefi ’s: degf = degfi .

Examples 1.2.1. — • Every automorphism

f : (x : y : z) 99K (a0x+a1y+a2z : a3x+a4y+a5z : a6x+a7y+a8z),

det(ai) 6= 0

of the complex projective plane is a birational map. The degree of f is equal to 1. In other
words Aut(P2) = PGL3(C)⊂ Bir(P2).

• The mapσ : (x : y : z) 99K (yz: xz: xy) is rational; we can verify thatσ◦σ = id, i.e. σ is
an involution soσ is birational. We have: degσ = 2.

Definitions. — Let f : (x : y : z) 99K ( f0(x,y,z) : f1(x,y,z) : f2(x,y,z)) be a birational map
of P2(C); then:

• the indeterminacy locusof f , denoted by Indf , is the set
{

m∈ P2(C)
∣∣ f0(m) = f1(m) = f2(m) = 0

}

• and theexceptional locusExc f of f is given by
{

m∈ P2(C)
∣∣ det jac( f )(m) = 0

}
.

Examples 1.2.2. — • For any f in PGL3(C) = Aut(P2) we have Indf = Exc f = /0.

• Let us denote byσ the map defined byσ : (x : y : z) 99K (yz: xz: xy); we note that

Excσ =
{

x= 0, y= 0,z= 0
}
,

Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
.
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• If ρ is the following mapρ : (x : y : z) 99K (xy : z2 : yz), then

Excρ =
{

y= 0, z= 0
}

& Ind ρ =
{
(1 : 0 : 0), (0 : 1 : 0)

}
.

Definition. — Let us recall that ifX is an irreducible variety andY a variety, arational map
f : X 99KY is a morphism from a non-empty open subsetU of X to Y.

Let f : P2(C) 99K P2(C) be the birational map given by

(x : y : z) 99K ( f0(x,y,z) : f1(x : y : z) : f2(x,y,z))

where thefi ’s are homogeneous polynomials of the same degreeν, and without common factor.
The linear systemΛ f of f is the pre-image of the linear system of lines ofP2(C); it is the
system of curves given by∑ai fi = 0 for (a0 : a1 : a2) in P2(C). Let us remark that ifA is an
automorphism ofP2(C), thenΛ f = ΛA f . The degree of the curves ofΛ f is ν, i.e. it coincides
with the degree off . If f has one point of indeterminacyp1, let us denote byπ1 : Blp1P

2 →
P2(C) the blow-up ofp1 andE1 the exceptional divisor. The mapϕ1 = f ◦π1 is a birational
map from Blp1P

2 into P2(C). If ϕ1 is not defined at one pointp2 then we blow it up via
π2 : Blp1,p2P

2 → P2(C); setE2 = π−1
2 (p2). Again the mapϕ2 = ϕ1◦π1 : Blp1,p2P

2
99K P2(C)

is a birational map. We continue the same processus untilϕr becomes a morphism. The
pi ’s are calledbase-points off or base-points ofΛ f . Let us describe Pic(Blp1,...,prP

2). First
Pic(P2) = ZL whereL is the divisor of a line (Example 1.1.2). SetEi = (πi+1 . . .πr)

∗Ei and
ℓ= (π1 . . .πr)

∗(L). Applying r times Proposition 1.1.8 we get

Pic(Blp1,...,prP
2) = Zℓ⊕ZE1⊕ . . .⊕ZEr .

Moreover all elements of the basis(ℓ,E1, . . . ,Er) satisfy the following relations

ℓ2 = ℓ · ℓ= 1, E2
i =−1,

Ei ·E j = 0 ∀ 1≤ i 6= j ≤ r, Ei · ℓ= 0 ∀1≤ i ≤ r.

The linear systemΛ f consists of curves of degreeν all passing through thepi ’s with multipli-
city mi. SetEi = (πi+1 . . .πr)

∗Ei . Applying r times Lemma 1.1.7 the elements ofΛϕr are
equivalent toνL−∑r

i=1miEi whereL is a generic line. Remark that these curves have self-
intersection

ν2−
r

∑
i=1

m2
i .

All members of a linear system are linearly equivalent and the dimension ofΛϕr is 2 so the self-
intersection has to be non-negative. This implies that the numberr exists,i.e. the number of
base-points off is finite. Let us note that by construction the mapϕr is a birational morphism
from Blp1,...,prP

2 to P2(C) which is the blow-up of the points off−1; we have the following
diagram

S′

πr◦...◦π1

��✁✁
✁✁
✁✁
✁✁ ϕr

��❂
❂❂

❂❂
❂❂

❂

S
f

//❴❴❴❴❴❴❴ S̃
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The linear systemΛ f of f corresponds to the strict pull-back of the systemOP2(1) of lines
of P2(C) by ϕ. The systemΛϕr which is its image on Blp1,...,prP

2 is the strict pull-back of
the systemOP2(1). Let us consider a general lineL of P2(C) which does not pass through
the pi ’s; its pull-backϕ−1

r (L) corresponds to a smooth curve on Blp1,...,prP
2 which has self-

intersection−1 and genus 0. We thus have(ϕ−1
r (L))2 = 1 and by adjunction formula

ϕ−1
r (L) · KBlp1,...,prP2 =−3.

Since the elements ofΛϕr are equivalent to

νL−
r

∑
i=1

miEi

and since KBlp1,...,prP2 =−3L+∑r
i=1Ei we have

r

∑
i=1

mi = 3(ν−1),
r

∑
i=1

m2
i = ν2−1.

In particular ifν = 1 the mapf has no base-points. Ifν = 2 thenr = 3 andm1 = m2 = m3 = 1.
As we will see later (Chapter 4) it doesn’t mean that "there isone quadratic birational map".

So there are three standard ways to describe a Cremona map
• the explicit formula(x : y : z) 99K ( f0(x,y,z) : f1(x,y,z) : f2(x,yz)) where thefi ’s are ho-

mogeneous polynomials of the same degree and without commonfactor;
• the data of the degree of the map, the base-points of the map and their multiplicity (it

defines a map up to an automorphism);
• the base-points ofπ and the curves contracted byη with the notations of Theorem 1.3.1

(it defines a map up to an automorphism).

1.3. Zariski’s theorem

Let us recall the following statement.

Theorem 1.3.1(Zariski, 1944). — LetS, S̃be two smooth projective surfaces and let f: S99K S̃
be a birational map. There exists a smooth projective surfaceS′ and two sequences of blow-ups
π1 : S′ → S, π2 : S′ → S̃such that f= π2π−1

1

S′

π1

��✁✁
✁✁
✁✁
✁✁ π2

��❂
❂❂

❂❂
❂❂

❂

S
f

//❴❴❴❴❴❴❴ S̃

Example 1.3.2. — The involution

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy)

is the composition of two sequences of blow-ups
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H
A

P
T

E
R

1.F
IR

S
T

S
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E
P

S

P2(C)

L̃AB

EBEA

ECL̃AC L̃BC

L̃BC

L̃AC
EA

EB

L̃AB

P2(C)

C

LAC

LABA B

σ

LBC

π1 π2

EC
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with

A= (1 : 0 : 0), B= (0 : 1 : 0), C= (0 : 0 : 1),

LAB (resp. LAC, resp. LBC) the line passing throughA andB (resp. A andC, resp. B andC)
EA (resp. EB, resp. EC) the exceptional divisor obtained by blowing upA (resp. B, resp.C)
andL̃AB (resp.L̃AC, resp.L̃BC) the strict transform ofLAB (resp.LAC, resp.LBC).

There are two steps in the proof of Theorem 1.3.1. The first oneis to composef with a
sequence of blow-ups in order to remove all the points of indeterminacy (remark that this step
is also possible with a rational map and can be adapted in higher dimension); we thus have

S′

π1

��✁✁
✁✁
✁✁
✁✁ f̃

��❂
❂❂

❂❂
❂❂

❂

S
f

//❴❴❴❴❴❴❴ S̃

The second step is specific to the case of birational map between two surfaces and can be stated
as follows.

Proposition 1.3.3([136]). — Let f : S→ S′ be a birational morphism between two surfacesS
and S′. Assume that f−1 is not defined at a point p ofS′; then f can be writtenπφ where
π : BlpS′ → S′ is the blow-up of p∈ S′ andφ a birational morphism fromS to BlpS′

BlpS′

π

!!❈
❈❈

❈❈
❈❈

❈

S

φ
==④④④④④④④④

f
// S′

Before giving the proof of this result let us give a useful Lemma.

Lemma 1.3.4([15]). — Let f : S99K S′ be a birational map between two surfacesS and S′.
If there exists a point p∈ S such that f is not defined at p there exists a curveC on S′ such
that f−1(C ) = p.

Proof of the Proposition 1.3.3. — Assume thatφ = π−1 f is not a morphism. Letmbe a point
of S such thatφ is not defined atm. On the one handf (m) = p and f is not locally invertible
at m, on the other hand there exists a curve in BlpS′ contracted onm by φ−1 (Lemma 1.3.4).
This curve is necessarily the exceptional divisorE obtained by blowing up.

Let q1, q2 be two different points ofE at whichφ−1 is well defined and letC1, C2 be two
germs of smooth curves transverse toE. Thenπ(C1) andπ(C2) are two germs of smooth curve
transverse atp which are the image byf of two germs of curves atm. The differential of f
at m is thus of rank 2: contradiction with the fact thatf is not locally invertible atm.
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φ−1(C2)

f

πφ

q2

E

C1 C2

π(C2)

mφ−1(C1)

p= f (m)

π(C1)

q1

S S′

S̃

We say thatf : S99K P2(C) is induced by a polynomial automorphism(3) of C2 if
• S=C2∪D whereD is a union of irreducible curves,D is calleddivisor at infinity;
• P2(C) = C2∪L whereL is a line,L is calledline at infinity;
• f induces an isomorphism between S\D andP2(C)\L.
If f : S99K P2(C) is induced by a polynomial automorphism ofC2 it satisfies some proper-

ties:

Lemma 1.3.5. — LetS be a surface. Let f be a birational map fromS to P2(C) induced by a
polynomial automorphism ofC2. Assume that f is not a morphism. Then

• f has a unique point of indeterminacy p1 on the divisor at infinity;
• f has base-points p2, . . ., ps and for all i = 2, . . . ,s the point pi is on the exceptional

divisor obtained by blowing up pi−1;
• each irreducible curve contained in the divisor at infinity is contracted on a point by f ;
• the first curve contracted byπ2 is the strict transform of a curve contained in the divisor

at infinity;
• in particular if S= P2(C) the first curve contracted byπ2 is the transform of the line at

infinity (in the domain).

Proof. — According to Lemma 1.3.4 ifp is a point of indeterminacy off there exists a curve
contracted byf−1 on p. As f is induced by an automorphism ofC2 the unique curve onP2(C)
which can be blown down is the line at infinity sof has at most one point of indeterminacy.
As f is not a morphism, it has exactly one.

3. A polynomial automorphism ofC2 is a bijective application of the following type

f : C2 → C2, (x,y) 7→ ( f1(x,y), f2(x,y)), fi ∈ C[x,y].
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The second assertion is obtained by induction.
Each irreducible curve contained in the divisor at infinity is either contracted on a point,

or sent on the line at infinity inP2(C). Since f−1 contracts the line at infinity on a point the
second eventuality is excluded.

According to Theorem 1.3.1 we have

S′

π1

��✁✁
✁✁
✁✁
✁✁ π2

""❉
❉❉

❉❉
❉❉

❉

S
f

//❴❴❴❴❴❴❴ P2(C)

where S′ is a smooth projective surface andπ1 : S′ → S,π2 : S′ → P2(C) are two sequences of
blow-ups. The divisor at infinity in S′ is the union of

• a divisor of self-intersection−1 obtained by blowing-upps,
• the other divisors, all of self-intersection≤−2, produced in the sequence of blow-ups,
• and the strict transform of the divisor at infinity in S′.

The first curve contracted byπ2 is of self-intersection−1 and cannot be the last curve produced
by π1 (otherwiseps is not a point of indeterminacy); so the first curve contracted by π2 is the
strict transform of a curve contained in the divisor at infinity.

The last assertion follows from the previous one.





CHAPTER 2

SOME SUBGROUPS OF THE CREMONA GROUP

2.1. A special subgroup: the group of polynomial automorphisms of the plane

A polynomial automorphismof C2 is a bijective application of the following type

f : C2 → C2, (x,y) 7→ ( f1(x,y), f2(x,y)), fi ∈ C[x,y].

Thedegreeof f = ( f1, f2) is defined by degf = max(degf1,degf2). Note that degψ f ψ−1 6=
degf in general so we define thefirst dynamical degreeof f

d( f ) = lim(degf n)1/n

which is invariant under conjugacy(1). The set of the polynomial automorphisms is a group
denoted by Aut(C2).

Examples 2.1.1. — • The map

C2 → C2, (x,y) 7→ (a1x+b1y+c1,a2x+b2y+c2),

ai , bi , ci ∈ C, a1b2−a2b1 6= 0

is an automorphism ofC2. The set of all these maps is theaffine groupA.
• The map

C2 → C2, (x,y) 7→ (αx+P(y),βy+ γ),

α, β, γ ∈C, αβ 6= 0, P∈ C[y]

is an automorphism ofC2. The set of all these maps is a group, theelementary groupE.
• Of course

S= A∩E=
{
(a1x+b1y+c1,b2y+c2)

∣∣ai , bi , ci ∈ C, a1b2 6= 0
}

is a subgroup of Aut(C2).

The group Aut(C2) has a very special structure.

1. The limit exists since the sequence{degf n}n∈N is submultiplicative
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Theorem 2.1.2([129], Jung’s Theorem). — The groupAut(C2) is the amalgamated product
of A andE alongS :

Aut(C2) = A∗S E.

In other wordsA andE generateAut(C2) and each element f inAut(C2)\S can be written as
follows

f = (a1)e1 . . .an(en), ei ∈ E\A, ai ∈ A\E.

Moreover this decomposition is unique modulo the followingrelations

aiei = (ais)(s
−1ei), ei−1ai = (ei−1s′)(s′−1ai), s, s′ ∈ S.

Remark 2.1.3. — The Cremona group is not an amalgam([63]). Nevertheless we know gen-
erators for Bir(P2) :

Theorem 2.1.4([152, 153, 154, 53]). — The Cremona group is generated byAut(P2)=PGL3(C)

and the involution
(

1
x ,

1
y

)
.

There are many proofs of Theorem 2.1.2; you can find a "historical review" in [136]. We
will now give an idea of the proof done in [136] and give details in §2.2. Let

f̃ : (x,y) 7→ ( f̃1(x,y), f̃2(x,y))

be a polynomial automorphism ofC2 of degreeν. We can viewf̃ as a birational map:

f : P2(C) 99K P2(C), (x : y : z) 99K

(
zν f̃1

(
x
z
,
y
z

)
: zν f̃2

(
x
z
,
y
z

)
: zν
)
.

Lamy proved there existsϕ ∈ Bir(P2) induced by a polynomial automorphism ofC2 such that
#Ind f ϕ−1 < #Ind f ; more precisely "ϕ comes from an elementary automorphism". Proceeding
recursively we obtain a mapg such that #Indf = 0, in other words an automorphism ofP2(C)
which gives an affine automorphism.

According to Bass-Serre theory ([169]) we can canonically associate a tree to any amalga-
mated product. LetT be the tree associated to Aut(C2):

• the disjoint union of Aut(C2)/E and Aut(C2)/A is the set of vertices,
• Aut(C2)/S is the set of edges.

All these quotients must be understood as being left cosets;the cosets off ∈Aut(C2) are noted
respectivelyfE, fA, and fS. By definition the edgehS links the verticesfA andgE if hS ⊂ fA
andhS ⊂ gE (and so fA = hA andgE = hE). In this way we obtain a graph; the fact thatA

andE are amalgamated alongS is equivalent to the fact thatT is a tree ([169]). This tree is
uniquely characterized (up to isomorphism) by the following property: there exists an action of
Aut(C2) on T , such that the fundamental domain of this action is a segment,i.e. an edge and
two vertices, withE andA equal to the stabilizers of the vertices of this segment (andsoS is the
stabilizer of the entire segment). This action is simply theleft translation:g(hS) = (g◦h)S.
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eaE aeA

ẽaE

eãE

ẽA

idE

eA

idA

ãE

ẽãE ãẽA

ãeA

aẽA

aE

From a dynamical point of view affine automorphisms and elementary automorphisms are
simple. Nevertheless there exist some elements in Aut(C2) with a rich dynamic; this is the case
of Hénon automorphisms, automorphisms of the typeϕg1 . . .gpϕ−1 with

ϕ ∈ Aut(C2), gi = (y,Pi(y)−δix), Pi ∈C[y], degPi ≥ 2, δi ∈ C∗.

Note thatgi =

∈A\E︷︸︸︷
(y,x)

∈E\A︷ ︸︸ ︷
(−δix+Pi(y),y) .

Using Jung’s theorem, Friedland and Milnor proved the following statement.

Proposition 2.1.5([97]). — Let f be an element ofAut(C2).

Either f is conjugate to an element ofE, or f is a Hénon automorphism.

If f belongs toE, then d( f ) = 1. If f = g1 . . .gp with gi = (y,Pi(y)− δix), then d( f ) =
p

∏
i=1

deggi ≥ 2. Then we have

• d( f ) = 1 if and only if f is conjugate to an element ofE;
• d( f )> 1 if and only if f is a Hénon automorphism.

Hénon automorphisms and elementary automorphisms are verydifferent:

• Hénon automorphisms:
no invariant rational fibration ([39]),
countable centralizer ([135]),
infinite number of hyperbolic periodic points;

• Elementary automorphisms:
invariant rational fibration,
uncountable centralizer.

2.2. Proof of JUNG’ S theorem

Assume thatΦ is a polynomial automorphism ofC2 of degreen

Φ : (x,y) 7→ (Φ1(x,y),Φ2(x,y)), Φi ∈ C[x,y];
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we can extendΦ to a birational map still denoted byΦ

Φ : (x : y : z) 99K

(
znΦ1

(
x
z
,
y
z

)
: znΦ2

(
x
z
,
y
z

)
: zn
)
.

The line at infinity inP2(C) is z= 0. The mapΦ : P2(C) 99K P2(C) has a unique point of
indeterminacy which is on the line at infinity (Lemma 1.3.5).We can assume, up to conjuga-
tion by an affine automorphism, that this point is(1 : 0 : 0) (of course this conjugacy doesn’t
change the number of base-points ofΦ). We will show that there existsϕ : P2(C) 99K P2(C) a
birational map induced by a polynomial automorphism ofC2 such that

P2(C)
Φ◦ϕ−1

##❍
❍

❍
❍

❍

P2(C)

ϕ
;;✈

✈
✈

✈
✈

Φ
//❴❴❴❴❴❴❴❴❴ P2(C)

and # base-points ofΦϕ−1 < # base-points ofΦ. To do this we will rearrange the blow-ups of
the sequencesπ1 andπ2 appearing when we apply Zariski’s Theorem: the mapϕ is constructed
by realising some blow-ups ofπ1 and some blow-ups ofπ2.

2.2.1. Hirzebruch surfaces. —Let us consider the surfaceF1 obtained by blowing-up(1 :
0 : 0) ∈ P2(C). This surface is a compactification ofC2 which has a natural rational fibration
corresponding to the linesy = constant. The divisor at infinity is the union of two rational
curves (i.e. curves isomorphic toP1(C)) which intersect in one point. One of them is the strict
transform of the line at infinity inP2(C), it is a fiber denoted byf1; the other one, denoted
by s1 is the exceptional divisor which is a section for the fibration. We have: f 2

1 = 0 and
s2
1 = −1 (Proposition 1.1.8). More generally for anyn we denote byFn a compactification of
C2 with a rational fibration and such that the divisor at infinityis the union of two transversal
rational curves: a fiberf∞ and a sections∞ of self-intersection−n. These surfaces are called
Hirzebruch surfaces:

PP1(C)

(
OP1(C)⊕OP1(C)(n)

)
.

Let us consider the surfaceFn. Let p be the intersection ofsn and fn, where fn is a fiber. Let
π1 be the blow-up ofp∈ Fn and letπ2 be the contraction of the strict transform̃fn of fn. We
can go fromFn to Fn+1 via π2π−1

1 :

sn+1

−(n+1)

0

π2

−(n+1)

s̃n

−1
−1

f̃π1

sn

−n
p

0

f

Fn+1Fn

We can also go fromFn+1 to Fn via π2π−1
1 where
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• π1 is the blow-up of a pointp ∈ Fn+1 which belongs to the fiberfn and not to the sec-
tion sn+1,

• π2 the contraction of the strict transform̃fn of fn :

sns̃n+1

−(n+1)

π2f̃

0−1
−1

π1

−(n+1)

sn+1

p

0

f

FnFn+1

−n

2.2.2. First step: blow-up of(1 : 0 : 0). — The point(1 : 0 : 0) is the first blown-up point in
the sequenceπ1. Let us denote byϕ1 the blow-up of(1 : 0 : 0) ∈ P2(C), we have

F1
ϕ1

||②
②
②
②

g1

""❊
❊

❊
❊

P2(C)
Φ

//❴❴❴❴❴❴❴ P2(C)

Note that # base-points ofg1 = # base-points ofΦ−1. Let us come back to the diagram given
by Zariski’s theorem. The first curve contracted byπ2 which is a curve of self-intersection−1
is the strict transform of the line at infinity (Lemma 1.3.5, last assertion); it corresponds to the
fiber f1 in F1. But inF1 we havef 2

1 = 0; the self-intersection of this curve has thus to decrease
so the point of indeterminacyp of g1 has to belong tof1. But p also belongs to the curve
produced by the blow-up (Lemma 1.3.5, second assertion); inother wordsp= f1∩s1.

2.2.3. Second step: Upward induction. —

Lemma 2.2.1. — Let n≥ 1 and let h: Fn 99K P2(C) be a birational map induced by a poly-
nomial automorphism ofC2. Suppose that h has only one point of indeterminacy p such
that p= fn ∩ sn. Let ϕ : Fn 99K Fn+1 be the birational map which is the blow-up of p
composed with the contraction of the strict transform of fn. Let us consider the birational
map h′ = h◦ϕ−1:

Fn+1

h′

##●
●

●
●

Fn

ϕ
==④

④
④

④

h
//❴❴❴❴❴❴❴❴ P2(C)

Then
• # base-points of h′ = # base-points of h−1;
• the point of indeterminacy of h′ belongs to fn+1.



18 CHAPTER 2. SOME SUBGROUPS OF THE CREMONA GROUP

Proof. — Let us apply Zariski Theorem toh; we obtain

S
π1

����
��
��
�� π2

!!❉
❉❉

❉❉
❉❉

❉

Fn h
//❴❴❴❴❴❴❴ P2(C)

where S is a smooth projective surface andπ1, π2 are two sequences of blow-ups.
Sinces̃n

2 ≤ −2 (wheres̃n is the strict transform ofsn) the first curve contracted byπ2 is
the transform offn (Lemma 1.3.5). So the transform offn in S is of self-intersection−1; we
also havef 2

n = 0 in Fn. This implies that after the blow-up ofp the points appearing inπ1 are
not on fn. Instead of realising these blow-ups and then contracting the transform offn we first
contract and then realise the blow-ups. In other words we have the following diagram

S

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

η
!!❉

❉❉
❉❉

❉❉
❉❉

η

��❄
❄❄

❄❄
❄❄

❄❄

π

��✄✄
✄✄
✄✄
✄✄

S′

""❉
❉❉

❉❉
❉❉

❉

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

Fn

h

44❚ ❯ ❲ ❨ ❩ ❭ ❪ ❴ ❛ ❜ ❞ ❡ ❣ ✐
Fn+1

h′ //❴❴❴❴❴❴❴ P2(C)

whereπ is the blow-up ofp andη the contraction offn. The mapηπ−1 is exactly the first link

mentioned in §2.2.1. We can see that to blow-upp allows us to decrease the number of points
of indeterminacy and to contractfn does not create some point of indeterminacy. So

# base-points ofh′ = # base-points ofh−1

Moreover the point of indeterminacy ofh′ is on the curve obtained by the blow-up ofp, i.e. fn.

After the first step we are under the assumptions of the Lemma 2.2.1 withn= 1. The Lemma
gives an applicationh′ : F2 99K P2(C) such that the point of indeterminacy is onf2. If this point
also belongs tos2 we can apply the Lemma again. Repeating this as long as the assumptions
of the Lemma 2.2.1 are satisfied, we obtain the following diagram

Fn

g2

""❊
❊

❊
❊

F1

ϕ2

??⑧
⑧

⑧
⑧

g1
//❴❴❴❴❴❴❴ P2(C)

whereϕ2 is obtained by applyingn−1 times Lemma 2.2.1. Moreover

# base-points ofg2 = # base-points ofg1−n+1

and the point of indeterminacy ofg2 is on fn but not onsn (remark: as, forn≥ 2, there is no
morphism fromFn to P2(C), the mapg2 has a point of indeterminacy).
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2.2.4. Third step: Downward induction. —

Lemma 2.2.2. — Let n≥ 2 and let h: Fn 99K P2(C) be a birational map induced by a poly-
nomial automorphism ofC2. Assume that h has only one point of indeterminacy p, and that
p belongs to fn but not to sn. Let ϕ : Fn 99K Fn−1 be the birational map which is the blow-up
of p composed with the contraction of the strict transform offn. Let us consider the birational
map h′ = h◦ϕ−1:

Fn−1

h′

##●
●

●
●

Fn

ϕ
==④

④
④

④

h
//❴❴❴❴❴❴❴❴ P2(C)

Then
• # base-points of h′ = # base-points of h−1;
• if h′ has a point of indeterminacy, it belongs to fn−1 and not to sn−1.

Proof. — Let us consider the Zariski decomposition ofh

S
π1

����
��
��
�� π2

!!❉
❉❉

❉❉
❉❉

❉

Fn h
//❴❴❴❴❴❴❴ P2(C)

Sinces̃n
2 = −n with n≥ 2, the first curve blown down byπ2 is the transform offn (Lemma

1.3.5). Like in the proof of Lemma 2.2.1 we obtain the following commutative diagram

S

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥
⑥⑥

η
!!❉

❉❉
❉❉

❉❉
❉❉

η

��❄
❄❄

❄❄
❄❄

❄❄

π

��✄✄
✄✄
✄✄
✄✄

S′

""❉
❉❉

❉❉
❉❉

❉

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤
⑤

Fn

h

44❚ ❯ ❲ ❨ ❩ ❭ ❪ ❴ ❛ ❜ ❞ ❡ ❣ ✐
Fn−1

h′ //❴❴❴❴❴❴❴ P2(C)

whereπ is the blow-up ofp andη the contraction offn. We immediately have:

# base-points ofh′ = # base-points ofh−1.

Let F ′ be the exceptional divisor associated toπ; the maph has a base-point onF ′. Assume that
this point isF ′∩ f̃n, then(π−1

1 ( fn))2 ≤ −2: contradiction with the fact that it is the first curve
blown down byπ2. So the base-point ofh is notF ′∩ f̃n and so it is the point of indeterminacy
of h′ that is onfn−1 but not onsn−1.

After the second step the assumptions in Lemma 2.2.2 are satisfied. Let us remark that
if n≥ 3 then the maph′ given by Lemma 2.2.2 still satisfies the assumptions in this Lemma.
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After applyingn−1 times Lemma 2.2.2 we have the following diagram

F1

g3

""❊
❊

❊
❊

Fn

ϕ3

??⑧
⑧

⑧
⑧

g2
//❴❴❴❴❴❴❴ P2(C)

2.2.5. Last contraction. — Applying Zariski’s theorem tog3 we obtain

S
ϕ

����
��
��
�� π2

!!❉
❉❉

❉❉
❉❉

❉

F1 g3
//❴❴❴❴❴❴❴ P2(C)

The fourth assertion of the Lemma 1.3.5 implies that the firstcurve contracted byπ2 is either
the strict transform off1 by π1, or the strict transform ofs1 by π1. Assume that we are in
the first case; then after realising the sequence of blow-upsπ1 and contracting this curve the
transform ofs1 is of self-intersection 0 and so cannot be contracted: contradiction with the
third assertion of Lemma 1.3.5. So the first curve contractedis the strict transform ofs1 which
can be done and we obtain

P2(C)
g4

##❍
❍

❍
❍

❍

F1

ϕ4

==③③③③③③③③③

g3
//❴❴❴❴❴❴❴❴❴ P2(C)

The morphismϕ4 is the blow-up of a point and the exceptional divisor associated to its blow-up
is s1; up to an automorphism we can assume thats1 is contracted on(1 : 0 : 0). Moreover

# base-points ofg3 = # base-points ofg4.

2.2.6. Conclusion. —After all these steps we have

P2(C)
g4

##❍
❍

❍
❍

❍

P2(C)

ϕ4◦ϕ3◦ϕ2◦ϕ1

;;✈
✈

✈
✈

✈

Φ
//❴❴❴❴❴❴❴❴❴ P2(C)

where # base-points ofg4 = # base-points ofΦ−2n+1 (with n≥ 2).
Let us check thatϕ = ϕ4◦ϕ3◦ϕ2◦ϕ1 is induced by an element ofE. It is sufficient to prove

thatϕ preserves the fibrationy= constant,i.e. the pencil of curves through(1 : 0 : 0); indeed
• the blow-upϕ1 sends lines through(1 : 0 : 0) on the fibers ofF1;
• ϕ2 andϕ3 preserve the fibrations associated toF1 andFn;
• the morphismϕ4 sends fibers ofF1 on lines through(1 : 0 : 0).



2.2. PROOF OF JUNG’S THEOREM 21

Finally g4 is obtained by composingΦ with a birational map induced by an affine automor-
phism and a birational map induced by an element ofE so g4 is induced by a polynomial
automorphism; morevoer

# base-points ofg4 < # base-points ofΦ.

2.2.7. Example. —Let us consider the polynomial automorphismΦ of C2 given by

Φ =
(
y+(y+x2)2+(y+x2)3,y+x2).

Let us now apply toφ the method just explained above. The point of indeterminacyof Φ
is (0 : 1 : 0). Let us composeΦ with (y,x) to deal with an automorphism whose point of
indeterminacy is(1 : 0 : 0). Let us blow up this point

F1

}}③③
③③
③③
③③

P2(C)

Then we apply Lemma 2.2.1

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2

P2(C)

OnF2 the point of indeterminacy is on the fiber, we thus apply Lemma2.2.2

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2 F1

P2(C)

and contractss1

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2 F1

!!❉
❉❉

❉❉
❉❉

❉

P2(C)
(x+y2,y)(y,x)

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ P2(C)

We get the decompositionΦ = Φ′(x+y2,y)(y,x) with

Φ′ = (y+x2+x3,x) = (x+y2+y3,y)(y,x).
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We can check thatΦ′ has a unique point of indeterminacy(0 : 1 : 0). Let us blow up the point
(1 : 0 : 0)

F1

}}③③
③③
③③
③③

P2(C)

and then apply two times Lemma 2.2.1

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2 F3

P2(C)

then two times Lemma 2.2.2

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2 F3 F2 F1

P2(C)
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Finally we contract the sections1

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

��⑦⑦
⑦⑦
⑦⑦
⑦

��❅
❅❅

❅❅
❅❅

F1

}}③③
③③
③③
③③

F2 F3 F2 F1

!!❉
❉❉

❉❉
❉❉

❉

P2(C)
Φ′=(x+y2+y3,y)(y,x)

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ P2(C)

and obtainΦ′ = (x+y2+y3,y)(y,x).
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2.3. The de Jonquières group

Thede Jonquières mapsare, up to birational conjugacy, of the following type
(

a(y)x+b(y)
c(y)x+d(y)

,
αy+β
γy+δ

)
,

[
a(y) b(y)
c(y) d(y)

]
∈ PGL2(C(y)),

[
α β
γ δ

]
∈ PGL2(C);

let us remark that the family of linesy= constant is preserved by such a Cremona transforma-
tion. De Jonquières maps are exactly the Cremona maps which preserve a rational fibration(2).
The de Jonquières maps form a group, calledde Jonquières groupand denoted by dJ. Remark
that the exceptional set ofφ is reduced to a finite number of fibersy= cte and possibly the line
at infinity.

In some sense dJ⊂ Bir(P2) is the analogue ofE ⊂ Aut(C2). In the 80’s Gizatullin and
Iskovskikh give a presentation of Bir(P2) (see[105, 124]); let us state the result of Iskovskikh
presented inP1(C)×P1(C) which is birationally isomorphic toP2(C).

Theorem 2.3.1([124]). — The group of birational maps ofP1(C)×P1(C) is generated bydJ
andAut(P1(C)×P1(C)) (3).

Moreover the relations inBir(P1(C)×P1(C)) are the relations ofdJ, of Aut(P1(C)×P1(C))
and the relation

(ηe)3 =

(
1
x
,
1
y

)
where η : (x,y) 7→ (y,x) & e: (x,y) 7→

(
x,

x
y

)
.

Let f be a birational map ofP2(C) of degreeν. Assume thatf has a base-pointp1 of
multiplicity m1 = ν−1. Then we have

ν2− (ν−1)2−
r

∑
i=2

m2
i = 1, 3ν− (ν−1)−

r

∑
i=2

mi = 3

where p2, . . ., pr are the other base-points off and mi the multiplicity of pi . This implies
that∑r

i=2 mi(mi −1) = 0, hencem2 = . . .= mr = 1 andr = 2ν−1. For simplicity let us assume
that thepi ’s are inP2(C). The homaloidal systemΛ f consists of curves of degreeν with
singular pointp1 of multiplicity ν− 1 passing simply to 2ν− 2 points p2, . . ., p2ν−1. The
corresponding Cremona transformation is a de Jonquières transformation. Indeed letΓ be an
element ofΛ f . Let Ξ be the pencil of curves ofΛ f that have in common withΓ a pointm
distinct fromp1, . . ., p2ν−1. The number of intersections ofΓ with a generic curve ofΞ that are
absorbed by thepi ’s is at least

(ν−1)(ν−2)+2ν−2+1= ν(ν−1)+1

2. Here a rational fibration is a rational application fromP2(C) into P1(C) whose fibers are rational curves.
3. The de uières group is birationally isomorphic to the subgroup of Bir(P1(C)×P1(C)) which preserves the

first projectionp: P1(C)×P1(C)→ P1(C).
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one more than the number given by Bezout’s theorem. The curves of Ξ are thus all split intoΓ
and a line of the pencil centered inp1. Let us assume thatp1 = (1 : 0 : 0); thenΓ is given by

xψν−2(y,z)+ψν−1(y,z), degψi = i.

To describeΛ f we need an arbitrary curve taken fromΛ f and outsideΞ which gives

(xψν−2+ψν−1)(a0y+a1z)+xϕν−1(y,z)+ϕν(y,z), degϕi = i.

Thereforef can be represented by

(x : y : z) 99K
(
xϕν−1+ϕν : (xψν−2+ψν−1)(ay+bz) : (xψν−2+ψν−1)(cy+dz)

)

with ad−bc 6= 0. We can easily check thatf is invertible and thatΛ f andΛ f−1 have the same
type. At last we have in the affine chartz= 1

(
xϕν−1(y)+ϕν(y)

xψν−2(y)+ψν−1(y)
,
ay+b
cy+d

)
.

2.4. No dichotomy in the Cremona group

There is a strong dichotomy in Aut(C2) (see§2.1); we will see that there is no such di-
chotomy in Bir(P2). Let us consider the family of birational maps( fα,β) given by

P2(C) 99K P2(C), (x : y : z) 7→ ((αx+y)z : βy(x+z) : z(x+z)),

α, β ∈ C∗, |α|= |β|= 1

so in the affine chartz= 1

fα,β(x,y) =

(
αx+y
x+1

,βy

)
.

Theorem 2.4.1([70]). — The first dynamical degree(4) of fα,β is equal to1; more preciselydegf n
α,β ∼ n.

Assume thatα and β are generic and have modulus1. If g commutes with fα,β, then g
coincides with an iterate of fα,β; in particular the centralizer of fα,β is countable.

The elements f2
α,β have two fixed points m1, m2 and

• there exists a neighborhoodV1 of m1 on which fα,β is conjugate to(αx,βy); in particular
the closure of the orbit of a point ofV1 (under fα,β) is a torus of dimension2;

• there exists a neighborhoodV2 of m2 such that f2α,β is locally linearizable onV2; the

closure of a generic orbit of a point ofV2 (under f2α,β) is a circle.

In the affine chart(x,y) the mapsfα,β preserve the 3-manifolds|y| = cte. The orbits pre-
sented below are bounded in a copy ofR2×S1. The dynamic happens essentially in dimension
3; different projections allow us to have a good representation of the orbit of a point. In the
affine chartz= 1 let us denote byp1 and p2 the two standard projections. The given pictures
are representations (in perspective) of the following projections.

4. For a birational mapf of P2(C) thefirst dynamical degreeis given byλ( f ) = lim
n→+∞

(degf n)1/n.



26 CHAPTER 2. SOME SUBGROUPS OF THE CREMONA GROUP

• Let us first consider the set

Ω1(m,α,β) =
{
(p1( f n

α,β(m)), Im(p2( f n
α,β(m))))

∣∣n= 1..30000
}

;

this set is contained in the product ofR2 with an interval. The orbit of a point under the
action of fα,β is compressed by the double covering(x,ρeiθ)→ (x,ρsinθ).

• Let us introduce

Ω2(m,α,β) =
{
(Re(p1( f n

α,β(m))), p2( f n
α,β(m)))

∣∣n= 1..30000
}

which is contained in a cylinderR× S1; this second projection shows how to “decom-
press” Ω1 to have the picture of the orbit.

Let us assume thatα = exp(2i
√

3) and β = exp(2i
√

2); let us denote byΩi(m) instead
of Ωi(m,α,β).

The following pictures illustrate Theorem 2.4.1.

Ω1(10−4i,10−4i) Ω2(10−4i,10−4i)

It is "the orbit" of a point in the linearization domain of(0 : 0 : 1); we note that the closure
of an orbit is a torus.

Ω1(10000+10−4i,10000+10−4i) Ω2(10000+10−4i,10000+10−4i)

It is “the orbit” under f 2
α,β of a point in the linearization domain of(0 : 1 : 0); the closure of

an “orbit” is a topological circle. The singularities are artifacts of projection.

Remark 2.4.2. — The linez= 0 is contracted byfα,β on (0 : 1 : 0) which is blow up onz= 0 :
the map fα,β is not algebraically stable(seeChapter 3) that’s why we considerf 2

α,β instead
of fα,β.

The theory does not explain what happens outside the linearization domains. BetweenV1

andV2 the experiences suggest a chaotic dynamic as we can see below.
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Ω1(0.4+10−4i,0.4+10−4i) Ω2(0.4+10−4i,0.4+10−4i)

We note a deformation of the invariant tori.

Ω1(0.9+10−4i,0.9+10−4i) Ω2(0.9+10−4i,0.9+10−4i)

Ω1(1+10−4i,1+10−4i) Ω2(1+10−4i,1+10−4i)

Ω1(1.08+10−4i,1.08+10−4i) Ω2(1.08+10−4i,1.08+10−4i)

The invariant tori finally disappear; nevertheless the pictures seem to organize themselves
around a closed curve.

So if there is no equivalence between first dynamical degree strictly greater than 1 and
countable centraliser we have an implication; more precisely we have the following statement.

Theorem 2.4.3([47]). — Let f be a birational map of the complex projective plane withfirst
dynamical degreeλ( f ) strictly greater than1. If ψ is an element ofBir(P2) which commutes
with f, there exist two integers m inN∗ and n inZ such thatψm = f n.





CHAPTER 3

CLASSIFICATION AND APPLICATIONS

3.1. Notions of stability and dynamical degree

Let X, Y be two compact complex surfaces and letf : X 99KY be a dominant meromorphic
map. LetΓ f be the graph off and letπ1 : Γ f → X, π2 : Γ f → Y be the natural projections.
If Γ f is a singular submanifold ofX×Y, we consider a desingularization ofΓ f without chan-
ging the notation. Ifβ is a differential form of bidegree(1,1) on Y, then π∗

2β determines
a form of bidegree(1,1) on Γ f which can be pushed forward as a currentf ∗β := π1∗π∗

2β
on X thanks to the first projection. Let us note thatf ∗ induces an operator between H1,1(Y,R)
and H1,1(X,R) : if β andγ are homologous, thenf ∗β and f ∗γ are homologous. In a similar
way we can define the push-forwardf∗ := π2∗π∗

1 : Hp,q(X) → Hp,q(Y). Note that whenf is
bimeromorphicf∗ = ( f−1)∗.

Assume thatX =Y. The mapf is algebraically stableif there exists no curveV in X such
that f k(V) belongs to Indf for some integerk≥ 0.

Theorem-Definition 3.1.1([77]). — Let f : S→ S be a dominating meromorphic map on a
Kähler surface and letω be a Kähler form. Then f isalgebraically stableif and only if any of
the following holds:

• for anyα ∈ H1,1(S) and any k inN, we have( f ∗)kα = ( f k)∗α;
• there is no curveC in Ssuch that fk(C )⊂ Ind f for some integer k≥ 0;
• for all k ≥ 0 we have( f k)∗ω = ( f ∗)kω.

In other words for an algebraically stable map the followingdoes not happen

. . ... . .
fffff

C

i.e. the positive orbit(1) of p1 ∈ Ind f−1 intersects Indf .

1. The positive orbit ofp1 under the action off is the set{ f n(p1) |n≥ 0}.
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Remark 3.1.2. — Let f be a Cremona transformation. The mapf is not algebraically stable
if and only if there exists an integerk such that

degf k < (degf )k.

So if f is algebraically stable, thenλ( f ) = degf .

Examples 3.1.3. — • An automorphism ofP2(C) is algebraically stable.
• The involutionσ : P2(C) 99K P2(C), (x : y : z) 7→ (yz: xz: xy) is not algebraically stable:

Indσ−1 = Indσ−1; moreover degσ2 = 1 and(degσ)2 = 4.

Examples 3.1.4. — Let A be an automorphism of the complex projective plane and letσ be
the birational map given by

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy).

Assume that the coefficients ofA are positive real numbers. The mapAσ is algebraically stable
([56]).

Let A be an automorphism of the complex projective plane and letρ be the birational map
given by

ρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz).

Assume that the coefficients ofA are positive real numbers. We can verify thatAρ is alge-
braically stable. The same holds with

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2−xz).

Let us say that the coefficients of an automorphismA of P2(C) are algebraically independent
if A has a representative in GL3(C) whose coefficients are algebraically independent overQ.

We can deduce the following: letA be an automorphism of the projective plane whose coeffi-
cients are algebraically independent overQ, thenAσ and(Aσ)−1 are algebraically stable.

Diller and Favre prove the following statement.

Theorem 3.1.5([77], theorem 0.1). — Let S be a rational surface and let f: S 99K S be a
birational map. There exists a birational morphismε : S̃→ Ssuch thatε f ε−1 is algebraically
stable.

Idea of the proof. — Let us assume thatf is not algebraically stable; hence there exists a curve
C and an integerk such thatC is blown down ontop1 andpk = f k−1(p1) is an indeterminacy
point of f .

The idea of Diller and Favre is the following: after blowing up the pointspi the image ofC
is, for i = 1, . . . , k, a curve. Doing this for any element of Excf whose an iterate belongs
to Ind f we get the statement.

Remark 3.1.6. — There is no similar result in higher dimension. Let us recall the following
statement due to Lin([137, Theorem 5.7]): suppose thatA = (ai j ) ∈ Mn(Z) is an integer
matrix with detA = 1. If λ and λ are the only eigenvalues ofA of maximal modulus, also
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with algebraic multiplicity one, and ifλ = |λ|e2iπϑ with ϑ ∈Q; then there is no toric birational
model which makes the corresponding monomial map

fA : Cn → Cn, (x1, . . . ,xn) 7→
(

∏
j

x
a1 j
j , . . . ,∏

j
x

an j
j

)

algebraically stable. A 3×3 example is([116])

A=




−1 1 0
−1 0 1
1 0 0


 ;

in higher dimension

[
A 0
0 Id

]
where 0 is the zero matrix and Id is the identity matrix works.

Thefirst dynamical degreeof f is defined by

λ( f ) = limsup
n→+∞

|( f n)∗|1/n

where| . | denotes a norm on End(H1,1(X,R)) ; this number is greater or equal to 1 (see[166,
96]). Let us remark that for all birational mapsf we have the inequality

λ( f )n ≤ degf n

where degf is the algebraic degree off (the algebraic degree off = ( f0 : f1 : f2) is the degree
of the homogeneous polynomialsfi).

Examples 3.1.7. — • The first dynamical degree of a birational map of the complex pro-
jective plane of finite order is equal to 1.

• The first dynamical degree of an automorphism ofP2(C) is equal to 1.
• The first dynamical degree of an elementary automorphism(resp. a de Jonquières map)

is equal to 1.
• The first dynamical degree of a Hénon automorphism of degreed is equal tod.
• The first dynamical degree of the monomial map

fB : (x,y) 7→ (xayb,xcyd)

is the largest eigenvalue ofB=

[
a b
c d

]
.

• Let us setE = C/Z[i], Y = E×E = C2/Z[i]×Z[i] andB=

[
a b
c d

]
. The matrixB acts

linearly onC2 and preservesZ[i]×Z[i] so B induces a mapGB : E×E → E×E. The
surfaceE×E is not rational whereasX =Y/(x,y) ∼ (ix, iy) is. The matrixB induces a
mapGB : E×E → E×E that commutes with(ix, iy) so GB induces a mapgB : X → X
birationally conjugate to an element of Bir(P2). The first dynamical degree ofgB is equal
to the square of the largest eigenvalue ofB.
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Let us give some properties about the first dynamical degree.Let us recall that aPisot
number is a positive algebraic integer greater than 1 all of whose conjugate elements have
absolute value less than 1. A real algebraic integer is aSalem numberif all its conjugate roots
have absolute value no greater than 1, and at least one has absolute value exactly 1.

Theorem 3.1.8([77]). — The set
{

λ( f ) | f ∈ Bir(P2)
}

is contained in{1}∪P ∪S whereP (resp.S) denotes the set of Pisot(resp. Salem) numbers.
In particular it is a subset of algebraic numbers.

3.2. Classification of birational maps

Theorem 3.2.1([104, 77, 34]). — Let f be an element ofBir(P2); up to birational conjuga-
tion, exactly one of the following holds.

• The sequence|( f n)∗| is bounded, the map f is conjugate either to(αx : βy : z) or to
(αx : y+z : z);

• the sequence|( f n)∗| grows linearly, and f preserves a rational fibration. In thiscase f
cannot be conjugate to an automorphism of a projective surface;

• the sequence|( f n)∗| grows quadratically, and f is conjugate to an automorphism pre-
serving an elliptic fibration.

• the sequence|( f n)∗| grows exponentially; the spectrum of f∗ outside the unit disk consists
of the single simple eigenvalueλ( f ), the eigenspace associated toλ( f ) is generated by
a nef classθ+ ∈ H1,1(P2(C)). Moreover f is conjugate to an automorphism if and only
if (θ+,θ+) = 0.

In the second and third cases, the invariant fibration is unique.

Definition. — Let f be an element of Bir(P2).
• If

{
degf k

}
k∈N is bounded,f is elliptic;

• if
{

degf k
}

k∈N grows linearly(resp. quadratically), then f is ade Jonquières twist(resp.
anHalphen twist);

• if
{

degf k
}

k∈N grows exponentially,f is hyperbolic.

Remark 3.2.2. — If
{

degf k
}

k∈N grows linearly(resp. quadratically) then f preserves a pen-
cil of rational curves(resp. elliptic curves); up to birational conjugacyf preserves a pencil of
lines, i.e. belongs to the de Jonquières group(resp. preserves an Halphen pencil,i.e. a pencil
of (elliptic) curves of degree3n passing through9 points with multiplicity n).

3.3. Picard-Manin space

Manin describes in [140, Chapter 5] the inductive limit of the Picard group of any surface
obtained by blowing up any point of a surface S. Then he shows that the group Bir(S) linearly
acts on this limit group.
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• Let S be a Kähler compact complex surface. Let Pic(S) be the Picard group of S and let
NS(S) be its Néron-Severi group(2). Let us consider the morphism from Pic(S) into NS(S)
which associates to any line bundleL its Chern classc1(L); its kernel is denoted by Pic0(S).
The dimension of NS(R)⊗ R is called thePicard numberof S and is denoted byρ(S). There
is an intersection form on the Picard group, there is also oneon the Néron-Severi group; when
S is projective, its signature is(1,ρ(S)−1). The nef cone is denoted by NS+(S) or Pic+(S)
when NS(S)=Pic(S). Let S and S′ be two surfaces and letπ : S→S′ be a birational morphism.
The morphismπ∗ is injective and preserves the nef cone:π∗(NS+(S′)) ⊂ NS+(S). Moreover
for anyℓ, ℓ′ in Pic(S), we have(π∗ℓ,π∗ℓ′) = (ℓ,ℓ′).

• Let S be a Kähler compact complex surface. LetB(S) be the category which objects
are the birational morphismsπ′ : S′ → S. A morphism between two objectsπ1 : S′

1 → S and
π2 : S′

2 → S of this category is a birational morphismε : S′
1 → S′

2 such thatπ2ε = π1. In
particular the set of morphisms between two objects in either empty, or reduced to a unique
element.

This set of objects is ordered as follows:π1 ≥ π2 if and only if there exists a morphism
from π1 to π2; we thus say thatπ1 (resp. S′1) dominatesπ2 (resp. S′2). Geometrically this means
that the set of base-points ofπ−1

1 contains the set of base-points ofπ−1
2 . If π1 andπ2 are two

objects ofB(S) there always exists another one which simultaneously dominatesπ1 andπ2.
Let us set

Z(S) = lim
→

NS(S′)

the inductive limit is taken following the injective morphismπ∗.
The groupZ(S) is calledPicard-Manin spacespace of S. The invariant structures ofπ∗

induce invariant structures forZ(S):
• an intersection form(,) : Z(S)×Z(S)→ Z;
• a nef coneZ+(S) = lim

→
NS+(S);

• a canonical class, viewed as a linear formΩ : Z(S)→ Z.
Note that NS(S′) embeds intoZ(S) so we can identify NS(S′) and its image inZ(S).
Let us now describe the action of birational maps of S onZ(S). Let S1 and S2 be two surfaces

and let f be a birational map from S1 to S2. According to Zariski Theorem we can remove the
indeterminacy off thanks to two birational morphismsπ1 : S′ → S1 andπ2 : S′ → S2 such that
f = π2π−1

1 . The mapπ1 (resp. π2) embedsB(S′) into B(S1) (resp.B(S2)). Since any object
of B(S1) (resp.B(S2)) is dominated by an object ofπ1∗(B(S)) (resp.π2∗(B(S))) we get two
isomorphisms

π1∗ : Z(S′)→ Z(S1), π2∗ : Z(S′)→ Z(S2).

Then we setf∗ = π2∗π−1
1∗ .

Theorem 3.3.1([140], page 192). — The map f7→ f∗ induces an injective morphism fromBir(S)
into GL(Z(S)).

If f belongs toBir(S), the linear map f∗ preserves the intersection form and the nef cone.

2. The Néron-Severi group of a variety is the group of divisors modulo algebraic equivalence.
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Let us denote by Eclat(S) the union of the surfaces endowed with a birational morphism
π : S′ → S modulo the following equivalence relation: S∋ p1 ∼ p2 ∈ S if and only if ε−1

2 ε1

sendsp1 ontop2 and is a local isomorphism between a neighborhood ofp1 and a neighborhood
of p2. A point of Eclat(S) corresponds either to a point of S, or to a point on an exceptional
divisor of a blow-up of S etc. Any surface S′ which dominates S embeds into Eclat(S). Let
us consider the free abelian group Ec(S) generated by the points of Eclat(S); we have a scalar
product on Ec(S)

(p, p)E =−1, (p,q) = 0 if p 6= q.

The group Ec(S) can be embedded inZ(S) (see[47]). If p is a point of Eclat(S) let us denote
by ep the point ofZ(S) associated top, i.e. ep is the class of the exceptional divisor obtained
by blowing up p. This determines the image of the basis of Ec(S) in Z(S) so we have the
morphism defined by

Ec(S)→ Z(S), ∑a(p)p 7→ ∑a(p)ep.

Using this morphism and the canonical embedding from NS(S) into Z(S) we can consider the
morphism

NS(S)×Ec(S)→ Z(S).

Proposition 3.3.2([140], p.197). — The morphismNS(S)×Ec(S)→Z(S) induces an isome-
try between(NS(S),(·, ·))⊕ (Ec(S),(·, ·)E) and(Z(S),(·, ·)).

Example 3.3.3. — Let us consider a pointp of P2(C), BlpP2 the blow-up ofp and let us
denote byEp the exceptional divisor. Let us now considerq ∈ BlpP2 and as previously we
define Blp,qP2 andEq. The elementsep andeq belong to the image of NS(Blp,qP2) in Z(P2).
If Ẽp is the strict transform ofEp in Blp,qP2 the elementep (resp.eq) corresponds tõEp+Eq

(resp.Eq). We can check that(ep,eq) = 0 and(ep,ep) = 1.

• The completed Picard-Manin spaceZ(S) of S is theL2-completion ofZ(S); in other words

Z(S) =
{
[D]+∑ap[Ep]

∣∣ [D] ∈ NS(S), ap ∈R, ∑a2
p < ∞

}
.

Note thatZ(S) corresponds to the case where theap vanishes for all but a finite number
of p∈ Eclat(S).

Example 3.3.4. — For S=P2(C) the Néron-Severi group NS(S) is isomorphic toZ[H]whereH
is a line. Thus the elements ofZ(S) are given by

a0[H]+ ∑
p∈Eclat(S)

ap[Ep], with ∑a2
p < ∞.

The group Bir(S) acts onZ(S); let us give details when S= P2(C). Let f be a bira-
tional map fromP2(C) into itself. According to Zariski Theorem there exist two morphisms
π1, π2 : S→ P2(C) such thatf = π2π−1

1 . Defining f ∗ by f ∗ = (π∗
1)

−1π∗
2 and f∗ by f∗ = ( f ∗)−1

we get the representationf 7→ f∗ of the Cremona group in the orthogonal group ofZ(P2) (resp.
Z(P2)) with respect to the intersection form. Since for anyp in P2(C) such thatf is defined at
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p we havef∗(ep) = ef (p) this representation is faithful; it also preserves the integral structure
of Z(P2) and the nef cone.

• Only one of the two sheets of the hyperboloid
{
[D] ∈ Z(P2)

∣∣ [D]2 = 1
}

intersects the nef
coneZ(P2); let us denote it byHZ . In other words

HZ =
{
[D] ∈ Z(P2)

∣∣ [D]2 = 1, [H] · [D]> 0
}
.

We can define a distance onHZ :

cosh(dist([D1], [D2])) = [D1] · [D2].

The spaceHZ is a model of the "hyperbolic space of infinite dimension"; its isometry group
is denoted by Isom(HZ) (see[109], §6). As the action of Bir(P2) on Z(P2) preserves the
two-sheeted hyperboloid and as the action also preserves the nef cone we get a faithful repre-
sentation of Bir(P2) into Isom(HZ). In the context of the Cremona group we will see that the
classification of isometries into three types has an algebraic-geometric meaning.

• As HZ is a complete cat(−1) metric space, its isometries are either elliptic, or parabolic,
or hyperbolic (see[103]). In the case of hyperbolic case we can characterize these isometries
as follows:

– elliptic isometry: there exists an elementℓ in Z(S) such thatf ∗(ℓ) = ℓ and (ℓ,ℓ) > 0
then f∗ is a rotation aroundℓ and the orbit of anyp in Z(S) (resp. anyp in HZ) is
bounded;

– parabolic isometry: there exists a non zero elementℓ in Z+(S) such thatf∗(ℓ) = ℓ. More-
over (ℓ,ℓ) = 0 andRℓ is the unique invariant line byf∗ which intersectsZ+(S). If p
belongs toZ+(S), then lim

n→∞
f n
∗ (Rp) = Rℓ.

– hyperbolic isometry: there exists a real numberλ > 1 and two elementsℓ+ andℓ− in Z(S)
such thatf∗(ℓ+) = λℓ+ and f∗(ℓ−) = (1/λ)ℓ−. If p is a point ofZ+(S)\Rℓ−, then

lim
n→∞

(
1
λ

)n

f n
∗ (p) = v∈Rℓ+ \{0},

We have a similar property forℓ− and f−1.
This classification and Diller-Favre classification (Theorem 3.2.1) are related by the follo-

wing statement.

Theorem 3.3.5([47]). — Let f be a birational map of a compact complex surfaceS. Let f∗
be the action induced by f onZ(S).

• f∗ is elliptic if and only if f is an elliptic map: there exists anelementℓ in Z+(S) such
that f(ℓ) = ℓ and(ℓ,ℓ) > 0, then f∗ is a rotation aroundℓ and the orbit of any p inZ(S)
(resp. any p inHZ) is bounded.

• f∗ is parabolic if and only if f is a parabolic map: there exists anon zeroℓ in Z∗(S)
such that f(ℓ) = ℓ. Moreover(ℓ,ℓ) = 0 andRℓ is the unique invariant line by f∗ which
intersectsZ+(S). If p belongs toZ∗(S), then lim

n→+∞
( f∗)

n(Rp) = Rℓ.

• f∗ is hyperbolic if and only if f is a hyperbolic map: there exists a real numberλ > 1
and two elementsℓ+ andℓ− in Z(S) such that f∗(ℓ+) = λℓ+ and f∗(ℓ−) = (1/λ)ℓ−. If p
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belongs toZ+ \Rℓ− then

lim
n→+∞

(
1
λ

)n

f n
∗ (p) = v∈ Rℓ+ \{0};

there is a similar property forℓ− and f−1.

3.4. Applications

3.4.1. Tits alternative. — Linear groups satisfy Tits alternative.

Theorem 3.4.1([179]). — Letk be a field of characteristic zero. LetΓ be a finitely generated
subgroup ofGLn(k). Then

• eitherΓ contains a non abelian, free group;
• or Γ contains a solvable(3) subgroup of finite index.

Let us mention that the group of diffeomorphisms of a real manifold of dimension≥ 1
does not satisfy Tits alternative (see[102] and references therein). Nevertheless the group of
polynomial automorphisms ofC2 satisfies Tits alternative ([135]); Lamy obtains this property
from the classification of subgroups of Aut(C2), classification established by using the action
of this group onT :

Theorem 3.4.2([135]). — Let G be a subgroup ofAut(C2). Exactly one of the followings
holds:

• any element ofG is conjugate to an element ofE, then
– eitherG is conjugate to a subgroup ofE;
– or G is conjugate to a subgroup ofA;
– or G is abelian,G=

⋃
i∈NGi with Gi ⊂Gi+1 and anyGi is conjugate to a finite cyclic

group of the form〈(αx,βy)〉 with α, β roots of unicity of the same order. Any element
of G has a unique fixe point(4) and this fixe point is the same for any element ofG.

Finally the action ofG fixes a piece of the treeT .

• G contains Hénon automorphisms, all having the same geodesic, in this caseG is solvable
and contains a subgroup of finite index isomorphic toZ.

• G contains two Hénon automorphisms with distinct geodesics,G thus contains a free
subgroup on two generators.

One of the common ingredients of the proofs of Theorems 3.4.1, 3.4.2 3.4.6 is the following
statement, a criterion used by Klein to construct free products.

Lemma 3.4.3. — LetG be a group acting on a setX. Let us considerΓ1 andΓ2 two subgroups
of G, and setΓ = 〈Γ1,Γ2〉. Assume that

• Γ1 (resp.Γ2) has only3 (resp.2) elements,bizarre cette
hypothèse

3. Let G be a group; let us set G(0) = G et G(k) = [G(k−1),G(k−1)] = 〈aba−1b−1 |a, b∈ G(k−1)〉 for k ≥ 1. The
group G is solvable if there exists an integerk such that G(k) = {id}.

4. as polynomial automorphism ofC2
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• there exist X1 and X2 two non empty subsets of X such that

X2 * X1; ∀α ∈ Γ1 \ {id}, α(X2)⊂ X1; ∀β ∈ Γ2 \ {id}, β(X1)⊂ X2.

ThenΓ is isomorphic to the free productΓ1∗Γ2 of Γ1 andΓ2.

Example 3.4.4. — The matrices

[
1 2
0 1

]
and

[
1 0
2 1

]
generate a free subgroup of rank 2

in SL2(Z). Indeed let us set

Γ1 =

{[
1 2
0 1

]n ∣∣n∈ Z

}
, Γ2 =

{[
1 0
2 1

]n ∣∣n∈ Z

}
,

X1 =
{
(x,y) ∈ R2

∣∣ |x|> |y|
}

& X 2 =
{
(x,y) ∈ R2

∣∣ |x|< |y|
}
.

Let us consider an elementγ of Γ1\{id} and(x,y) an element of X2, we note thatγ(x,y) is of
the form(x+my,y), with |m| ≥ 2; thereforeγ(x,y) belongs to X1. If γ belongs toΓ2\{id} and
if (x,y) belongs to X1, the image of(x,y) by γ belongs to X2. According to Lemma 3.4.3 we
have

〈
[

1 2
0 1

]
,

[
1 0
2 1

]
〉 ≃ F2 = Z∗Z= Γ1∗Γ2.

We also obtain that[
1 k
0 1

]
and

[
1 0
k 1

]

generate a free group of rank 2 in SL2(Z) for anyk ≥ 2. Nevertheless it is not true fork= 1,
the matrices [

1 1
0 1

]
and

[
1 0
1 1

]

generate SL2(Z).

Example 3.4.5. — Two generic matrices in SLν(C), with ν≥ 2, generate a free group isomor-
phic to F2.

In [47] Cantat characterizes the finitely generated subgroups of Bir(P2); Favre reformulates,
in [90], this classification:

Theorem 3.4.6([47]). — Let G be a finitely generated subgroup of the Cremona group. Ex-
actly one of the following holds:

• Any element ofG is elliptic thus
– eitherG is, up to finite index and up to birational conjugacy, contained in the con-

nected component ofAut(S) whereSdenotes a minimal rational surface;
– or G preserves a rational fibration.

• G contains a(de Jonquières or Halphen) twist and does not contain hyperbolic map, thus
G preserves a rational or elliptic fibration.

• G contains two hyperbolic maps f and g such that〈 f ,g〉 is free.



38 CHAPTER 3. CLASSIFICATION AND APPLICATIONS

• G contains a hyperbolic map and for any pair( f ,g) of hyperbolic maps,〈 f ,g〉 is not a
free group, then

1−→ kerρ −→ G
ρ−→ Z−→ 1

andkerρ contains only elliptic maps.

One consequence is the following statement.

Theorem 3.4.7([47]). — The Cremona groupBir(P2) satisfies Tits alternative.

3.4.2. Simplicity. — Let us recall that a simple group has no non trivial normal subgroup.
We first remark that Aut(C2) is not simple; letφ be the morphism defined by

Aut(C2)→ C∗, f 7→ det jacf .

The kernel ofφ is a proper normal subgroup of Aut(C2). In the seventies Danilov has estab-
lished that kerφ is not simple ([64]). Thanks to some results of Schupp ([168]) he proved that
the normal subgroup(5) generated by

(ea)13, a= (y,−x), e= (x,y+3x5−5x4)

is strictly contained in Aut(C2).

More recently Furter and Lamy gave a more precise statement.Before giving it let us intro-
duce a lengthℓ(.) for the elements of Aut(C2).

• If f belongs toA∩E, thenℓ( f ) = 0;
• otherwiseℓ( f ) is the minimal integern such thatf = g1 . . .gn with gi in A or E.

The length of the element given by Danilov is 26.

We note thatℓ(.) is invariant by inner conjugacy, we can thus assume thatf has minimal
length in its conjugacy class.

Theorem 3.4.8([99]). — Let f be an element ofAut(C2). Assume thatdet jacf = 1 and that f
has minimal length in its conjugacy class.

• If f is non trivial and ifℓ( f )≤ 8, the normal subgroup generated by f coincides with the
group of polynomial automorphisms f ofC2 with det jacf = 1;

• if f is generic(6) and if ℓ( f ) ≥ 14, the normal subgroup generated by f is strictly con-
tained in the subgroup

{
f ∈ Aut(C2)

∣∣ det jacf = 1
}

of Aut(C2).

Is the Cremona group simple ?
Cantat and Lamy study the general situation of a group G acting by isometries on aδ-

hyperbolic space and apply it to the particular case of the Cremona group acting by isometries
on the hyperbolic spaceHZ . Let us recall that a birational mapf induces a hyperbolic isometry
f∗ ∈ HZ if and only if {degf k}k∈N grows exponentially (Theorem 3.3.5). Another character-
ization given in [50] is the following: f induces a hyperbolic isometryf∗ ∈ HZ if and only if

5. Let G be a group and letf be an element of G; the normal subgroup generated byf in G is〈h f h−1 | h∈ G〉.
6. See [99] for more details.
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there is af∗-invariant plane in the Picard-Manin space that intersectsHZ on a curve Ax( f∗) (a
geodesic line) on whichf∗ acts by a translation:

dist(x, f∗(x)) = logλ( f ), ∀x∈ Ax( f∗).

The curve Ax( f∗) is uniquely determined and is called the axis off∗. A birational mapf is
tight if

• f∗ ∈ Isom(HZ) is hyperbolic;
• there exists a positive numberε such that: ifg is a birational map and ifg∗(Ax( f∗))

contains two points at distanceε which are at distance at most 1 from Ax( f∗) then
g∗(Ax( f∗)) = Ax( f∗);

• if g is a birational map andg∗(Ax( f∗)) = Ax( f∗) theng f g−1 = f or f−1.
Applying their results on group acting by isometries onδ-hyperbolic space to the Cremona
group, Cantat and Lamy obtain the following statement.

Theorem 3.4.9([50]). — Let f be a birational map of the complex projective plane. If fis
tight, then fk generates a non trivial normal subgroup ofBir(P2) for some positive interger k.

They exhibit tight elements by working with the unique irreducible component of maximal
dimension

Vd =
{

φψϕ−1 |φ, ϕ ∈ Aut(P2), ψ ∈ dJ, degψ = d
}

of Bird.

Corollary 3.4.10([50]). — The Cremona group contains an uncountable number of normal
subgroups.

In particular Bir(P2) is not simple.

3.4.3. Representations of cocompact lattices ofSU(n,1) in the Cremona group. — In [68]
Delzant and Py study actions of Kähler groups on infinite dimensional real hyperbolic spaces,
describe some exotic actions of PSL2(R) on these spaces, and give an application to the study
of the Cremona group. In particular they give a partial answer to a question of Cantat ([47]):

Theorem 3.4.11([68]). — Let Γ be a cocompact lattice in the groupSU(n,1) with n≥ 2.
If ρ : Γ → Bir(P2) is an injective homomorphism, then one of the following two possibilities
holds:

• the groupρ(Γ) fixes a point in the Picard-Manin space;
• the groupρ(Γ) fixes a unique point in the boundary of the Picard-Manin space.





CHAPTER 4

QUADRATIC AND CUBIC BIRATIONAL MAPS

4.1. Some definitions and notations

Let Ratk be the projectivization of the space of triplets of homogeneous polynomials of
degreek in 3 variables:

Ratk = P
{
( f0, f1, f2)

∣∣ fi ∈ C[x,y,z]k
}
.

An element of Ratk hasdegree≤ k.
We associate tof = ( f0 : f1 : f2) ∈ Ratk the rational map

f • : (x : y : z) 99K δ( f0(x,y,z) : f1(x,y,z) : f2(x,y,z)),

whereδ = 1
pgcd( f0, f1, f2)

.
Let f be in Ratk; we say thatf =( f0 : f1 : f2) is purely of degreek if the fi ’s have no common

factor. Let us denote bẙRatk the set of rational maps purely of degreek. Whereas Ratk can be
identified to a projective space,R̊atk is an open Zariski subset of it. An element of Ratk \ R̊atk
can be writtenψ f = (ψ f0 : ψ f1 : ψ f2) where f belongs to Ratℓ, whereℓ < k, and ψ is a
homogeneous polynomial of degreek− ℓ. Let us denote by Rat the set of all rational maps
from P2(C) into itself: it is

⋃

k≥1

R̊atk. It’s also the injective limite of the Rat•
k’s where

Rat•k =
{

f •
∣∣ f ∈ Ratk

}
.

Note that if f ∈ Ratk is purely of degreek then f can be identified tof •. This means that the
application

R̊atk → Rat•k

is injective. Henceforth when there is no ambiguity we use the notation f for the elements
of Ratk and for those of Rat•k. We will also say that an element of Ratk “is” a rational map.

The space Rat contains the group of birational maps ofP2(C). Let Birk ⊂ Ratk be the set of
birational mapsf of Ratk such thatf • is invertible, and let us denote bẙBirk ⊂ Birk the set of
birational maps purely of degreek. Set

Bir•k =
{

f •
∣∣ f ∈ Birk

}
.
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The Cremona group can be identified to
⋃

k≥1

B̊irk. Note thatB̊ir1 ≃ PGL3(C) is the group of

automorphisms ofP2(C); we haveB̊ir1 ≃ Bir•1 = Bir1. The set Rat1 can be identified toP8(C)
andR̊at1 is the projectivization of the space of matrices of rank greater than 2.

For k = 2 the inclusionB̊ir2 ⊂ Bir2 is strict. Indeed ifA is in PGL3(C) and if ℓ is a linear
form, ℓA is in Bir2 but not inB̊ir2.

There are two "natural" actions on Ratk. The first one is the action of PGL3(C) by dynamic
conjugation

PGL3(C)×Ratk → Ratk, (A,Q) 7→ AQA−1

and the second one is the action of PGL3(C)2 by left-right composition(l.r.)

PGL3(C)×Ratk×PGL3(C)→ Ratk, (A,Q,B) 7→ AQB−1.

Remark that̊Ratk, Birk andB̊irk are invariant under these two actions. Let us denote byOdyn(Q)

(resp. Ol .r.(Q)) the orbit ofQ ∈ Ratk under the action of PGL3(C) by dynamic conjugation
(resp. under the l.r. action).

Examples 4.1.1. — Let σ be the birational map given by

P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy).

The mapσ is an involution whose indeterminacy and exceptional sets are given by:

Indσ =
{
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)

}
, Excσ =

{
x= 0, y= 0, z= 0

}
.

The Cremona transformationρ : (x : y : z) 99K (xy : z2 : yz) has two points of indeterminacy
which are(0 : 1 : 0) and(1 : 0 : 0); the curves contracted byρ arez= 0, resp.y= 0. Letτ be
the map defined by(x : y : z) 99K (x2 : xy : y2−xz); we have

Indτ =
{
(0 : 0 : 1)

}
, Excτ =

{
x= 0

}
.

Notice thatρ andτ are also involutions.
The Cremona transformationsf andψ arebirationally conjugateif there exists a birational

mapη such thatf = ψηψ−1. The three mapsσ, ρ andτ are birationally conjugate to some
involutions of PGL3(C) (see for example[84]).

Let us continue with quadratic rational maps.
LetC[x,y,z]ν be the set of homogeneous polynomials of degreeν in C3. Let us consider the

rational map det jac defined by

det jac : Rat2 99K P(C[x,y,z]3)≃
{

curves of degree 3
}

[Q] 99K [det jacQ= 0].

Remark 4.1.2. — The map det jac is not defined for maps[Q] such that det jacQ≡ 0; such a
map is up to l.r. conjugacy(Q0 : Q1 : 0) or (x2 : y2 : xy).

Proposition 4.1.3([56]). — The mapdet jacis surjective.
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Proof. — For the mapσ we obtain three lines in general position, forρ the union of a "double
line" and a line, forτ one "triple line" and for(x2 : y2 : (x−y)z) the union of three concurrent
lines.

With

det jac

(
− 1

α
x2+z2 : −α

2
xz+

1+α
4

x2− 1
4

y2 : xy

)
= [y2z= x(x−z)(x−αz)]

we get all cubics having a Weierstrass normal form.
If Q: (x : y : z) 99K (xy : xz: x2+yz), then det jacQ= [x(x2−yz) = 0] is the union of a conic

and a line in generic position.
We have det jac(y2 : x2+2xz: x2+xy+yz) = [y(2x2−yz) = 0] which is the union of a conic

and a line tangent to this conic.
We use an argument of dimension to show that the cuspidal cubic belongs to the image of

det jac.
Up to conjugation we obtain all plane cubics, we conclude by using the l.r. action.

4.2. Criterion of birationality

We will give a presentation of the classification of the quadratic birational maps. Let us
recall that ifφ is a rational map andP a homogeneous polynomial in three variables we say
thatφ contractsP if the image byφ of the curve[P= 0]\ Indφ is a finite set.

Remark 4.2.1. — In general a rational map doesn’t contract det jacf (it is the case forf : (x :
y : z) 99K (x2 : y2 : z2)). Buts if f is a birational map ofP2(C) into itself, then det jacf is
contracted byf .

Let A andB be two elements of PGL3(C). SetQ= AσB (resp.Q= AρB, resp.Q= AτB).
Then det jacQ is the union of three lines in general position (resp. the union of a "double" line
and a "simple" line, resp. a triple line). We will give a criterion which allows us to determine
if a quadratic rational map is birational or not.

Theorem 4.2.2([56]). — Let Q be a rational map; assume that Q is purely quadratic and non
degenerate(i.e. det jacQ 6≡ 0). Assume that Q contractsdet jacQ; thendet jacQ is the union of
three lines(non-concurrent when they are distincts) and Q is birational.

Moreover:
• if det jacQ is the union of three lines in general position, Q is, up to l.r. equivalence, the

involutionσ;
• if det jacQ is the union of a "double" line and a "simple" line, Q= ρ up to l.r. conjugation.
• if det jacQ is a "triple" line, Q belongs toOl .r.(τ).

Corollary 4.2.3([56]). — A quadratic rational map fromP2(C) into itself belongs toOl .r.(σ)
if and only if it has three points of indeterminacy.

Remark 4.2.4. — A birational mapQ of P2(C) into itself contracts det jacQ and doesn’t con-
tract any other curve. Is the Theorem 4.2.2 avalaible in degree strictly larger than 2 ? No,
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as soon as the degree is 3 we can exhibit elementsQ contracting det jacQ but which are not
birational:

Q: (x : y : z) 99K (x2y : xz2 : y2z).

Remark 4.2.5. — We don’t know if there is an analogue to Theorem 4.2.2 in anydimension;
[160] can maybe help to find an answer in dimension 3.

Remark 4.2.6. — In [56, Chapter 1, §6] we can find another criterion which allows us to
determine if a quadratic rational map is rational or not.

Proof of Theorem 4.2.2. — Let us see that det jacQ is the union of three lines.
Assume that det jacQ is irreducible. Let us setQ: (x : y : z) 99K (Q0 : Q1 : Q2). Up to l.r.

conjugacy we can assume that det jacQ is contracted on(1 : 0 : 0); then detjacQ dividesQ1

andQ2 which is impossible.
In the same way if det jacQ= Lq whereL is linear andq non degenerate and quadratic, we

can assume thatq= 0 is contracted on(1 : 0 : 0); thenQ: (x : y : z) 99K (q1 : q : αq) and so is
degenerate.

Therefore det jacQ is the product of three linear forms.

First of all let us consider the case where, up to conjugacy, det jacQ= xyz. If the linesx= 0
andy= 0 are contracted on the same point, for example(1 : 0 : 0), thenQ: (x : y : z) 99K (q :
xy : αxy) which is degenerate. The linesx = 0, y = 0 andz= 0 are thus contracted on three
distinct points. A computation shows that they cannot be aligned. We can assume thatx = 0
(resp. y= 0, resp.z= 0) is contracted on(1 : 0 : 0) (resp. (0 : 1 : 0), resp. (0 : 0 : 1)); let us
note thatQ is the involution(x : y : z) 99K (yz: xz: xy) up to l.r. conjugacy.

Now let us consider the case when det jacQ has two branchesx= 0 andz= 0. As we just
see, the linesx= 0 andz= 0 are contracted on two distinct points, for example(1 : 0 : 0) and
(0 : 1 : 0). The mapQ is up to l.r. conjugacyQ: (x : y : z) 99K (z(αy+βz) : x(γx+δy) : xz). A
direct computation shows thatQ is birational as soon asβδ−αγ 6= 0 and in fact l.r. equivalent
to ρ.

Then assume that det(jacQ) = z3. We can suppose thatz= 0 is contracted on(1 : 0 : 0); then
Q: (x : y : z) 99K (q : zℓ1 : zℓ2) whereq is a quadratic form and theℓi ’s are linear forms.

• If (z, ℓ1, ℓ2) is a system of coordinates we can write up to conjugacy

Q: (x : y : z) 99K (q : xz: yz), q= ax2+by2+cz2+dxy.

The explicit computation of det(jacQ) implies: a= b= d = 0, i.e. eitherQ is degenerate,
or Q represents a linear map which is impossible.

• Assume that(z, ℓ1, ℓ2) is not a system of coordinates,i.e.

ℓ1 = az+ ℓ(x,y), ℓ2 = bz+ εℓ(x,y).

Let us remark thatℓ is nonzero (otherwiseQ is degenerate), thus we can assume thatℓ= x.
Up to l.r. equivalence

Q: (x : y : z) 99K (q : xz: z2).
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An explicit computation implies the following equality: detjacQ=−2z2 ∂q
∂y ; thuszdivides

∂q
∂y . In other wordsq= αz2+βxz+ γx2+δyz. Up to l.r. equivalence, we obtainQ= τ.

Finally let us consider the case: det(jacQ) = xy(x− y). As we just see the linesx= 0 and
y= 0 are contracted on two distinct points, for example(1 : 0 : 0) and(0 : 1 : 0). So

Q: (x : y : z) 99K (y(ax+by+cz) : x(αx+βy+ γz) : xy)

with a, b, c, α, β, γ ∈ C. Let us note that the image of the linex= y by Q is ((a+ b)x+ cz :
(α+β)x+ γz : x); it is a point if and only ifc andγ are zero, thenQ does not depend onz.

Set

Σ3 := Ol .r.(σ), Σ2 := Ol .r.(ρ), Σ1 := Ol .r.(τ).

Let us consider a birational map represented by

Q: (x : y : z) 99K ℓ(ℓ0 : ℓ1 : ℓ2)

whereℓ and theℓi ’s are linear forms, theℓi ’s being independent. The line given byℓ = 0 is
an apparent contracted line; indeed the action ofQ on P2(C) is obviously the action of the
automorphism(ℓ0 : ℓ1 : ℓ2) of P2(C). Let us denote byΣ0 the set of these maps

Σ0 =
{
ℓ(ℓ0 : ℓ1 : ℓ2)

∣∣ℓ, ℓi linear forms, theℓi ’s being independent
}
.

We will abusively call the elements ofΣ0 linear elements; in fact the set

(Σ0)• =
{

f •
∣∣ f ∈ Σ0}

can be identified to PGL3(C). We haveΣ0 = Ol .r.(x(x : y : z)): up to l.r. conjugacy a mapℓA
can be writtenxA′ thenxid. This approach allows us to see degenerations of quadratic maps on
linear maps.

Let us remark that an element ofΣi hasi points of indeterminacy andi contracted curves.
An element ofΣi cannot be linearly conjugate to an element ofΣ j where j 6= i; nevertheless

they can be birationally conjugate: the involutionsσ, ρ and τ are birationally conjugate to
involutions of PGL3(C). Let us mention that a generic element ofΣi, i ≥ 1, is not birationally
conjugate to a linear map.

Corollary 4.2.7([56]). — We have

B̊ir2 = Σ1∪Σ2∪Σ3, Bir2 = Σ0∪Σ1∪Σ2∪Σ3.

Remarks 4.2.8. — i. A Nœther decomposition ofρ is

(z−y : y−x : y)σ(y+z : z : x)σ(x+z : y−z : z).

We recover the classic fact already mentioned in [122, 3]: for any birational quadratic mapQ
with two points of indeterminacy there existℓ1, ℓ2 andℓ3 in PGL3(C) such thatQ= ℓ1σℓ2σℓ3.
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ii. The mapτ = (x2 : xy : y2−xz) of Σ1 can be writtenℓ1σℓ2σℓ3σℓ4σℓ5 where

ℓ1 = (y−x : 2y−x : z−y+x), ℓ2 = (x+z : x : y),

ℓ3 = (−y : x+z−3y : x), ℓ4 = (x+z : x : y),

ℓ5 = (y−x : −2x+z : 2x−y).

Therefore each element ofΣ1 is of the following typeℓ1σℓ2σℓ3σℓ4σℓ5 whereℓi is in PGL3(C)
(see[122, 3]). The converse is false: if theℓi ’s are generic thenℓ1σℓ2σℓ3σℓ4σℓ5 is of degree 16.

4.3. Some orbits under the left-right action

As we saw Bir2 is a finite union of l.r. orbits but it is not a closed algebraicsubset of Rat2 :
the "constant" map(yz: 0 : 0) is in the closure ofOl .r.(σ) but not in Bir2. To precise the nature
of Bir2 we will study the orbits ofσ, ρ, τ andx(x : y : z).

Proposition 4.3.1([56]). — The dimension ofΣ3 = Ol .r.(σ) is 14.

Proof. — Let us denote by Isotσ the isotropy group ofσ. Let(A,B) be an element of(SL3(C))2

such thatAσ = σB; a computation shows that(A,B) belongs to

〈
((

x
α

:
y
β

: αβz

)
,

(
αx : βy :

z
αβ

))
, S6×S6

∣∣α, β ∈ C∗〉

where

S6 =
{

id, (x : z : y), (z : y : x), (y : x : z), (y : z : x), (z : x : y)
}
.

This implies that dimIsotσ = 2.

Proposition 4.3.2([56]). — The dimension ofΣ2 = Ol .r.(ρ) is 13.

Proof. — We will compute Isotρ, i.e. let A andC be two elements of SL3(C) such that
Aρ = ηρC whereη is inC∗. Let us recall that

Indρ =
{
(0 : 1 : 0), (1 : 0 : 0)

}
;

the equalityAρ = ηρC implies thatC preserves Indρ. But the points of indetermincay ofρ "are
not the same", they don’t have the same multiplicity soC fixes (0 : 1 : 0) and(1 : 0 : 0); thus
C= (ax+bz: cy+dz: ez), whereace 6= 0. A computation shows that

A= (ηγδx+ηβδz : ηα2y : ηαδz), C = (γx+βz : δy : αz)

with η3α2δ = αγδ = 1. The dimension of the isotropy group is then 3.

Notice that the computation of Isotρ shows that we have the following relations

(γδx+βδz : α2y : αδz)ρ = ρ(γx+βz : δy : αz), α, γ, δ ∈ C∗, β ∈C.

We can compute the isotropy group ofτ and show that:

Proposition 4.3.3([56]). — The dimension ofΣ1 is 12.
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In particular we obtain the following relations:Aτ = τB when

A=




αε 0 βε
εγ+2αβ α2 (εδ+β2)

0 0 ε2


 , B=




α β 0
0 ε 0
γ δ α/ε


 ,

whereβ, γ, δ ∈ C, α, ε ∈ C∗.
A similar computation allows us to state the following result.

Proposition 4.3.4([56]). — The dimension ofΣ0 = Ol .r.(x(x : y : z)) is 10.

4.4. Incidence conditions; smoothness ofBir2 and non-smoothness ofBir2

Let us study the incidence conditions between theΣi ’s and the smoothness of Bir2 :

Proposition 4.4.1([56]). — We have

Σ0 ⊂ Σ1, Σ1 ⊂ Σ2, Σ2 ⊂ Σ3

(the closures are taken inBir2); in particular Σ3 is dense inBir2.

Proof. — By composingσ with (z : y : εx+z) we obtain

σε
1 =

(
y(εx+z) : z(εx+z) : yz

)

which is forε 6= 0 in Ol .r.(σ). But σε
1 is l.r. conjugate to

σε
2 =

(
xy : (εx+z)z : yz

)
.

Let us note that lim
ε→0

σε
2 = (xy : z2 : yz) = ρ; soΣ2 ⊂ Σ3.

If we composeρ with (z : x+ y : x), we have up to l.r. equivalence(yz+ xz : x2 : xy).
Composing with(x : y : y+z), we obtain up to l.r. conjugation the mapf = (yz+y2+xz: x2 :
xy). Setgε := f (x/ε : y : −εz); up to l.r. conjugationgε can be written(−εyz+y2−xz: x2 : xy).
For ε = 0 we have the mapτ. ThereforeΣ1 is contained inΣ2.

If ε is nonzero, thenτ can be written up to l.r. conjugation:

(x2 : xy : ε2y2+xz);

for ε = 0 we obtainx(x : y : z) which is inΣ0. HenceΣ0 ⊂ Σ1.

Thus we can state the following result.

Theorem 4.4.2([56]). — The closures being taken inBir2 we have

Σ0 = Σ0, Σ1 = Σ0∪Σ1, Σ2 = Σ0∪Σ1∪Σ2,

B̊ir2 = Σ1∪Σ2∪Σ3, Bir2 = Σ3 = Σ0∪Σ1∪Σ2∪Σ3

with

dimΣ0 = 10, dimΣ1 = 12, dimΣ2 = 13 and dimΣ3 = 14.
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Theorem 4.4.3([56]). — The set of quadratic birational maps is smooth in the set of rational
maps.

Proof. — Because anyΣi is one orbit and because of the incidence conditions it is sufficient
to prove that the closure ofΣ3 is smooth alongΣ0.

The tangent space toΣ0 in x(x : y : z) is given by:

Tx(x:y:z)Σ0 =
{
(α1x2+α4xy+α5xz: β1x2+β2y2+β4xy+β5xz+β6yz:

γ1x2+β6z2+ γ4xy+ γ5xz+β2yz)
∣∣αi , βi , γi ∈ C

}
.

The vector spaceSgenerated by

(y2 : 0 : 0), (z2 : 0 : 0), (yz: 0 : 0), (0 : z2 : 0),

(0 : 0 :y2), (0 : 0 :z2), (0 : 0 :yz)

is a supplementary of Tx(x:y:z)Σ0 in Rat2. Let f be an element ofΣ3∩
{

x(x : y : z)+S
}
, it can

be written

(x2+Ay2+Bz2+Cyz: xy+az2 : xz+αy2+βz2+ γyz).

Necessarilyf has three points of indeterminacy.
Assume thata 6= 0; let us remark that the second component of a point of indeterminacy of f

is nonzero. If(x : y : z) belongs to Indf , thenx=−az2/y. We have

f (−az2/y : y : z) = (a2z4+Ay4+By2z2+Cy3z : 0 :−az3+αy3+βyz2+ γy2z)

= (P : 0 : Q).

As f has three points of indeterminacy, the polynomialsP and Q have to vanish on three
distinct lines. In particularQ dividesP:

a2z4+Ay4+By2z2+Cy3z= (My+Nz)(−az3+αy3+βyz2+ γy2z).

Thus

(4.4.1) B=−β2−aγ, C=−βγ−aα, A=−αβ.

These three equations define a smooth graph throughf andx(x : y : z), of codimension 3 asΣ3.

Assume now thata is zero; a point of indeterminacy(x : y : z) of f satisfiesxy= 0. If x= 0
we have

f (0 : y : z) = (Ay2+Bz2+Cyz: 0 : αy2+βx2+ γyz)

and if y = 0 we havef (x : 0 : z) = (x2 +Bz2 : 0 : xz+ βz2). The map f has a point of inde-
terminacy of the form(x : 0 : z) if and only if B = −β2. If it happens, f has only one such
point of indeterminacy. Sincef has three points of indeterminacy, two of them are of the form
(0 : y : z) and the polynomialsAy2+Bz2+Cyzandαy2+βz2+ γyzareC-colinear. We obtain
the conditions

• a= 0, B=−β2, A=−αβ andC =−βγ if β is nonzero;
• a= B= β = Aγ−αC= 0 otherwise.
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Let us remark that in this last casef cannot have three points of indeterminacy. Finally we note
thatΣ3∩

{
x(x : y : z)+S

}
is contained in the graph defined by the equations (4.4.1). The same

holds for the closureΣ3∩
{

x(x : y : z)+S
}

which, for some reason of dimension, coincides

thus with this graph. ThenΣ3 is smooth alongΣ0.

Remark 4.4.4. — SinceΣ3 is smooth alongΣ0 and since we have incidence conditions,Σ3 is
smooth alongΣ2 andΣ1. Nevertheless we can show these two statements by constructing linear
families of birational maps(see[56]).

Proposition 4.4.5([56]). — The closure ofBir2 in P17 ≃ Rat2 is not smooth.

Proof. — Letφ be a degenerate birational map given byz(x : y : 0). The tangent space toOl .r.(φ)
in φ is given by

TφOl .r.(φ) =
{
(α1x2+α3z2+α4xy+α5xz+α6yz: α4y2+β3z2

+α1xy+β5xz+β6yz: γ5xz+ γ6yz)
∣∣αi , βi , γi ∈C

}
.

A supplementarySof TφOl .r.(φ) is the space of dimension 8 generated by

(y2 : 0 : 0), (0 : x2 : 0), (0 : y2 : 0), (0 : xy : 0),

(0 : 0 :x2), (0 : 0 :y2), (0 : 0 :z2), (0 : 0 :xy).

We will prove that
{

φ+S
}
∩Σ3 contains a singular analytic subset of codimension 3. SinceΣ3

is also of codimension 3 we will obtain, using the l.r. action, the non-smoothness ofΣ3 along
the orbit ofφ. An elementQ of

{
φ+S

}
can be writen

(xz+ay2 : yz+bx2+cy2+dxy: ex2+ f y2+gz2+hxy).

The points of indeterminacy are given by the three followingequations

xz+ay2 = 0, yz+bx2+cy2+dxy= 0, ex2+ f y2+hxy= 0;

after eliminatingz this yields toP1 = P2 = 0 where

P1 =−ay3+bx3+cxy2+dx2y, P2 = ex4+ f x2y2+a2gy4+hx3y.

Let us remark that if, for some values of the parameters,P1 vanishes on three distinct lines and
dividesP2, then the corresponding mapQ has three points of indeterminacy and is birational,
more preciselyQ is in Σ3. The fact thatP1 dividesP2 gives

(4.4.2) P2 = (Ax+By)P1 ⇔





e= bA
f = cA+dB
a2g=−aB
h= dA+bB
aA= cB

Let us note that the setΛ of parameters such that

a= 0, b f −ce= 0, bh−de= 0
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satisfies the system (4.4.2) (withA= e/b andB= 0). The setΛ is of codimension 3 and is not
smooth. The intersectionΛ′ of quadricsb f −ce= 0 andbh−de= 0 is not smooth. IndeedΛ′

contains the linear spaceE given byb= e= 0 but is not reduced toE: for example the space
defined byb= c= d = e= f = h is contained inΛ′ and not inE. Since codimE = codimΛ′

the setΛ′ is thus reducible and then not smooth; it is the same forΛ. If a= b= e= 0 (resp.b=
c= d = e= f = h= 1, a= 0) the polynomialP1 is equal tocxy2+dx2y (resp.x3+xy2+x2y)
and in general vanishes on three distinct lines. So we have constructed inΣ3 ∩

{
φ+S

}
a

singular analytic set of codimension 3.

4.5. A geometric description of quadratic birational maps

4.5.1. First definitions and first properties. — In a planeP let us consider a net of conics,
i.e. a 2-dimensional linear systemΛ of conics. Such a system is ahomaloidal net if it pos-
sesses three base-points, that is three points through which all the elements ofΛ pass. There
are three different such nets

• the netsΛ3 of conics with three distinct base-points;
• the netsΛ2 of conics passing through two points, all having at one of them the same

tangent;
• the netsΛ1 of conics mutually osculating at a point.
In order to have three conics that generate a homaloidal netΛ it suffices to annihilate the

minors of a matrix [
ℓ0 ℓ1 ℓ2

ℓ′0 ℓ′1 ℓ′2

]

whose elements are linear forms in the indeterminatesx, y andz. Indeed the two conics de-
scribed by

(4.5.1) ℓ0ℓ
′
1− ℓ′0ℓ1 = 0, ℓ0ℓ

′
2− ℓ2ℓ

′
0 = 0

have four points in common. One of them ((ℓ0 = 0)∩ (ℓ′0 = 0)) doesn’t belong to the third
conicℓ1ℓ

′
2− ℓ′1ℓ2 = 0 obtained from (4.5.1) by eliminatingℓ0/ℓ

′
0. SoΛ is given by

a0(ℓ0ℓ
′
1− ℓ′0ℓ1)+a1(ℓ0ℓ

′
2− ℓ2ℓ

′
0)+a2(ℓ1ℓ

′
2− ℓ′1ℓ2) = 0

with (a0 : a1 : a2) ∈ P2(C).
Let x, y, zbe some projective coordinates inP and letu, v, w be some projective coordinates

in P ′, another plane which coincides withP . Let f be the algebraic correspondance between
these two planes; it is defined by

{
ϕ(x,y,z;u,v,w) = 0
ψ(x,y,z;u,v,w) = 0

As f is a birational isomorphism we can writeϕ andψ as follows
{

ϕ(x,y,z;u,v,w) = uℓ0(x,y,z)+vℓ1(x,y,z)+wℓ2(x,y,z),
ψ(x,y,z;u,v,w) = uℓ′0(x,y,z)+vℓ′1(x,y,z)+wℓ′2(x,y,z)
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and also {
ϕ(x,y,z;u,v,w) = xL0(u,v,w)+yL1(u,v,w)+zL2(u,v,w),
ψ(x,y,z;u,v,w) = xL′0(u,v,w)+yL′1(u,v,w)+zL′2(u,v,w)

whereℓi, ℓ′i, Li andL′
i are some linear forms. This implies in particular that

(4.5.2) (u : v : w) = (ℓ1ℓ
′
2− ℓ2ℓ

′
1 : ℓ2ℓ

′
0− ℓ0ℓ

′
2 : ℓ0ℓ

′
1− ℓ1ℓ

′
0)

i.e. u(resp.v, resp.w) is a quadratic form inx, y, z.
On can note that ifm= (u : v : w) ∈ P ′ belongs to the lineD given bya0u+a1v+a2w= 0

the point(x : y : z) corresponding to it via (4.5.2) belongs to the conic given by

a0(ℓ1ℓ
′
2− ℓ2ℓ

′
1)+a1(ℓ2ℓ

′
0− ℓ0ℓ

′
2)+a2(ℓ0ℓ

′
1− ℓ1ℓ

′
0) = 0.

So the lines of a plane thus correspond to the conics of a homaloidal net of the other plane.
Conversely we can associate a quadratic map between two planes to a homaloidal net of

conics in one of them. LetΛ be an arbitrary homaloidal net of conics inP and let us consider
a projectivityθ betweenΛ and the net of lines inP ′. Let m be a point ofP and let us assume
thatm is not a base-point ofΛ. The elements ofΛ passing throughm is a pencil of conics with
four base-points: the three base-points ofΛ andm. To this pencil corresponds a pencil of lines
whose base-point̃m is determined bym. To a pointm′ ∈ P ′ corresponds a pencil of conics
in P , the image of the pencil of lines centered inm. Therefore the map which sendsm to m̃
gives rise to a Cremona map fromP into P ′ which sends the conics ofP into the lines ofP ′.

So we have the following statement.

Proposition 4.5.1. — To give a quadratic birational map between two planes is, up to an
automorphism, the same as giving a homaloidal net of conics in one of them.

Remark 4.5.2. — To a base-point of one of the two nets is associated a line inthe other plane
which is an exceptional line.

4.5.2. Classification of the quadratic birational maps between planes. —We can deduce
the classification of the quadratic birational maps betweenplanes from the description of the
homaloidal netsΛ of conics inP .

• If Λ has three distinct base-points we can assume that these points arep0 = (1 : 0 : 0),
p1 = (0 : 1 : 0), p2 = (0 : 0 : 1) andΛ is thus given by

a0yz+a1xz+a2xy= 0, (a0 : a1 : a2) ∈ P2(C).

The map f is defined by(x : y : z) 99K (yz : xz : xy) and can easily be inverted (f is an
involution).

• If Λ has two distinct base-points, we can assume that the conics of Λ are tangent atp2 =

(0 : 0 : 1) to the linex= 0 and also pass throughp0 = (1 : 0 : 0). ThenΛ is given by

a0xz+a1xy+a2y2 = 0, (a0 : a1 : a2) ∈ P2(C).

The mapf is defined by(x : y : z) 99K (xz: xy : y2) and its inverse is(u : v : w) 99K (v2 :
vw : uw).
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• If the conics ofΛ are mutually osculating atp2 = (0 : 0 : 1), we can assume thatΛ contains
the two degenerated conicsx2 = 0 andxy= 0. LetC be an irreducible conic inΛ; assume
that C ∩ (y = 0) = p0 and thatp1 = (0 : 1 : 0) is the pole ofy = 0 with respect toC .
Assume finally that(1 : 1 : 1) belongs toC thenC is given byxz+y2 = 0 andΛ is defined
by

a0(xz+y2)+a1x2+a2xy= 0, (a0 : a1 : a2) ∈ P2(C).

The mapf is (x : y : z) 99K (xz−y2 : x2 : xy) and its inverse is(u : v : w) 99K (v2 : vw :
uv+w2).

Remark 4.5.3. — We can see thatf and f−1 have the same type. So the homaloidal nets
associated tof and f−1 have the same type.

4.6. Cubic birational maps

The space of birational maps which are purely of degree 2 is smooth and connected. Is
it the case in any degree ? Let us see what happens in degree 3. In the old texts we can
find a description of cubic birational maps which is based on enumerative geometry. In [56,
Chapter 6] we give a list of normal forms up to l.r. conjugation, the connectedness appearing
as a consequence of this classification. The methods are classical: topology of the complement
of some plane curves, contraction of the jacobian determinant... Unfortunately, as soon as the
degree is greater than 3 we have no criterion as in degree 2: iff is the map(x2y : xz2 : y2z),
the zeroes of det jacf are contracted butf is not invertible. Nevertheless iff is birational, the
curve det jacf = 0 is contracted and it helps in a lot of cases. We show that in degree 3 the
possible configurations of contracted curves are the following unions of lines and conics:

{5}{4}{3}{2}{1}

{10}{9}{8}{7}{6}

{15}{14}{13}{12}{11}

The following table gives the classification of cubic birational maps up to conjugation:
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(xz2+y3 : yz2 : z3) {1} {1} 13
(xz2 : x2y : z3) {2} {2} 15

(xz2 : x3+xyz: z3) {2} {2} 15
(x2z : x3+z3+xyz: xz2) {2} {2} 14
(x2z : x2y+z3 : xz2) {2} {2} 15
(xyz: yz2 : z3−x2y) {2} {8} 14

(x3 : y2z : xyz) {3} {3} 15
(x2(y−z) : xy(y−z) : y2z) {3} {10} 15

(x2z : xyz: y2(x−z)) {3} {10} 15
(xyz: y2z : x(y2−xz)) {3} {10} 15
(x3 : x2y : (x−y)yz) {4} {4} 15

(x2(x−y) : xy(x−y) : xyz+y3) {4} {4} 16
(xz(x+y) : yz(x+y) : xy2) {5} {5} 16

(x(x+y)(y+z) : y(x+y)(y+z) : xyz) {5} {12} 16
(x(x+y+z)(x+y) : y(x+y+z)(x+y) : xyz) {5} {12} 16

(x(x2+y2+ γxy) : y(x2+y2+ γxy) : xyz), γ2 6= 4 {6} {6} 15 1 parameter
(xz(y+x) : yz(y+x) : xy(x−y)) {7} {7} 16

(x(x2+y2+ γxy+ γ+xz+yz) : y(x2+y2+ γxy+ γ+xz+yz) : xyz) {7} {14} 16 1 parameter
(y(x−y)(x+z) : x(x−y)(z−y) : yz(x+y)) {7} {14} 16

(x(x2+yz) : y3 : y(x2 +yz)) {8} {2} 14
(y2z : x(xz+y2) : y(xz+y2)) {9} {9} 15
(x(y2+xz) : y(y2+xz) : xyz) {10} {3} 15
(x(y2+xz) : y(y2+xz) : xy2) {10} {3} 15
(x(x2+yz) : y(x2+yz) : xy2) {10} {3} 15

(x(xy+xz+yz) : y(xy+xz+yz) : xyz) {11} {11} 16
(x(x2+yz+xz) : y(x2+yz+xz) : xyz) {11} {11} 16
(x(x2+xy+yz) : y(x2+xy+yz) : xyz) {12} {5} 16
(x(x2+yz) : y(x2+yz) : xy(x−y)) {12} {5} 16

(x(y2+ γxy+yz+xz) : y(y2+ γxy+yz+xz) : xyz), γ 6= 0, 1 {13} {13} 16 1 parameter
(x(x2+y2+ γxy+xz) : y(x2+y2+ γxy+xz) : xyz), γ2 6= 4, {14} {7} 16 1 parameter

(x(x2 +yz+xz) : y(x2+yz+xz) : xy(x−y)) {14} {7} 16
(x(x2+y2+ γxy+δxz+yz) : y(x2+y2+ γxy+δxz+yz) : xyz), γ2 6= 4, δ 6= γ± {15} {15} 16 2 parameters



54 CHAPTER 4. QUADRATIC AND CUBIC BIRATIONAL MAPS

whereγ denotes a complex number and where

γ+ :=
γ+
√

γ2−4
2

γ− :=
γ−
√

γ2−4
2

.

For any model we mention the configuration of contracted curves of the map (second column),
the configuration of the curves contracted by the inverse (third column), the dimension of its
orbit under the l.r. action (fourth column) and the parameters (fifth column).

Any cubic birational map can be written, up to dynamical conjugation,A f whereA denotes
an element of PGL3(C) and f an element of the previous table. This classification allowsus to
prove that the “generic” element has the last configuration and allows us to establish that the
dimension of the space̊Bir3 of birational maps purely of degree 3 is 18. Up to l.r. conjugation
the elements having the generic configuration{15} form a family of 2 parameters: in degree 2
there are 3 l.r. orbits, in degree 3 an infinite number.

Let us note that the configurations obtained by degenerescence from picture{15} do not all
appear. In degree 2 there is a similar situation: the configuration of three concurrent lines is
not realised as the exceptional set of a quadratic birational map.

Let us denote byX the set of birational maps purely of degree 3 having configuration {15}.
We establish that the closure ofX in B̊ir3 is B̊ir3. We can show that̊Bir3 is irreducible, in fact
rationally connected ([56, Chapter 6]); but if Bir2 is smooth and irreducible Bir3, viewed in
P29(C)≃ Rat3, doesn’t have the same properties ([56, Theorem 6.38]).

Let us mention another result. Let dJd be the subset of dJ made of birational maps of degreed
and let Vd be the subset of Bir(P2) defined by

Vd =
{

A f B
∣∣A, B∈ PGL3(C), f ∈ dJd

}
.

The dimension of Bird is equal to 4d+6 and Vd its unique irreducible component of maximal
dimension ([150]).



CHAPTER 5

FINITE SUBGROUPS OF THE CREMONA GROUP

The study of the finite subgroups of Bir(P2) began in the 1870′s with Bertini, Kantor and
Wiman ([27, 130, 184]). Since then, many mathematicians have been interested inthe subject,
let us for example mention [14, 17, 18, 31, 65, 83]. In 2006 Dolgachev and Iskovkikh improve
the results of Kantor and Wiman and give the description of finite subgroups of Bir(P2) up to
conjugacy. Before stating one of the key result let us introduce some notions.

Let S be a smooth projective surface. Aconic bundleη : S→ P1(C) is a morphism whose
generic fibers have genus 0 and singular fibers are the union oftwo lines. A surface endowed
with conic bundles is isomorphic either toFn, or toFn blown up in a finite number of points, all
belonging to different fibers (the number of blow-ups is exactly the number of singular fibers).

A surface S is called adel Pezzo surfaceif −KS is ample, which means that−KS ·C > 0
for any irreducible curveC ⊂ S. Any del Pezzo surface exceptP1(C)×P1(C) is obtained by
blowing upr points p1, . . ., pr of P2(C) with r ≤ 8 and no 3 ofpi are collinear, no 6 are on
the same conic and no 8 lie on a cubic having a singular point atone of them. The degree of S
is 9− r.

Theorem 5.0.1([139, 123]). — LetG be a finite subgroup of the Cremona group. There exists
a smooth projective surfaceS and a birational mapφ : P2(C) 99K S such thatφGφ−1 is a
subgroup ofAut(S). Moreover one can assume that

• eitherS is a del Pezzo surface;
• or there exists a conic bundleS→ P1(C) invariant byφGφ−1.

Remark 5.0.2. — The alternative is not exclusive: there are conic bundleson del Pezzo sur-
faces.

Dolgachev and Iskovskikh give a characterization of pairs(G,S) satisfying one of the pos-
sibilities of Theorem 5.0.1. Then they use Mori theory to determine when two pairs are bira-
tionally conjugate. Let us note that the first point was partially solved by Wiman and Kantor
but not the second. There are still some open questions ([83] §9), for example the descrip-
tion of the algebraic varieties that parametrize the conjugacy classes of the finite subgroups
of Bir(P2). Blanc gives an answer to this question for finite abelian subgroups of Bir(P2) with
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no elements with an invariant curve of positive genus, also for elements of finite order (resp.
cyclic subgroups of finite order) of the Cremona group ([31, 32]).

5.1. Birational involutions

5.1.1. Geiser involutions. —Let p1, . . . , p7 be seven points ofP2(C) in general position.
Let L be the linear system of cubics through thepi ’s. A cubic is given by a homogeneous
polynomial of degree 3 in three variables. The dimension of the space of homogeneous poly-
nomials of degree 3 in 3 variables is 10 thus dim{C|C cubic} = 10− 1 = 9; cubics have to
pass throughp1, . . ., p7 so dimL = 2. Let p be a generic point ofP2(C); let us consider the
pencilLp containing elements ofL throughp. A pencil of generic cubics

a0C0+a1C1, C0,C1 two cubics (a0 : a1) ∈ P1(C)

has nine base-points (indeed by Bezout’s theorem the intersection of two cubics is 3× 3= 9
points); so we define byIG(p) the ninth base-point ofLp.

The involutionIG = IG(p1, . . . , p7) which sendsp to IG(p) is aGeiser involution.
We can check that such an involution is birational, of degree8; its fixed points form an

hyperelliptic curve of genus 3, degree 6 with 7 ordinary double points which are thepi ’s. The
exceptional locus of a Geiser involution is the union of seven cubics passing through the seven
points of indeterminacy ofIG and singular in one of these seven points (cubics with double
point).

The involutionIG can be realized as an automorphism of a del Pezzo surface of degree 2.

5.1.2. Bertini involutions. — Let p1, . . . , p8 be eight points ofP2(C) in general position.
Let us consider the set of sexticsS = S(p1, . . . , p8) with double points inp1, . . . , p8. Let m
be a point ofP2(C). The pencil given by the elements ofS having a double point inm has
a tenth base double pointm′. The involution which swapsm andm′ is a Bertini involution
IB = IB(p1, . . . , p8).

Its fixed points form a non hyperelliptic curve of genus 4, degree 9 with triple points in the
pi ’s and such that the normalisation is isomorphic to a singular intersection of a cubic surface
and a quadratic cone inP3(C).

The involutionIB can be realized as an automorphism of a del Pezzo surface of degree 1.

5.1.3. de Jonquières involutions. —Let C be an irreductible curve of degreeν ≥ 3. Assume
thatC has a unique singular pointp and thatp is an ordinary multiple point with multiplicity
ν− 2. To (C , p) we associate a birational involutionIJ which fixes pointwiseC and which
preserves lines throughp. Let m be a generic point ofP2(C) \ C ; let rm, qm and p be the
intersections of the line(mp) andC ; the pointIJ(m) is defined by the following property: the
cross ratio ofm, IJ(m), qm andrm is equal to−1. The mapIJ is ade Jonquières involution
of degreeν centered inp and preservingC . More precisely its fixed points are the curveC of
genusν−2 for ν ≥ 3.



5.2. BIRATIONAL INVOLUTIONS AND FOLIATIONS 57

For ν = 2 the curveC is a smooth conic; we can do the same construction by choosinga
point p not onC .

5.1.4. Classification of birational involutions. —

Definition. — We say that an involution is ofde Jonquières typeit is birationally conjugate
to a de Jonquières involution. We can also speak about involution of Geiser type, resp.Bertini
type.

Theorem 5.1.1([27, 14]). — A non-trivial birational involution ofP2(C) is either of de Jon-
quières type, or Bertini type, or Geiser type.

More precisely Bayle and Beauville obtained the following statement.

Theorem 5.1.2([14]). — The map which associates to a birational involution ofP2 its nor-
malized fixed curve establishes a one-to-one correspondence between:

• conjugacy classes of de Jonquières involutions of degree d and isomorphism classes of
hyperelliptic curves of genus d−2 (d ≥ 3);

• conjugacy classes of Geiser involutions and isomorphism classes of non-hyperelliptic
curves of genus3;

• conjugacy classes of Bertini involutions and isomorphism classes of non-hyperelliptic
curves of genus4 whose canonical model lies on a singular quadric.

The de Jonquières involutions of degree2 form one conjugacy class.

5.2. Birational involutions and foliations

5.2.1. Foliations: first definitions. — A holomorphic foliation F of codimension 1 and
degreeν onP2(C) is given by a 1-form

ω = u(x,y,z)dx+v(x,y,z)dy+w(x,y,z)dz

whereu, v andw are homogeneous polynomials of degreeν+1 without common component
and satisfying the Euler identityxu+ vy+wz= 0. The singular locus SingF of F is the
projectivization of the singular locus ofω

Singω =
{
(x,y,z) ∈ C3

∣∣u(x,y,z) = v(x,y,z) = w(x,y,z) = 0
}
.

Let us give a geometric interpretation of the degree. LetF be a foliation of degreeν onP2(C),
let D be a generic line, and letp a point ofD \SingF . We say thatF is transversalto D if
the leafLp of F in p is transversal toD in p, otherwise we say thatp is apoint of tangency
betweenF andD. The degreeν of F is exactly the number of points of tangency betweenF

andD. Indeed, ifω be a 1-form of degreeν+1 onC3 definingF , it is of the following type

ω = P0dx+P1dy+P2dz, Pi homogeneous polynomial of degreeν+1.

Let us denote byω0 the restriction ofω to the affine chartx= 1

ω0 = ω|x=1 = P1(1,y,z)dy+P2(1,y,z)dz.
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Assume that the lineD =
{

z= 0
}

is a generic line. In the affine chartx= 1 the fact that the
radial vector field vanishes onD implies that

P0(1,y,0)+yP1(1,y,0) = 0.

Generically (on the choice ofD) the polynomialP0(1,y,0) is of degreeν+1 soP1(1,y,0) is
of degreeν. Sinceω0|D = P1(1,y,0)dy, the restriction ofω0 to D vanishes intoν points: the
number of tangencies betweenF andD is ν.

The classification of foliations of degree 0 and 1 onP2(C) is known since the XIXth century.
A foliation of degree 0 onP2(C) is a pencil of lines,i.e. is given byxdy− ydx = x2d

( y
x

)
, the

pencil of lines beingy
x = cte. Each foliation of degree 1 on the complex projective plane has 3

singularities (counting with multiplicity), has, at least, one invariant line and is given by a
rational closed 1-form (in other words there exists a homogeneous polynomialP such thatω/P
is closed); the leaves are the connected components of the “levels” of a primitive of this 1-form.
The possible 1-forms are

xλ0yλ1zλ2, λi ∈ C, ∑
i

λi = 0,
x
y

exp

(
z
y

)
,

Q
x2

whereQ is a quadratic form of maximal rank. More generally a foliation of degree 0 onPn(C)
is associated to a pencil of hyperplanes,i.e. is given by the levels ofℓ1/ℓ2 whereℓ1, ℓ2 are two
independent linear forms. LetF be a foliation of degree 1 onPn(C). Then

• either there exists a projectionτ : Pn(C) 99K P2(C) and a foliation of degree 1 onP2(C)
such thatF = τ∗F1,

• or the foliation is given by the levels ofQ/L2 whereQ (resp.L) is of degree 2 (resp. 1).
For ν ≥ 2 almost nothing is known except the generic nonexistence ofan invariant curve

([125, 57]). Let us mention that
• there exists a description of the space of foliations of degree 2 inP3(C) (see[58]);
• any foliation of degree 2 is birationally conjugate to another (not necessary of degree 2)

given by a linear differential equationdy
dx = P(x,y) whereP is inC(x)[y] (see[59]).

A regular pointmof F is aninflection point for F if Lm has an inflection point inm. Let us
denote by FlexF the closure of these points. A way to find this set has been given by Pereira
in [162]: let

Z = E
∂
∂x

+F
∂
∂y

+G
∂
∂z

be a homogeneous vector field onC3 non colinear to the radial vector fieldR= x ∂
∂x +y ∂

∂y +z ∂
∂z

describingF (i.e. ω = iRiZdx∧dy∧dz). Let us consider

H =

∣∣∣∣∣∣

x E Z(E)
y F Z(F)
z G Z(G)

∣∣∣∣∣∣
;

the zeroes ofH is the union of FlexF and the lines invariant byF .
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5.2.2. Foliations of degree2 and involutions. — To any foliationF of degree 2 onP2(C)
we can associate a birational involutionIF : let us consider a generic pointm of F , sinceF

is of degree 2, the tangent TmLm to the leaf throughm is tangent toF at a second pointp, the
involution IF is the map which swaps these two points. More precisely let usassume thatF is
given by the vector fieldχ. The image byIF of a generic pointm is the pointm+sχ(m) where
s is the unique nonzero parameter for whichχ(m) andχ(m+sχ(m)) are colinear.

Let q be a singular point ofF and letP (q) be the pencil of lines throughq. The curve of
points of tangency Tang(F ,P (q)) betweenF andP (q) is blown down byIF on q. We can
verify that all contracted curves are of this type.

5.2.2.1. Jouanolou example. — The foliationFJ is described in the affine chartz= 1 by

(x2y−1)dx− (x3−y2)dy;

this example is due to Jouanolou and is the first known foliation without invariant algebraic
curve.

We can computeIFJ :

(xy7+3x5y2z− x8−5x2y4z2+2y3z5+ x3yz4− xz7 :

3xy5z2+2x5z3− x7y−5x2y2z4+ x4y3z+ yz7− y8 :

xy4z3−5x4y2z2− y7z+2x3y5+3x2yz5− z8+ x7z).

its degree is 8 and

IndIFJ = SingFJ =
{
(ξ j : ξ−2 j : 1)

∣∣ j = 0, . . . ,6, ξ7 = 1
}
.

As there is no invariant algebraic curve forFJ we have

FlexFJ = FixIFJ = 2(3x2y2z2−xy5−x5z−yz5);

this curve is irreducible.
The subgroup of Aut(P2) which preserves a foliationF of P2(C) is called theisotropy

group of F ; it is an algebraic subgroup of Aut(P2) denoted by

IsoF =
{

ϕ ∈ Aut(P2)
∣∣ϕ∗F = F

}
.

The point(1 : 1 : 1) is a singular point of FlexFJ, it is an ordinary double point. If we let
IsoFJ act, we note that each singular point ofFJ is an ordinary double point of FlexFJ and that
FlexFJ has no other singular point. Therefore FlexFJ has genus(6−1)(6−2)

2 −7= 3.
The singular points of SingFJ are in general position soIFJ is a Geiser involution.
The group〈IFJ , IsoFJ〉 is a finite subgroup of Bir(P2); it cannot be conjugate to a subgroup

of Aut(P2) because FixIJ is of genus 3. This group of order 42 appears in the classification of
finite subgroups of Bir(P2) (see[84]).

5.2.2.2. The generic case. — Let us recall that ifF is of degreeν, then #SingF = ν2+ν+1
(let us precise that points are counted with multiplicity).Thus a quadratic foliation has seven
singular points counted with multiplicity; moreover if we choose seven pointsp1, . . . , p7 in
general position, there exists one and only one foliationF such that SingF =

{
p1, . . . , p7

}

(see[106]).
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Theorem 5.2.1([54]). — Let p1, . . . , p7 be seven points ofP2(C) in general position. LetF
be the quadratic foliation such thatSingF =

{
p1, . . . , p7

}
and letIG be the Geiser involution

associated to the pi ’s. ThenIG andIF coincide.

Corollary 5.2.2([54]). — The involution associated to a generic quadratic foliationofP2(C)
is a Geiser involution.

This allows us to give explicit examples of Geiser involutions. Indeed we can explicitely
write a generic foliation of degree 2 ofP2(C) : we can assume that(0 : 0 : 1), (0 : 1 : 0),
(1 : 0 : 0) and(1 : 1 : 1) are singular forF and that the line at infinity is not preserved byF so
the foliationF is given in the affine chartz= 1 by the vector field

(
x2y+ax2+bxy+cx+ey

) ∂
∂x

+
(
xy2+Ay2+Bxy+Cx+Ey

) ∂
∂y

with 1+a+b+c+e= 1+A+B+C+E = 0. Then the construction detailed in 5.1.1 allows
us to give an explicit expression for the involutionIF .

Remark 5.2.3. — Let us consider a foliationF of degree 3 onP2(C). Every generic line
of P2(C) is tangent toF in three points. The “application” which switches these three points is
in general multivalued; we give a criterion which says when this application is birational. This
allows us to give explicit examples of trivolutions and finite subgroups of Bir(P2) (see[54]).

5.3. Number of conjugacy classes of birational maps of finiteorder

The number of conjugacy classes of birational involutions in Bir(P2) is infinite (Theo-
rem 5.1.2). Letn be a positive integer; what is the numberν(n) of conjugacy classes of bi-
rational maps of ordern in Bir(P2) ? De Fernex gives an answer forn prime ([65]); there is a
complete answer in [29].

Theorem 5.3.1([29]). — For n even,ν(n) is infinite; this is also true for n= 3, 5.
For any odd integer n6= 3, 5 the number of conjugacy classesν(n) of elements of order n

in Bir(P2) is finite. Furthermore
• ν(9) = 3;
• ν(15) = 9;
• ν(n) = 1 otherwise.

Let us give an idea of the proof. Assume thatn is even. Let us consider an elementP of C[xn]

without multiple root. Blanc proves that there exists a birational mapf of order 2n such thatf n

is the involution(x,P(x)/y) that fixes the hyperelliptic curvey2 = P(x). So the casen = 2
allows to conclude for any evenn≥ 4.

To any elliptic curveC we can associate a birational mapfC of the complex projective
plane whose set of fixed points isC . Indeed let us consider the smooth cubic plane curve
C = {(x : y : z)∈P2(C) |P(x,y,z) = 0}whereP is a non-singular form of degree 3 in 3 variables.
The surface S= {(w : x : y : z) ∈ P3(C) |w3 = P(x,y,z)} is a del Pezzo surface of degree 3 (see
for example[132]). The map fC : w 7→ exp(2iπ

3 )w gives rise to an automorphism of S whose
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set of fixed points is isomorphic toC . Since the number of isomorphism classes of ellitpic
curves is infinite the number of conjugacy classes in Bir(P2) of elements of order 3 is thus also
infinite. A similar construction holds for birational maps of order 5.

To show the last part of the statement Blanc applies Theorem 5.0.1 to the subgroup generated
by a birational map of odd ordern≥ 7.

5.4. Birational maps and invariant curves

Examining to Theorem 5.1.2, it is not surprising that simultaneously Castelnuovo was inter-
ested in birational maps that preserve curves of positive genus. LetC be an irreducible curve
of P2(C); the inertia group of C , denoted by Ine(C ), is the subgroup of Bir(P2) that fixes
pointwiseC . Let C ⊂ P2(C) be a curve of genus> 1, then an element of Ine(C ) is either a de
Jonquières map, or a birational map of order 2, 3 or 4 (see[52]). This result has been recently
precised as follows.

Theorem 5.4.1([35]). — LetC ⊂P2(C) be an irreducible curve of genus> 1. Any f ofIne(C )

is either a de Jonquières map, or a birational map of order2 or 3. In the first case, if f is of
finite order, it is an involution.

To prove this statement Blanc, Pan and Vust follow Castelnuovo’s idea; they construct the
adjoint linear systemof C : let π : Y → P2(C) be an embedded resolution of singularities ofC

and letC̃ be the strict transform ofC . Let ∆ be the fixed part of the linear system|C̃ +KY|.
If |C̃ +KY| is neither empty, nor reduced to a divisor,π∗|C̃ +KY|\∆ is the adjoint linear system.
By iteration they obtain that any elementf of Ine(C ) preserves a fibrationF that is rational or
elliptic. If F is rational, f is a de Jonquières map. Let us assume thatF is elliptic. SinceC

is of genus> 1 the restriction off to a generic fiber is an automorphism with at most two
fixed points: f is thus of order 2, 3 or 4. Applying some classic results aboutautomorphisms
of elliptic curves Blanc, Pan and Vust show thatf is of genus 2 or 3. Finally they note that
this result cannot be extended to curves of genus≤ 1; this eventuality has been dealt with
in [159, 30] with different technics.

Let us also mention results due to Diller, Jackson and Sommese that are obtained from a
more dynamical point of view.

Theorem 5.4.2([78]). — Let S be a projective complex surface and f be a birational map
on S. Assume that f is algebraically stable and hyperbolic. LetC be a connected invariant
curve of f . ThenC is of genus0 or 1.

If C is of genus1, then, after contracting some curves inS, there exists a meromorphic
1-form such that

• f ∗ω = αω with α ∈ C,
• and−C is the divisor of poles ofω.

The constantα is determined solely byC and f|C .
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They are also interested in the number of irreducible components of an invariant curve of
a birational mapf ∈ Bir(S) where S denotes a rational surface. They prove that except ina
particular case, this number is bounded by a quantity that only depends on S.

Theorem 5.4.3([78]). — Let S be a rational surface and let f be a birational map onS.
Assume that f is algebraically stable and hyperbolic. LetC ⊂ S be a curve invariant by f .

If one of the connected components ofC is of genus1 the number of irreducible components
of C is bounded bydimPic(S)+2.

If every connected component ofC has genus0 then
• eitherC has at mostdimPic(S)+1 irreducible components;
• or there exists an holomorphic mapπ : S→ P1(C), unique up to automorphisms ofP1(C),

such thatC contains exactly k≥ 2 distinct fibers ofπ, andC has at mostdimPic(S)+k−1
irreducible components.



CHAPTER 6

AUTOMORPHISM GROUPS

6.1. Introduction

Several mathematicians have been interested in and are still interested in the algebraic prop-
erties of the diffeomorphisms groups of manifolds. Let us for example mention the following
result. Let M and N be two smooth manifolds without boundary and let Diffp(M) denote
the group ofC p-diffeomorphisms of M. In 1982 Filipkiewicz proves that if Diffp(M) and
Diff q(N) are isomorphic as abstract groups thenp = q and the isomorphism is induced by
a C p-diffeomorphism from M to N.

Theorem 6.1.1([91]). — Let M and N be two smooth manifolds without boundary. Letϕ
be an isomorphism betweenDiff p(M) and Diff q(N). Then p is equal to q and there exists
ψ : M → N of classC p such that

ϕ( f ) = ψ f ψ−1, ∀ f ∈ Diff p(M).

There are similar statements for diffeomorphisms which preserve a volume form, a sym-
plectic form ([7, 8])... If M is a Riemann surface of genus larger than 2, then thegroup of
diffeomorphisms which preserve the complex structure is finite. Thus there is no hope to ob-
tain a similar result as Theorem 6.1.1: we can find two distinct curves of genus 3 whose group
of automorphisms is trivial. More generally if M is a complexcompact manifold of general
type, then Aut(M) is finite and often trivial. On the contrary let us mention twoexamples of
homogeneous manifolds:

• any automorphism of Aut(P2) is the composition of an inner automorphism, the action of
an automorphism of the fieldC and the involutionu 7→ t u−1 (seefor example [75]);

• the automorphisms group of the torusC/Γ is the semi-direct productC/Γ ⋊Z/2Z ≃
R2/Z2⋊Z/2Z for all latticesΓ 6= Z[i], Z[j ].

In the first part of the Chapter we deal with the structure of the automorphisms group of
the affine group Aff(C) of the complex line (Theorem 6.2.1). Let us say a few words about
it. Let φ be an automorphism of Aff(C) and let G be a maximal (for the inclusion) abelian
subgroup of Aff(C); then φ(G) is still a maximal abelian subgroup of Aff(C). We get the
nature ofφ from the precise description of the maximal abelian subgroups of Aff(C).
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In the second part of the Chapter we are focused on the automorphisms group of polynomial
automorphisms ofC2. Let φ be an automorphism of Aut(C2). Using the structure of amalga-
mated product of Aut(C2) (Theorem 2.1.2) Lamy determines the centralisers of the elements
of Aut(C2) (see[135]); we thus obtain that the set of Hénon automorphisms is preserved byφ
(Proposition 6.3.5). Since the elementary groupE is maximal among the solvable subgroups of
length 3 of Aut(C2) (Proposition 6.3.7) we establish a property of rigidity forE: up to conjuga-
tion by a polynomial automorphism of the planeφ(E) = E (seeProposition 6.3.8). This rigidity
allows us to characterizeφ.

We finish Chapter 6 with the description of Aut(Bir(P2)). Let φ be an automorphism of
Bir(P2). The study of the uncountable maximal abelian subgroups G ofBir(P2) leads to the
following alternative: either G owns an element of finite order, or G preserves a rational fibra-
tion (that is G is, up to conjugation, a subgroup of dJ= PGL2(C(y))⋊PGL2(C)). This allows
us to prove that PGL3(C) is pointwise invariant byφ up to conjugacy and up to the action of
an automorphism of the fieldC. The last step is to establish thatϕ(σ) = σ; we then conclude
with Theorem 2.1.4.

6.2. The affine group of the complex line

Let Aff(C) =
{

z 7→ az+b
∣∣a∈ C∗, b∈ C

}
be the affine group of the complex line.

Theorem 6.2.1. — Let φ be an automorphism ofAff (C). Then there existτ an automorphism
of the fieldC andψ an element ofAff (C) such that

φ( f ) = τ(ψ f ψ−1), ∀ f ∈ Aff (C).

Proof. — If G is a maximal abelian subgroup of Aff(C) thenφ(G) too. The maximal abelian
subgroups of Aff(C) are

T =
{

z 7→ z+α
∣∣α ∈C

}
and Dz0 =

{
z 7→ α(z−z0)+z0

∣∣α ∈ C∗
}
.

Note that T has no element of finite order soφ(T) = T andφ(Dz0) = Dz′0
. Up to a conjugacy by

an element of T one can suppose thatφ(D0) = D0. In other words one has
• an additive morphismτ1 : C→ C such that

φ(z+α) = z+ τ1(α), ∀α ∈ C;

• a multiplicative oneτ2 : C∗ → C∗ such that

φ(αz) = τ2(α)z, ∀α ∈ C∗.

On the one hand we have

φ(αz+α) = φ(αz)φ(z+1) = τ2(α)z+ τ2(α)τ1(1)

and on the other hand

φ(αz+α) = φ(z+α)φ(αz) = τ2(α)z+ τ1(α).

Thereforeτ1(α) = τ2(α)κ whereκ= τ1(1). In particularτ1 is multiplicative and additive,i.e.τ1

is an automorphism of the fieldC (andτ2 too).
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Then

φ(αz+β) = τ2(α)z+ τ1(β) = τ2(α)z+ τ2(β)κ = τ2(αz+ τ−1
2 (κ)β)

= τ2(τ−1
2 (κ)z◦αz+β◦ τ2(κ)z).

Let us denote by Aut(Cn) the group of polynomial automorphisms ofCn. Ahern and Rudin
show that the group of holomorphic automorphisms ofCn and the group of holomorphic au-
tomorphisms ofCm have different finite subgroups whenn 6= m (see[2]); in particular the
group of holomorphic automorphisms ofCn is isomorphic to the group of holomorphic auto-
morphisms ofCm if and only if n= m. The same argument holds for Aut(Cn) and Aut(Cm).

6.3. The group of polynomial automorphisms of the plane

6.3.1. Description of the automorphisms group ofAut(C2). —

Theorem 6.3.1([70]). — Letφ be an automorphism ofAut(C2). There existψ in Aut(C2) and
an automorphismτ of the fieldC such that

φ( f ) = τ(ψ f ψ−1), ∀ f ∈ Aut(C2).

Remark 6.3.2. — Let us mention the existence of a similar result for the subgroup of tame
automorphisms of Aut(Cn): every automorphism of the group of polynomial automorphisms
of complex affinen-space inner up to field automorphisms when restricted to thesubgroup of
tame automorphisms([134]).

The section is devoted to the proof of Theorem 6.3.1 which uses the well known amalga-
mated product structure of Aut(C2) (Theorem 2.1.2). Let us recall that aHénon automorphism
is an automorphism of the typeϕg1 . . .gpϕ−1

ϕ ∈ Aut(C2), gi = (y,Pi(y)−δix), Pi ∈C[y], degPi ≥ 2, δi ∈ C∗,

and that

A=
{
(a1x+b1y+c1,a2x+b2y+c2)

∣∣ai , bi , ci ∈ C, a1b2−a2b1 6= 0
}
,

E=
{
(αx+P(y),βy+ γ)

∣∣α, β, γ ∈C, αβ 6= 0, P∈ C[y]
}
.

Let us also recall the two following statements.

Proposition 6.3.3([97]). — Let f be an element ofAut(C2).

Either f is conjugate to an element ofE, or f is a Hénon automorphism.

Proposition 6.3.4([135]). — Let f be a Hénon automorphism; the centralizer of f is coun-
table.

Proposition 6.3.3 and Proposition 6.3.4 allow us to establish the following property:
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Proposition 6.3.5([70]). — Let φ be an automorphism ofAut(C2). Thenφ(H ) = H where

H =
{

f ∈ Aut(C2)
∣∣ f is a Hénon automorphism

}
.

We also have the following: for anyf in E, φ( f ) is up to conjugacy inE. But Lamy proved
that a non-abelian subgroup whose each element is conjugateto an element ofE is conjugate
either to a subgroup ofA, or to a subgroup orE. So we will try to "distinguish"A andE.

We setE(1) = [E,E] =
{
(x,y) 7→ (x+P(y),y+α)

∣∣α ∈ C, P∈C[y]
}

and

E
(2) = [E(1),E(1)] =

{
(x,y) 7→ (x+P(y),y)

∣∣P∈ C[y]
}
.

The groupE(2) satisfies the following property.

Lemma 6.3.6([70]). — The groupE(2) is a maximal abelian subgroup ofE.

Proof. — Let K ⊃ E
(2) be an abelian group. Letg= (g1,g2) be inK. For any polynomialP

and for anyt in C let us setftP = (x+ tP(y),y). We have

(⋆) ftPg= g ftP.

If we consider the derivative of(⋆) with respect tot at t = 0 we obtain

(⋄) ∂g1

∂x
P(y) = P(g2), (⋄⋄) ∂g2

∂x
P(y) = 0.

The equality(⋄⋄) implies thatg2 depends only ony. Thus from(⋆⋆) we get: ∂g1
∂x is a function

of y, i.e. ∂g1
∂x = R(y) andg1(x,y) = R(y)x+Q(y). As g is an automorphism,R is a constantα

which is non-zero. Then(⋆⋆) can be rewrittenαP(y) = P(g2). ForP≡ 1 we obtain thatα = 1
and forP(y) = y we haveg2(y) = y. In other wordsg= (x+Q(y),y) belongs toE(2).

Let G be a group; set

G(0) = G, G(1) = [G,G], . . . , G(p) = [G(p−1),G(p−1)], . . .

The group G issolvableif there exists an integerk such that G(k) = id; the smallest integerk
such that G(k) = id is the length of G. The Lemma 6.3.6 allows us to establish the following
statement.

Proposition 6.3.7([70]). — The groupE is maximal among the solvable subgroups ofAut(C2)

of length3.

Proof. — LetK be a solvable group of length 3. Assume thatK ⊃ E. The groupK(2) is abelian
and containsE(2). As E(2) is maximal,K(2) = E

(2). The groupK(2) is a normal subgroup ofK
so for all f = ( f1, f2) ∈ K andg= (x+P(y),y) ∈ K(2) = E

(2) we have

(⋆) f1(x+P(y),y) = f1(x,y)+Θ(P)( f2(x,y))

(⋆⋆) f2(x+P(y),y) = f2(x,y)
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whereΘ : C[y] → C[y] depends onf . The second equality implies thatf2 = f2(y). The deri-
vative of(⋆) with respect tox implies ∂ f1

∂x (x+P(y),y) = ∂ f1
∂x (x,y) thus ∂ f1

∂x = R(y) and

f1(x,y) = R(y)x+Q(y), Q, R∈C[y].

As f is an automorphism we havef1(x,y) = αx+Q(y), α 6= 0. In other wordsK = E.

This algebraic characterization ofE and the fact that a non-abelian subgroup whose each
element is conjugate to an element ofE is conjugate either to a subgroup ofA or to a subgroup
or E (see[135]) allow us to establish a rigidity property concerningE.

Proposition 6.3.8([70]). — Letφ be an automorphism ofAut(C2). There exists a polynomial
automorphismψ of C2 such thatφ(E) = ψEψ−1.

Assume thatφ(E) = E; we can show thatφ(D) = D andφ(Ti) = Ti where

D =
{
(x,y) 7→ (αx,βy)

∣∣α, β ∈ C∗
}
,

T1 =
{
(x,y) 7→ (x+α,y)

∣∣α ∈ C
}
, T2 =

{
(x,y) 7→ (x,y+β)

∣∣β ∈ C
}
.

With an argument similar to the one used in §6.2 we obtain the following statement.

Proposition 6.3.9([70]). — Letφ be an automorphism ofAut(C2). Then up to inner conjuga-
cies and up to the action of an automorphism of the fieldC the groupE is pointwise invariant
by φ.

It is thus not difficult to check that ifE is pointwise invariant, thenφ(x,x+ y) = (x,x+ y).
We conclude using the following fact:E and(x,x+y) generate Aut(C2).

6.3.2. Corollaries. —

Corollary 6.3.10([70]). — An automorphismφ of Aut(C2) is inner if and only if for any f
in Aut(C2) we have

jacφ( f ) = jac f

wherejac f is the determinant of the jacobian matrix of f.

Proof. — There exists an automorphismτ of the fieldC and a polynomial automorphismψ
such that for any polynomial automorphismf we haveφ( f ) = τ(ψ−1 f ψ). Hence

jacφ( f ) = jacτ( f ) = τ(jac f ),

so jacφ( f ) = jac f for any f if and only if τ is trivial.

Corollary 6.3.11. — An isomorphism of the semi-groupEnd(C2) in itself is inner up to the
action of an automorphism of the fieldC.
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Proof. — Let φ be an isomorphism of the semi-group End(C2) in itself; φ induces an auto-
morphism ofC2. We can assume that, up to the action of an inner automorphismand up to
the action of an automorphism of the fieldC, the restriction ofφ to Aut(C2) is trivial (Theo-
rem 6.3.1).

For anyα in C2, let us denote byfα the constant endomorphism ofC2, equal toα. For anyg
in End(C2) we have fαg = fα. This equality implies thatφ sends constant endomorphisms
onto constant endomorphisms; this defines an invertible mapκ from C2 into itself such that
φ( fα) = fκ(α). Sinceg fα = fg(α) for anyg in End(C2) and anyα in C2 we get:φ(g) = κgκ−1.
The restrictionφ|Aut(C2) is trivial soκ is trivial.

6.4. The Cremona group

6.4.1. Description of the automorphisms group ofBir(P2). —

Theorem 6.4.1([71]). — Any automorphism of the Cremona group is the composition of an
inner automorphism and an automorphism of the fieldC.

Let us recall the definition of afoliation on a compact complex surface. Let S be a compact
complex surface; let(Ui) be a collection of open sets which cover S. A foliation F on S is
given by a family(χi)i of holomorphic vector fields with isolated zeros defined on the U′

i s.
The vector fieldsχi satisfy some conditions

on Ui ∩U j we haveχi = gi j χ j , gi j ∈ O∗(Ui ∩U j).

Note that a non trivial vector fieldχ on S defines such a foliation.
The keypoint of the proof of Theorem 6.4.1 is the following Lemma.

Lemma 6.4.2([71]). — LetG be an uncountable maximal abelian subgroup ofBir(P2). There
exists a rational vector fieldχ such that

f∗χ = χ, ∀ f ∈ G.

In particular G preserves a foliation.

Proof. — The group G is uncountable so there exists an integern such that

Gn =
{

f ∈ G
∣∣ degf = n

}

is uncountable. Then the Zariski’s closureGn of Gn in

Birn =
{

f ∈ Bir(P2)
∣∣ degf ≤ n

}

is an algebraic set and dimGn ≥ 1. Let us consider a curve inGn, i.e. a map

η : D→ Gn, t 7→ η(t).

Remark that the elements ofGn are commuting birational maps.
For eachp in P2(C)\ Indη(0)−1 set

χ(p) =
∂η(s)

∂s

∣∣∣
s=0

(η(0)−1(p)).
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This formula defines a rational vector field onP2(C) which is non identically zero. By derivat-
ing the equalityf η(s) f−1(p) = η(s)(p) we obtainf∗χ = χ. Thenχ is invariant byGn; we note
that in factχ is invariant by G.

So take an uncountable maximal abelian subgroup G of Bir(P2) without periodic element
and an automorphismφ of Bir(P2). Thenφ(G) is an uncountable maximal abelian subgroup
of Bir(P2) which preserves a foliationF .

Let F be an holomorphic singular foliation on a compact complex projective surface S.
Such foliations have been classified up to birational equivalence by Brunella, McQuillan and
Mendes ([40, 145, 146]). Let Bir(S,F ) (resp. Aut(S,F )) be the group of birational (resp.
biholomorphic) symmetries ofF , i.e. mappingsg which send leaf to leaf. For a foliationF
of general type, Bir(S,F ) = Aut(S,F ) is a finite group. In [49] the authors classify those
triples (S,F ,g) for which Bir(S,F ) (or Aut(S,F )) is infinite. The classification leads to five
classes of foliations listed below:

• F is left invariant by a holomorphic vector field;
• F is an elliptic fibration;
• S=T /G is the quotient of a complex 2-torusT by a finite group andF is the projection

of the stable foliation of some Anosov diffeomorphism ofT ;
• F is a rational fibration;
• F is a monomial foliation onP1(C)×P1(C) (or on the desingularisation of the quotient
P1(C)×P1(C) by the involution(z,w) 7→ (1/z,1/w)).

We prove that asφ(G) is uncountable, maximal and abelian without periodic element, F is
a rational fibration(1). In other wordsφ(G) is up to conjugacy a subgroup of

dJ= PGL2(C(y))⋊PGL2(C).

The groups

dJa =
{
(x,y) 7→ (x+a(y),y)

∣∣a∈ C(y)
}

and

T =
{
(x,y) 7→ (x+α,y+β)

∣∣α, β ∈C
}

are uncountable, maximal, abelian subgroups of the Cremonagroup; moreover they have no
periodic element. Soφ(dJa) andφ(T) are contained in dJ. After some computations and alge-
braic considerations we obtain that, up to conjugacy (by a birational map),

φ(dJa) = dJa and φ(T) = T.

As D =
{
(αx,βy)

∣∣α, β ∈ C∗
}

acts by conjugacy on T we establish thatφ(D) = D. After

conjugatingφ by an inner automorphism and an automorphism of the fieldC the groups T

and D are pointwise invariant byφ. Finally we show thatφ preserves(y,x) and
(

1
x ,

1
y

)
; in

1. Here a rational fibration is a rational application fromP2(C) into P1(C) whose fibers are rational curves.
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particular we use the following identity due to Gizatullin ([105])

(hσ)3 = id, h=

(
x

x−1
,
x−y
x−1

)
.

Since Bir(P2) is generated by Aut(P2) = PGL3(C) and
(

1
x ,

1
y

)
(Theorem 2.1.4) we have af-

ter conjugatingφ by an inner automorphism and an automorphism of the fieldC: φ|Bir(P2) = id.

We will give another proof of Theorem 6.4.1 in Chapter 7.

6.4.2. Corollaries. — We obtain a similar result as Corollary 6.3.11.

Corollary 6.4.3([71]). — An isomorphism of the semi-group of the rational maps fromP2(C)
into itself is inner up to the action of an automorphism of thefieldC.

We also can prove the following statement.

Corollary 6.4.4([71]). — LetS be a complex projective surface and letϕ be an isomorphism
betweenBir(S) andBir(P2). There exists a birational mapψ : S99K P2(C) and an automor-
phism of the fieldC such that

ϕ( f ) = τ(ψ f ψ−1) ∀ f ∈ Bir(S).



CHAPTER 7

CREMONA GROUP AND ZIMMER CONJECTURE

7.1. Introduction

In the 80’s Zimmer suggests to generalise the works of Margulis on the linear representations
of the lattices of simple, real Lie groups of real rank strictly greater than 1 (see[141, 182]) to
the non-linear ones. He thus establishes a program containing several conjectures ([188, 189,
190, 191]); among them there is the following one.

Conjecture (Zimmer). Let G be a real, simple, connected Lie group and letΓ be a lattice
of G. If there exists a morphism of infinite image fromΓ into the diffeomorphisms group of a
compact manifold M, the real rank of G is bounded by the dimension of M.

There are a lot of results about this conjecture (seefor example [100, 185, 101, 41, 42, 149,
164, 95, 46]). In the case of the Cremona group we have the following statement.

Theorem 7.1.1([69]). — 1) The image of an embedding of a subgroup of finite index ofSL3(Z)
into Bir(P2) is, up to conjugation, a subgroup ofPGL3(C).

More precisely letΓ be a subgroup of finite index ofSL3(Z) and letρ be an embedding ofΓ
into Bir(P2). Thenρ is, up to conjugation, either the canonical embedding or theinvolution
u 7→ t(u−1).

2) Let Γ be a subgroup of finite index ofSLn(Z) and letρ be an embedding ofΓ into the
Cremona group. Ifρ has infinite image, then n is less or equal to3.

In the same context Cantat proves the following statement.

Theorem 7.1.2([47]). — Let Γ be an infinite countable subgroup ofBir(P2). Assume thatΓ
has Kazhdan’s property(1); then up to birational conjugacyΓ is a subgroup ofPGL3(C).

The proof uses the tools presented in Chapter 3 and in particular Theorem 3.4.6. Let us give
an idea of the proof: sinceΓ has Kazhdan property the image ofΓ by anyρ : Γ → Bir(P2) is a
subgroup of Bir(P2) whose all elements are elliptic. According to Theorem 3.4.6we have the

1. Let us recall that G has Kazhdan’s property if any continuous affine isometric action of G on a real Hilbert
space has a fixed point.
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following alternative: eitherρ(Γ) is conjugate to a subgroup of PGL3(C), or ρ(Γ) preserves a
rational fibration that implies thatρ has finite image (Lemma 7.4.3).

Let τ be an automorphism of the fieldC ; we can associate to a birational mapf the bi-
rational mapτ( f ) obtained by the action ofτ on the coefficients off given in a fixed system
of homogeneous coordinates. Theorem 7.1.1 allows us to giveanother proof of the following
result.

Theorem 7.1.3([71]). — Let φ be an automorphism of the Cremona group. There exist a
birational mapψ and an automorphismτ of the fieldC such that

φ( f ) = τ(ψ f ψ−1), ∀ f ∈ Bir(P2).

The Cremona group has a lot of common points with linear groups nevertheless we have the
following statement.

Proposition 7.1.4([56]). — The Cremona group cannot be embedded intoGLn(k) wherek is
a field of characteristic zero.

First let us recall a result of linear algebra due to Birkhoff.

Lemma 7.1.5([28]). — Letk be a field of characteristic zero and let A, B,C be three elements
of GLn(k) such that[A,B] =C, [A,C] = [B,C] = id and Cp = id with p prime. Then p≤ n.

Proof of Proposition 7.1.4. — Assume that there exists an embeddingς of the Cremona group
into GLn(k). For all primep let us consider in the affine chartz= 1 the group

〈
(

exp

(
−2iπ

p

)
x,y

)
, (x,xy),

(
x,exp

(
2iπ
p

)
y

)
〉.

The images byς of the three generators satisfy Lemma 7.1.5 sop ≤ n ; as it is possible for
every primep we obtain a contradiction.

This Chapter is devoted to the proof of Theorem 7.1.1. Let us describe the steps of the proof.
First of all let us assume to simplify thatΓ = SL3(Z). Let ρ denote an embedding ofΓ into
Bir(P2). The group SL3(Z) contains many Heisenberg groups,i.e. groups having the following
presentation

H = 〈 f ,g,h| [ f ,g] = h, [ f ,h] = [g,h] = id〉.
The key Lemma (Lemma 7.4.2) says ifς is an embedding ofH into Bir(P2) thenλ(ς(h)) = 1.
Then eitherς(h) is an elliptic birational map, orς(h) is a de Jonquières or Halphen twist
(Theorem 3.2.1). Using the well-known presentation of SL3(Z) (Proposition 7.2.4) we know
that the image of any generatorei j of SL3(Z) satisfies this alternative; moreover the relations
satisfied by theei j ’s imply the following alternative

• one of theρ(ei j ) is a de Jonquières or Halphen twist;
• anyρ(ei j ) is an elliptic birational map.
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In the first situationρ(SL3(Z)) thus preserves a rational or elliptic fibration that never happen
because of the group properties of SL3(Z) (Proposition 7.4.4). In the second situation the first
step is to prove that the Heisenberg group〈ρ(e12), ρ(e13), ρ(e23)〉 is, up to finite index and up
to conjugacy, a subgroup of Aut(S) where S is eitherP2(C), or a Hirzebuch surface (§7.3).
In both cases we will prove thatρ(Γ) is up to conjugacy a subgroup of Aut(P2) = PGL3(C)
(Lemmas 7.4.5, 7.4.6).

7.2. First Properties

7.2.1. Zimmer conjecture for the groupAut(C2). — Let us recall the following statement
that we use in the proof of Theorem 7.1.1.

Theorem 7.2.1([51]). — Let G be a real Lie group and letΓ be a lattice ofG. If there exists
embedding ofΓ into the group of polynomial automorphisms of the plane, then G is isomorphic
either toPSO(1,n) or to PSU(1,n) for some integer n.

Idea of the proof (for detailssee[51]). The proof of this result uses the amalgamated pro-
duct structure of Aut(C2) (Theorem 2.1.2). Let us recall that the group of affine automorphisms
is given by

A=
{
(x,y) 7→ (a1x+b1y+c1,a2x+b2y+c2)

∣∣ai , bi , ci ∈ C, a1b2−a2b1 6= 0
}

and the group of elementary automorphisms by

E=
{
(x,y) 7→ (αx+P(y),βy+ γ)

∣∣α, β ∈ C∗, γ ∈ C, P∈C[y]
}
.

Theorem 7.2.2([129, 136]). — The groupAut(C2) is the amalgamated product ofA and E

alongA∩ E.

There exists a tree on which Aut(C2) acts by translation (Bass-Serre theory,see§2.1) ; the
stabilizers of the vertex of the tree are conjugate either toA or to E. So if a group G can be
embedded into Aut(C2), then :

• either G acts on a tree without fixing a vertex;
• or G embeds into eitherA or E.
Using this fact, Cantat and Lamy study the embeddings of Kazhdan groups (see[67], chap-

ter I or [141], chapter III) having (FA) property and thus the embeddingsof lattices of Lie
groups with real rank greater or equal to 2.

7.2.2. The groupsSLn(Z). — Let us recall some properties of the groups SLn(Z) (see[175]
for more details).

For any integerq let us denote byΘq : SLn(Z) → SLn(Z/qZ) the morphism which sends
M onto M moduloq. Let Γn(q) be the kernel ofΘq and letΓ̃n(q) be the reciprocical image of
the diagonal group of SLn(Z/qZ) by Θq ; the Γn(q) are normal subgroups of SLn(Z), called
congruence groups.
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Theorem 7.2.3([11]). — Let n≥ 3 be an integer and letΓ be a subgroup ofSLn(Z).
If Γ is of finite index, there exists an integer q such thatΓ contains a subgroupΓn(q) and is

contained iñΓn(q).
If Γ is of infinite index, thenΓ is central and, in particular, finite.

Let δi j be the Kronecker matrix 3×3 and let us setei j = id+δi j .

Proposition 7.2.4. — The groupSL3(Z) admits the following presentation :

〈ei j , i 6= j | [ei j ,ekℓ] =





id if i 6= ℓ& j 6= k
eiℓ if i 6= ℓ& j = k
e−1

k j if i = ℓ& j 6= k
, (e12e

−1
21 e12)

4 = id〉

The eq
i j generateΓ3(q) and satisfy equalities similar to those verified by theei j except

(e12e
−1
21 e12)

4 = id ; we will call them standard generatorsof Γ3(q). The system of roots
of sl3(C) is of type A2 (see[98]) :

r3 r2

r1

r6r5

r4

Each standard generator of aΓ3(q) is an element of the group of one parameter associated
to a rootr i of the system ; the system of roots thus allows us to find most ofthe relations which
appear in the presentation of SL3(Z). For exampler1+ r3 = r2 corresponds to[e12,e23] = e13,
the relationr2+ r4 = r3 to [e13,e21] = e−1

23 and the fact thatr1+ r2 is not a root to[e12,e13] = id.

7.2.3. Heisenberg groups. —

Definition. — Letk be an integer. We callk-Heisenberg groupa group with the presentation :

Hk = 〈f,g,h| [f,h] = [g,h] = id, [f,g] = hk〉.

By conventionH = H1 ; it is a Heisenberg group.

Let us remark that the Heisenberg group generated by f, g and hk is a subgroup of indexk
of Hk. We call f, g and h thestandard generatorsof Hk.

Remark 7.2.5. — Eacheq2

i j can be written as the commutator of twoeq
kℓ with whom it com-

mutes. The group SL3(Z) thus contains a lot ofk-Heisenberg groups ; for example〈eq
12,e

q
13,e

q
23〉

is one(for k= q).
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7.3. Representations of Heisenberg groups

As we said the groups SLn(Z) contain Heisenberg groups, we thus naturally study the re-
presentations of those ones in the automorphisms groups of Hirzebruch surfaces and ofP2(C).
Let us begin with some definitions and properties.

Definition. — Let S be a compact complex surface. The birational mapf : S 99K S is an
elliptic birational mapif there exist a birational mapη : S99K S̃ and an integern> 0 such that
η f nη−1 is an automorphism of̃S isotopic to the identity(i.e. η f nη−1 ∈ Aut0(S)).

Two birational mapsf andg on S aresimultaneously ellipticif the pair (η, S̃) is common
to f andg.

Remark 7.3.1. — Let C1 and C2 be two irreducible homologous curves of negative auto-
intersection thenC1 andC2 coincide. Thus an automorphismf of S isotopic to the identity
fixes each curve of negative self-intersection; for any sequence of blow-downsψ from S to a
minimal model̃S of S, the elementψ f ψ−1 is an automorphism of̃S isotopic to the identity.

Lemma 7.3.2([69]). — Let f and g be two birational elliptic maps on a surfaceS. Assume
that f and g commute; then f and g are simultaneously elliptic.

Proof. — By hypothesis there exist a surfaceS̃, a birational mapζ : S99K S̃ and an integern
such thatζ−1 f nζ is an automorphism of̃S isotopic to the identity. Let us work oñS ; to simplify
we will still denote byf (resp.g) the automorphismζ−1 f nζ (resp.ζ−1gζ).

First let us prove that there exists a birational mapη : Y 99K S̃ such thatη−1 f ℓη is an
automorphism ofY isotopic to the identity for some integerℓ and thatη−1gη is algebraically
stable. Let us denote byN(g) the minimal number of blow-ups needed to makeg algebraically
stable.

If N(g) is zero, then we can takeη = id.
Assume that the result is true for the mapsf andg satisfyingN(g) ≤ j; let us consider the

pair ( f̃ , g̃) and assume that it satisfies the assumption of the statement and thatN(g̃) = j +1.
As g̃ is not algebraically stable, there exists a curveV in Excg̃ and an integerq such that̃gq(V)

is a point of indeterminacyp of g̃. As f̃ andg̃ commute, f̃ k fixes the irreducible components
of Indg̃ for some integerk. Let us considerκ the blow-up ofp; this point being fixed bỹf k,
on the one handκ−1 f̃ kκ is an automorphism and on the other handN(κ−1g̃κ) = j. Then, by
induction, there existsη : Y 99K S̃ andℓ such thatη−1 f̃ ℓη is an automorphism isotopic to the
identity and thatη−1g̃η is algebraically stable.

Let us set f = η−1 f ℓη and g = η−1gη. Using [77], Lemma 4.1, the mapsf and g are
simultaneously elliptic. Indeed the first step to get an automorphism fromg is to consider the
blow-down ε1 of a curve of Excg−1 ; as the curves contracted byg−1 are of negative self-
intersection and asf is isotopic to the identity, these curves are fixed byf so byε1 f ε−1

1 . The
i-th step is to repeat the first one withεi−1 . . .ε1 f ε−1

1 . . .ε−1
i−1 andεi−1 . . . ε1gε−1

1 . . .ε−1
i−1, we then

obtain the result. According to [77] the process ends and a power ofε−1gε is isotopic to the
identity.
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We have a similar result for the standard generators of ak-Heisenberg group.

Proposition 7.3.3([69]). — Let ς be a representation ofHk into the Cremona group. Assume
that each standard generator ofς(Hk) is elliptic. Thenς(f), ς(g) andς(h) are simultaneously
elliptic.

Proof. — According to Lemma 7.3.2 the mapsς(f) andς(h) are simultaneously elliptic. Since g
and h commute, Excς(g) and Indς(g) are invariant byς(h). The relation[f,g] = hk implies that
Excς(g) and Indς(g) are invariant byς(f). Using the idea of the proof of Lemma 7.3.2 and
([77], Lemma 4.1), we obtain the result.

In the sequel we are interested in the representations ofHk in the automorphisms groups
of minimal surfaces which areP1(C)×P1(C), P2(C) and the Hirzebruch surfacesFm. In an
affine chart(x,y) of such a surface S, iff is an element of Bir(S), we will denotef by its two
components( f1(x,y), f2(x,y)). Let us recall that in some good affine charts we have

Aut(P1(C)×P1(C)) = (PGL2(C)×PGL2(C))⋊ (y,x)

and
(7.3.1)

Aut(Fm) =
{(ζx+P(y)

(cy+d)m,
ay+b
cy+d

) ∣∣∣
[

a b
c d

]
∈ PGL2(C), ζ ∈ C∗, P∈ C[y], degP≤ m

}
.

Lemma 7.3.4([69]). — Let ς be a morphism fromHk into Aut(P1(C)×P1(C)). The mor-
phismς is not an embedding.

Proof. — We can assume that f, g and h fixe the two standard fibrations (if it is not the case we
can considerH2k ⊂ Hk), i.e. imς is contained in PGL2(C)×PGL2(C). For j = 1, 2 let us de-
note byπ j the j-th projection. The image ofς(H2k) by π j is a solvable subgroup of PGL2(C);
as π j(ς(hk)) is a commutator, this homography is conjugate to the translation z+ β j . As-
sume thatβ j is nonzero ; thenπ j(ς(f)) andπ j(ς(g)) are also some translations (they commute
with π j(ς(hk))). The relation[π j(ς(f)),π j (ς(g))] = π j(ς(hk)) thus implies thatβ j is zero :
contradiction. Soβ j is zero and the image of h2k by ς is trivial : ς is not an embedding.

Concerning the morphisms fromHk to Aut(Fm), m≥ 1, we obtain a different statement.
Let us note that we can see Aut(C2) as a subgroup of Bir(P2); indeed any automorphism
( f1(x,y), f2(x,y)) of C2 can be extended to a birational map:

(zn f1(x/z,y/z) : zn f2(x/z,y/z) : zn) wheren= max(degf1,degf2).

Lemma 7.3.5([69]). — Letς be a morphism fromHk into Aut(Fm) with m≥ 1. Thenς(Hk) is
birationally conjugate to a subgroup ofE. Moreover,ς(h2k) can be written(x+P(y),y) where P
denotes a polynomial.

Remark 7.3.6. — The abelian subgroups of PGL2(C) are, up to conjugation, some subgroups
of C, C∗ or the group of order 4 generated by−y and 1

y .
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Proof. — Let us consider the projectionπ from Aut(Fm) into PGL2(C). We can assume that

π(ς(Hk)) is not conjugate to
{

y,−y, 1
y ,−1

y

}
(if it is the case let us considerH2k). Therefore

π(ς(Hk)) is, up to conjugation, a subgroup of the group of the affine maps of the line; soς(Hk)

is, up to conjugation, a subgroup ofE (see(7.3.1)). The relations satisfied by the generators
imply thatς(h2k) can be written(x+P(y),y).

Lemma 7.3.7([69]). — Letς be an embedding ofHk into PGL3(C). Up to linear conjugation,
we have

ς(f) = (x+ζy,y+β), ς(g) = (x+ γy,y+δ) and ς(hk) = (x+k,y)

with ζδ−βγ = k.

Proof. — The Zariski closureς(Hk) of ς(Hk) is an algebraic unipotent subgroup of PGL3(C) ;
asς is an embedding, the Lie algebra ofς(Hk) is isomorphic to:

h=








0 ζ β
0 0 γ
0 0 0



∣∣∣ζ, β, γ ∈ C



 .

Let us denote byπ the canonical projection from SL3(C) into PGL3(C). The Lie algebra
of π−1(ς(Hk)) is, up to conjugation, equal toh. The exponential map sendsh in the group H
of the upper triangular matrices which is a connected algebraic group. Therefore the identity
component ofπ−1(ς(Hk)) coincides with H. Any element g ofπ−1(ς(Hk)) acts by conjugation
on H so belongs to the group generated by H andj .id wherej3 = id. Sinceπ(j .id) is trivial,
the restriction ofπ to H is surjective onς(Hk) ; but it is injective so it is an isomorphism.
Thereforeς can be lifted in a representatioñς from Hk into H :

Hk
ς̃

//

ς !!❉
❉❉

❉❉
❉❉

❉
H

π|H
��

ς(Hk)

As ς̃(hk) can be written as a commutator, it is unipotent. The relations satisfied by the
generators imply that we have up to conjugation in SL3(C)

ς̃(hk) = (x+k,y), ς̃(f) = (x+ζy,y+β) and ς̃(g) = (x+ γy,y+δ)

with ζδ−βγ = k.

7.4. Quasi-rigidity of SL3(Z)

7.4.1. Dynamic of the image of an Heisenberg group. —

Definition. — Let G be a finitely generated group, let
{

a1, . . . , an
}

be a part which gene-
rates G and letf be an element of G.
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• The length of f , denoted by| f |, is the smallest integerk such that there exists a sequence
(s1, . . . ,sk), si ∈

{
a1, . . . ,an,a

−1
1 , . . . ,a−1

n

}
, with f = s1 . . .sk.

• The quantity lim
k→+∞

| f k|
k

is thestable lengthof f (see[66]).

• An elementf of G isdistortedif it is of infinite order and if its stable length is zero. This
notion is invariant by conjugation.

Lemma 7.4.1([69]). — Let Hk = 〈f,g,h〉 be a k-Heisenberg group. The elementhk is dis-
torted. In particular the standard generators ofSLn(Z) are distorded.

Proof. — As [f,h] = [g,h] = id, we have hknm= [fn,gm] for any pair(n,m) of integers. Forn= m
we obtain hkn2

= [fn,gn] ; therefore|hkn2| ≤ 4n.
Each standard generatorei j of SLn(Z) can be written as followsei j = [eik,ek j], moreover we

have[ei j ,eik] = [ei j ,ek j] = id (Remark 7.2.5).

Lemma 7.4.2([69]). — LetGbe a finitely generated group and let
{

a1, . . . , an
}

be a set which
generatesG. Let f be an element ofG and letς be an embedding of G intoBir(P2). There
exists a constant m≥ 0 such that

1≤ λ(ς( f ))≤ exp

(
m
| f n|
n

)
.

In particular, if f is distorted, the stable length of f is zero and the first dynamical degree
of ς( f ) is 1.

Proof. — The inequalitiesλ(ς( f ))n ≤ degς( f )n ≤ maxi(degς(ai))
| f n| imply

0≤ logλ(ς( f )) ≤ | f n|
n

log(max
i
(degς(ai))).

If f is distorted, the quantity lim
k→∞

| f k|
k

is zero and the first dynamical degree ofς( f ) is 1.

7.4.2. Notations. —In the sequel,ρ will denote an embedding of SL3(Z) into Bir(P2). Lem-
mas 7.4.1 and 7.4.2 imply thatλ(ρ(ei j )) = 1. Thanks to Proposition 7.2.4 and Theorem 3.2.1,
we have :

• either one of theρ(ei j ) preserves a unique fibration, rational or elliptic;
• or each standard generator ofΓ3(q) is an elliptic birational map.

We will study these two possibilities.
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7.4.3. Invariant fibration. —

Lemma 7.4.3([69]). — Let Γ be a finitely generated group with the Kazhdan’s property (T).
Let ρ be a morphism fromΓ to PGL2(C(y)) (resp.PGL2(C)). Then the image ofρ is finite.

Proof. — Let us denote byγi the generators ofΓ and let

[
ai(y) bi(y)
ci(y) di(y)

]
be their image byρ.

A finitely generatedQ-group is isomorphic to a subfield ofC soQ(ai(y),bi(y),ci(y),di(y)) is
isomorphic to a subfield ofC and we can assume that imρ ⊂ PGL2(C) = Isom(H3). As Γ has
property (T), each continuous action ofΓ by isometries on a real or complex hyperbolic space
has a fixed point ; the image ofρ is thus, up to conjugacy, a subgroup of SO3(R). A result of
Zimmer implies that the image ofρ is finite (see[67]).

Proposition 7.4.4([69]). — Letρ be a morphism from a congruence subgroupΓ3(q) of SL3(Z)
into Bir(P2). If one of theρ(eq

i j ) preserves a unique fibration, then the image ofρ is finite.

Proof. — Let us denote bỹeq
i j the image ofeq

i j by ρ ; Remark 7.2.5 implies that the different
generators play a similar role; we can thus assume, without loss of generality, that̃eq

12 preserves
a unique fibrationF .

The relations imply thatF is invariant by all thẽeq2

i j ’s. Indeed as̃eq
12 commutes with̃eq

13

and ẽq
32, the elements̃eq

13 and ẽq
32 preserveF (it’s the unicity) ; then the relation[ẽq

12, ẽ
q
23] =

ẽq2

13, which can also be writteñeq
23ẽ

q
12ẽ

−q
23 = ẽq2

13ẽ12, implies thatẽq
23 preservesF . Thanks to

[ẽq
12, ẽ

q
31] = ẽ−q2

32 we obtain thatF is invariant byẽq
31. Finally as[ẽq

23, ẽ
q
31] = ẽq2

21, the element

ẽq2

21 preservesF .

Then, for each̃eq2

i j , there existshi j in PGL2(C) and

F : P2(C)→ Aut(P1(C))

definingF such thatF ◦ ẽq2

i j = hi j ◦F . Let us consider the morphismς given by

Γ3(q
2)→ PGL2(C), ẽq2

i j 7→ hi j .

As Γ3(q2) has Kazhdan’s property (T) the groupΓ = kerς is of finite index (Lemma 7.4.3)
so it also has Kazhdan’s property (T). IfF is rational, we can assume thatF = (y = cte)
wherey is a coordinate in an affine chart ofP2(C) ; as the group of birational maps which
preserve the fibrationy= cte can be identified with PGL2(C(y))⋊PGL2(C), the image ofΓ
by ρ is contained in PGL2(C(y)). In this caseρ(Γ) is thus finite (Lemma 7.4.3) which implies
that ρ(Γ3(q2)) and ρ(Γ3(q)) are also finite. The fibrationF cannot be elliptic ; indeed the
group of birational maps which preserve pointwise an elliptic fibration is metabelian and a
subgroup ofΓ3(q2) cannot be metabelian.

7.4.4. Factorisation in an automorphism group. —Assume that every standard generator
of SL3(Z) is elliptic; in particular every standard generator of SL3(Z) is isotopic to the identity.
According to Remark 7.3.1, Proposition 7.3.3, Lemmas 7.4.1and 7.4.2, the images ofen

12, en
13



80 CHAPTER 7. CREMONA GROUP AND ZIMMER CONJECTURE

anden
23 by ρ are, for somen, automorphisms of a minimal surface S. First of all let us consider

the case S= P2(C).

Lemma 7.4.5([69]). — Let ρ be an embedding ofSL3(Z) into Bir(P2). If ρ(en
12), ρ(en

13)

andρ(en
23) belongs, for some integer n, toPGL3(C), thenρ(Γ3(n2)) is a subgroup ofPGL3(C).

Idea of the proof. — According to Lemma 7.3.7 we have normal forms forρ(en
12), ρ(en

13) and
ρ(en

23) up to conjugation. A computation gives the following alternative
• either allρ(en2

i j ) are polynomial automorphisms ofC2;

• of all ρ(en2

i j ) are in PGL3(C).
The first case cannot occur (Theorem 7.2.1).

The following statement deals with the case of Hirzebruch surfaces.

Lemma 7.4.6([69]). — Let ρ be a morphism fromSL3(Z) to Bir(P2). Assume thatρ(en
12),

ρ(en
13) andρ(en

23) are, for some integer n, simultaneously conjugate to some elements ofAut(Fm)

with m≥ 1 ; then the image ofρ is either finite, or contained, up to conjugation, inPGL3(C).

7.4.5. Proof of Theorem 7.1.1 1). —According to Proposition 7.4.4 any standard generator
of SL3(Z) is virtually isotopic to the identity. The mapsρ(en

12), ρ(en
13) andρ(en

23) are, for some
integern, conjugate to automorphisms of a minimal surface S (Proposition 7.3.3); we don’t
have to consider the case S= P1(C)×P1(C) (Lemma 7.3.4). We finally obtain thatρ(Γ3(n2))

is, up to conjugation, a subgroup of PGL3(C) (Lemmas 7.4.5 and 7.4.6).
The restriction ofρ to Γ3(n2) can be extended to an endomorphism of Lie group of PGL3(C)

(see[175]); as PGL3(C) is simple, this extension is injective and thus surjective.According
to [75], chapter IV, the automorphisms of PGL3(C) are obtained from inner automorphisms,
automorphisms of the fieldC and the involutionu 7→ t(u−1) ; since automorphisms of the fieldC
don’t act onΓ3(n2), we can assume, up to linear conjugation, that the restriction of ρ to Γ3(n2)

coincides, up to conjugation, with the identity or the involution u 7→ t(u−1).
Let f be an element ofρ(SL3(Z))\ρ(Γ3(n2)) which contracts at least one curveC = Exc f .

The groupΓ3(n2) is normal inΓ ; therefore the curveC is invariant byρ(Γ3(n2)) and so by
ρ(Γ3(n2)) = PGL3(C) (where the closure is the Zariski closure) which is impossible. So f
belongs to PGL3(C) andρ(SL3(Z)) is contained in PGL3(C).

7.4.6. Proof of Theorem 7.1.1 2). —

Theorem 7.4.7([69]). — Each morphism from a subgroup of finite index ofSL4(Z) in the
Cremona group is of finite image.

Proof. — Let Γ be a subgroup of finite index of SL4(Z) and letρ be a morphism fromΓ
into Bir(P2). To simplify we will assume thatΓ = SL4(Z). Let us denote byEi j the images of
the standard generators of SL4(Z) by ρ. The morphismρ induces a faithful representatioñρ
from SL3(Z) into Bir(P2) :

SL4(Z)⊃
[

SL3(Z) 0
0 1

]
→ Bir(P2).
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According to the first assertion of Theorem 7.1.1, the mapρ̃ is, up to conjugation, either the
identity or the involutionu 7→ t(u−1).

Let us begin with the first case. The elementE34 commutes withE31 andE32 so ρ(E14)

commutes with(x,y,ax+by+ z) wherea andb are two complex numbers and Excρ(E34) is
invariant by(x,y,ax+by+z). MoreoverE34 commutes withE12 andE21, in other words with
the following SL2(Z):

SL4(Z)⊃




SL2(Z) 0 0
0 1 0
0 0 1


→ Bir(P2).

But the action of SL2(Z) on C2 has no invariant curve; the curves contracted byρ(E34) are
contained in the line at infinity. The image of this one by(x,y,ax+ by+ z) intersectsC2;
so Excρ(E34) is empty andρ(E34) belongs to PGL3(C). With a similar argument we show
thatρ(E43) belongs to PGL3(C). The relations thus imply thatρ(Γ4(q)) is in PGL3(C) ; so the
image ofρ is finite.

We can use a similar idea whenρ̃ is the involutionu 7→ t(u−1).

Conclusion of the proof of Theorem 7.1.1. — Let n be an integer greater or equal to 4 and let
Γ be a subgroup of finite index of SLn(Z). Let ρ be a morphism fromΓ to Bir(P2) ; let us
denote byΓn(q) the congruence subgroup contained inΓ (Theorem 7.2.3). The morphismρ
induces a representation fromΓ4(q) to Bir(P2); according to Theorem 7.4.7 its kernel is finite,
so kerρ is finite.

7.5. Automorphisms and endomorphisms of the Cremona group

We will prove Theorem 7.1.3. To do it we will use that (Theorem2.1.4)

Bir(P2) = 〈Aut(P2) = PGL3(C),

(
1
x
,
1
y

)
〉.

Lemma 7.5.1([69]). — Letφ be an automorphism of the Cremona group. Ifφ|SL3(Z) is trivial,
then, up to the action of an automorphism of the fieldC, φ|PGL3(C) is trivial.

Proof. — Let us denote by H the group of upper triangular matrices :

H =








1 a b
0 1 c
0 0 1


 ∣∣a, b, c∈ C



 .

The groups H and SL3(Z) generate PGL3(C) so PGL3(C) is invariant byφ if and only if φ(H)=

H. Let us set :

fb(x,y) = φ(x+b,y), ga(x,y) = φ(x+ay,y) and hc(x,y) = φ(x,y+c).

The birational mapfb (resp.hc) commutes with(x+1,y) and(x,y+1) so fb (resp.hc) can be
written as(x+η(b),y+ζ(b)) (resp.(x+ γ(c),y+β(c))) whereη andζ (resp.γ andβ) are two
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additive morphisms; asga commute with(x+y,y) and(x+1,y) we have:ga = (x+Aa(y),y).
The equality

(x+ay,y)(x,y+c)(x+ay,y)−1(x,y+c)−1 = (x+ac,y)

implies that, for any complex numbersa and c, we have: gahc = fachcga. Therefore fb =

(x+η(b),y), ga = (x+µ(a)y+δ(a),y) andµ(a)β(c) = η(ac). In particularφ(H) is contained
in H. Sinceµ(a)β(c) = η(ac) we haveη = µ= β (becauseη(1) = µ(1) = β(1) = 1); let us
note that this equality also implies thatη is multiplicative.

Let T denote by the group of translations inC2 ; each element of T can be written

(x+a,y)(x,y+b).

As fb, resp. hc is of the type(x+η(b),y), resp. (x+η(c),y+η(c)), the image of T byφ is
a subgroup of T. The group of translations is a maximal abelian subgroup of Bir(P2), so does
φ(T) and the inclusionφ(T)⊂T is an equality. The mapη is thus surjective andφ(H)=H. Soφ
induces an automorphism of PGL3(C) trivial on SL3(Z). But the automorphisms of PGL3(C)
are generated by inner automorphisms, automorphisms of thefield C and the involutionu 7→
t(u−1) (see[75]). Then up to conjugation and up to the action of an automorphism of the field
C, φ|PGL3(C) is trivial (the involutionu 7→ t(u−1) on SL3(Z) is not the restriction of an inner
automorphism).

Corollary 7.5.2([69]). — Let φ be an automorphism of the Cremona group. Ifφ|SL3(Z) is the
involution u 7→ t(u−1) thenφ|PGL3(C) also.

Proof. — Let us denote byψ the composition ofφ|SL3(Z) with the restrictionC of the involution
u 7→ t(u−1) to SL3(Z). The morphismψ can be extended to a morphism̃ψ from PGL3(C) into
Bir(P2) by ψ̃ = φ|PGL3(C) ◦C. The kernel ofψ̃ contains SL3(Z) ; as the group PGL3(C) is
simple,ψ̃ is trivial.

Lemma 7.5.3([69]). — Let φ be an automorphism of the Cremona group such thatφ|PGL3(C)

is trivial or is the involution u7→ t(u−1). There exist a, b two nonzero complex numbers such

that φ(σ) =
(

a
x ,

b
y

)
whereσ is the involution

(
1
x ,

1
y

)
.

Proof. — Assume thatφ|PGL3(C) is trivial. The mapφ(σ) can be written
(

F
x ,

G
y

)
whereF

andG are rational. The equalityσ(βx,µy) = (β−1x,µ−1y)σ implies(F,G)(βx,µy) = (F,G) ; as
this equality is true for any pair(β,µ) of nonzero complex numbers, the functionsF andG are
constant.

The involutionu 7→ t(u−1) preserves the diagonal group; soφ|PGL3(C) coincides withu 7→
t(u−1).

Proof of Theorem 7.1.3. — Theorem 7.1.1, Corollary 7.5.2 and Lemma 7.5.1 allow us toas-
sume that up to conjugation and up to the action of an automorphism of the fieldC, φ|PGL3(C) is
trivial or is the involutionu 7→ t(u−1). Assume we are in the last case and let us seth= (x,x−
y,x− z) ; the map(hσ)3 is trivial (see[104]). But φ(h) = (x+ y+ z,−y,−z) and φ(σ) =
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(
a
x ,

b
y ,

1
z

)
(Lemma 7.5.3) soφ(hσ)3 6= id: contradiction. We thus can assume thatφ|PGL3(C) is

trivial ; the equality(hσ)3 = id impliesφ(σ) = σ and Theorem 2.1.4 allows us to conclude.

Using the same type of arguments we can describe the endomorphisms of the Cremona
group.

Theorem 7.5.4([72]). — Let φ be a non-trivial endomorphism ofBir(P2). There exists an
embeddingτ of the fieldC into itself and a birational mapψ of P2(C) such that

φ( f ) = τ(ψ f ψ−1), ∀ f ∈ Bir(P2).

This allows us to state the following corollary.

Corollary 7.5.5([72]). — The Cremona group is hopfian: any surjective endomorphism ofBir(P2)

is an automorphism.





CHAPTER 8

CENTRALIZERS IN THE CREMONA GROUP

8.1. Introduction

The description of the centralizers of the discrete dynamical systems is an important problem
in real and complex dynamic. Julia ([127, 126]) and then Ritt ([165]) show that the set

Cent( f ,RatP1) =
{

ψ : P1 → P1
∣∣ f ψ = ψ f

}

of rational functions commuting with a fixed rational function f is in generalfN0 =
{

f n
0

∣∣n∈N
}

for some f0 in Cent( f ,RatP1) except in some special cases (up to conjugacyz 7→ zk, Tcheby-
chev polynomials, Lattès examples...) In the 60’s Smale asks if the centralizer of a generic
diffeomorphismf : M → M of a compact manifold is trivial,i.e. if

Cent( f ,Diff ∞(M)) =
{

g∈ Diff ∞(M)
∣∣ f ψ = ψ f

}

coincides withfZ =
{

f n
∣∣n∈ Z

}
. A lot of mathematicians have worked on this problem, for

example Bonatti, Crovisier, Fisher, Palis, Wilkinson, Yoccoz ([133, 38, 93, 94, 156, 157, 158]).
Let us precise some of these works. In [133] Kopell proves the existence of a dense open

subsetΩ of Diff ∞(S1) having the following property: the centralizer of any element of Ω is
trivial.

Let f be aC r-diffeomorphism of a compact manifold M without boundary. Apoint p of M
is non-wanderingif for any neighborhoodU of p and for any integern0 > 0 there exists an
integern> n0 such thatf nU ∩U 6= /0. The set of such points is denoted byΩ( f ), it is a closed
invariant set;Ω( f ) is hyperbolicif

• the tangent bundle of M restricted toΩ( f ) can be written as a continuous direct sum of
two subbundles TΩ( f )M = Es⊕Eu which are invariant by the differential Df of f ;

• there exists a riemannian metric on M and a constant 0< µ< 1 such that for anyp∈Ω( f ),
v∈ Es

p, w∈ Eu
p

||D fpv|| ≤ µ||v||, ||D f−1
p w|| ≤ µ||w||.

In this case the sets

Ws(p) =
{

z∈ M
∣∣d( f n(p), f n(z))→ 0 asn→ ∞

}



86 CHAPTER 8. CENTRALIZERS IN THE CREMONA GROUP

and

Wu(p) =
{

z∈ M
∣∣d( f−n(p), f−n(z))→ 0 asn→ ∞

}

are some immersed submanifolds of M calledstableandunstable manifoldsof p∈ Ω( f ). We
say that f satisfies axiom Aif Ω( f ) is hyperbolic and ifΩ( f ) coincides with the closure of
periodic points off (see[174]). Finally we impose a"strong" transversality condition: for
any p∈ Ω( f ) the stable Ws(p) and unstable Wu(p) manifolds are transverse. In [156] Palis
proves that the set of diffeomorphisms of M satisfying axiomA and the strong transversality
condition contains a dense open subsetΛ such that: the centralizer of anyf in Λ is trivial.
Anderson shows a similar result for the Morse-Smale diffeomorphisms ([5]).

In the study of the elements of the group Diff(C,0) of the germs of holomorphic diffeomor-
phism at the origin ofC, the description of the centralizers is very important. Ecalle proves
that if f ∈ Diff (C,0) is tangent to the identity, then, except for some exceptional cases, its
centralizer is afZ0 (see[88, 89]); it allows for example to describe the solvable non abelian
subgroups of Diff(C,0) (see[60]). Conversely Perez-Marco gets the existence of uncountable,
non linearizable abelian subgroups of Diff(C,0) related to some difficult questions of small
divisors ([163]).

In the context of polynomial automorphisms of the plane, Lamy obtains that the centralizer
of a Hénon automorphism is almost trivial. More precisely wehave the following statement:
let f be a polynomial automorphism ofC2; then

• either f is conjugate to an element of the type

(αx+P(y),βy+ γ), P∈C[y], α, β, γ ∈ C, αβ 6= 0

and its centralizer is uncountable,
• or f is a Hénon automorphismψg1 . . .gnψ−1 where

ψ ∈ Aut(C2), gi = (y,Pi(y)−δix), Pi ∈ C[y], degPi ≥ 2, δi ∈ C∗

and its centralizer is isomorphic toZ⋊Z/pZ (see[135, Proposition 4.8]).
We will not give the proof of Lamy but will give a “related“ result due to Cantat (Corol-
lary 8.2.4)

Let us also mention the recent work [79] of Dinh and Sibony.

8.2. Dynamics and centralizer of hyperbolic diffeomorphisms

Let S be a complex surface and letf : S→ S be a holomorphic map. Letq be a periodic
point of periodk for f , i.e. fk(q) = q and f ℓ(q) 6= q for all 1≤ ℓ≤ k−1. Letλu(q) andλs(q)
be the eigenvalues of Df(q). We say thatf is hyperbolicif

|λs(q)|< 1< |λu(q)|.
Let us denote by Pk( f ) the set hyperbolic periodic points of periodk of f .
Let us considerq∈ Pk( f ); locally aroundq the mapf is well defined. We can linearizef k.

The local stable manifoldWs
loc(q) and local unstable manifoldWu

loc(q) of f k in q are the
image by the linearizing map of the eigenvectors of Df k

q . To simplify we can assume that
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up to conjugation Df k
q is given by

[
α 0
0 β

]
with |α| < 1 < |β|; there exists a holomorphic

diffeomorphismκ : (U,q) → (C2,0) whereU is a neighborhood ofq such thatκ f kκ−1 =[
α 0
0 β

]
. Then Ws

loc(q) = κ−1(y= 0) and Wu
loc(q) = κ−1(x= 0):

Ws
loc(q)

Wu
loc(q)

In the sequel, to simplify, we will denotef instead off k.

Lemma 8.2.1. — There exist entire curvesξs
q, ξu

q : C→ S such that
• ξu

q(0) = ξs
q(0) = q;

• theglobal stableandglobal unstable manifoldsof f in q are defined by

Ws(q) =
⋃

n>0

f n(Ws
loc(q)), Wu(q) =

⋃

n>0

f n(Wu
loc(q)).

• f (ξu
q(z)) = ξu

q(αu(z)), f(ξs
q(z)) = ξs

q(αs(z)) for all z∈ C;
• if ηu

q : C → S (resp. ηs
q : C → S) satisfies the first three properties, thenηu

q(z) = ξu
q(µz)

(resp.ηs
q(z) = ξs

q(µ
′z)) for some µ∈ C∗ (resp. µ′ ∈ C∗).

Proof. — As we just see there exists a holomorphic diffeomorphismκ : (U,q)→ D whereU

is a neighborhood ofq andD a small disk centered at the origin such thatκ f kκ−1 =

[
α 0
0 β

]
.

Moreover Wu
loc(q) = κ−1(x= 0) and Ws

loc(q) = κ−1(y= 0). Let us extendκ. Let z be a point
which does not belong toD; there exist an integerm such thatz/αm belongs toD. We then set
ξu

q(z) = f m
(
κ−1

(
z

αm

))
. Let us note that if z

αm and z
αk both belong toD we have

f m
(

κ−1
( z

αm

))
= f k

(
κ−1

( z
αk

))

andξs
q(z) is well-defined. By construction we get

• ξu
q(0) = ξs

q(0) = q;

• Ws(q) =
⋃

n>0

f n(Ws
loc(q)), Wu(q) =

⋃

n>0

f n(Wu
loc(q)).

• f (ξu
q(z)) = ξu

q(αu(z)), f (ξs
q(z)) = ξs

q(αs(z)) for all z∈ C.

The mapξs
q is the analytic extension ofκ−1

|y=0. Let ∆ be a subset of
{

y= 0
}

containing 0.
Setq= ξs

q(1). Let ηs
q : ∆ → Ws

loc(q) be a non-constant map such that
• ηs

q(0) = q,
• ηs

q(αz) = f (ηs
q(z)) for anyz in ∆ such thatαz belongs to∆.
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Working withηs
q◦(z 7→µz) for some good choice ofµ instead ofηs

q we can assume thatηs
q(1)= q.

Since

ηs
q(0) = ξs

q(0), ηs
q(1) = ξs

q(1), ηs
q

(
1

αn

)
= ξs

q

(
1

αn

)
∀n∈ Z

we haveηs
q = ξs

q.

Let ψ be an automorphism of S which commutes withf . The mapψ permutes the elements
of Pk( f ). If Pk( f ) is finite, of cardinalNk > 0, the mapψNk! fixes any element of Pk( f ). The
stable and unstable manifolds of the pointsq of Pk( f ) are also invariant under the action ofψ.
When the union of Wu(q) and Ws(q) is Zariski dense in S, then the restrictions ofψ to Wu

loc(q)
and Ws

loc(q) completely determine the mapψ : S→ S.
Let us denote byAk the subgroup of Cent( f ,Aut(S)) which contains the automorphisms of

S fixing any of theNk points of Pk( f ). Thenψ preserves Wu(q) and Ws(q). We thus can define
the morphism

α : Ak → C∗×C∗, ψ 7→ α(ψ) = (αs(ψ),αu(ψ))

such that

∀z∈ C, ξs
q(α

s(ψ)z) = ψ(ξs
q(z)) and ξu

q(α
u(ψ)z) = ψ(ξu

q(z)).

When the union of Ws(q) and Wu(q) is Zariski dense, this morphism is injective. In par-
ticular Ak is abelian and Cent( f ,Aut(S)) contains an abelian subgroup of finite index with
index≤ Nk!.

Lemma 8.2.2([47]). — The subsetΛ of C×C defined by

Λ =
{
(x,y) ∈ C×C

∣∣ξu
q(x) = ξs

q(y)
}

is a discrete subset ofC×C.
The setΛ intersects{0}×C (resp.C×{0}) only at(0,0).

Proof. — Let(x,y) be an element ofΛ and letmbe the point of S defined bym= ξs
q(x)= ξu

q(y).
In a sufficiently small neighborhood ofm, the connected components of Ws(q) and Wu(q)
which containm are two distinct complex submanifolds and so intersect in a finite number
of points. Therefore there exist a neighborhoodU of x and a neighborhoodV of y such
that ξs

q(U)∩ ξu
q(V ) = {m}. The point(x,y) is thus the unique point ofΛ in U ×V so Λ is

discrete.
Sinceξu

q andξs
q are injective, we have the second assertion.

Proposition 8.2.3([47]). — Let f be a holomorphic diffeomorphism of a connected complex
surfaceS. Assume that there exists an integer k such that

• the setPk( f ) is finite and non empty;
• for at least one point q inPk( f ) we have#(Ws(q)∩Wu(q)) ≥ 2.

Then the cyclic group generated by f is of finite index in the group of holomorphic diffeomor-
phisms ofSwhich commute to f .
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Proof. — Let us take the notations introduced previously and let usset A := α(Ak). Sin-
ce #(Ws(q)∩Wu(q)) ≥ 2, the manifolds Ws(q) and Wu(q) intersect in an infinite number of
points and there exists a neighborhoodU of q such that any holomorphic function onU which
vanishes onU ∩ Wu(q) vanishes everywhere. The morphismα is thus injective andΛ is a
discrete and infinite subset ofC×C invariant under the diagonal action ofA.

Let us show thatA is discrete. LetA be the closure ofA in C∗× C∗. SinceΛ is discrete,Λ
is A-invariant. Let us assume thatA is not discrete; thenA contains a 1-parameter non-trivial
subgroup of the typet 7→ (etu,etv). SinceΛ is discrete, one of the following property holds:

• Λ = {(0,0)},
• u= 0 andΛ ⊂ C×{0},
• v= 0 andΛ ⊂ {0}×C.

But according to Lemma 8.2.2 none of this possibilities hold. So A doesn’t contain a 1-
parameter non-trivial subgroup andA is discrete. In particular there is a finite index abelian
free subgroupA′ of A such that the rank ofA′ is less or equal to 2. Sincef is an element of
infinite order of Cent( f ,Aut(S)), the group〈 f k〉 is a free subgroup of rank 1 ofAk so the lower
bound of the rank ofA′ is 1 and if this lower bound is reached then〈 f 〉 is of finite index in
Cent( f ,Aut(S)). Let us consider

exp:C×C→ C∗×C∗,

then exp−1(Λ∩ (C∗×C∗)) is a discrete subgroup ofC2 ≃ R4. Its rank is 3 or 4; indeed the
kernel of exp contains 2iπZ×2iπZ and also(αu( f ),αs( f )).

If A′ is of rank 2, thenA′ is a discrete and co-compact subgroup ofC∗×C∗ and there exists
an elementψ in Cent( f ,Aut(S)) such that

|αu(ψ)|< 1, |αs(ψ)| < 1, (αu(ψ),αs(ψ)) ∈ A.

Let (x,y) be a point ofΛ\{(0,0)}; the sequence

ψn(x,y) =
(
(αu(ψ))nx,(αs(ψ))ny

)

is thus an infinite sequence of elements ofΛ andψn(x,y) → (0,0) asn→+∞: contradiction.
This implies thatA′ is of rank 1.

Corollary 8.2.4([47]). — Let f be a Hénon automorphism. The cyclic group generated by f
is of finite index in the group of biholomorphisms ofC2 which commute with f .

Proof. — According to [25] if k is large enough, then the automorphismf hasn > 0 hy-
perbolic periodic points of periodk whose unstable and stable manifolds intersect each other.
Proposition 8.2.3 allows us to conclude.

8.3. Centralizer of hyperbolic birational maps

In this context we can also define global stable and unstable manifolds but this time we
take the union of strict transforms of Wsloc(q) and Wu

loc(q) by f n. They are parametrized by
holomorphic applicationsξu

q, ξs
q which are not necessarily injective: if a curveC is contracted
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on a pointp by f and if Ws(q) intersectsE infinitely many times, then Ws(q) passes throughp
infinitely many times.

Lemma 8.3.1([47]). — Let Λ be the set of pairs(x,y) such thatξu
q(x) = ξs

q(y). The setΛ is a
discrete subset ofC×C which intersects the coordinate axis only at the origin.

Proof. — Let (x,y) be a point ofΛ and setm= ξu
q(x) = ξs

q(y). The unstable and stable mani-
folds can a priori pass throughm infinitely many times. But since each of these manifolds is
the union of thef±n(Wu/s

loc(q)), there exist two open subsetsU ∋ x andV ∋ y of C and an open
subsetW of S containingm such thatξu

q(U)∩ W andξs
q(V )∩W are two distinct analytic

curves ofW . We can assume that #ξu
q(U)∩ ξs

q(V ) = 1 (if it is not the case we can consi-
der U′ ⊂ U andV ′ ⊂ V such that #ξu

q(U
′)∩ ξs

q(V
′) = 1); therefore(x,y) is the only point

of Λ contained inU ×V . The setΛ is thus discrete. Sinceq is periodic there is no curve
contracted ontoq by an iterate off , the mapξu

q (resp.ξs
q) doesn’t pass again throughq. SoΛ

intersects the axis-coordinates only at(0,0).

Let us recall that if a mapf is algebraically stable then the positive orbitsf n(p), n≥ 0, of
the elementsp of Ind f−1 do not intersect Indf . We say thatf satisfies theBedford-Diller
condition if the sum

∑
n≥0

1
λ( f )n log(dist( f n(p), Ind f ))

is finite for anyp in Ind f−1; in other words the positive orbitf n(p), n≥ 0, of the elementsp
of Ind f−1 does not go too fast to Indf . Note that this condition is verified by automorphisms
of P2(C) or also by birational maps whose points of indeterminacy have finite orbit. Let us
mention the following statement.

Theorem 8.3.2([20, 87]). — Let f be a hyperbolic birational map of complex projective sur-
face. Assume that f satisfies the Bedford-Diller condition.Then there is a infinite number of
hyperbolic periodic points whose stable and unstable manifolds intersect.

8.3.1. Birational maps satisfying Bedford-Diller condition. —

Proposition 8.3.3([47]). — Let f be a hyperbolic birational map of a complex projective sur-
faceS. If f satisfies the Bedford-Diller condition, then the cyclic subgroup generated by f is
of finite index in the group of birational maps ofSwhich commute with f .

Proof. — The set of hyperbolic periodic points off of periodk is a finite set. According to
Theorem 8.3.2 there exists an integerk such that

• q is a hyperbolic periodic point of periodk;
• Ws(q) and Wu(q) are Zariski dense in S;
• #(Ws(q)∩Wu(q)) is not finite.
Let ψ be a birational map of S which commutes withf . The mapψ permutes the unstable

and stable manifolds of hyperbolic periodic points off even if these manifolds pass through
a point of indeterminacy ofψ. Indeed, ifq is a periodic point off and Wu(q) is Zariski-
dense, thenψ is holomorphic in any generic point of Wu(q) so we can extendψ analytically
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along Wu(q). Since f hasνk hyperbolic periodic points of periodk, there exists a subgroup
Bk of Cent( f ,Bir(S)) of index less thanνk!; any element ofBk fixes Ws(q) and Wu(q). More
precisely there exists a morphism

α : Bk → C∗×C∗, ψ 7→ (αu(ψ),αs(ψ))

such thatψ(ξu/s
q (z)) = ξu/s

q (αu/s(ψ)z) for anyψ of Bk and for anyz of C such thatψ is holo-

morphic on a neighborhood ofξu/s
q (z).

As Ws(q) and Wu(q) are Zariski dense,α is injective. Then we can apply the arguments of
Proposition 8.2.3.

8.3.2. Birational maps that don’t satisfy Bedford-Diller condition. — Let f be a birational
map of a complex surface S; assume thatf is algebraically stable. Letp be a point of indeter-
minacy of f . If C is a curve contracted onp by an iteratef−n, n> 0, of f , then we say thatC
comes fromp. If q is a point of S for which there exists an integerm such that

∀ 0≤ ℓ < m, f ℓ(q) 6∈ Ind f , f m(q) = p

we say thatq is a point of indeterminacy off passing through p at the time m. Since f is
algebraically stable, the iteratesf−m of f , m≥ 0, are all holomorphic in a neighborhood ofp
so the unique point passing throughp at the timem is f−m(p). We say thatp has an infinite
negative orbit if the set

{
f−m(p) |m≥ 0

}
is infinite.

Lemma 8.3.4([47]). — Let f be a birational map ofS. Assume that f is algebraically stable.
Let p be a point of indeterminacy of f having an infinite negative orbit. One of the following
holds:

i. there exist an infinite number of irreducible curves contracted on p by the iterates f−n

of f , n∈N;
ii. there exists a birational morphismπ : S→ S′ such thatπ f π−1 is an algebraically stable

birational map ofS′ whose all iterates are holomorphic in a neighborhood ofπ(p).

We will say that a point of indeterminacyp is persistent if there exists no birational mor-
phismπ : S→ S′ satisfying propertyii.

Proof. — Assume that the union of the curves contracted byf−n, n ≥ 0, onto p is a finite
unionC of curves.

Let us consider a curveC in C such that
• f m is holomorphic onC;
• f m(C) is a point.

We can then contract the divisorC by a birational mapπ : S→ S′ and the mapπ f π−1 is still
algebraically stable. By induction we can suppose that there is no such curveC in C .

If C is empty the second assertion of the statement is satisfied.
Assume thatC is not empty. IfC belongs toC and f m(C) does not belong toC then f m(C)

is a point which does not belong toC and f m is holomorphic alongC: contradiction. So for
any curveC of C , f m(C), m≥ 0, belongs toC . We can hence assume thatC is invariant
by any f m with m≥ 0. The setC is invariant by f n for any n in Z so f−n(p), n > 0, is a
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sequence of points ofC . Let C be an irreducible component ofC passing throughp. SinceC

contains curves coming fromp there exists an integerk such thatf−k is holomorphic alongC
and contractsC onto p. Therefore the negative orbit ofp passes periodically throughp and
cannot be infinite: contradiction.

Lemma 8.3.5([62, 78]). — LetSbe a compact complex surface and let f be a birational map
of S. If f preserves an infinite number of curves, then f preservesa fibration.

Proposition 8.3.6([47]). — Let f be an algebraically stable birational map of a compact
complex surfaceS. Let p be a persistent point of indeterminacy of f whose negative orbit
is infinite. Ifψ is a birational map ofS which commutes with f then

• eitherψ preserves a pencil of rational curves;
• or an iterateψm of ψ, m 6= 0, coincides with an iterate fn of f .

Proof. — Let us setν := #Ind f , and considerψν! instead ofψ. Since the negative orbit ofp
is infinite, there exists an integerk0 such thatψ is holomorphic around the pointsf−k(p) for
anyk≥ k0. For anyn≥ 0 let us denote byCn the union of curves coming fromp. The periodic
point p is persistent, so according to Lemma 8.3.4 there is an infinite number of curves coming
from p. Hence there exists an integern0 such that for anyn≥ n0 the mapψ does not contractCn.
Since f andψ commute,ψ( f−k(p)) is a point of indeterminacy off m for at least an integer

0≤ m≤ n0+k+1(∀k≥ k0).

This point of indeterminacy passes throughp. Let us considerψ f ℓ for some good choice ofℓ;
we can thus assume thatψ( f−k(p)) is a point of indeterminacy off passing throughp at the
time k and soψ( f−k(p)) = f−k(p) for anyk≥ k0. Moreover forn sufficiently large we have
ψ(Cn) = Cn. We conclude with Lemma 8.3.5.

Corollary 8.3.7([47]). — Let f be a birational map of a compact complex surfaceSwhich is
algebraically stable. Assume that

• the map f is hyperbolic;
• f has a persistent point of indeterminacy whose negative orbit is infinite.
If ψ is a birational map ofS which commutes with f , there exists m∈ Z \ {0} and n∈ Z

such thatψm = f n.

Proof. — Let ψ be in Cent( f ,Bir(P2)). Assume thatψ preserves a pencil of curvesP . As
f is hyperbolic, f doesn’t preserve a pencil of curves soψ preserves two distinct pencilsP
and f (P ). According to [77] an iterate ofψ is conjugate to an automorphism isotopic to the
identity on a minimal rational surface S′; let us still denote byf and byψ the maps of S′

obtained fromf andψ by conjugation. Assume thatψ has infinite order; let us denote by G the
Zariski closure of the cyclic group generated byψ in Aut(S′). It is an abelian Lie group which
commutes withf . Any subgroup of one parameter of G determines a flow which commutes
with f : f φt = φt f . If the orbits ofφt are algebraic curves,f preserves a pencil of curves:
contradiction withλ( f )> 1. Otherwiseφt fixes a finite number of algebraic curves and among
these we find all the curves contracted byf or by somef n; hence there is a finite number of
such curves: contradiction with the second assumption.
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Since then Blanc and Cantat got a more precise statement.

Theorem 8.3.8([33]). — Let f be a hyperbolic birational map. Then

Cent( f ,Bir(P2))≃ Z ⋊ F

where F denotes a finite group.

8.4. Centralizer of elliptic birational maps of infinite ord er

Let us recall ([34, Proposition 1.3]) that an elliptic birational mapf of P2(C) of infinite
order is conjugate to an automorphism ofP2(C) which restricts to one of the following auto-
morphisms on some open subset isomorphic toC2:

• (αx,βy), whereα, β ∈ C∗, and where the kernel of the group homomorphismZ2 → C∗

given by(i, j) 7→ αiβ j is generated by(k,0) for somek∈ Z.
• (αx,y+1), whereα ∈ C∗.
We can describe the centralizers of such maps.

Lemma 8.4.1([34]). — Let us consider f= (αx,βy) whereα, β are in C∗, and where the
kernel of the group homomorphismZ2 → C∗ given by(i, j) 7→ αiβ j is generated by(k,0) for
some k∈ Z. Then the centralizer of f inBir(P2) is

Cent( f ,Bir(P2)) =
{
(η(x),yR(xk))

∣∣R∈ C(x),η ∈ PGL2(C),η(αx) = αη(x)
}
.

Lemma 8.4.2([34]). — Let us consider f=(αx,y+β)whereα, β∈C∗. ThenCent( f ,Bir(P2))

is equal to
{
(η(x),y+R(x))

∣∣η ∈ PGL2(C),η(αx) = αη(x),R∈ C(x),R(αx) = R(x)
}
.

8.5. Centralizer of de Jonquières twists

Let us denote byπ2 the morphism from dJ (seeChapter 2, §2.3) into PGL2(C), i.e. π2( f ) is
the second component off ∈ dJ. The elements of dJ which preserve the fibration with a trivial
action on the basis of the fibration form a normal subgroup dJ0 of dJ (kernel of the morphism
π2); of course dJ0 ≃ PGL2(C(y)). Let f be an element of dJ0; it is, up to conjugacy, of one of
the following form (seefor example [71])

a (x+a(y),y), b (b(y)x,y), c

(
c(y)x+F(y)

x+c(y)
,y

)
,

with a in C(y), b in C(y)∗ andc, F in C[y], F being not a square (ifF is a square, thenf is
conjugate to an element of typeb).

The non finite maximal abelian subgroups of dJ0 are

dJa =
{
(x+a(y),y)

∣∣a∈ C(y)
}
, dJm =

{
(b(y)x,y)

∣∣b∈ C(y)∗
}
,

dJF =

{
(x,y),

(
c(y)x+F(y)

x+c(y)
,y

) ∣∣∣c∈ C(y)

}
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whereF denotes an element ofC[y] which is not a square ([71]). We can assume thatF is a
polynomial with roots of multiplicity one (up to conjugation by a map(a(y)x,y)). Therefore
if f belongs to dJ0 and if Ab( f ) is the non finite maximal abelian subgroup of dJ0 that con-
tains f then, up to conjugacy, Ab( f ) is either dJa, or dJm, or dJF . More precisely if f is of
typea (resp.b, resp.c), then Ab( f ) = dJa (resp. Ab( f ) = dJm, resp. Ab( f ) = dJF ).

In [55] we first establish the following property.

Proposition 8.5.1([55]). — Let f be an element ofdJ0. Then
• eitherCent( f ,Bir(P2)) is contained indJ;
• or f is periodic.

Proof. — Let f = (ψ(x,y),y) be an element of dJ0, i.e. ψ ∈ PGL2(C(y)).
Let ϕ = (P(x,y),Q(x,y)) be a rational map that commutes withf . If ϕ does not belong to dJ,

thenQ= cte is a fibration invariant byf which is noty= cte. Hencef preserves two distinct
fibrations and the action on the basis is trivial in both casesso f is periodic.

This allows us to prove the following statement.

Theorem 8.5.2([55]). — Let f be a birational map which preserves a rational fibration, the
action on the basis being trivial. If f is a Jonquières twist,thenCent( f ,Bir(P2)) is a finite
extension ofAb( f ).

This result allows us to describe, up to finite index, the centralisers of the elements of dJ\dJ0,
question related to classical problems of difference equations. A generic element of dJ\dJ0

has a trivial centralizer.
In this section we will give an idea of the proof of Theorem 8.5.2.

8.5.1. Maps ofdJa. —

Proposition 8.5.3([55]). — The centralizer of f= (x+1,y) is
{
(x+b(y),ν(y))

∣∣b∈ C(y), ν ∈ PGL2(C)
}
≃ dJa⋊PGL2(C).

Proof. — The mapf is not periodic and so, according to Proposition 8.5.1, any mapψ which
commutes withf can be written as(ψ1(x,y),ν(y)) with ν in PGL2(C). The equalityf ψ = ψ f
impliesψ1(x+1,y) = ψ1(x,y)+1. Thus∂ψ1

∂x (x+1,y) = ∂ψ1
∂x (x,y) and ∂ψ1

∂x depends only ony,
i.e.

ψ1(x,y) = A(y)x+B(y).

Writing againψ1(x+1,y) = ψ1(x,y)+1 we getA= 1. Hence

ψ = (x+B(y),ν(y)), B∈ C(y)ν ∈ PGL2(C).

Corollary 8.5.4. — The centralizer of a non trivial element(x+ b(y),y) is thus conjugate
to dJa⋊PGL2(C).
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Proof. — Let f = (x+a(y),y) be a non trivial element of dJa, i.e. a 6= 0; up to conjugation by
(a(y)x,y) we can assume thatf = (x+1,y).

8.5.2. Maps ofdJm. — If a ∈ C(y) is non constant, we denote stab(a) the finite subgroup
of PGL2(C) defined by

stab(a) =
{

ν ∈ PGL2(C)
∣∣a(ν(y)) = a(y)

}
.

Let us also introduce the subgroup

Stab(a) =
{

ν ∈ PGL2(C)
∣∣a(ν(y)) = a(y)±1}.

We remark that stab(a) is a normal subgroup of Stab(a).

Example 8.5.5. — If k is an integer and ifa(y) = yk, then

stab(a) =
{

ωky
∣∣ωk = 1

}
& Stab(a) =

〈1
y
, ωky

∣∣ωk = 1
〉
.

Let us denote bystab(a) the linear group

stab(a) =
{
(x,ν(y))

∣∣ν ∈ stab(a)
}
.

By definition the groupStab(a) is generated bystab(a) and the elements
(

1
x ,ν(y)

)
, with ν

in Stab(a)\stab(a).

Proposition 8.5.6([55]). — Let f = (a(y)x,y) be a non periodic element ofdJm.
If f is an elliptic birational map, i.e. a is a constant, the centralizer of f is

{(
b(y)x,ν(y)

) ∣∣b∈ C(y)∗, ν ∈ PGL2(C)
}
.

If f is a Jonquières twist, thenCent( f ,Bir(P2)) = dJm⋊Stab(a).

Remarks 8.5.7. — • For generica the groupStab(a) is trivial; so for genericf ∈ dJm, the
group Cent( f ,Bir(P2)) coincides with dJm = Ab( f ).

• If f = (a(y)x,y) with a non constant, then Cent( f ,Bir(P2)) is a finite extension of dJm =

Ab( f ).
• If f = (ax,y), a ∈ C∗, we have Cent( f ,Bir(P2)) = dJm⋊Stab(a) (here we can define

Stab(a) = PGL2(C)).

8.5.3. Maps ofdJF . — Let us now consider the elements of dJF ; as we said we can assume
thatF only has roots with multiplicity one. We can thus writef as follows:

f =

(
c(y)x+F(y)

x+c(y)
,y

)
c∈ C(y);

the curve of fixed pointsC of f is given byx2 = F(y). Since the eigenvalues of

[
c(y) F(y)

1 c(y)

]

arec(y)±
√

F(y) we note thatf is periodic if and only ifc is zero; in that casef is periodic of
period 2. Assume now thatf is not periodic. AsF has simple roots the genus ofC is ≥ 2 for
degF ≥ 5, is equal to 1 for degF ∈ {3, 4}; finally C is rational when degF ∈ {1, 2}.
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8.5.3.1. Assume that the genus ofC is positive. — Since f is a Jonquières twist,f is not
periodic. The mapf has two fixed points on a generic fiber which correspond to the two points
on the curvex2 = F(y). The curvesx2 = F(y) and the fibersy= constant are invariant byf and
there is no other invariant curve. Indeed an invariant curvewhich is not a fibery= constant
intersects a generic fiber in a finite number of points necessary invariant by f ; since f is of
infinite order it is impossible (a Moebius transformation which preserves a set of more than
three elements is periodic).

Proposition 8.5.8([55]). — Let f =
(

c(y)x+F(y)
x+c(y) ,y

)
be a non periodic map(i.e. c6= 0), where F

is a polynomial of degree≥ 3 with simple roots(i.e. the genus ofC is ≥ 1). Then if F is
generic,Cent( f ,Bir(P2)) coincides withdJF ; if it is not, Cent( f ,Bir(P2)) is a finite extension
of dJF = Ab( f ).

8.5.3.2. Suppose thatC is rational. — Let f be an element of dJF ; assume thatf is a Jon-
quières twist.

The curve of fixed pointsC of f is given byx2 =F(y). Letψ be an element of Cent( f ,Bir(P2));
eitherψ contractsC , or ψ preservesC . According to Proposition 8.5.1 the mapψ preserves the
fibrationy= cte; the curveC is transverse to the fibration soψ cannot contractC . Thereforeψ
belongs to dJ and preservesC . As soon as degF ≥ 3 the assumptions of Proposition 8.5.8
are satisfied; so assume that degF ≤ 2. The case degF = 2 can be deduced from the case

degF = 1. Indeed let us considerf =
(

c(y)x+y
x+c(y) ,y

)
. Let us setϕ =

(
x

cy+d ,
ay+b
cy+d

)
. We can check

thatϕ−1 f ϕ can be written (
c̃(y)x+(ay+b)(cy+d)

x+ c̃(y)
,y

)
,

and this allows to obtain all polynomials of degree 2 with simple roots. If degF = 1, i.e.

F(y) = ay+b, we have, up to conjugation by
(

x, y−b
a

)
, F(y) = y.

Lemma 8.5.9([55]). — Let f be a map of the form
(

c(y)x+y
x+c(y) ,y

)
with c inC(y)∗. If ψ is an ele-

ment ofCent( f ,Bir(P2)), thenπ2(ψ) is eitherα
y , α∈C∗, or ξy,ξ root of unity; moreover,π2(ψ)

belongs tostab
(

4c(y)2

c(y)2−y

)
.

Forα in C∗ we denote by D∞(α) the infinite dihedral group

D∞(α) =
〈α

y
, ωy

∣∣ω root of unity
〉

;

let us remark that any D∞(α) is conjugate to D∞(1).
If c is a non constant element ofC(y)∗, then S(c;α) is the finite subgroup of PGL2(C) given

by

S(c;α) = stab

(
4c(y)2

c(y)2−y

)
∩D∞(α).

The description of Cent( f ,Bir(P2)) with f in dJF andC = Fix f rational is given by:
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Proposition 8.5.10([55]). — Let us consider f=
(

c(y)x+y
x+c(y) ,y

)
with c inC(y)∗, c non constant.

There existsα in C∗ such that

Cent( f ,Bir(P2)) = dJy⋊S(c;α).

Propositions 8.5.3, 8.5.6, 8.5.8 and 8.5.10 imply Theorem 8.5.2.

8.6. Centralizer of Halphen twists

For the definition of Halphen twists, see Chapter 3, §3.2.

Proposition 8.6.1([47, 104]). — Let f be an Halphen twist. The centralizer of f inBir(P2)

contains a subgroup of finite index which is abelian, free andof rank≤ 8.

Proof. — Up to a birational change of coordinates, we can assume that f is an element of
a rational surface with an elliptic fibrationπ : S→ P1 and that this fibration isf -invariant.
Moreover we can assume that this fibration is minimal (there is no smooth curve of self in-
tersection−1 in the fibers) and sof is an automorphism. The elliptic fibration is the unique
fibration invariant byf (see[77]) so it is invariant by Cent( f ,Bir(P2)); thus Cent( f ,Bir(P2))

is contained in Aut(S).
As the fibration is minimal, the surface S is obtained by blowing upP2(C) in the nine

base-points of an Halphen pencil(1) and the rank of its Neron-Severi group is equal to 10
(Proposition 1.1.8). The automorphism group of S can be embedded in the endomorphisms of
H2(S,Z) for the intersection form and preserves the class[KS] of the canonical divisor,i.e. the
class of the elliptic fibration. The dimension of the orthogonal hyperplane to[KS] is 9 and the
restriction of the intersection form on its hyperplane is semi-negative: its kernel coincides with
Z[KS]. Hence Aut(S) contains an abelian group of finite index whose rank is≤ 8.

1. An Halphen pencil is a pencil of plane algebraic curves of degree 3n with ninen-tuple base-points.





CHAPTER 9

AUTOMORPHISMS WITH POSITIVE ENTROPY, FIRST
DEFINITIONS AND PROPERTIES

Let V be a complex projective manifold. Letφ be a rational or holomorphic map on V. When
we iterate this map we obtain a “dynamical system”: a pointp of V moves top1 = φ(p), then
to p2 = φ(p1), to p3 = φ(p2) . . . Soφ “induces a movement on V”. The set

{
p, p1, p2, p3, . . .

}

is theorbit of p.
Let A be a projective manifold;A is anAbelian varietyof dimensionk if A(C) is isomorphic

to a compact quotient ofCk by an additive subgroup.
Multiplication by an integerm> 1 on an Abelian variety, endomorphisms of degreed> 1 on

projective spaces are studied since XIXth century in particular by Julia and Fatou ([4]). These
two families of maps “have an interesting dynamic”. Consider the first case; letfm denote the
multiplication bym. Periodic points offm are repulsive and dense inA(C) : a point is periodic
if and only if it is a torsion point ofA; the differential off n

m at a periodic point of periodn is an
homothety of ratiomn > 1.

Around 1964 Adler, Konheim and McAndrew introduce a new way to measure the complex-
ity of a dynamical system: the topological entropy ([1]). Let X be a compact metric space. Let
φ be a continuous map fromX into itself. Letε be a strictly positif real number. For all integer
n let N(n,ε) be the minimal cardinal of a partXn of X such that for ally in X there existsx in X
satisfying

dist( f j(x), f j (y))≤ ε, ∀ 0≤ j ≤ n.

We introduce htop( f ,ε) defined by

htop( f ,ε) = limsup
n→+∞

1
n

log N(n,ε).

Thetopological entropyof f is given by

htop( f ) = lim
ε→0

htop( f ,ε).

For an isometry ofX the topological entropy is zero. For the multiplication bymon a complex
Abelian variety of dimensionk we have: htop( f ) = 2k log m. For an endomorphism ofPk(C)
defined by homogeneous polynomials of degreed we have: htop( f ) = k log d (see[110]).

Let V be a complex projective manifold. On which conditions do rational maps with chaotic
behavior exist ? The existence of such rational maps impliesa lot of constraints on V :



100 CHAPTER 9. AUTOMORPHISMS WITH POSITIVE ENTROPY, FIRST DEFINITIONS AND PROPERTIES

Theorem 9.0.2([16]). — A smooth complex projective hypersurface of dimension greater than1
and degree greater than2 admits no endomorphism of degree greater than1.

Let us consider the case of compact homogeneous manifolds V :the group of holomorphic
diffeomorphisms acts faithfully on V and there are a lot of holomorphic maps on it. Meanwhile
in this context all endomorphisms with topological degree strictly greater than 1 come from
endomorphisms on projective manifolds and nilvarieties.

So the "idea” is that complex projective manifolds with richpolynomial dynamic are rare;
moreover it is not easy to describe the set of rational or holomorphic maps on such manifolds.

9.1. Some dynamics

9.1.1. Smale horseshoe. —The Smale horsehoe is the hallmark of chaos. Let us now de-
scribe it (see for example[170]). Consider the embeddingf of the disc∆ into itself. Assume
that

• f contracts the semi-discsf (A) and f (E) in A;
• f sends the rectanglesB andD linearly to the rectanglesf (B) and f (D) stretching them

vertically and shrinking them horizontally, in the case ofD it also rotates by 180 degrees.
We don’t care what the imagef (C) of C is, as long asf (C)∩(B∪C∪D)= /0. In other words

we have the following situation

E

D

C

B

A

f (C)

f (D)f (B)

f (A) f (E)

There are three fixed points:p∈ f (B), q∈ A, s∈ f (D). The pointsq is asink in the sense
that for allz∈A∪C∪E we have lim

n→+∞
f n(z) = q. The pointsp andsaresaddle points: if m lies

on the horizontal throughp then f n squeezes it top asn→+∞, while if m lies on the vertical
throughp then f−n squeezes it top asn→+∞. In some coordinates centered inp we have

∀(x,y) ∈ B, f (x,y) = (kx,my)

for some 0< k < 1< m; similarly f (x,y) = (−kx,−my) on D for some coordinates centered
at s. Let us recall that the sets

Ws(p) =
{

z
∣∣ f n(z)→ p asn→+∞

}
,

Wu(p) =
{

z
∣∣ f n(z)→ p asn→−∞

}
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are called stable and unstable manifolds ofp. They intersect atr, which is what Poincaré called
ahomoclinic point. Homoclinic points are dense in

{
m∈ ∆

∣∣ f n(m) ∈ ∆, n∈ Z
}

.
The keypart of the dynamic off happens on the horseshoe

Λ =
{

z
∣∣ f n(z) ∈ B∪D ∀n∈ Z

}
.

Let us introduce the shift map on the space of two symbols. Take two symbols 0 and 1, and
look at the setΣ =

{
0,1
}Z

of all bi-infinite sequencesa= (an)n∈Z where, for eachn, an is 0
or 1. The mapσ : Σ → Σ that sendsa= (an) to σ(a) = (an+1) is a homeomorphism called the
shift map. Let us consider the itinerary mapi : Λ → Σ defined as follows:i(p) = (sn)n∈Z where
sn = 1 if f n(p) is in B andsn = 0 if f n(p) belongs toD. The diagram

Σ

i
��

σ // Σ

i
��

Λ
f

// Λ
commutes so every dynamical property of the shift map is possessed equally byf|Λ. Due to
conjugacy the chaos ofσ is reproduced exactly in the horseshoe: the mapσ has positive en-
tropy: log2; it has 2n periodic orbits of periodn, and so must be the set of periodic orbits
of f|Λ.

To summarize: every dynamical system having a transverse homoclinic point also has a
horseshoe and thus has a shift chaos, even in higher dimensions. The mere existence of a
transverse intersection between the stable and unstable manifolds of a periodic orbit implies a
horseshoe; since transversality persists under perturbation, it follows that so does the horseshoe
and so does the chaos.

The concepts of horseshoe and hyperbolicity are related. Inthe description of the horseshoe
the derivative off stretches tangent vectors that are parallel to the verticaland contracts vectors
parallel to the horizontal, not only at the saddle points, but uniformly throughoutΛ. In general,
hyperbolicity of a compact invariant set such asΛ is expressed in terms of expansion and
contraction of the derivative on subbundles of the tangent bundle.

9.1.2. Two examples. —Let us considerPc(z) = z2+c. A periodic pointp of Pc with periodn
is repelling if |(Pn

c (p))
′|> 1 and theJulia setof Pc is the closure of the set of repelling periodic

points.Pc is a complex horseshoe if it is hyperbolic (i.e. uniformly expanding on the Julia set)
and conjugate to the shift on two symbols. TheMandelbrot setM is defined as the set of all
pointsc such that the sequence(Pn

c (0))n does not escape to infinity

M =
{

c∈ C
∣∣∃s∈ R, ∀n∈ N,

∣∣Pn
c (0)

∣∣ ≤ s
}
.

The complex horseshoe locus is the complement of the Mandelbrot set.

Let us consider the Hénon family of quadratic maps

φa,b : R2 → R2, φa,b(x,y) = (x2+a−by,x).

For fixed parametersa andb, φa,b defines a dynamical system, and we are interested in the
way that the dynamic varies with the parameters. The parameter b is equal to det jacφa,b;
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whenb= 0, the map has a one-dimensional image and is equivalent toPc. As soon asb is non
zero, these maps are diffeomorphisms, and maps similar to Smale’s horseshoe example occur
whena<< 0 (see[74]).

In the 60’s it was hoped that uniformly hyperbolic dynamicalsystems might be in some
sense typical. While they form a large open sets on all manifolds, they are not dense. The
search for typical dynamical systems continues to be a greatproblem, in order to find new
phenomena we try the framework of compact complex surfaces.

9.2. Some algebraic geometry

9.2.1. Compact complex surfaces. —Let us recall some notions introduced in Chapters 1
and 3 and some others.

To any surface S we associate its Dolbeault cohomology groups Hp,q(S) and the cohomo-
logical groups Hk(S,Z), Hk(S,R) and Hk(S,C). Set

H1,1
R (S) = H1,1(S)∩H2(S,R).

Let f : X 99K S be a dominating meromorphic map between compact complex surfaces, letΓ
be a desingularization of its graph and letπ1, π2 be the natural projections. A smooth formα
in C ∞

p,q(S) can be pulled back as a smooth formπ∗
2α ∈ C ∞

p,q(Γ) and then pushed forward as a
current. We definef ∗ by

f ∗α = π1∗π∗
2α

which gives a L1loc form on X that is smooth outside Indf . The action off ∗ satisfies:f ∗(dα) =
d( f ∗α) so descends to a linear action on Dolbeault cohomology.

Let {α} ∈ Hp,q(S) be the Dolbeault class of some smooth formα. We set

f ∗{α}= {π1∗π∗
2α} ∈ Hp,q(X).

This defines a linear mapf ∗ from Hp,q(S) into Hp,q(X). Similarly we can define the push-
forward f∗ = π2∗π∗

1 from Hp,q(X) into Hp,q(S). When f is bimeromorphic, we havef∗ =

( f−1)∗. The operation(α,β) 7→ ∫
α∧ β on smooth 2-forms induced a quadratic intersection

form, calledproduct intersection, denoted by(·, ·) on H2(S,C). Its structure is given by the
following fundamental statement.

Theorem 9.2.1([9]). — Let S be a compact Kähler surface and leth1,1 denote the dimen-
sion of H1,1(S,R) ⊂ H2(S,R). Then the signature of the restriction of the intersection pro-
duct toH1,1(S,R) is (1,h1,1 − 1). In particular, there is no2-dimensional linear subspaceL
in H1,1(S,R) with the property that(v, v) = 0 forall v in L.

The Picard group Pic(P2) is isomorphic toZ (seeChapter 1, Example 1.1.2); similarly
H2(P2(C),Z) is isomorphic toZ. We may identify Pic(P2) and H2(P2(C),Z).
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9.2.2. Exceptional configurations and characteristic matrices. — Let f ∈ Bir(P2) be a
birational map of degreeν. By Theorem 1.3.1 there exist a smooth projective surface S′ andπ,
η two sequences of blow-ups such that

S
π

}}③③
③③
③③
③③ η

!!❉
❉❉

❉❉
❉❉

❉

P2(C)
f

//❴❴❴❴❴❴❴ P2(C)

We can rewriteπ as follows

π : S= Sk
πk→ Sk−1

πk−1→ . . .
π2→ S1

π1→ S0 = P2(C)

whereπi is the blow-up of the pointpi−1 in Si−1. Let us set

Ei = π−1
i (pi), Ei = (πi+1◦ . . . ◦πk)

∗Ei.

The divisorsEi are called theexceptional configurationsof π and thepi base-points off .
For any effective divisor D6= 0 onP2(C) let multpi D be defined inductively in the following

way. We set multp1D to be the usual multiplicity of D atp1 : it is defined as the largest integerm
such that the local equation of D atp1 belongs to them-th power of the maximal idealmP2,p1

.

Suppose that multp1D is defined. We take the proper inverse transformπ−1
i D of D in Si and

define multpi+1D = multpi+1π−1
i D. It follows from the definition that

π−1D = π∗(D)−
k

∑
i=1

miEi

wheremi = multpi D.

There are two relationships betweenν and themi ’s (Chapter 1, §1.2):

1= ν2−
k

∑
i=1

m2
i , 3= 3ν−

k

∑
i=1

mi.

An ordered resolutionof f is a decompositionf = ηπ−1 whereη andπ are ordered se-
quences of blow-ups. An ordered resolution off induces two basis of Pic(S)

• B =
{

e0 = π∗H, e1 = [E1], . . . , ek = [Ek]
}
,

• B ′ =
{

e′0 = η∗H, e′1 = [E ′
1], . . . , e′k = [E ′

k]
}
,

where H is a generic line. We can writee′i as follows

e′0 = νe0−
k

∑
i=1

miei , e′j = ν je0−
k

∑
i=1

mi j ei , j ≥ 1.

The matrix of change of basis

M =




ν ν1 . . . νk

−m1 −m11 . . . −m1k
...

...
...

−mk −mk1 . . . −mkk



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is calledcharacteristic matrixof f . The first column ofM, which is thecharacteristic vector
of f , is the vector(ν,−m1, . . . ,−mk). The other columns(νi ,−m1i, . . . ,−mki) describe the
“behavior ofE ′

i ”: if ν j > 0, thenπ(E ′
j) is a curve of degreeν j in P2(C) through the pointspℓ

of f with multiplicity mℓ j .

Example 9.2.2. — Consider the birational map

σ : P2(C) 99K P2(C), (x : y : z) 99K (yz: xz: xy).

The points of indeterminacy ofσ areP= (1 : 0 : 0), Q= (0 : 1 : 0) andR= (0 : 0 : 1); the
exceptional set is the union of the three lines∆ = {x= 0}, ∆′ = {y= 0} and∆′′ = {z= 0}.

First we blow upP; let us denote by E the exceptional divisor andD1 the strict transform of
D. Set

{
y= u1

z= u1v1

E= {u1 = 0}
∆′′

1 = {v1 = 0}

{
y= r1s1

z= s1

E= {s1 = 0}
∆′

1 = {r1 = 0}
On the one hand

(u1,v1)→ (u1,u1v1)(y,z) → (u1v1 : v1 : 1) =

(
1
u1

,
1

u1v1

)

(y,z)
→
(

1
u1

,
1
v1

)

(u1,v1)

;

on the other hand

(r1,s1)→ (r1s1,s1)(y,z) → (r1s1 : 1 : r1) =

(
1

r1s1
,

1
s1

)

(y,z)
→
(

1
r1
,

1
s1

)

(r1,s1)

.

Hence E is sent on∆1; asσ is an involution∆1 is sent on E.

Now blow up Q1; this time let us denote by F the exceptional divisor andD2 the strict
transform ofD1 :

{
x= u2

z= u2v2

F= {u2 = 0}
∆′′

2 = {v2 = 0}

{
x= r2s2

z= s2

E= {s2 = 0}
∆2 = {r2 = 0}

We have

(u2,v2)→ (u2,u2v2)(x,z) → (v2 : u2v2 : 1) =

(
1
u2

,
1

u2v2

)

(x,z)
→
(

1
u2

,
1
v2

)

(u2,v2)

and

(r2,s2)→ (r2s2,s2)(x,z) → (1 : r2s2 : r2) =

(
1

r2s2
,

1
s2

)

(x,z)
→
(

1
r2
,

1
s2

)

(r2,s2)

.

Therefore F→ ∆′
2 and∆′

2 → F.
Finally we blow upR2; let us denote by G the exceptional divisor and set
{

x= u3

y= u3v3

G= {u3 = 0}
∆′′

3 = {v3 = 0}

{
x= r3s3

z= s3

E= {s3 = 0}
∆2 = {r3 = 0}

Note that

(u3,v3)→ (u3,u3v3)(x,y) → (v3 : 1 : u3v3) =

(
1
u3

,
1

u3v3

)

(x,y)
→
(

1
u3

,
1
v3

)

(u3,v3)
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and

(r3,s3)→ (r3s3,s3)(x,y) → (1 : r3 : r3s3) =

(
1

r3s3
,

1
s3

)

(x,y)
→
(

1
r3
,

1
s3

)

(r3,s3)

.

Thus G→ ∆′
3 and∆′

3 → G. There are no more points of indeterminacy, no more exceptional
curves; in other wordsσ is conjugate to an automorphism of BlP,Q1,R2P

2.

Let H be a generic line. Note thatE1 = E, E2 = F, E3 = H. Consider the basis{H, E, F, G}.
After the first blow-up∆ and E are swapped; the point blown up is the intersection of∆′ and∆′′

so∆ → ∆+F+G. Thenσ∗E= H−F−G. Similarly we have:

σ∗F= H−E−G and σ∗G= H−E−F.

It remains to determineσ∗H. The image of a generic line byσ is a conic henceσ∗H = 2H−
m1E−m2F−m3G. Let L be a generic line described bya0x+a1y+a2z. A computation shows
that

(u1,v1)→ (u1,u1v1)(y,z) → (u2
1v1 : u1v1 : u1)→ u1(a0v2+a1u2v2+a2)

vanishes to order 1 on E= {u1 = 0} thusm1 = 1. Note also that

(u2,v2)→ (u2,u2v2)(x,z) → (u2v2 : u2
2v2 : u2)→ u2(a0v2+a1u2v2+a2),

respectively

(u3,v3)→ (u3,u3v3)(x,y) → (u3v3 : u3 : u2
3v3)→ u3(a0v3+a1+a2u3v3)

vanishes to order 1 on F= {u2 = 0}, resp. G= {u3 = 0} som2 = 1, resp.m3 = 1. Therefore
σ∗H = 2H−E−F−G and the characteristic matrix ofσ in the basis

{
H, E, F, G

}
is

Mσ =




2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0


 .

Example 9.2.3. — Let us consider the involution given by

ρ : P2(C) 99K P2(C), (x : y : z) 99K (xy : z2 : yz).

We can show thatMρ = Mσ.

Example 9.2.4. — Consider the birational map

τ : P2(C) 99K P2(C), (x : y : z) 99K (x2 : xy : y2−xz).

We can verify thatMτ = Mσ.
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9.3. Where can we find automorphisms with positive entropy ?

9.3.1. Some properties about the entropy. —Let f be a map of classC ∞ on a compact
manifold V; the topological entropy is greater than the logarithm of the spectral radius of the
linear map induced byf on H∗(V,R), direct sum of the cohomological groups of V:

htop( f )≥ log r( f ∗).

Remark that the inequality htop( f ) ≥ log r( f ∗) is still true in the meromorphic case ([80]).
Before stating a more precise result when V is Kähler we introduce some notation: for all
integer p such that 0≤ p ≤ dimCV we denote byλp( f ) the spectral radius of the mapf ∗

acting on the Dolbeault cohomological group Hp,p(V,R).

Theorem 9.3.1([110, 108, 186]). — Let f be a holomorphic map on a compact complex Käh-
ler manifoldV; we have

htop( f ) = max
0≤p≤dimC V

log λp( f ).

Remark 9.3.2. — The spectral radius off ∗ is strictly greater than 1 if and only if one of
theλp( f )’s is and, in fact, if and only ifλ( f ) = λ1( f ) > 1. In other words in order to know if
the entropy off is positive we just have to study the growth of( f n)∗{α} where{α} is a Kähler
form.

Examples 9.3.3. — • Let V be a compact Kähler manifold and Aut0(V) be the connected
component of Aut(V) which contains the identity element. The topological entropy of
each element of Aut0(V) is zero.

• The topological entropy of an holomorphic endomorphismf of the projective sapce is
equal to the logarithm of the topological degree off .

• Whereas the topological entropy of an elementary automorphism is zero, the topological
entropy of an Hénon automorphism is positive.

9.3.2. A theorem of Cantat. — Before describing the pairs(S, f ) of compact complex sur-
faces S carrying an automorphismf with positive entropy, let us recall that a surface S is
rational if it is birational toP2(C). A rational surface is always projective ([9]). A K3 surface
is a complex, compact, simply connected surface S with a trivial canonical bundle. Equiv-
alently there exists a holomorphic 2-formω on S which is never zero;ω is unique modulo
multiplication by a scalar. Let S be a K3 surface with a holomorphic involution ι. If ι has no
fixed point the quotient is anEnriques surface, otherwise it is a rational surface. As Enriques
surfaces are quotients of K3 surfaces by a group of order 2 acting without fixed points, their
theory is similar to that of algebraic K3 surfaces.

Theorem 9.3.4([44]). — Let S be a compact complex surface. Assume thatS has an auto-
morphism f with positive entropy. Then

• either f is conjugate to an automorphism on the unique minimal model ofS which is
either a torus, or a K3 surface, or an Enriques surface;
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• or S is rational, obtained fromP2(C) by blowing upP2(C) in at least10 points and f is
birationally conjugate to a birational map ofP2(C).

In particular S is kählerian.

Examples 9.3.5. — • SetΛ = Z[i] andE = C/Λ. The group SL2(Λ) acts linearly onC2

and preserves the latticeΛ× Λ; then each element A of SL2(Λ) induces an automor-
phism fA onE×E which commutes withι(x,y) = (ix, iy). Each automorphismfA can be
lifted to an automorphism̃fA on the desingularization of(E×E)/ι which is a K3 surface.
The entropy of̃fA is positive as soon as the modulus of one eigenvalue of A is strictly
greater than 1.

• We have the following statement due to Torelli.

Theorem 9.3.6. — LetSbe a K3 surface. The morphism

Aut(S)→ GL(H2(S,Z)), f 7→ f ∗

is injective.
Conversely assume thatψ is an element ofGL(H2(S,Z)) which preserves the inter-

section form onH2(S,Z), the Hodge decomposition ofH2(S,Z) and the Kähler cone
of H2(S,Z). Then there exists an automorphism f onSsuch that f∗ = ψ.

The case of K3 surfaces has been studied by Cantat, McMullen,Silverman, Wang and others
(seefor example [45, 143, 172, 183]). The context of rational surfaces produces much more
examples (seefor example [144, 21, 22, 23, 73]).

9.3.3. Case of rational surfaces. —Let us recall the following statement due to Nagata.

Proposition 9.3.7([147], Theorem5). — Let S be a rational surface and let f be an auto-
morphism onS such that f∗ is of infinite order; then there exists a sequence of holomorphic
mapsπ j+1 : Sj+1 → Sj such thatS1 = P2(C), SN+1 = Sandπ j+1 is the blow-up of pj ∈ Sj .

Remark that a surface obtained fromP2(C) via generic blow-ups has no nontrivial auto-
morphism ([120, 131]). Moreover we have the following statement which can be found for
example in [76, Proposition 2.2.].

Proposition 9.3.8. — Let S be a surface obtained fromP2(C) by blowing up n≤ 9 points.
Let f be an automorphism onS. The topological entropy of f is zero.

Moreover, if n≤ 8 then there exists an integer k such that fk is birationally conjugate to an
automorphism of the complex projective plane.

Proof. — Assume thatf has positive entropy logλ( f ) > 0. According to [44] there exists
a non-trivial cohomology classθ in H2(S,R) such thatf ∗θ = λ( f )θ andθ2 = 0. Moreover
f∗KS = f ∗KS = KS. Since

(θ,KS) = ( f ∗θ, f ∗KS) = (λ( f )θ,KS)
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we have(θ,KS) = 0. The intersection form on S has signature(1,n−1) and K2
S ≥ 0 for n≤ 9

soθ = cKS for somec< 0. But thenf ∗θ = θ 6= λ( f )θ: contradiction. The mapf thus has zero
entropy.

If n ≤ 8, then K2
S > 0. The intersection form is thus strictly negative on the orthogonal

complementH ⊂ H2(S,R) of KS. But dimH is finite,H is invariant underf ∗ and f ∗ preserves
H2(S,Z) so f ∗ has finite order onH. Thereforef k∗ is trivial for some integerk. In particular
f k preserves each of the exceptional divisors inX that correspond to then≤ 8 points blown up
in P2(C). So f k descends to a well-defined automorphism ofP2(C).

Let f be an automorphism with positive entropy on a Kähler surface. The following state-
ment gives properties on the eigenvalues off ∗.

Theorem 9.3.9([19], Theorem 2.8, Corollary 2.9). — Let f be an automorphism with posi-
tive entropylogλ( f ) on a Kähler surface. The first dynamical degreeλ( f ) is an eigenvalue
of f∗ with multiplicity 1 and this is the unique eigenvalue with modulus strictly greater than1.

If η is an eigenvalue of f∗, then eitherη belongs to{λ( f ),λ( f )−1}, or |η| is equal to1.

Proof. — Let v1, . . ., vk denote the eigenvectors off ∗ for which the associated eigenvalueµℓ
has modulus> 1. We have

(v j ,vk) = ( f ∗v j , f ∗vk) = µjµk(v j ,vk), ∀1≤ j ≤ k

so (v j ,vk) = 0. Let L be the linear span ofv1, . . ., vk. Each elementv= ∑i αivi in L satisfies
(v,v) = 0. According to Theorem 9.2.1 dimL ≤ 1. But sinceλ( f ) > 1, L is spanned by a
unique nontrivial eigenvector. Ifv has eigenvalueµ, thenv has eigenvalueµ so we must have
µ= µ= λ( f ).

Let us see thatλ( f ) has multiplicity one. Assume that it has not; then there exists θ such
that f ∗θ = λ( f )θ+cv. In this case

(θ,v) = ( f ∗θ, f ∗v) = (λ( f )θ+cv,λv) = λ2(θ,v)

so(θ,v) = 0. Similarly we have(θ,θ) = 0 so by Theorem 9.2.1 again, the space spanned byθ
andv must have dimension 1; in other wordsλ( f ) is a simple eigenvalue.

We know thatλ( f ) is the only eigenvalue of modulus> 1. Since( f ∗)−1 = ( f−1)∗, if η is
an eigenvalue off ∗, then 1

η is an eigenvalue of( f−1)∗. Applying the first statement tof−1 we

obtain thatλ is the only eigenvalue of( f−1)∗ with modulus strictly larger than 1.

Let χ f denote the characteristic polynomial off ∗. This is a monic polynomial whose con-
stant term is±1 (constant term is equal to the determinant off ∗). Let Ψ f be the minimal
polynomial ofλ( f ). Except forλ( f ) andλ( f )−1 all zeroes ofχ f (and thus ofΨ f ) lie on the
unit circle. Such polynomial is aSalem polynomialand such aλ( f ) is aSalem number. So
Theorem 9.3.9 says that iff is conjugate to an automorphism thenλ( f ) is a Salem number;
in fact the converse is true ([33]). There exists another birational invariant which allowsus to
characterize birational maps that are conjugate to automorphisms (see[34, 33]).
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9.4. Linearization and Fatou sets

9.4.1. Linearization. — Let us recall some facts about linearization of germs of holomorphic
diffeomorphism in dimension 1 when the modulus of the multipliers is 1. Let us consider

(9.4.1) f (z) = αz+a2z2+a3z3+ . . . , α = e2iπθ, θ ∈ R\Q

We are looking forψ(z) = z+b2z2+ . . . such thatf ψ(z) = ψ(αz). Since we can formally
compute the coefficientsbi

b2 =
a2

α2−α
, . . . , bn =

an+Qn

αn−α

with Qn ∈ Z[ai , i ≤ n−1, bi , i ≤ n] we say thatf is formally linearizable. If ψ converges, we
say that the germf is analytically linearizable.

Theorem 9.4.1(Cremer). — If lim inf |αq−α|1/q = 0, there exists an analytic germ f of the
type(9.4.1) which is not analytically linearizable.

More precisely iflim inf |αq−α| 1
νq = 0, then no polynomial germ

f (z) = αz+a2z2+ . . .+zν

of degreeν is linearizable.

Theorem 9.4.2(Siegel). — If there exist two constants c and M strictly positive such that
|αq−α| ≥ c

qM then any germ f(z) = αz+a2z2+ . . . is analytically linearizable.

Let us now deal with the case of two variables. Let us consider

f (x,y) = (αx,βy)+ h.o.t.

with α, β of modulus 1 but not root of unity. The pair(α,β) is resonantif there exists a relation
of the formα = αaβb or β = αaβb wherea, b are some positive integers such thata+b≥ 2. A
resonant monomialis a monomial of the formxayb. We say thatα andβ aremultiplicatively
independentif the unique solution ofαaβb = 1 with a, b in Z is (0,0). The numbersα andβ
aresimultaneously diophantineif there exist two positive constantsc andM such that

min
(
|αaβb−α|, |αaβb−β|

)
≥ c

|a+b|M ∀a, b∈ N, a+b≥ 2.

Theorem 9.4.3. — If α andβ are simultaneously diophantine then f is linearizable.
If α andβ are algebraic and multiplicatively independent then they are simultaneously dio-

phantine.

For more detailssee[6, 37, 117, 171].

9.4.2. Fatou sets. —
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9.4.2.1. Definitions and properties. — Let f be an automorphism on a compact complex ma-
nifold M. Let us recall that theFatou setF ( f ) of f is the set of points which own a neighbor-
hoodV such that

{
f n
|V , n≥ 0

}
is a normal family. Let us consider

G = G(U) =
{

ψ : U → U
∣∣ψ = lim

nj→+∞
f nj
}
.

We say thatU is arotation domainif G is a subgroup of Aut(U), that is, if any element ofG
defines an automorphism ofU. An equivalent definition is the following: ifU is a component
of F ( f ) which is invariant byf , we say thatU is a rotation domain iff|U is conjugate to a
linear rotation; in dimension 1 this is equivalent to have a Siegel disk. We have the following
properties ([24]).

• If f preserves a smooth volume form, then any Fatou component is arotation domain.
• If U is a rotation domain,G is a subgroup of Aut(M).

• A Fatou componentU is a rotation domain if and only there exists a subsequence such that
(n j)→+∞ and such that( f nj ) converges uniformly to the identity on compact subsets of
U.

• If U is a rotation domain,G is a compact Lie group and the action ofG on U is analytic
real.

Let G0 be the connected component of the identity ofG . SinceG is a compact, infinite,
abelian Lie group,G0 is a torus of dimensiond ≥ 0; let us note thatd ≤ dimCM. We say thatd
is the rank of the rotation domain. The rank is equal to the dimension of the closure of a
generic orbit of a point inU.

We have some geometric information on the rotation domains:if U is a rotation domain
then it is pseudo-convex ([24]).

Let us give some details when M is a kählerian surface carrying an automorphism with
positive entropy.

Theorem 9.4.4([24]). — LetSbe a compact, kählerian surface and let f be an automorphism
of Swith positive entropy. LetU be a rotation domain of rank d. Then d≤ 2.

If d = 2 theG0-orbit of a generic point ofU is a real2-torus.
If d = 1, there exists a holomorphic vector field which induces a foliation by Riemann sur-

faces onS whose any leaf is invariant byG0.

We can use an argument of local linearization to show that some fixed points belong to the
Fatou set. Conversely we can always linearize a fixed point ofthe Fatou set.

9.4.2.2. Fatou sets of Hénon automorphisms. — Let f be a Hénon automorphism. Let us
denote byK ± the subset ofC2 whose positive/negative orbit is bounded:

K ± =
{
(x,y) ∈ C2

∣∣{ f±n(x,y) |n≥ 0
}

is bounded
}
.

Set

K = K +∩K −, J ± = ∂K ±, J = J +∩ J −, U+ = C2\K +.

Let us state some properties.
• The family of the iteratesf n, n≥ 0, is a normal family in the interior ofK +.
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• If (x,y) belongs toJ + there exists no neighborhoodU of (x,y) on which the family{
f n
|U
∣∣n≥ 0

}
is normal.

We have the following statement.

Proposition 9.4.5. — The Fatou set of a Hénon map isC2\ J +.

Definitions. — Let Ω be a Fatou component;Ω is recurrent if there exist a compact subsetC
of Ω and a pointm in C such thatf nj (m) belongs toC for an infinite number ofn j → +∞. A
recurrent Fatou component is periodic.

A fixed pointmof f is asink if mbelongs to the interior of the stable manifold

Ws(m) =
{

p
∣∣ lim

n→+∞
dist( f n(m), f n(p)) = 0

}
.

We say that Ws(m) is thebasinof m. If m is a sink, the eigenvalues ofD fm have all modulus
less than 1.

A Siegel disk(resp. Herman ring) is the image of a disk(resp. of an annulus) ∆ by an
injective holomorphic mapϕ having the following property: for anyz in ∆ we have

f ϕ(z) = ϕ(αz), α = e2iπθ, θ ∈R\Q.

We can describe the recurrent Fatou components of a Hénon map.

Theorem 9.4.6([26]). — Let f be a Hénon map with jacobian< 1 and letΩ be a recurrent
Fatou component. ThenΩ is

• either the basin of a sink;
• or the basin of a Siegel disk;
• or a Herman ring.

Under some assumptions the Fatou component of a Hénon automorphisms are recurrent.

Proposition 9.4.7. — The Fatou component of a Hénon map which preserves the volumeare
periodic and recurrent.

9.4.3. Fatou sets of automorphisms with positive entropy ontorus, (quotients of) K3, ra-
tional surfaces. — If S is a complex torus, an automorphism of positive entropy is essentially
an element of GL2(Z); since the entropy is positive, the eigenvalues satisfy:|λ1| < 1< |λ2|
and the Fatou set is empty.

Assume that S is a K3 surface or a quotient of a K3 surface. Since there exists a volume form,
the only possible Fatou components are rotation domains. McMullen proved there exist non
algebraic K3 surfaces with rotation domains of rank 2 (see[143]); we can also look at [155].

The other compact surfaces carrying automorphisms with positive entropy are rational ones;
in this case there are rotation domains of rank 1, 2 (see[22, 144]). Other phenomena like
attractive, repulsive basins can happen ([22, 144]).





CHAPTER 10

WEYL GROUPS AND AUTOMORPHISMS OF POSITIVE
ENTROPY

In [144] McMullen, thanks to Nagata’s works and Harbourne’s works,establishes a result
similar to Torelli’s theorem for K3 surfaces: he constructsautomorphisms on some rational
surfaces prescribing the action of the automorphisms on cohomological groups of the surface.
These rational surfaces own, up to multiplication by a constant, a unique meromorphic nowhere
vanishing 2-formΩ. If f is an automorphism on S obtained via this construction,f ∗Ω is pro-
portional toΩ and f preserves the poles ofΩ. When we project S on the complex projective
plane, f induces a birational map preserving a cubic.

The relationship of the Weyl group to the birational geometry of the plane, used by Mc-
Mullen, is discussed since 1895 in [130] and has been much developed since then ([86, 147,
148, 61, 104, 138, 111, 140, 112, 151, 113, 81, 120, 187, 85]).

10.1. Weyl groups

Let S be a surface obtained by blowing up the complex projective plane in a finite number
of points. Let

{
e0, . . . , en

}
be a basis of H2(S,Z); if

e0 ·e0 = 1, ej ·ej =−1, ∀ 1≤ j ≤ k, ei ·ej = 0, ∀ 0≤ i 6= j ≤ n

then
{

e0, . . . , en
}

is ageometric basis. Considerα in H2(S,Z) such thatα ·α=−2, thenRα(x)=
x+(x·α)α sendsα on−α andRα fixes each element ofα⊥; in other wordsRα is a reflection
in the directionα.

Consider the vectors given by

α0 = e0−e1−e2−e3, α j = ej+1−ej , 1≤ j ≤ n−1.

For all j in {0, . . . ,n−1} we haveα j ·α j =−2. When j is nonzero the reflectionRα j induces
a permutation on{ej , ej+1}. The subgroup generated by theRα j ’s, with 1≤ j ≤ n− 1, is the
set of permutations on the elements{e1, . . . , en}. Let Wn ⊂ O(Z1,n) denote the group

〈Rα j |0≤ j ≤ n−1〉

which is calledWeyl group.
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The Weyl groups are, for 3≤ n≤ 8, isomorphic to the following finite groups

A1×A2, A4, D5, E6, E7, E8

and are associated to del Pezzo surfaces. Forn ≥ 9 Weyl groups are infinite and forn ≥ 10
Weyl groups contain elements with a spectral radius strictly greater than 1.

If Y and S are two projective surfaces, let us recall that YdominatesS if there exists a
surjective algebraic birational morphism from Y to S.

Theorem 10.1.1([82]). — LetSbe a rational surface which dominatesP2(C).
• The Weyl groupWk ⊂ GL(Pic(S)) does not depend on the chosen exceptional configura-

tion.
• If E and E ′ are two distinct exceptional configurations, there exists win Wk such that

w(E) = E ′.
• If S is obtained by blowing up k generic points and ifE is an exceptional configuration,

then for any w in the Weyl group w(E) is an exceptional configuration.

If f is an automorphism of S, by a theorem of Nagata there exists a unique elementw in Wn

such that

Z1,n

ϕ
��

w // Z1,n

ϕ
��

H2(S,Z)
f∗ // H2(S,Z)

commutes; we said that the automorphismf realizesω.
A product of generatorsRα j is aCoxeter elementof Wn. Note that all Coxeter elements are

conjugate so the spectral radius of a Coxeter element is welldefined.
The mapσ is represented by the reflectionκi jk = Rαi jk whereαi jk = e0−ei −ej −ek andi,

j, k≥ 1 are distinct elements; it acts as follows

e0 → 2e0−ei −ej −ek, ei → e0−ej −ek, ej → e0−ei −ek

ek → e0−ei −ej , eℓ → eℓ if ℓ 6∈ {0, i, j, k}

Whenn= 3, we say thatκ123 is thestandard elementof W3. Consider the cyclic permutation

(123. . .n) = κ123Rα1 . . .Rαn−1 ∈ Σn ⊂ Wn;

let us denote it byπn. For n≥ 4 we define thestandard elementw of Wn by w = πnκ123. It
satisfies

w(e0) = 2e0−e2−e3−e4, w(e1) = e0−e3−e4, w(e2) = e0−e2−e4,

w(e3) = e0−e2−e3, w(ej) = ej+1, 4≤ j ≤ n−2, w(en−1) = e1.
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10.2. Statements

In [144] McMullen constructs examples of automorphisms with positive entropy “thanks to”
elements of Weyl groups.

Theorem 10.2.1([144]). — For n≥ 10, the standard element ofWn can be realizable by an
automorphism fn with positive entropylog(λn) of a rational surfaceSn.

More precisely the automorphismfn : Sn → Sn can be chosen to have the following addi-
tional properties:

• Sn is the complex projective plane blown up inn distinct pointsp1, . . . , pn lying on a
cuspidal cubic curveC ,

• there exists a nowhere vanishing meromorphic 2-formη on Sn with a simple pole along
the proper transform ofC ,

• f ∗n (η) = λn ·η,
• (〈 fn〉,Sn) is minimal in the sense of Manin(1).
The first three properties determinefn uniquely. The pointspi admit a simple description

which leads to concrete formulas forfn.
The smallest known Salem number is a rootλLehmer∼ 1.17628081 of Lehmer’s polynom

L(t) = t10+ t9− t7− t6− t5− t4− t3+ t +1.

Theorem 10.2.2([144]). — If f is an automorphism of a compact complex surface with po-
sitive entropy, thenhtop( f )≥ logλLehmer.

Corollary 10.2.3([144]). — The map f10: S10 → S10 is an automorphism ofS10 with the
smallest possible positive entropy.

Theorem 10.2.4([144]). — There is an infinite number of n for which the standard element
of Wn can be realized as an automorphism ofP2(C) blown up in a finite number of points
having a Siegel disk.

Let us also mention a more recent work in this direction ([181]). Diller also find examples
using plane cubics ([76]).

10.3. Tools

10.3.1. Marked cubic curves. —A cubic curveC ⊂ P2(C) is a reduced curve of degree 3. It
can be singular or reducible; let us denote byC ∗ its smooth part. Let us recall some properties
of the Picard group of such a curve (see[114] for more details). We have the following exact
sequence

0−→ Pic0(C )−→ Pic(C )−→ H2(C ,Z)−→ 0

where Pic0(C ) is isomorphic to

1. Let Z be a surface and G be a subgroup of Aut(S). A birational map f : S 99K S̃ is G-equivariant if̃G =

f G f−1 ⊂ Aut(S̃). The pair(G,S) is minimal if every G-equivariant birational morphism is anisomorphism.
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• either a torusC/Λ (whenC is smooth);
• or to the multiplicative groupC∗ (it corresponds to the following case:C is either a nodal

cubic or the union of a cubic curve and a transverse line, or the union of three line in
general position);

• or to the additive groupC (whenC is either a cuspidal cubic, or the union of a conic and
a tangent line, or the union of three lines through a single point).

A cubic marked curveis a pair(C ,η) of an abstract curveC equipped with a homomorphism
η : Z1,n → Pic(C ) such that

• the sections of the line bundleη(e0) provide an embedding ofC into P2(C);
• there exist distinct base-pointspi on C ∗ for which η(ei) = [pi ] for any i = 2, . . . , n.
The base-pointspi are uniquely determined byη sinceC∗ can be embedded into Pic(C ).

Conversely a cubic curveC which embeds intoP2(C) and a collection of distinct points onC ∗

determine a marking ofC .

Remark 10.3.1. — Different markings ofC can yield different projective embeddingsC →֒ P2(C)
but all these embeddings are equivalent under the action of Aut(C ).

Let (C ,η) and(C ′,η′) be two cubic marked curves; anisomorphismbetween(C ,η) and
(C ′,η′) is a biholomorphic applicationf : C → C ′ such thatη′ = f∗ ◦η.

Let (C ,η) be a cubic marked curve; let us set

W(C ,η) =
{

w∈ Wn
∣∣(C ,ηw) is a cubic marked curve

}
,

Aut(C ,η) =
{

w∈W(C ,η)
∣∣ (C ,η)& (C ′,η′) are isomorphic

}
.

We can decompose the markingη of C in two pieces

η0 : ker(deg◦η)→ Pic0(C ), deg◦η : Z1,n → H2(C ,Z).

We have the following property.

Theorem 10.3.2([144]). — Let(C ,η) be a marked cubic curve. The applicationsη0 anddeg◦η
determine(C ,η) up to isomorphism.

A consequence of this statement is the following.

Corollary 10.3.3([144]). — An irreducible marked cubic curve(C ,η) is determined, up to
isomorphism, byη0 : Ln → Pic0(C ).

10.3.2. Marked blow-ups. — A marked blow-up(S,Φ) is the data of a smooth projective
surface S and an isomorphismΦ : Z1,n → H2(S,Z) such that

• Φ sends the Minkowski inner product(x ·x) = x2 = x2
0−x2

1− . . .−x2
n on the intersection

pairing on H2(S,Z);
• there exists a birational morphismπ : S→ P2(C) presenting S as the blow-up ofP2(C) in

n distinct base-pointsp1, . . . , pn;
• Φ(e0) = [H] andΦ(ei) = [Ei ] for any i = 1, . . ., n where H is the pre-image of a generic

line in P2(C) and Ei the divisor obtained by blowing uppi .
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The marking determines the morphismπ : S→ P2(C) up to the action of an automorphism
of P2(C).

Let (S,Φ) and(S′,Φ) be two marked blow-ups; anisomorphismbetween(S,Φ) and(S′,Φ′)
is a biholomorphic applicationF : S→ S′ such that the following diagram

Z1,n

Φ

zz✉✉
✉✉
✉✉
✉✉
✉

Φ′

$$■
■■

■■
■■

■■

H2(S,Z)
F∗

// H2(S′,Z)

commutes. If(S,Φ) and (S′,Φ′) are isomorphic, there exists an automorphismϕ of P2(C)
such thatp′i = ϕ(pi).

Assume that there exist two birational morphismsπ, π′ : S→P2(C) such that S is the surface
obtained by blowing upP2(C) in p1, . . . , pn (resp. p′1, . . . , p′n) via π (resp.π′).There exists a
birational mapf : P2(C) 99K P2(C) such that the diagram

S
π

}}③③
③③
③③
③③ π′

!!❉
❉❉

❉❉
❉❉

❉

P2(C)
f

//❴❴❴❴❴❴❴ P2(C)

commutes; moreover there exists a unique elementw in Z1,n such thatΦ′ = Φw.

The Weyl group satisfies the following property due to Nagata: let (S,Φ) be a marked blow-
up and letw be an element ofZ1,n. If (S,Φw) is still a marked blow-up, thenw belongs to the
Weyl group Wn. Let (S,Φ) be a marked blow-up; let us denote byW(S,Φ) the set of elements
w of Wn such that(S,Φw) is a marked blow-up:

W(S,Φ) =
{

w∈ Wn
∣∣(S,Φw) is a marked blow-up

}
.

The right action of the symmetric group reorders the base-points of a blow-up so the group
of permutations is contained inW(S,Φ). The following statement gives other examples of
elements ofW(S,Φ).

Theorem 10.3.4([144]). — Let(S,Φ) be a marked blow-up and letσ be the involution(x : y :
z) 99K (yz: xz: xy). Let us denote by p1, . . . , pn the base-points of(S,Φ). If, for any4≤ k≤ n,
the point pk does not belong to the line through pi and pj , where1 ≤ i, j ≤ 3, i 6= j, then
(S,Φκ123) is a marked blow-up.

Proof. — Let π : S→ P2(C) be the birational morphism associated to the marked blow-up
(S,Φ). Let us denote byq1, q2 andq3 the points of indeterminacy ofσ. Let us choose some
coordinates for whichpi = qi for i = 1, 2, 3; thenπ′ = σπ : S→ P2(C) is a birational morphism
which allows us to see(S,Φκ123) as a marked blow-up with base-pointsp1, p2, p3 andσ(pi)

for i ≥ 4. These points are distinct since, by hypothesis,p4, . . . , pn do not belong to the lines
contracted byσ.
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A root α of Θn is anodal root for (S,Φ) if Φ(α) is represented by an effective divisorD. In
this caseD projects to a curve of degreed > 0 onP2(C); thusα = de0−∑i≥1 miei is a positive
root. A nodal root isgeometricif we can writeD as a sum of smooth rational curves.

Theorem 10.3.5([144]). — Let (S,Φ) be a marked blow-up. If three of the base-points are
colinear,(S,Φ) has a geometric nodal root.

Proof. — After reordering the base-pointsp1, . . . , pn, we can assume thatp1, p2 and p3 are
colinear; let us denote byL the line through these three points. We can suppose that the base-
points which belong toL arep1, . . . , pk. The strict transform̃L of L induces a smooth rational
curve on S with[L̃] = [H−∑k

i=1 Ei] so

Φ(α123) = [L̃+
k

∑
i=1

Ei].

Theorem 10.3.6([144]). — Let(S,Φ) be a marked blow-up. If(S,Φ) has no geometric nodal
root, then

W(S,Φ) = Wn.

Proof. — If (S,Φ) has no geometric nodal root and ifw belongs toW(S,Φ), then(S,Φw) has
no geometric nodal root. It is so sufficient to prove that the generators of Wn belong toW(S,Φ).

Since the group of permutations is contained inW(S,Φ), it is clear for the transpositions;
for κ123 it is a consequence of Theorems 10.3.4 and 10.3.5.

Corollary 10.3.7([144]). — A marked surface has a nodal root if and only if it has a geomet-
ric nodal root.

10.3.3. Marked pairs. —

10.3.3.1. First definitions. — Let (S,Φ) be a marked blow-up. Let us recall that ananti-
canonical curveis a reduced curveY ⊂ S such that its class in H2(S,Z) satisfies

(10.3.1) [Y] = [3H−∑
i

Ei] =−KS.

A marked pair(S,Φ,Y) is the data of a marked blow-up(S,Φ) and an anticanonical curveY.
An isomorphismbetween marked pairs(S,Φ,Y) and(S′,Φ′,Y′) is a biholomorphismf from S
into S′, compatible with markings and which sendsY to Y′. If n≥ 10, then S contains at most
one irreducible anticanonical curve; indeed if such a curveY exists, thenY2 = 9−n< 0.
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10.3.3.2. From surfaces to cubic curves. — Let us consider a marked pair(S,Φ,Y). Let π be
the projection of S toP2(C) compatible withΦ. The equality (10.3.1) implies thatC = π(Y) is
a cubic curve through any base-pointpi with multiplicity 1. Moreover, Ei ·Y = 1 implies that
π : Y → C is an isomorphism. The identification of H2(S,Z) and Pic(S) allows us to obtain the
natural marking

η : Z1,n Φ−→ H2(S,Z) = Pic(S)
r−→ Pic(Y)

π∗−→ Pic(C )

wherer is the restrictionr : Pic(S) → Pic(Y). Therefore a marked pair(S,Y,Φ) determines
canonically a marked cubic curve(C ,η).

10.3.3.3. From cubic curves to surfaces. — Conversely let us consider a marked cubic curve(C ,η).
Then we have base-pointspi ∈ C determined by(η(ei))1≤i≤n and an embeddingC ⊂ P2(C)
determined byη(e0). Let (S,Φ) be the marked blow-up with base-pointspi andY ⊂S the strict
transform ofC . Hence we obtain a marked pair(S,Φ,Y) called blow-up of(C ,η) and denoted
Bl(C ,η).

This construction inverts the previous one, in other words we have the following statement.

Proposition 10.3.8([144]). — A marked pair determines canonically a marked cubic curve
and conversely.

10.4. Idea of the proof

The automorphisms constructed to prove the previous results are obtained from a birational
map by blowing up base-points on a cubic curveC ; the cubic curves play a very special role
because its transformsY are anticanonical curves.

Assume thatw∈Wn is realized by an automorphismF of a rational surface S which preserve
an anticanonical curveY. A marked cubic curve(C ,η) is canonically associated to a marked
pair (S,Φ,Y) (Theorem 10.3.8). Then there exists a birational mapf : P2(C) 99K P2(C) such
that:

• the lift of f to S coincides withF,
• f preservesC ,
• and f induces an automorphismf∗ of Pic0(C ) which satisfiesη0w = f∗η0. In other

words[η0] is a fixed point for the natural action ofw on the moduli space of markings.

Conversely to realize a given elementw of the group Wn we search a fixed pointη0 in the
moduli space of markings. We can associate toη0 a marked cubic(C ,η) up to isomorphism
(Corollary 10.3.3). Let us denote by(S,Φ,Y) the marked pair canonically determined by
(C ,η). Assume that, for anyα in Θn, η0(α) is non zero (which is a generic condition); the
base-pointspi do not satisfy some nodal relation (they all are distinct, nothree are on a line,
no six are on a conic, etc). According to a theorem of Nagata there exists a second projection
π′ : S→ P2(C) which corresponds to the markingΦw. Let us denote byC ′ the cubicπ′(Y).
Since[η0] is a fixed point ofw, the marked cubics(C ′,ηw) and(C ,η) are isomorphic. But
such an isomorphism is an automorphismF of S satisfyingF∗Φ = Φw.
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Let us remark that in [120, 111, 161, 76] there are also constructions with automorphisms
of surfaces and cubic curves.

10.5. Examples

Let us consider the family of birational mapsf : P2(C) 99K P2(C) given in the affine chart
z= 1 by

f (x,y) =
(

a+y,b+
y
x

)
, a, b∈ C.

Let us remark that the caseb=−a has been studied in [161] and [12].
The points of indeterminacy off arep1 = (0 : 0 : 1), p2 = (0 : 1 : 0) andp3 = (1 : 0 : 0). Let

us setp4 = (a : b : 1) and let us denote by∆ (resp.∆′) the triangle whose vertex arep1, p2, p3

(resp.p2, p3, p4). The mapf sends∆ onto∆′ : the pointp1 (resp.p2, resp.p3) is blown up on
the line(p1p4) (resp. (p2p3), resp.(p3p4)) and the lines(p1p2) (resp.(p1p3), resp.(p2p3))
are contracted onp2 (resp.p4, resp.p3).

If a andb are chosen such thatp1 = p4, then∆ is invariant by f and if we blow upP2(C)
at p1, p2, p3 we obtain a realization of the standard Coxeter element of W3. Indeed,f sends a
generic line onto a conic through thepi ; sow(e0) = 2e0−e1−e2−e3. The pointp1 (resp.p2,

resp. p3) is blown up on the line throughp2 and p3 (resp. p1 and p3, resp. p1 and p2).
Therefore

w(e1) = e0−e2−e3, w(e2) = e0−e1−e3, w(e3) = e0−e1−e2.

More generally we have the following statement.

Theorem 10.5.1([144]). — Let us denote by pi+4 the i-th iterate fi(p4) of p4.

The realization of the standard Coxeter element ofWn corresponds to the pairs(a,b) of C2

such that

pi 6∈ (p1p2)∪ (p2p3)∪ (p3p1), pn+1 = p1.

Proof. — Assume that there exists an integeri such that f i(p4) = pi+4. Let (S,π) be the
marked blow-up with base-pointspi . The map f lifts to a morphismF0 : S→ P2(C). Since
any pi is now the imageF0(ℓi) of a line in S, the morphismF0 lifts to an automorphismF of
S such thatf lifts to F. Let us find the elementw realized byF. Let us remark thatf sends a
generic line onto a conic throughp2, p3 and p4 thusw(e0) = 2e0−e2−e3−e4. The pointp1

is blown up to the line throughp3 andp4 sow(e1) = e0−e3−e4; similarly we obtain

w(e2) = e0−e2−e4, w(e3) = e0−e2−e3,

w(ei) = ei+1 for 4≤ i < n , w(en) = e1.

Conversely if an automorphismF : S→S realizes the standard Coxeter elementw= πnκ123,

we can normalize the base-points such that
{

p1, p2, p3
}
=
{
(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0)

}
;
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the birational mapf : P2(C) 99K P2(C) covered byF is a composition of the standard Cremona
involution and an automorphism sending(p1, p2) onto(p2, p3). Such a mapf has the form in
the affine chartz= 1

f (x,y) = (a′,b′)+ (Ay,By/x)

so up to conjugacy by(Bx,By/A), we havef (x,y) = (a,b)+ (y,y/x).





CHAPTER 11

AUTOMORPHISMS OF POSITIVE ENTROPY: SOME
EXAMPLES

A possibility to produce an automorphismf on a rational surface S is the following: starting
with a birational mapf of P2(C), we find a sequence of blow-upsπ : S→ P2(C) such that the
induced mapfS= π f π−1 is an automorphism of S. The difficulty is to find such a sequenceπ...
If f is not an automorphism of the complex projective plane, thenf contracts a curveC1 onto
a point p1; the first thing to do to obtain an automorphism fromf is to blow up the pointp1

via π1 : S1 → P2(C). In the best casefS1 = π1 f π−1
1 sends the strict transform ofC1 onto

the exceptional divisor E1. But if p1 is not a point of indeterminacy,fS1 contracts E1 onto
p2 = f (p1). This process thus finishes only iff is not algebraically stable.

In [23] Bedford and Kim exhibit a continuous family of birational maps( fa)a∈Ck−2. We
will see that this family is conjugate to automorphisms withpositive entropy on some rational
surface Sa (Theorem 11.6.1). Let us hold the parameterc fixed; the family fa induces a family
of dynamical systems of dimensionk/2−1: there exists a neighborhoodU of 0 inCk/2−1 such
that if a = (a0,a2, . . . ,ak−2), b = (b0,b2, . . . ,bk−2) are inU then fa and fb are not smoothly
conjugate (Theorem 11.6.3). Moreover they show, fork≥ 4, the existence of a neighborhood
U of 0 inCk/2−1 such that ifa, b are two distinct points ofU, then Sa is not biholomorphically
equivalent to Sb (Theorem 11.6.4).

The results evoked in the last section are also due to Bedfordand Kim ([24]); they concern
the Fatou sets of automorphisms with positive entropy on rational non-minimal surfaces ob-
tained from birational maps of the complex projective plane. Bedford and Kim prove that such
automorphisms can have large rotation domains (Theorem 11.7.1).

11.1. Description of the sequence of blow-ups ([21])

Let fa,b be the birational map of the complex projective plane given by

fa,b(x,y,z) =
(
x(bx+y) : z(bx+y) : x(ax+z)

)
,

or in the affine chartx= 1

fa,b(y,z) =

(
z,

a+z
b+y

)
.
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We note that Indfa,b = {p1, p2, p∗} and Excfa,b = Σ0∪Σβ ∪Σγ with

p1 = (0 : 1 : 0), p2 = (0 : 0 : 1), p∗ = (1 :−b : −a),

Σ0 = {x= 0}, Σβ = {bx+y= 0}, Σγ = {ax+z= 0}.

Σγ

ΣB

ΣC

Σ0

p∗p2

q

Σβ

p1

SetY = Blp1,p2P
2, π : Y → P2(C) and fa,b,Y = π−1 fa,bπ. Let us prove that after these two

blow-upsΣ0 does not belong to Excfa,b,Y.
To begin let us blow upp2. Let us setx= r2 andy= r2s2; then(r2,s2) is a system of local

coordinates in whichΣβ = {s2+b= 0} and E2 = {r2 = 0}. We remark that

(r2,s2)→ (r2, r2s2)(x,y) → (r2(b+s2) : b+s2 : ar2+1) =

(
r2(b+s2)

ar2+1
,

b+s2

ar2+1

)

(x,y)

→
(

r2(b+s2)

ar2+1
,

1
r2

)

(r2,s2)

.

ThusΣβ is sent onto E2 and E2 surΣ0.

Let us now blow upp1. Setx= u2v2 andy= v2; the exceptional divisor E2 is given byv2 = 0
andΣ0 by u2 = 0. We have

(u2,v2)→ (u2v2,v2)(x,y) → (u2v2(bu2+1) : bu2+1 : u2(au2v2+1))

=

(
v2(bu2+1)
au2v2+1

,
bu2+1

u2(au2v2+1)

)

(x,y)
→
(

u2v2,
bu2+1

u2(au2v2+1)

)

(u2,v2)

;

therefore E2 is sent ontoΣ0.

Let us setx= r1, z= r1s1; in the coordinates(r1,s1) we have E1 = {r1 = 0}. Moreover

(r1,s1)→ (r1, r1s1)(x,z) → (br1+1 : b+s1(br1+1) : r1(a+s1)).

Hence E1 is sent ontoΣB.



11.1. DESCRIPTION OF THE SEQUENCE OF BLOW-UPS ([21]) 125

Setx= u1v1 andz= v1; in these coordinatesΣ0 = {u1 = 0}, E1 = {v1 = 0} and

(u1,v1)→ (u1v1,v1)(x,z) → (u1(bu1v1+1) : bu1v1+1 : u1v1(au1+1))

=

(
u1,

u1v1(au1+1)
bu1v1+1

)

(x,z)
→
(

u1,
v1(au1+1)
bu1v1+1

)

(r1,s1)

.

SoΣ0 → E1 andΣβ → E2 → Σ0 → E1 → ΣB. In particular

Ind fa,b,Y = {p∗} & Exc fa,b,Y = {Σγ}.

We remark that
{

H, E1, E2
}

is a basis of Pic(Y). The exceptional divisor E1 is sent onΣB;
sincep1 belongs toΣB we have E1 → ΣB → ΣB+E1. On the other hand E2 is sent ontoΣ0;
asp1 andp2 belong toΣ0 we have

E2 → Σ0 → Σ0+E1+E2.

Let H be a generic line ofP2(C); it is given byℓ = 0 with ℓ = a0x+a1y+a2z. Its image by
fa,b,Y is a conic thus

f ∗a,b,YH = 2H−
2

∑
i=1

miEi.

Let us find themi ’s. As

(r2,s2)→ (r2, r2s2)(x,y) → (r2(b+s2) : b+s2 : ar2+1)

→ r2

(
a0r2(b+s2)+a1(b+s2)+a2(ar2+1)

)

and E2 = {r2 = 0} the integerm2 is equal to 1. Since

(r1,s1)→ (r1, r1s1)(x,z) → (br1+1 : b+s1(br1+1) : r1(a+s1))

→ s1r1

(
a0(bs1r1+1)+a1s1(bs1r1+1)+s1r1(a+s1)

)

and E1 = {s1 = 0} we getm1 = 1. That’s why

M fa,b,Y =




2 1 1
−1 −1 −1
−1 0 −1


 .

The characteristic polynomial ofM fa,b,Y is 1+t−t3. Let us explain all the information contained
in M fa,b,Y . Let L be a line and L its class in Pic(Y). If L does not intersect neither E1, nor E2,

then L= H. As f ∗a,b,YH = 2H−E1−E2 the image of L byfa,b,Y is a conic which intersects E1

and E2 with multiplicity 1. If L containsp∗, then fa,b,Y(L) is the union ofΣC and a second line.
Assume thatp∗ does not belong to L∪ fa,b,Y(L), then

f 2
a,b,Y(L) = M2

fa,b




1
0
0


= 2H−E2;
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in other words f 2
a,b,Y(L) is a conic which intersects E2 but not E1. If p∗ does not belong

to L ∪ fa,b,Y(L) ∪ f 2
a,b,Y(L), then

f 3
a,b,Y(L) = M3

fa,b




1
0
0


= 3H−E1−E2,

i.e. f3a,b,Y(L) is a cubic which intersects E1 and E2 with multiplicity 1. If p∗ does not belong to

L ∪ fa,b,Y(L)∪ . . .∪ f n−1
a,b,Y(L),

the iterates offa,b,Y are holomorphic on the neighborhood of L and

( f ∗a,b,Y)
n(H) = f n

a,b,YL.

The parametersa andb are saidgenericif p∗ does not belong to
∞⋃

j=0

f j
a,b,Y(L).

Theorem 11.1.1. — Assume that a and b are generic; fa,b,Y is algebraically stable andλ( fa,b)∼
1.324 is the largest eigenvalue of the characteristic polynomialt3− t −1.

11.2. Construction of surfaces and automorphisms ([21])

Let us consider the subsetVn of C2 given by

Vn =
{
(a,b) ∈ C2

∣∣ f j
a,b,Y(q) 6= p∗ ∀0≤ j ≤ n−1, f n

a,b,Y(q) = p∗
}
.

Theorem 11.2.1. — The map fa,b,Y is conjugate to an automorphism on a rational surface if
and only if(a,b) belongs toVn for some n.

Proof. — If (a,b) does not belong toVn, Theorem 11.1.1 implies thatλ( fa,b) is the largest
root of t3 − t − 1; we note thatλ( fa,b) is not a Salem number sofa,b is not conjugate to an
automorphism (Theorem 9.3.9).

Conversely assume that there exists an integern such that(a,b) belongs toVn. Let S be the
surface obtained fromY by blowing up the pointsq, fa,b,Y(q), . . . , f n

a,b,Y(q) = p∗ of the orbit
of q. We can check that the induced mapfa,b,S is an automorphism of S.

Let us now considerf ∗a,b,S which will be denoted byf ∗a,b.

Theorem 11.2.2. — Assume that(a,b) belongs toVn for some integer n. If n≤ 5, the map
fa,b is periodic of period≤ 30. If n is equal to6, the degree growth of fa,b is quadratic. Finally
if n ≥ 7, then

{
degf k

a,b

}
k grows exponentially andλ( fa,b) is the largest eigenvalue of the

characteristic polynomial

χn(t) = tn+1(t3− t −1)+ t3+ t2−1.

Moreover, when n tends to infinity,λ( fa,b) tends to the largest eigenvalue of t3− t −1.
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The actionfa,b,S∗ on the cohomology is given by

E2 → Σ0 = H−E1−E2 → E1 → ΣB = H−E1−Q

where Q denotes the divisor obtained by blowing up the pointq which is onΣB. As p∗ is
blown-up by fa,b on ΣC, we have

Q→ fa,b(Q)→ . . .→ f n
a,b(Q)→ ΣC = H−E2−Q.

Finally a generic line L intersectsΣ0, Σβ andΣγ with multiplicity 1; the image of L is thus a
conic throughq, p1 andp2 so H→ 2H−E1−E2−Q. In the basis

{
H, E1, E2, Q, fa,b(Q), . . . , f n

a,b(Q)
}

we have

M fa,b =




2 1 1 0 0 . . . . . . 0 1
−1 −1 −1 0 0 . . . . . . 0 0
−1 0 −1 0 0 . . . . . . 0 −1
−1 −1 0 0 0 . . . . . . 0 −1
0 0 0 1 0 . . . . . . 0 0

0 0 0 0 1 0 . . . 0
...

...
...

...
... 0

...
. . .

...
...

...
...

...
...

...
. . .

. . . 0 0
0 0 0 0 0 . . . 0 1 0




.

11.3. Invariant curves ([22])

In the spirit of [78] (seeChapter 5, §5.4) Bedford and Kim study the curves invariant by fa,b.
There exists rational mapsϕ j : C→ C2 such that if(a,b) = ϕ j(t) for some complex number
t, then fa,b has an invariant curveC with j irreducible components. Let us set

ϕ1(t) =

(
t − t3− t4

1+2t+ t2 ,
1− t5

t2+ t3

)
, ϕ2(t) =

(
t + t2+ t3

1+2t+ t2 ,
t3−1
t + t2

)
,

ϕ3(t) =

(
1+ t, t− 1

t

)
.

Theorem 11.3.1. — Let t be inC\{−1, 1, 0, j , j2}. There exists a cubicC invariant by fa,b if
and only if(a,b) =ϕ j(t) for a certain1≤ j ≤ 3; in that caseC is described by an homogeneous
polynomial Pt,a,b of degree3.

Moreover, if Pt,a,b exists, it is given, up to multiplication by a constant, by

Pt,a,b(x,y,z) = ax3(t −1)t4+ yz(t −1)t(z+ ty)

+ x
(

2byzt3+ y2(t −1)t3+ z2(t −1)(1+bt)
)

+ x2(t −1)t3
(

a(y+ tz)+ t(y+(t−2b)z)
)
.
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More precisely we have the following description.
• If (a,b) = ϕ1(t), thenΓ1 = (Pt,a,b = 0) is a irreducible cuspidal cubic. The mapfa,b has

two fixed points, one of them is the singular point ofC .

• If (a,b) = ϕ2(t), thenΓ2 = (Pt,a,b = 0) is the union of a conic and a tangent line to it. The
map fa,b has two fixed points.

• If (a,b) = ϕ3(t), thenΓ3 = (Pt,a,b = 0) is the union of three concurrent lines;fa,b has two
fixed points, one of them is the intersection of the three components ofC .

There is a relationship between the parameters(a,b) for which there exists a complex num-
bert such thatϕ j(t) = (a,b) and the roots of the characteristic polynomialχn.

Theorem 11.3.2. — Let n be an integer, let1 ≤ j ≤ 3 be an integer and let t be a complex
number. Assume that(a,b) := ϕ j(t) does not belong to anyVk for k< n. Then(a,b) belongs
to Vn if and only if j divides n and t is a root ofχn.

We can writeχn asCnψn whereCn is the product of cyclotomic factors andψn is the minimal
polynomial ofλ( fa,b).

Theorem 11.3.3. — Assume that n≥ 7. Let t be a root ofχn not equal to1. Then either t is a
root of ψn, or t is a root ofχ j for some0≤ j ≤ 5.

Bedford and Kim prove that #(Γ j ∩Vn) is, for n≥ 7, determined by the number of Galois
conjugates of the unique root ofψn strictly greater than 1 : ifn≥ 7 and 1≤ j ≤ 3 dividesn,
then

Γ j ∩Vn =
{

ϕ j(t)
∣∣ t root of ψn

}
;

in particularΓ j ∩Vn is not empty.
Let X be a rational surface and letg be an automorphism ofX. The pair (X,g) is said

minimal if any birational morphismπ : X → X′ which sends(X,g) on (X′,g′), whereg′ is an
automorphism ofX′, is an isomorphism. Let us recall a question of [144]. Let X be a rational
surface and letg be an automorphism ofX. Assume that(X,g) is minimal. Does there exist a
negative power of the class of the canonical divisor KX which admits an holomorphic section ?
We know since [115] that the answer is no if we remove the assumption “(X,g) minimal”.

Theorem 11.3.4. — There exists a surfaceS and an automorphism with positive entropy fa,b

on Ssuch that(S, fa,b) is minimal and such that fa,b has no invariant curve.

If g is an automorphism of a rational surfaceX such that a negative power of KX admits an
holomorphic section,g preserves a curve; so Theorem 11.3.4 gives an answer to McMullen’s
question.

11.4. Rotation domains ([22])

Assume thatn≥ 7 (so f is not periodic); if there is a rotation domain, then its rankis 1 or 2
(Theorem 9.4.4). We will see that both happen; let us begin with rotation domains of rank 1.
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Theorem 11.4.1. — Assume that n≥ 7. Assume that j divides n and that(a,b) belongs toΓ j ∩ Vn.

There exists a complex number t such that(a,b) = ϕ j(t). If t is a Galois conjugate ofλ( fa,b),
not equal toλ( fa,b)±1, then fa,b has a rotation domain of rank1 centered in

(
t3

1+ t
,

t3

1+ t

)
if j = 1,

(
− t2

1+ t
,− t2

1+ t

)
if j = 2, (−t,−t) if j = 3.

Let us now deal with those of rank 2.

Theorem 11.4.2. — Let us consider an integer n≥ 8, an integer2≤ j ≤ 3 which divides n.
Assume that(a,b) = ϕ j(t) and that|t| = 1; moreover suppose that t is a root ofψn. Let us
denote byη1, η2 the eigenvalues of D fa,b at the point

m=

(
1+ t + t2

t + t2 ,
1+ t + t2

t + t2

)
if j = 2, m=

(
1+

1
t
,1+

1
t

)
if j = 3.

If |η1|= |η2|= 1 then fa,b has a rotation domain on rank2 centered at m.

There are examples where rotation domains of rank 1 and 2 coexist.

Theorem 11.4.3. — Assume that n≥ 8, that j = 2 and that j divides n. There exists(a,b)
in Γ j ∩Vn such that fa,b has a rotation domain of rank2 centered at

(
1+ t + t2

t + t2 ,
1+ t + t2

t + t2

)
if j = 2,

(
1+

1
t
,1+

1
t

)
if j = 3

and a rotation domain of rank1 centered at
(
− t2

1+ t
,− t2

1+ t

)
if j = 2, (−t,−t) if j = 3.

11.5. Weyl groups ([22])

Let us recall that E1 and E2 are the divisors obtained by blowing upp1 andp2. To simplify
let us introduce some notations: E0 = H, E3 = Q, E4 = f (Q), . . . , En = f n−3(Q) and letπi be
the blow-up associated to Ei. Let us set

e0 = E0, ei = (πi+1 . . .πn)
∗Ei, 1≤ i ≤ n;

the basis
{

e0, . . . ,en
}

of Pic(S=) is geometric.
Bedford and Kim prove that they can apply Theorem 10.5.1 and deduce from it the following

statement.

Theorem 11.5.1. — Let X be a rational surface obtained by blowing upP2(C) in a finite
number of pointsπ : X → P2(C) and let F be an automorphism on X which represents the
standard element of the Weyl groupWn, n≥ 5. There exists an automorphism A ofP2(C) and
some complex numbers a and b such that

fa,bAπ = AπF.

Moreover they get that a representation of the standard element of the Weyl group can be
obtained fromfa,b,Y.
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Theorem 11.5.2. — Let X be a rational surface and let F be an automorphism on X which
represents the standard element of the Weyl groupWn. There exist

• a surfaceỸ obtained by blowing up Y in a finite number of distinct pointsπ : Ỹ →Y,
• an automorphism g oñY,
• (a,b) in Vn−3

such that(F,X) is conjugate to(g,Ỹ) andπg= fa,b,Yπ.

11.6. Continuous families of automorphisms with positive entropy ( [23])

In [23] Bedford and Kim introduce the following family:

(11.6.1) fa(y,z) =
(

z,−y+cz+
k−2

∑
j=1

j pair

a j

y j +
1
yk

)
,a= (a1, . . . ,ak−2) ∈ Ck−2, c∈R, k≥ 2.

Theorem 11.6.1. — Let us consider the family( fa) of birational maps given by(11.6.1).
Let j, n be two integers relatively prime and such that1≤ j ≤ n. There exists a non-empty

subset Cn of R such that, for any even k≥ 2 and for any(c,a j) in Cn ×C, the map fa is
conjugate to an automorphism of a rational surfaceSa with entropylogλn,k wherelogλn,k is
the largest root of the polynomial

χn,k = 1−k
n−1

∑
j=1

x j +xn.

Let us explain briefly the construction ofCn. The line∆ = {x = 0} is invariant by fa. An
element of∆ \{(0 : 0 : 1)} can be written as(0 : 1 :w) and f (0 : 1 :w) =

(
0 : 1 :c− 1

w

)
. The

restriction of fa to ∆ coincides withg(w) = c− 1
w. The set of values ofc for whichg is periodic

of periodn is {
2cos( jπ/n)

∣∣0< j < n, ( j,n) = 1
}
.

Let us setws = gs−1(c) for 1≤ s≤ n−1, in other words thewi ’s encode the orbit of(0 : 1 : 0)
under the action off . Thew j satisfy the following properties:

• w jwn−1− j = 1;
• if n is even, thenw1 . . .wn−2 = 1;
• if n is odd, let us setw∗(c) = w(n−1)/2 thenw1 . . .wn−2 = w∗.

Let us give details about the casen= 3, k = 2, thenC3 = {−1, 1}. Assume thatc= 1; in
other words

fa = f =
(
xz2 : z3 : x3+z3−yz2).

The mapf contracts only one line∆′′ = {z= 0} onto the pointR= (0 : 0 : 1) and blows up
exactly one point,Q = (0 : 1 : 0). Let us describe the sequence of blow-ups that allows us to
“solve indeterminacy”:

• first blow-up. First of all let us blow upQ in the domain andR in the range. Let us denote
by E (resp. F) the exceptional divisor obtained by blowing upQ (resp.R). One can check
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that E is sent onto F, ∆′′
1 is contracted ontoS= (0,0)(a1,b1) andQ1 = (0,0)(u1,v1) is a point

of indeterminacy;
• second blow-up. Let us then blow upQ1 in the domain andS in the range; let G, resp.

H be the exceptional divisors. One can verify that the exceptional divisor G is contracted
ontoT = (0,0)(c2,d2), ∆′′

2 ontoT andU = (0,0)(r2,s2) is a point of indeterminacy;
• third blow-up. Let us continue by blowing upU in the domain andT in the range, where K

and L denote the associated exceptional divisors. One can check thatW = (1,0)(r3,s3) is a
point of indeterminacy, K is sent onto L and G1 is contracted onV = (1,0)(c3,d3) and∆′′

3

onV;
• fourth blow-up. Let us blow upW in the domain andV in the range, let M and N be the

associated exceptional divisors. Then∆′′
4 is contracted onX = (0,0)(c4,d4), Y = (0,0)(r4,s4)

is a point of indeterminacy, G1 is sent onto N and M onto H;
• fifth blow-up. Finally let us blow upY in the domain andX in the range, whereΛ, Ω are

the associated exceptional divisors. So∆′′
5 is sent ontoΩ andΛ onto∆′′

5.

Theorem 11.6.2. — The map f=
(
xz2 : z3 : x3+ z3− yz2

)
is conjugate to an automorphism

of P2(C) blown up in15points.

The first dynamical degree of f is3+
√

5
2 .

Proof. — Let us denote bŷP1 (resp. P̂2) the point infinitely near obtained by blowing upQ,

Q1, U, W andY (resp. R, S, T, V andX). By following the sequence of blow-ups we get
that f induces an isomorphism between BlP̂1

P2 and Bl̂P2
P2, the components being switched as

follows

E→ F, ∆′′ → Ω, K → L, M → H, Λ → ∆′′, G→ N.

A conjugate off has positive entropy onP2(C) blown up inℓ points ifℓ≥ 10; we thus search
an automorphismA of P2(C) such that(A f)2A sendsP̂2 onto P̂1. We remark thatf (R) = (0 :
1 : 1) and f 2(R) = Q then thatf 2(P̂2) = P̂1 soA= id is such that(A f)2A sendsP̂2 onto P̂1.

The components are switched as follows

∆′′ → f Ω, E→ f F, G→ f N, K → f L, M → f H,

Λ → f ∆′′, f F→ f 2F, f N → f 2N, f L → f 2L, f H → f 2H,

f Ω → f 2Ω, f 2F→ E, f 2N → G, f 2L → K, f 2H → M,

f 2Ω → Λ.

Therefore the matrix off ∗ is given in the basis

{∆′′, E, G, K, M, Λ, f F, f N, f L, f H, f Ω, f 2F, f 2N, f 2L, f 2H, f 2Ω}
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by 


0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




;

the largest root of the characteristic polynomial

(X2−3X+1)(X2−X+1)(X+1)2(X2+X+1)3(X−1)4

is 3+
√

5
2 , i.e. the first dynamical degree off is 3+

√
5

2 . Let us remark that the polynomialχ3,2

introduced in Theorem 11.6.1 is 1−2X−2X2+X3 whose the largest root is3+
√

5
2 .

The considered family of birational maps is not trivial,i.e. parameters are effective.

Theorem 11.6.3. — Let us hold the parameter c∈Cn fixed. The family of maps( fa) defined
by (11.6.1) induces a family of dynamical systems of dimension k/2−1. In other words there
is a neighborhoodU of 0 in Ck/2−1 such that if a= (a0,a2, . . . ,ak−2), b= (b0,b2, . . . ,bk−2) are
in U then fa and fb are not smoothly conjugate.

Idea of the proof. — Such a mapfa hask+1 fixed pointsp1, . . . , pk+1. Let us seta=(a1, . . . ,ak−2).

Bedford and Kim show that the eigenvalues ofD fa at p j(a) depend ona; it follows that the
family varies non trivially witha. More precisely they prove that the trace ofD fa varies in
a non-trivial way. Letτ j(a) denote the trace ofD fa at p j(a) and let us consider the mapT
defined by

a 7→ T(a) = (τ1(a), . . . ,τk+1(a)).

The rank of the mapT is equal tok
2 −1 ata= 0. In fact the fixed points offa can be written

(ξs,ξs) whereξs is a root of

(11.6.2) ξ = (c−1)ξ+
k−2

∑
j=1

j pair

a j

ξ j +
1
ξk .
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Whena is zero, we have for any fixed pointξk+1 = 1
2−c. By differentiating (11.6.2) with respect

to aℓ we get fora= 0 the equality
(

2−c+
k

ξk+1

)
∂ξ
∂aℓ

=
1
ξℓ

;

this implies that
∂ξ
∂aℓ

∣∣∣
a=0

=
1

(2−c)(k+1)ξℓ
.

The trace ofD fa(y,z) is given by

τ = c−
k−2

∑
j=1

j pair

ja j

y j+1 −
k

yk+1 .

For y= ξa we have

∂τ(ξa)

∂aℓ

∣∣∣
a=0

= − ℓ

yℓ+1 +
k(k+1)

yk+2

∂ξa

∂aℓ
=− ℓ

yℓ+1 +
k

2−c
1

ξk+1ξℓ+1

= − ℓ

yℓ+1 +
k

yξℓ
=

k− ℓ

ξℓ+1 .

If we let ξ j range overk
2 − 1 distinct choices of roots 1

(2−c)k+1 , the matrix essentially is

a ( k
2 −1)× ( k

2 −1) Vandermondian and so of rankk2 −1.

There exists a neighborhoodU of 0 in C
k
2−1 such that, for anya, b in U with a 6= b, the

map fa is not diffeomorphic tofb. In fact the mapC
k
2−1 →Ck+1, a 7→ T(a) is locally injective

in a neighborhood of 0. Moreover, fora= 0, the fixed pointsp1, . . . , pk+1, and so the values
τ1(0), . . . , τk+1(0), are distinct. ThusC

k
2−1 ∋ a 7→ {τ1(a), . . . ,τk+1(a)} is locally injective in 0.

So if U is a sufficiently small neighborhood of 0 and ifa andb are two distinct elements ofU,
the sets of multipliers at the fixed points are not the same; itfollows that fa and fb are not
smoothly conjugate.

Let fa be a map which satisfies Theorem 11.6.1. Bedford and Kim show that in all the cases
under their consideration the representation

Aut(Sa)→ GL(Pic(Sa)), φ 7→ φ∗

is at most((k2 − 1) : 1); moreover ifak−2 is non zero, it is faithful. Whenn = 2, the image
of Aut(Sa) → GL(Pic(Sa)), φ 7→ φ∗ coincides with elements of GL(Pic(Sa)) that are isome-
tries with respect to the intersection product, and which preserve the canonical class of Sa as
well as the semigroup of effective divisors; this subgroup is the infinite dihedral group with
generatorsfa∗ andι∗ whereι denotes the reflection(x,y) 7→ (y,x). They deduce from it that,
always forn= 2, the surfaces Sa are, in general, not biholomorphically equivalent.

Theorem 11.6.4. — Assume that n= 2 and that k≥ 4 is even. Let a be inCk/2−1 and c be
in C2. There exists a neighborhoodU of 0 in Ck/2−1 such that if a, b are two distinct points
of U and if ak−1 is nonzero, thenSa is not biholomorphically equivalent toSb.
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11.7. Dynamics of automorphisms with positive entropy: rotation domains ([24])

If S is a compact complex surface carrying an automorphism with positive entropyf , a
theorem of Cantat (Theorem 9.3.4) says that

• either f is conjugate to an automorphism of the unique minimal model of S which has to
be a torus, a K3 surface or an Enriques surface;

• or f is birationally conjugate to a birational map of the complexprojective plane ([44]).
We also see that if S is a complex torus, the Fatou set off is empty. If S is a K3 surface or

a quotient of a K3 surface, the existence of a volume form implies that the only possible Fatou
components are the rotation domains. McMullen proved the existence of non-algebraic K3
surfaces with rotation domains of rank 2 (see[143]). What happen if S is a rational non-
minimal surface ? The automorphisms with positive entropy on rational non-minimal surfaces
can have large rotation domains.

Theorem 11.7.1. — There exists a rational surfaceScarrying an automorphism with positive
entropy h and a rotation domainU. Moreover,U is a union of invariant Siegel disks, h acting
as an irrational rotation on any of these disks.

The linearization is a very good tool to prove the existence of rotation domains but it is a
local technique. In order to understand the global nature ofthe Fatou componentU, Bedford
and Kim introduce a global model and get the following statement.

Theorem 11.7.2. — There exist a surfaceL obtained by blowing upP2(C) in a finite number
of points, an automorphism L onL , a domainΩ of L and a biholomorphic conjugacyΦ : U → Ω
which sends(h,U) onto(L,L).

In particular, h has no periodic point onU \{z= 0}.

Let us consider forn, m≥ 1 the polynomial

Pn,m(t) =
t(tnm−1)(tn−2tn−1+1)

(tn−1)(t −1)
+1.

If n≥ 4, m≥ 1 or if n= 3, m≥ 2 this polynomial is a Salem polynomial.

Theorem 11.7.3. — Let us consider the birational map f given in the affine chart z= 1 by

f (x,y) =

(
y,−δx+cy+

1
y

)

whereδ is a root ofPn,m which is not a root of unity and c= 2
√

δcos( jπ/n) with 1≤ j ≤ n−1,
( j,n) = 1.

There exists a rational surfaceS obtained by blowing upP2(C) in a finite number of points
π : S→ P2(C) such thatπ−1 f π is an automorphism onS.

Moreover, the entropy of f is the largest root of the polynomial Pn,m.

Bedford and Kim use the pair( f k,S) to prove the statements 11.7.1 and 11.7.2.



CHAPTER 12

A “SYSTEMATIC” WAY TO CONSTRUCT
AUTOMORPHISMS OF POSITIVE ENTROPY

This section is devoted to a “systematic” construction of examples of rational surfaces with
biholomorphisms of positive entropy. The strategy is the following: start with a birational
map f of P2(C). By the standard factorization theorem for birational maps on surfaces as a
composition of blow-ups and blow-downs, there exist two sets of (possibly infinitely near)
points P̂1 and P̂2 in P2(C) such that f can be lifted to an automorphism between BlP̂1

P2

and Bl̂P2
P2. The data ofP̂1 and P̂2 allows to get automorphisms of rational surfaces in the

left PGL3(C)-orbit of f : assume thatk∈ N is fixed and letϕ be an element of PGL3(C) such
thatP̂1, ϕP̂2, (ϕ f )ϕP̂2, . . . , (ϕ f )k−1ϕP̂2 have all distinct supports inP2(C) and(ϕ f )kϕP̂2 = P̂1.

Then ϕ f can be lifted to an automorphism ofP2(C) blown up atP̂1, ϕP̂2, (ϕ f )ϕP̂2, . . . ,

(ϕ f )k−1ϕP̂2. Furthermore, if the conditions above are satisfied for a holomorphic family ofϕ,
we get a holomorphic family of rational surfaces (whose dimension is at most eight). Therefore,
we see that the problem of lifting an element in the PGL3(C)-orbit of f to an automorphism
is strongly related to the equationu(P̂2) = P̂1, whereu is a germ of biholomorphism ofP2(C)
mapping the support of̂P2 to the support of̂P1. In concrete examples, when̂P1 and P̂2 are
known, this equation can actually be solved and involves polynomial equations in the Taylor
expansions ofu at the various points of the support ofP̂2. It is worth pointing out that in the
generic case,̂P1 andP̂2 consist of the same numberd of distinct points in the projective plane,
and the equationu(P̂2) = P̂1 gives 2d independent conditions onu (which is the maximum
possible number if̂P1 andP̂2 have lengthd). Conversely, infinitely near points can consider-
ably decrease the number of conditions onu as shown in our examples. This explains why
holomorphic families of automorphisms of rational surfaces occur when blow-ups on infinitely
near point are made. We illustrate the method on two examples.

We end the chapter with a summary about the current knowledgeon automorphisms of
rational surfaces with positive entropy.
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12.1. Birational maps whose exceptional locus is a line

Let us consider the birational map defined by

Φn =
(
xzn−1+yn : yzn−1 : zn), n≥ 3.

The sequence(degΦk
n)k∈N is bounded (it’s easy to see in the affine chartz= 1), soΦn is

conjugate to an automorphism on some rational surface S and an iterate ofΦn is conjugate to
an automorphism isotopic to the identity ([77]). The mapΦn blows up one pointP= (1 : 0 : 0)
and blows down one curve∆ = {z= 0}.

Here we will assume thatn = 3 but the construction is similar forn ≥ 4 (see[73]). We
first construct two infinitely near pointŝP1 and P̂2 such thatΦ3 induces an isomorphism be-
tween Bl̂P1

P2 and Bl̂P2
P2. Then we give “theoretical” conditions to produce automorphismsϕ

of P2(C) such thatϕΦ3 is conjugate to an automorphism on a surface obtained fromP2(C) by
successive blow-ups.

12.1.1. First step: description of the sequence of blow-ups. —

12.1.1.1. First blow up the pointP in the domain and in the range. Sety= u1 andz= u1v1;
remark that(u1,v1) are coordinates nearP1 = (0,0)(u1,v1), coordinates in which the exceptional
divisor is given by E= {u1 = 0} and the strict transform of∆ is given by∆1 = {v1 = 0}.
Sety= r1s1 andz= s1; note that(r1,s1) are coordinates nearQ= (0,0)(r1,s1), coordinates in
which E= {s1 = 0}. We have

(u1,v1)→ (u1,u1v1)(y,z) →
(
v2

1+u1 : v2
1u1 : v3

1u1
)

=

(
v2

1u1

v2
1+u1

,
v3

1u1

v2
1+u1

)

(y,z)

→
(

v2
1u1

v2
1+u1

,v1

)

(u1,v1)

and

(r1,s1)→ (r1s1,s1)(y,z) →
(
1+ r3

1s1 : r1s1 : s1
)

=

(
r1s1

1+ r3
1s1

,
s1

1+ r3
1s1

)

(y,z)

→
(

r1,
s1

1+ r3
1s1

)

(r1,s1)

;

thereforeP1 is a point of indeterminacy,∆1 is blown down toP1 and E is fixed.

12.1.1.2. Let us blow upP1 in the domain and in the range. Setu1 = u2 andv1 = u2v2. Note
that(u2,v2) are coordinates aroundP2 = (0,0)(u2,v2) in which∆2 = {v2 = 0} and F= {u2 = 0}.
If we set u1 = r2s2 and v1 = s2 then (r2,s2) are coordinates nearA = (0,0)(r2,s2); in these
coordinates F= {s2 = 0}. Moreover

(u2,v2)→ (u2,u2v2)(u1,v1) →
(
1+u2v2

2 : u2
2v2

2 : u3
2v3

2

)

and

(r2,s2)→ (r2s2,s2)(r1,s1) →
(
r2+s2 : r2s2

2 : r2s3
2

)
.
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Remark thatA is a point of indeterminacy. We also have

(u2,v2)→ (u2,u2v2)(u1,v1) →
(
1+u2v2

2 : u2
2v2

2 : u3
2v3

2

)
→
(

u2
2v2

2

1+u2v2
2

,
u3

2v3
2

1+u2v2
2

)

(y,z)

→
(

u2
2v2

2

1+u2v2
2

,u2v2

)

(u1,v1)

→
(

u2v2

1+u2v2
2

,u2v2

)

(r2,s2)

so F and∆2 are blown down toA.

12.1.1.3. Now let us blow upA in the domain and in the range. Setr2 = u3 and s2 =

u3v3; (u3,v3) are coordinates nearA1 = (0,0)(u3,v3), coordinates in which F1 = {v3 = 0} and
G = {u3 = 0}. If r2 = r3s3 ands2 = s3, then (r3,s3) is a system of coordinates in which
E2 = {r3 = 0} and G= {s3 = 0}. We have

(u3,v3)→ (u3,u3v3)(r2,s2) →
(
1+v3 : u2

3v2
3 : u3

3v3
3

)
,

(r3,s3)→ (r3s3,s3)(r2,s2) →
(
1+ r3 : r3s2

3 : r3s3
3

)
.

The pointT = (−1,0)(r3,s3) is a point of indeterminacy. Moreover

(u3,v3)→
(

u2
3v2

3

1+v3
,

u3
3v3

3

1+v3

)

(y,z)
→
(

u2
3v2

3

1+v3
,u3v3

)

(u1,v1)

→
(

u3v3

1+v3
,u3v3

)

(r2,s2)

→
(

1
1+v3

,u3v3

)

(r3,s3)

;

so G is fixed and F1 is blown down toS= (1,0)(r3,s3).

12.1.1.4. Let us blow upT in the domain andS in the range. Setr3 = u4−1 ands3 = u4v4; in
the system of coordinates(u4,v4) we have G1 = {v4 = 0} and H= {u4 = 0}. Note that(r4,s4),

wherer3 = r4s4−1 ands3 = s4, is a system of coordinates in which H= {s4 = 0}. On the one
hand

(u4,v4)→ (u4−1,u4v4)(r3,s3) →
(
(u4−1)u4v2

4,(u4−1)u2
4v3

4

)
(y,z)

→
(
(u4−1)u4v2

4,u4v4
)
(u1,v1)

→
(
(u4−1)v4,u4v4

)
(r2,s2)

→
(
(u4−1)v4,

u4

u4−1

)

(u3,v3)

so H is sent on F2. On the other hand

(r4,s4)→ (r4s4−1,s4)(r3,s3) →
(
r4 : (r4s4−1)s4 : (r4s4−1)s2

4

)
;

henceB= (0,0)(r4,s4) is a point of indeterminacy.

Setr3 = a4+1, s3 = a4b4; (a4,b4) are coordinates in which G1= {b4 = 0} and K= {a4 = 0}.
We can also setr3 = c4d4+1 ands3 = d4; in the system of coordinates(c4,d4) the exceptional
divisor K is given byd4 = 0.

Note that

(u3,v3)→
(

1
1+v3

,u3v3

)

(r3,s3)

→
(
− v3

1+v3
,−u3(1+v3)

)

(a4,b4)

;
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thus F2 is sent on K.
We remark that

(u1,v1)→
(
v2

1+u1 : u1v2
1 : u1v3

1

)
=

(
u1v2

1

u1+v2
1

,
u1v3

1

u1+v2
1

)

(y,z)

→
(

u1v2
1

u1+v2
1

,v1

)

(u1,v1)

→
(

u1v1

u1+v2
1

,v1

)

(r2,s2)

→
(

u1

u1+v2
1

,v1

)

(r3,s3)

→
(
− v1

u1+v2
1

,v1

)

(c4,d4)

;

so∆4 is blown down toC = (0,0)(c4,d4).

12.1.1.5. Now let us blown upB in the domain andC in the range. Setr4 = u5, s4 = u5v5 and
r4 = r5s5, s4 = s5. Then(u5,v5) (resp.(r5,s5)) is a system of coordinates in which L= {u5 = 0}
(resp. H1 = {v5 = 0} and L= {s5 = 0}). We note that

(u5,v5)→ (u5,u5v5)(r4,s4) →
(
1 : v5(u

2
5v5−1) : u5v2

5(u
2
5v5−1)

)

and

(r5,s5)→ (r5s5,s5)(r4,s4) →
(
r5 : r5s2

5−1 : s5(r5s2
5−1)

)
.

Therefore L is sent on∆5 and there is no point of indeterminacy.
Setc4 = a5, d4 = a5b5 andc4 = c5d5, d4 = d5. In the first (resp. second) system of coordi-

nates the exceptional divisor M is given by{a5 = 0} (resp.{d5 = 0}). We have

(u1,v1)→
(
− v1

u1+v2
1

,v1

)

(c4,d4)

→
(
− 1

u1+v2
1

,v1

)

(c5,d5)

;

in particular∆5 is sent on M.

Proposition 12.1.1([73]). — Let P̂1 (resp. P̂2) be the point infinitely near P obtained by blo-
wing upP2(C) at P, P1, A, T and U (resp. P, P1, A, S and U′).

The mapΦ3 induces an isomorphism betweenBlP̂1
P2 andBlP̂2

P2.

The different components are swapped as follows

∆ → M, E→ E, F→ K, G→ G, H → F, L → ∆.

12.1.2. Second step: gluing conditions. —The gluing conditions reduce to the following
problem: ifu is a germ of biholomorphism in a neighborhood ofP, find the conditions onu in
order thatu(P̂2) = P̂1.

Proposition 12.1.2([73]). — Let u(y,z) =

(

∑
(i, j)∈N2

mi, jy
izj , ∑

(i, j)∈N2

ni, jy
izj

)
be a germ of bi-

holomorphism at P.
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Then u can be lifted to a germ of biholomorphism betweenBlP̂2
P2 andBlP̂1

P2 if and only if

m0,0 = n0,0 = n1,0 = m3
1,0+n2

0,1 = 0, n2,0 =
3m0,1n0,1

2m1,0
.

12.1.3. Examples. —In this section, we will use the two above steps to produce explicit
examples of automorphisms of rational surfaces obtained from birational maps in the PGL3(C)-
orbit of Φ3. As we have to blow upP2(C) at least ten times to have non zero-entropy, we want
to find an automorphismϕ of P2(C) such that

(12.1.1) (ϕΦ3)
kϕ(P̂2) = P̂1 with (k+1)(2n−1) ≥ 10(ϕΦ3)

iϕ(P) 6= P for 0≤ i ≤ k−1

First of all let us introduce the following definition.

Definition. — Let U be an open subset ofCn and letϕ : U → PGL3(C) be a holomorphic
map. If f is a birational map of the projective plane, we say that the family of birational maps
(ϕα1, ...,αn f )(α1, ...,αn)∈U is holomorphically trivial if for every α0 = (α0

1, . . . , α0
n) in U there

exists a holomorphic map from a neighborhoodUα0 of α0 to PGL3(C) such that
• Mα0

1, ...,α0
n
= Id,

• ∀(α1, . . . , αn) ∈Uα0, ϕα1, ...,αn f = Mα1, ...,αn(ϕα0
1, ...,α0

n
f )M−1

α1, ...,αn
.

Theorem 12.1.3. — Letϕα be the automorphism of the complex projective plane given by

ϕα =




α 2(1−α) (2+α−α2)

−1 0 (α+1)
1 −2 (1−α)


 , α ∈ C\{0, 1}.

The mapϕαΦ3 is conjugate to an automorphism ofP2(C) blown up in15points.

The first dynamical degree ofϕαΦ3 is 3+
√

5
2 > 1.

The familyϕαΦ3 is holomorphically trivial.

Proof. — The first assertion is given by Proposition 12.1.2.
The different components are swapped as follows (§12.1.1)

∆ → ϕαM, E→ ϕαE, F→ ϕαK,

G→ ϕαG, H → ϕαF, L → ϕα∆,
ϕαE→ ϕαΦ3ϕαE, ϕαF→ ϕαΦ3ϕαF, ϕαG→ ϕαΦ3ϕαG,

ϕαK → ϕαΦ3ϕαK, ϕαM → ϕαΦ3ϕαM, ϕαΦ3ϕαE→ E,

ϕαΦ3ϕαF→ F, ϕαΦ3ϕαG→ G, ϕαΦ3ϕαK → H,

ϕαΦ3ϕαM → L.

So, in the basis
{

∆, E, F, G, H, L, ϕαE, ϕαF, ϕαG, ϕαK, ϕαM ϕαΦ3ϕαE,

ϕαΦ3ϕαF, ϕαΦ3ϕαG, ϕαΦ3ϕαK, ϕαΦ3ϕαM
}
,
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the matrix of(ϕαΦ3)∗ is



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 −3 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




and its characteristic polynomial is

(X2−3X+1)(X2−X+1)(X+1)2(X2+X+1)3(X−1)4.

Thus

λ(ϕαΦ3) =
3+

√
5

2
> 1.

Fix a pointα0 in C\{0, 1}. We can find locally aroundα0 a matrixMα depending holomor-
phically onα such that for allα nearα0 we have

ϕαΦ3 = M−1
α ϕα0Φ3Mα :

if µ is a local holomorphic solution of the equationα = µnα0 such thatµ0 = 1 we can take

Mα =




1 0 α0−α
0 1 0
0 0 1


 .

12.2. A birational cubic map blowing down one conic and one line

Let ψ denote the following birational map

ψ =
(
y2z : x(xz+y2) : y(xz+y2)

)
;

it blows up two points and blows down two curves, more precisely

Indψ =
{

R= (1 : 0 : 0), P= (0 : 0 : 1)
}
,

Excψ =
(
C =

{
xz+y2 = 0

})
∪
(
∆′ =

{
y= 0

})
.
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We can verify thatψ−1 = (y(z2−xy) : z(z2−xy) : xz2) and

Indψ−1 =
{

Q= (0 : 1 : 0), R
}
,

Excψ−1 =
(
C ′ =

{
z2−xy= 0

})
∪
(
∆′′ =

{
z= 0

})
.

The sequence of blow-ups is a little bit different; let us describe it. Denote by∆ the linex= 0.
• First we blow upR in the domain and in the range and denote by E the exceptional divisor.

We can show thatC1 = {u1+v1 = 0} is sent on E, E is blown down toQ= (0 : 1 : 0) and
S= E∩∆′′

1 is a point of indeterminacy.
• Next we blow upP in the domain andQ in the range and denote by F (resp. G) the

exceptional divisor associated withP (resp.Q). We can verify that F is sent onC ′
2, E1 is

blown down toT = G∩∆2 and∆′
2 is blown down toT.

• Then we blow upS in the domain andT in the range and denote by H (resp. K) the
exceptional divisor obtained by blowing upS(resp.T). We can show that H is sent on K;
E2, ∆′

3 are blown down to a pointV on K and there is a point of indeterminacyU on H.
• We will now blow upU in the domain andV in the range; let L (resp. M) be the exceptional

divisor obtained by blowing upU (resp.V). There is a point of indeterminacyY on L, L
is sent on G2, E3 on M and∆′

4 is blown down to a pointZ of M.

• Finally we blow upY in the domain andZ in the range. We have:∆′
5 is sent onΩ and N

on ∆′′
5, whereΩ (resp. N) is the exceptional divisor obtained by blowing upZ (resp.Y).

Proposition 12.2.1. — Let P̂1 (resp. P̂2) denote the point infinitely near R(resp. Q) obtained
by blowing up R, S, U and Y (resp. Q, T, V and Z). The mapψ induces an isomorphism
betweenBlP̂1,P

P2 andBlP̂2,R
P2. The different components are swapped as follows:

C → E, F→ C ′, H → K, L → G, E→ M, ∆′ → Ω, N → ∆′′.

The following statement gives the gluing conditions.

Proposition 12.2.2. — Let u(x,z) =

(

∑
(i, j)∈N2

mi, jx
izj , ∑

(i, j)∈N2

ni, j x
izj

)
be a germ of biholomor-

phism at Q.
Then u can be lifted to a germ of biholomorphism betweenBlP̂2

P2 andBlP̂1
P2 if and only if

• m0,0 = n0,0 = 0;
• n0,1 = 0;
• n0,2+n1,0+m2

0,1 = 0;
• n0,3+n1,1+2m0,1(m0,2+m1,0) = 0.

Let ϕ be an automorphism ofP2. We will adjustϕ such that(ϕψ)kϕ sendsP̂2 onto P̂1 andR
ontoP. As we have to blow upP2 at least ten times to have nonzero entropy,k must be larger
than two,

P̂1, ϕP̂2, ϕψϕP̂2, (ϕψ)2ϕP̂2, . . . , (ϕψ)k−1ϕP̂2

must all have distinct supports and(ϕψ)kϕP̂2 = P̂1. We provide such matrices fork= 3; then
by Proposition 12.2.2 we have the following statement.
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Theorem 12.2.3. — Assume thatψ =
(

y2z : x(xz+y2) : y(xz+y2)
)

and that

ϕα =




2α3

343(37i
√

3+3) α −2α2

49 (5i
√

3+11)

α2

49(−15+11i
√

3) 1 − α
14(5i

√
3+11)

−α
7 (2i

√
3+3) 0 0



, α ∈ C∗.

The mapϕαψ is conjugate to an automorphism ofP2 blown up in15 points.

The first dynamical degree ofϕαψ is λ(ϕαψ) = 3+
√

5
2 .

The familyϕαψ is locally holomorphically trivial.

Proof. — In the basis
{

∆′, E, F, H, L, N, ϕαE, ϕαG, ϕαK, ϕαM, ϕαΩ,

ϕαψϕαE, ϕαψϕαG, ϕαψϕαK, ϕαψϕαM, ϕαψϕαΩ
}

the matrixM of (ϕαψ)∗ is



0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 2 0 0 1 0 0 0 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0 0 0 0 0 0 0 0
0 0 −2 1 0 −1 0 0 0 0 0 0 0 0 0 0
0 1 −3 0 0 −1 0 0 0 0 0 0 0 0 0 0
1 0 −4 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0




.

Its characteristic polynomial is

(X−1)4(X+1)2(X2−X+1)(X2+X+1)3(X2−3X+1).

Henceλ(ϕαψ) = 3+
√

5
2 .

Fix a pointα0 in C∗. We can find locally aroundα0 a matrixMα depending holomorphically
on α such that for allα nearα0, we haveϕαψ = M−1

α ϕα0ψMα : take

Mα =




1 0 0
0 α

α0
0

0 0 α2

α2
0


 .
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12.3. Scholium

There are now two different points of view to construct automorphisms with positive en-
tropy on rational non-minimal surfaces obtained from birational maps of the complex projec-
tive plane.

The first one is to start with birational maps ofP2(C) and to adjust their coefficients such that
after a finite number of blow-ups the maps become automorphisms on some rational surfaces
S. Then we compute the action of these maps on the Picard groupof S and in particular obtain
the entropy. There is a systematic way to do explained in [73] and applied to produce examples.
Using examples coming from physicists Bedford and Kim

• exhibit continuous families of birational maps conjugate to automorphisms with positive
entropy on some rational surfaces;

• show that automorphisms with positive entropy on rational non-minimal surfaces obtained
from birational maps ofP2(C) can have large rotation domains and that rotation domains
of rank 1 and 2 coexist.

Let us also mention the idea of [76]: the author begins with a quadratic birational map that
fixes some cubic curve and then use the “group law” on the cubicto understand when the
indeterminacy and exceptional behavior of the transformation can be eliminated by repeated
blowing up.

The second point of view is to construct automorphisms on some rational surfaces pre-
scribing the action of the automorphisms on cohomological groups; this is exactly what does
McMullen in [144]: for n≥ 10, the standard element of the Weyl group Wn can be realized by
an automorphismfn with positive entropy log(λn) of a rational surface Sn. This result has been
improved in [181]:

{
λ( f ) | f is an automorphism on some rational surface

}

=
{

spectral radius ofw≥ 1|w∈ Wn, n≥ 3
}
.

In [48] the authors classify rational surfaces for which the imageof the automorphisms
group in the group of linear transformations of the Picard group is the largest possible; it can
be rephrased in terms of periodic orbits of birational actions of infinite Coxeter groups.
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