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SOME PROPERTIES OF THE CREMONA GROUP

Julie DESERTI






Abstract — We recall some properties, unfortunately not all, of then@ea group.

We first begin by presenting a nice proof of the amalgamatedymt structure of the well-
known subgroup of the Cremona group made up of the polynaamiamorphisms of?. Then
we deal with the classification of birational maps and songdiegtions (Tits alternative, non-
simplicity...) Since any birational map can be written a®mposition of quadratic birational
maps up to an automorphism of the complex projective plamespend time on these special
maps. Some questions of group theory are evoked: the otadigifi of the finite subgroups
of the Cremona group and related problems, the descripfitirecautomorphisms of the Cre-
mona group and the representations of some lattices in then@ra group. The description
of the centralizers of discrete dynamical systems is an imapbproblem in real and complex
dynamic, we make a state of art of this problem in the Cremooapy

Let Z be a compact complex surface which carries an automorphisfrpositive topolo-
gical entropy. Either the Kodaira dimensionadis zero andf is conjugate to an automorphism
on the unique minimal model d which is either a torus, or a K3 surface, or an Enriques
surface, otZ is a non-minimal rational surface arfdis conjugate to a birational map of the
complex projective plane. We deal with results obtainedis kst case: construction of such
automorphisms, dynamical properties (rotation domajrate touched on.
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Dear Pat,

You came upon me carving some kind of little figure out of wood
and you said: "Why don't you make something for me ?"

| asked you what you wanted, and you said, "A box."

"What for ?"

"To put things in."

"What things ?"

"Whatever you have," you said.

Well, here’s your box. Nearly everything | have is in it, atbébi
not full. Pain and excitement are in it, and feeling good at dad
evil thoughts and good thoughts — the pleasure of design@né s
despair and the indescribable joy of creation.

And on top of these are all the gratitude and love | have for you

And still the box is not full.

John

J. Steinbeck
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INTRODUCTION

The study of the Cremona group B#¥), i.e. the group of birational maps frof?(C) into
itself, started in the XIXth century. The subject has knowoteof developments since the
beginning of the XXIth century; we will deal with these mostent results. Unfortunately we
will not be exhaustive.

We introduce a special subgroup of the Cremona group: thepgkait(C?) of polynomial
automorphisms of the plane. This subgroup has been thetalfjecany studies along the
XXth century. It is more rigid and so, in some sense, easiemtterstand. Indeed A(E?)
has a structure of amalgamated product so acts non trivoally tree (Bass-Serre theory); this
allows to give properties satisfied by polynomial automampis. There are a lot of different
proofs of the structure of amalgamated product. We preseatad them due to Lamy in
Chapter 2; this one is particularly interesting for us beealamy considers A(E?) as a
subgroup of the Cremona group and works in(B#) (see[136]).

A lot of dynamical aspects of a birational map are controbgdts action on the cohomo-
logy H?(X,R) of a "good" birational modeX of P?(C). The construction of such a model is
not canonical; so Manin has introduced the space of infiniteedsion of all cohomological
classes of all birational models Bf(C). Its completion for the bilinear form induced by the
cup product defines a real Hilbert spatgP?) endowed with an intersection form. One of the
two sheets of the hyperboloidD] € Z(PP?) | [D]2 = 1} owns a metric which yields a hyperbolic
space (Gromov sense); let us denote itHhy. We get a faithful representation of BR?)
into Isom(H%). The classification of isometries into three types has arelhigic-geometric
meaning and induces a classification of birational magg])] it is strongly related to the
classification of Diller and Favre{[]) built on the degree growth of the sequeqdegf" }ne.
Such a sequence either is bounded (elliptic maps), or grimegarly (de Jonquiéres twists),
or grows quadratically (Halphen twists), or grows expoiadiyt (hyperbolic maps). We give
some applications of this construction: @i?) satisfies the Tits alternative4(]) and is not

simple (B0]).

One of the oldest results about the Cremona group is thatisaiyomal map of the complex
projective plane is a product of quadratic birational mgptouan automorphism of the complex
projective plane. It is thus natural to study the quadratiational maps and also the cubic
ones in order to make in evidence some direct differend&)([ In Chapter 4 we present a
stratification of the set of quadratic birational maps. Wealethat this set is smooth. We also
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give a geometric description of the quadratic birationapsnand a criterion of birationality for
quadratic rational maps. We then deal with cubic biratianaps; the set of such maps is not
smooth anymore.

While Noether was interested in the decomposition of theibiral maps, some people stu-
died finite subgroups of the Cremona group7([ 130, 18). A strongly related problem is
the characterization of the birational maps that presemvees of positive genus. In Chapter
5 we give some statements and ideas of proof on this subjeopl@ recently went back to
this domain {4, 17, 18, 31, 65, 83, 35, 159, J[7®roviding new results about the number
of conjugacy classes in BiP?) of birational maps of orden for example (5, 29). We
also present another construction of birational invohsdioelated to holomorphic foliations of
degree 2 oiP?(C) (see[54]).

A classical question in group theory is the following: let & & group, what is the auto-
morphisms group AUG) of G ? For example, the automorphisms of RGL) are, forn > 3,
obtained from the inner automorphisms, the involutioa 'u~! and the automorphisms of the
field C. A similar result holds for the affine group of the compleelii; we give a proof of it
in Chapter 6. We also give an idea of the description of theraatphisms group of AGC?),
resp. BifP?) (see[70, 71).

Margulis studies linear representations of the latticesiraple, real Lie groups of real rank
strictly greater than 1; Zimmer suggests to generalize itdio-linear ones. In that spirit we
expose the representations of the classical latticeg7Z3linto the Cremona group&p]). We
see, in Chapter 7, that there is a description of embeddih§&437) into Bir(P?) (up to con-
jugation such an embedding is the canonical embedding antbiution u — u~1); therefore
SLn(Z) cannot be embedded as soomas 4.

The description of the centralizers of discrete dynamigatesms is an important problem
in dynamic; it allows to measure algebraically the chaosughsa system. In Chapter 8 we
describe the centralizer of birational maps. Methods dferdnt for elliptic maps of infinite
order, de Jonquiéres twists, Halphen twists and hyperméips. In the first case, we can
give explicit formulas (@4]); in particular the centralizer is uncountable. In thewetcase,
we do not always have explicit formulassf])... When f is an Halphen twist, the situation
is different: the centralizer contains a subgroup of finitdex which is abelian, free and of
rank < 8 (see[47, 104). Finally for a hyperbolic mag the centralizer is an extension of a
cyclic group by a finite group 47]).

The study of automorphisms of compact complex surfaces patiitive entropy is strongly
related with birational maps of the complex projective plaiet f be an automorphism of
a compact complex surface S with positive entropy; theneeithis birationally conjugate
to a birational map of the complex projective plane, or thel&m dimension of S is zero
and thenf is conjugate to an automorphism of the uniqgue minimal modie avhich has
to be a torus, a K3 surface or an Enriques surfadd])[ The case of K3 surfaces has been
studied in 5, 143, 155, 172, 183 One of the first example given in the context of rational
surfaces is due to Cobleg]]). Let us mention another well-known example: let us coasid
A =Z[i] andE = C/A. The group Sk(A) acts linearly onC? and preserves the lattidex A;
then any elemen of SL,(A) induces an automorphisiia on E x E which commutes with
1(x,y) = (ix,iy). The automorphisnfa lifts to an automorphisnfa on the desingularization of
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the quotient(E x E) /1, which is a Kummer surface. This surface is rational and theopn
of fa is positive as soon as one of the eigenvalue& bés modulus- 1.

We deal with surfaces obtained by blowing up the complexgutoje plane in a finite num-
ber of points. This is justified by Nagata theoresed[147, Theorem 5]): let S be a rational
surface and lef be an automorphism on S such tHatis of infinite order; then there exists a
sequence of holomorphic applicationig 1 : Sjy1 — S;j such that $= P%(C), Sny1= Sand
T, 1 is the blow-up ofp; € Sj. Such surfaces are calléxasic surfacesNevertheless a surface
obtained froniP?(C) by generic blow-ups has no non trivial automorphisa2(, 131).

Using Nagata and Harbourne works McMullen gives an analegesult of Torelli's Theo-
rem for K3 surfaces ([44]): he constructs automorphisms on rational surfaces pbéisg the
action of the automorphisms on the cohomological groups@fsurface. These surfaces are
rational ones having, up to a multiplicative factor, a ugid@iformQ such thaQ is meromor-
phic andQ does not vanish. If is an automorphism on S obtained via this constructic®)
is proportional tdQ and f preserves the poles &. We also have the following property: when
we project S on the complex projective plarfeinduces a birational map which preserves a
cubic (Chapter 10).

In [21, 22, 23 the authors consider birational maps®A(C) and adjust the coefficients
in order to find, for any of these mags a finite sequence of blow-upgs. Z — P?(C) such
that the induced may; = 1 fmis an automorphism af. Some of their works are inspired
by [119, 118, 176, 177, 178 More precisely Bedford and Kim produce examples which
preserve no curve and also non trivial continuous famil@sapter 11). They prove dynamical
properties such as coexistence of rotation domains of ramd2 (Chapter 11).

In [73] the authors study a family of birational mag8,)n>2; they construct, for ang, two
points infinitely nearP; and P, having the following property:®,, induces an isomorphism
betweenP?(C) blown up inP; andP2(C) blown up inP,. Then they give general conditions
on ®, allowing them to give automorphisngs of P?(C) such thatp ®, is an automorphism
of P2(C) blown up inPy, §(P,), (¢ ®n)d(P), ..., (0 Dn)¥d(P,) = Py. This construction does
not work only for®,, they apply it to other maps (Chapter 12). They use the thebde-
formations of complex manifolds to describe explicitely ttmall deformations of rational
surfaces; this allows them to give a simple criterion to etee the number of parameters of
the deformation of a given basic surfacéd]). We end by a short scholium about the construc-
tion of automorphisms with positive entropy on rational fmmimal surfaces obtained from
birational maps of the complex projective plane.
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remercie Serge Cantat, en particulier pour nos discussionsernant le Chapitre 8. Merci a
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CHAPTER 1

FIRST STEPS

1.1. Divisors and intersection theory

Let X be an algebraic variety. Arime divisoron X is an irreducible closed subset Xfof
codimension 1.

Examples 1.1.1— o If X is a surface, the prime divisors ¥fare the irreducible curves
that lie on it.

e If X =P"(C) then prime divisors are given by the zero locus of irredectidmogeneous
polynomials.

A Weil divisoron X is a formal finite sum of prime divisors with integer coeffitig
m
Zlai Di, me N, g € Z, D; prime divisor ofX.
i=

Let us denote by DifX) the set of all Weil divisors oiX.

If f € C(X)"isarational function an® a prime divisor we can define tieultiplicity v+ (D)
of f atD as follows:

e vi(D) =k > 0if f vanishes o at the ordek;

e vi(D) = —kif f has a pole of ordet on D;

e andv¢(D) = 0 otherwise.

To any rational functiorf € C(X)* we associate a divisor di¥) € Div(X) defined by

div(f) = Z v¢(D)D.

D prime
divisor

Note that diy f) € Div(X) sincev(D) is zero for all but finitely many. Divisors obtained
like that are callegbrincipal divisors As div( fg) = div(f)+div(g) the set of principal divisors
is a subgroup of DigX).

Two divisorsD, D’ on an algebraic variety ataearly equivalentif D — D’ is a principal
divisor. The set of equivalence classes corresponds taittéeqt of Div( X) by the subgroup of
principal divisors; wheiX is smooth this quotient is isomorphic to tRe&ard groupPic(X). (D

1. ThePicard groupof X is the group of isomorphism classes of line bundleon
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Example 1.1.2 — Let us see that P{®") = ZH whereH is the divisor of an hyperplane.
Consider the homorphism of groups given by

©: Div(P") — Z, D of degreed + d.

Let us first remark that its kernel is the subgroup of principaisors. LetD = 5 aD; be a
divisor in the kernel, where eadd is a prime divisor given by an homogeneous polynomial
fi € C[Xo, ..., %n] of some degred;. Sincey adi =0, f =] fia“ belongs taC(P")*. We have by
constructionD = div(f) soD is a principal divisor. Conversely any principal divisoreigual
to div(f) wheref = g/h for some homogeneous polynomigsh of the same degree. Thus
any principal divisor belongs to the kernel.

Since Pi¢P") is the quotient of DiyP") by the subgroup of principal divisors, we get, by
restricting © to the quotient, an isomorphism Pi') — Z. We conclude by noting that an
hyperplane is sent on 1.

We can define the notion of intersection.

Proposition 1.1.3[115). — Let S be a smooth projective surface. There exists a unique bi-
linear symmetric form
Div(S) x Div(S) — Z, (C,D)—C-D

having the following properties:
e if C and D are smooth curves meeting transversally theD& #(CND);
e if C and C are linearly equivalent then M =C’-D.

In particular this yields an intersection form

Pic(S)  Pic(S) — Z, (C,D) ~ C-D.

Given a pointp in a smooth algebraic variety of dimensionn we say thatt: Y — Xis a
blow-upof p € X if Y is a smooth variety, if

Ty iy Y \{TTH(P)} — X\ {p}

is an isomorphism and ift}(p) ~ P"~1(C). SetE = 1 1(p); E is called theexceptional
divisor.

If : Y — X and1': Y — X are two blow-ups of the same poiptthen there exists an
isomorphismp: Y — Y’ such thatt= 1M¢. So we can speak aboailte blow-up of p € X.

Remark 1.1.4 — Whenn = 1, 1tis an isomorphism but when > 2 it is not: it contracts
E = (p) ~ P"(C) onto the pointp.

Example 1.1.5 — We now describe the blow-up ¢0 : 0 : 1) in P?(C). Let us work in the
affine charz= 1, i.e. in C? with coordinategx,y). Set

Bl(o.o)P? = {((x,y), (u:v)) € C?x P!|xv= yu}.

The morphisnTt: BI(QO)]P’2 — C? given by the first projection is the blow-up @,0):
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e First we can note thatr%(0,0) = {((0,0),(u V) |[(uiv) e Pl} soE = m1(0,0) is
isomorphic toP?;
e Letq= (x,y) be a point ofC2\ {(0,0)}. We have
m3a) = { ((0Y), (x:y)) } € BliogP?\ E
SOTlg) ,, P2\E is an isomorphism, the inverse being
(xy) = ((xy),(x:y)).

How to compute ? In affine charts: let (resp.V) be the open subset of (Ia.b)]P’z where
v # 0 (resp.u # 0). The open subsét is isomorphic toC? via the map

C* = U, (Y,u) = ((yuy), (u:1));
we can see that is also isomorphic t&€?. In local coordinates we can define the blow-up by
C? - C?, (y,u) — (yu,y), E is described by{y = 0}
C? - C? (X, V) = (X,XV), E is described by{x = 0}

Let : BI,S — S be the blow-up of the poinp € S. The morphisnttinduces a mapt
from Pig(S) to PigBI,S) which sends a curvg on 1t 1(C). If C C S is irreducible, thestrict
transformC of CisC = - 1(C\ {p}).

We now recall what is thenultiplicity of a curve at a point If C C S is a curve ang is
a point of S, we can define the multiplicity,(C) of C at p. Letm be the maximal ideal of
the ring of functionsOp s ?. Let f be a local equation df; thenm,(C) can be defined as the
integerk such thatf € mX\ m*+1. For example if S is rational, we can find a neighborhtbd
of pin S withU c C?, we can assume that= (0,0) in this affine neighborhood, ar@ is
described by the equation

n
ZlP.(x, y) =0, P, homogeneous polynomials of degiiga two variables
i=

The multiplicity m,(C) is equal to the lowestsuch tha®, is not equal to 0. We have

° mp(C) >0;

e mp(C)=0ifand only if p £ C;

e mp(C) =1 if and only if pis a smooth point of.

Assume thatC and D are distinct curves with no common component then we define an
integer(C - D) which counts the intersection GfandD at p:

e itis equal to O if eitheC or D does not pass through

e otherwise letf, resp.g be some local equations @f resp.D in a neighborhood op and

define(C- D) to be the dimension o s/(f,9).
This number is related 16 - D by the following statement.

2. Letus recall that iX is a quasi-projective variety andsxfis a point ofX, thenOp x is the set of equivalence
classes of pairfJ, f) whereU C X is an open subsetc U and f € C[U].
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Proposition 1.1.6[115], Chapter V, Proposition 1.4) — IfC and D are distinct curves with-
out any common irreducible component on a smooth surfacbawe

C-D= (C-D)p;
pe;D

in particular C-D > 0.

LetC be a curve in Sp= (0,0) € S. Let us take local coordinatesy at p and let us set
k =mp(C); the curveC is thus given by

R6Y) + P (6 y) + -+ Rr(xy) =0,
wherePR denotes a homogeneous polynomial of degrehe blow-up ofp can be viewed as
(u,v) — (uv,v); the pull-back ofC is given by
V(p(U, 1) +VPes 1 (U, 1) ...V *pr(xy)) =0,
i.e. it decomposes int& times the exceptional divisd = 1T1(0,0) = (v = 0) and the strict

transform. So we have the following statement:

Lemma 1.1.7 — Letrt: Bl,S— Sbe the blow-up of a point g S. We have irPic(BI,S)
TT'(C) = C+my(C)E

whereC is the strict transform of C and E 1r1(p).
We also have the following statement.

Proposition 1.1.8[115), Chapter V, Proposition 3.2) — Let S be a smooth surface, let p
be a point ofS and letmt: BI,S — S be the blow-up of p. We denote byEBI S the curve
T 1(p) ~ PL. We have

Pic(BI,S) = TPic(S) + ZE.

The intersection form oBI,S s induced by the intersection form &wia the following for-
mulas
o T'C-1'D =C- D for any C D € Pic(S);
e TT'C-E = Ofor any Ce Pic(S);
e E2=E-E=-1;
o C2=C2_1for any smooth curve C passing through p and wi@ie the strict transform
of C.

If X is an algebraic variety, theef coneNef(X) is the cone of divisor® such thaD-C >0
for any curveC in X.
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1.2. Birational maps
A rational mapfrom P?(C) into itself is a map of the following type
f: PZ(C) - PZ(C)7 (X 'y Z) - (fo(x7y7 Z) : fl(xaya Z) : f2(x7y7 Z))

where thefi’s are homogeneous polynomials of the same degree withouinom factor.
A birational mapfrom P?(C) into itself is a rational map

f: P?(C) --» P?(C)

such that there exists a rational magrom P?(C) into itself satisfyingf o = Qo f =id.

The Cremona groupBir (PP?) is the group of birational maps frof?(C) into itself. The
elements of the Cremona group are also call¥dmona transformations An elementf
of Bir(IP?) is equivalently given by(x,y) — (f1(x,y), f2(x,y)) whereC(fy, f2) = C(x1,%2),
ie.

Bir(P?) ~ Autc(C(x,y)).

Thedegreeof f: (x:y:x) --» (fo(X,Y,2) : f1(X,Y,2) : f2(X,Y,2)) € Bir(P?) is equal to the
degree of thdi’s: degf = degf;.
Examples 1.2.1— e Every automorphism

fi(X1y:2) --» (aoX+ a1y + apzZ: agx+ asy +asz: agX+ayy + agz),
det(a) #0

of the complex projective plane is a birational map. The degiff is equal to 1In other
words Au(P?) = PGLg(C) C Bir(P?).

e The mapo: (X:y:2z) --» (yz: Xz: xy) is rational; we can verify thatoo =id, i.e. 0 is
an involution sao is birational. We have: deg= 2.

Definitions. — Let f: (x:y:2) --» (fo(x,y,2) : f1(X,y,2) : f2(X,y,2)) be a birational map
of P?(C); then:
e theindeterminacy locusf f, denoted by Ind, is the set

{m € P%(C) | fo(m) = fy(m) = fo(m) = 0}

e and theexceptional locu€Excf of f is given by

{me P2(C) | detjad f) () = o}.

Examples 1.2.2— e For anyf in PGLg(C) = Aut(P?) we have Ind = Excf = 0.
e Let us denote by the map defined bg: (x:y: z) --» (yz: xz: Xy); we note that
Exco= {x=0,y=0,z=0},
Indo={(1:0:0),(0:1:0),(0:0:1)}.
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o If pis the following magp: (x:y:2z) --» (xy: 22 :y2), then
Excp={y=0,z=0} & Indp={(1:0:0,(0:1:0}.

Definition. — Let us recall that iiX is an irreducible variety and a variety, arational map
f: X --»Y is a morphism from a non-empty open subidedf X toY.

Let f: P2(C) --» P?(C) be the birational map given by

(x:y:2)--» (fo(x,y,2) : fri(x:y:2): f2(X,Y,2))
where thefi’s are homogeneous polynomials of the same degraad without common factor.
The linear systemA of f is the pre-image of the linear system of linesR3{C); it is the
system of curves given by a; fi = 0 for (ap: a1 : a) in P?(C). Let us remark that ifA is an
automorphism oP?(C), then/A; = Aas. The degree of the curves 6f is v, i.e. it coincides
with the degree of. If f has one point of indeterminaqy, let us denote bym : BI,DllP>2 —
P2(C) the blow-up ofp; and ‘%, the exceptional divisor. The majp = f o1y is a birational
map from Bbl]P’2 into P?(C). If ¢1 is not defined at one poirg, then we blow it up via
Ty Blp, p,P? — P?(C); set®, = 1, (pz). Again the maph, = ¢1 071y : Blp, p,IP? - P?(C)
is a birational map. We continue the same processus ¢intlecomes a morphism. The
Pic(P?) = ZL whereL is the divisor of a line (Example 1.1.2). S&t= (T5,1...T%)*% and
¢=(m...15)*(L). Applying r times Proposition 1.1.8 we get

Pic(Blp,. nP?) =ZLOZE @ ... ®ZE,.
Moreover all elements of the bagi§ Ey, ..., E;) satisfy the following relations
P=0-0=1, E?=—1,
Ei-Ej=0 V1<i#j<r, Ei-/=0 VvVi<i<r
The linear systemi\; consists of curves of degreeall passing through thg;’s with multipli-

city m. SetE; = (T5;.1...T%)*%. Applying r times Lemma 1.1.7 the elements A§, are
equivalent tovL — 3{_, mE; wherelL is a generic line. Remark that these curves have self-

intersection
r
V2 — Zlnf
i=

All members of a linear system are linearly equivalent aeddimension of\¢, is 2 so the self-
intersection has to be non-negative. This implies that thaberr exists,i.e. the number of
base-points of is finite. Let us note that by construction the migds a birational morphism
from Blp, _pP? to P?(C) which is the blow-up of the points of~1; we have the following
diagram
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The linear systenf\s of f corresponds to the strict pull-back of the systém(1) of lines

.....

intersection—1 and genus 0. We thus hagz (L)) = 1 and by adjunction formula

o1 (L) K,
Since the elements &Yy, are equivalent to

vL—iZmEi

o2 = —3L+ ¥i_; Ei we have

Zmi:?,(v—l), _ilmz:vz—l.

In particular ifv = 1 the mapf has no base-points. ¥f= 2 thenr =3 andm, =m, = mg = 1.
As we will see later (Chapter 4) it doesn’t mean that "therenis quadratic birational map".

erDZ - —3

and since 1,

So there are three standard ways to describe a Cremona map

e the explicit formula(x:y: z) --» (fo(X,Y,2) : f1(X,y,2) : f2(X,y2)) where thef’s are ho-
mogeneous polynomials of the same degree and without corfamtor;

¢ the data of the degree of the map, the base-points of the ndhthair multiplicity (it
defines a map up to an automorphism);

e the base-points aft and the curves contracted hywith the notations of Theorem 1.3.1
(it defines a map up to an automorphism).

1.3. Zariski's theorem
Let us recall the following statement.

Theorem 1.3.1(Zariski, 1944). — LetS, Sbe two smooth projective surfaces and letS--» S
be a birational map. Ihere exists a smooth projective serand two sequences of blow-ups
m: S — S, m: S — Ssuch that f=rpm*

s

Example 1.3.2 — The involution
o: P?(C) --» P(C), (X:y:2) --» (yzZ: XZ: Xy)

is the composition of two sequences of blow-ups
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with
A=(1:0:0), B=(0:1:0), C=(0:0:1,

Lag (resp. Lac, resp. Lgc) the line passing throughA andB (resp. A andC, resp. B andC)
Ea (resp. Eg, resp. Ec) the exceptional divisor obtained by blowing Ap(resp. B, resp.C)
andLag (resp.Lac, resp.Lgc) the strict transform oEag (resp.Lac, resp.Lgc).

There are two steps in the proof of Theorem 1.3.1. The firstiote composef with a
sequence of blow-ups in order to remove all the points oftemdeinacy (remark that this step
is also possible with a rational map and can be adapted ireh@djmension); we thus have

The second step is specific to the case of birational map kettweo surfaces and can be stated
as follows.

Proposition 1.3.3[136]). — Let f: S— S be a birational morphism between two surfa&s
and S'. Assume that f! is not defined at a point p d8; then f can be writterrp where
Tt BlpS — S'is the blow-up of g= S and @ a birational morphism fron$ to Bl ;S

Bl,S
N
/
S f S

Before giving the proof of this result let us give a useful Lrem

Lemma 1.3.4[15]). — Let f: S--» S be a birational map between two surfacésnd S'.
If there exists a point g S such that f is not defined at p there exists a cufven S such
that f-1(C) = p.

Proof of the Proposition 1.3.3— Assume tha(p= 11 f is not a morphism. Let be a point
of S such thatpis not defined am. On the one hand(m) = p and f is not locally invertible
atm, on the other hand there exists a curve ip®Icontracted om by ¢! (Lemma 1.3.4).
This curve is necessarily the exceptional divioobtained by blowing up.

Let o1, gp be two different points oE at which@! is well defined and lety, & be two
germs of smooth curves transverséetoT henTi( ;) andTi( () are two germs of smooth curve
transverse ap which are the image by of two germs of curves an. The differential off
atmis thus of rank 2: contradiction with the fact thfats not locally invertible amn.
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B C1 &)
S
E
O1 %
A
o m
S S/
p=f(m)
_— =
(e)) m f
(1)
(e ()

We say thatf : S--» P?(C) is induced by a polynomial automorphistd of C2 if

e S=C2UD whereD is a union of irreducible curvef) is calleddivisor at infinity;

e P2(C) = C2uUL whereL is a line,L is calledline at infinity;

e f induces an isomorphism betweely B andP?(C) \ L.

If f: S--»P?(C) isinduced by a polynomial automorphism®# it satisfies some proper-
ties:

Lemma 1.3.5 — LetSbe a surface. Let f be a birational map frddto P?(C) induced by a
polynomial automorphism df?. Assume that f is not a morphism. Then
e f has a unique point of indeterminacy pn the divisor at infinity;
e f has base-points4 ..., ps and for all i = 2,...,s the point pis on the exceptional
divisor obtained by blowing up;p;
e each irreducible curve contained in the divisor at infingycontracted on a point by f;
e the first curve contracted b is the strict transform of a curve contained in the divisor
at infinity;
e in particular if S= P?(C) the first curve contracted by is the transform of the line at
infinity (in the domain.

Proof. — According to Lemma 1.3.4 ip is a point of indeterminacy of there exists a curve
contracted byf ! on p. As f is induced by an automorphism @f the unique curve of#?(C)
which can be blown down is the line at infinity $ohas at most one point of indeterminacy.
As f is not a morphism, it has exactly one.

3. A polynomial automorphism df? is a bijective application of the following type
f: C?—C?, (6Y) = (f1(xy), fa(x,y)), fi € C[xy].
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The second assertion is obtained by induction.

Each irreducible curve contained in the divisor at infingyeither contracted on a point,
or sent on the line at infinity if??(C). Sincef~ contracts the line at infinity on a point the
second eventuality is excluded.

According to Theorem 1.3.1 we have

S/
y &
S

where $is a smooth projective surface ang: S — S, : S — P?(C) are two sequences of
blow-ups. The divisor at infinity in‘3s the union of

e adivisor of self-intersection-1 obtained by blowing-ujps,

e the other divisors, all of self-intersectiof —2, produced in the sequence of blow-ups,

e and the strict transform of the divisor at infinity in. S
The first curve contracted hy is of self-intersection-1 and cannot be the last curve produced
by y (otherwiseps is not a point of indeterminacy); so the first curve contrddig 1o is the
strict transform of a curve contained in the divisor at irifini

The last assertion follows from the previous one. O






CHAPTER 2

SOME SUBGROUPS OF THE CREMONA GROUP

2.1. A special subgroup: the group of polynomial automorphsms of the plane
A polynomial automorphisnof C? is a bijective application of the following type
f: (Cz_>(czv (va) = (fl(xvy)va(X>y))7 fi G(C[va]'

Thedegreeof f = (fy, fo) is defined by ded = max(degf;,degf,). Note that degyfy—1 #
degf in general so we define thigst dynamical degreef f

d(f) = lim(degf™)¥"

which is invariant under conjugaéy. The set of the polynomial automorphisms is a group
denoted by AutC?).

Examples 2.1.1— e The map
C? - C?, (X,Y) = (aaX-+ by +C1,aX+ by +¢y),

a, b, ¢ eC,athy —asb; #0

is an automorphism of?. The set of all these maps is th#fine groupA.
e The map

C2 - 2, (x,y) = (ax+P(y), By +Y),

a,B,yeC,aB#0,PeCly]

is an automorphism of?. The set of all these maps is a group, #ementary grouf.
e Of course

S=ANE= {(a]_X—I— b1y+cl,b2y+cz) ‘ a, b, ceC,ab, # 0}
is a subgroup of AYtC?).

The group AutC?) has a very special structure.

1. The limit exists since the sequenfaegf"} <y is submultiplicative
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Theorem 2.1.2[129], Jung’s Theorem) — The groupAut(C?) is the amalgamated product
of A andE alongs :

Aut(C?) = A *gE.

In other wordsA andE generateAut(C?) and each element f iAut(C?)\ s can be written as
follows

f=(a1)er...an(en), § €EE\A & €A\E.

Moreover this decomposition is unique modulo the followgigtions
ag = (as)(s 'a), 613 = (6.15)(s &), sses.

Remark 2.1.3 — The Cremona group is not an amalgg®3]). Nevertheless we know gen-
erators for BifP?) :

Theorem 2.1.4[152, 153, 154, 53. — The Cremona group is generatedAyt(P?) = PGLg(C)
and the involution<)—1<, %,) :

There are many proofs of Theorem 2.1.2; you can find a "hesibreview" in [L36]. We
will now give an idea of the proof done i136 and give details in §2.2. Let

f: (xy) — (fa(xy), f2(x,y))

be a polynomial automorphism 6P of degreev. We can viewf as a birational map:

f: P?(C) --» P?(C), (X:y:2) --» (z"ﬂ <§,g> :2'f, (g,g) :z"> :

Lamy proved there existl € Bir(P?) induced by a polynomial automorphism@f such that
#Indfo—! < #Indf; more precisely$ comes from an elementary automorphism". Proceeding
recursively we obtain a magsuch that #Ind = 0, in other words an automorphismBf(C)
which gives an affine automorphism.

According to Bass-Serre theoryl9) we can canonically associate a tree to any amalga-
mated product. LeT be the tree associated to AGF):

e the disjoint union of AutC?) /E and Aut{C?)/A is the set of vertices,

e Aut(C?)/s is the set of edges.
All these quotients must be understood as being left cogetgosets of € Aut(C?) are noted
respectivelyfE, fA, and fS. By definition the edgés links the verticesf A andgk if hS C fA
andhs C gk (and sofA = hA andgE = hE). In this way we obtain a graph; the fact that
andE are amalgamated alorgyis equivalent to the fact thar is a tree (169). This tree is
uniquely characterized (up to isomorphism) by the folloyomoperty: there exists an action of
Aut(C?) on T, such that the fundamental domain of this action is a segmensin edge and
two vertices, wittE andA equal to the stabilizers of the vertices of this segment éargds the
stabilizer of the entire segment). This action is simplyléfetranslation:g(hS) = (go h)s.
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. e aed
B o - .
~ edE _ ) aeA
idE idA
~, EaE aeA .-
€A aE
- €aE aeA ~

From a dynamical point of view affine automorphisms and elgarg automorphisms are
simple. Nevertheless there exist some elements if@twith a rich dynamic; this is the case
of Hénon automorphismsautomorphisms of the typieg; ... gpcl)‘l with

¢ € Aut(C?), gi = (Y.P(Y) —&X), R € C[y], degP > 2,5 € C".
€A\E €E\A

N ——
Note thatgi =(y,x) (—=3ix+R(y).y) .
Using Jung’s theorem, Friedland and Milnor proved the feitg statement.

Proposition 2.1.5[97]). — Let f be an element aut(C?).
Either f is conjugate to an element®for f is a Hénon automorphism.

If f belongs toE, thend(f) =1. If f =g;...gp with g = (y,R(y) — &iX), thend(f) =
ﬁ deggi > 2. Then we have

e d(f)=1ifand only if f is conjugate to an element Bf

e d(f) > 1ifand only if f is a Hénon automorphism.

Hénon automorphisms and elementary automorphisms araliffasent:

e Hénon automorphisms:

no invariant rational fibration g9]),

countable centralizer 1B9),

infinite number of hyperbolic periodic points;
e Elementary automorphisms:

invariant rational fibration,

uncountable centralizer.

2.2. Proof of UNG's theorem

Assume thatb is a polynomial automorphism @? of degreen

®: (x,y) = (q)]_(X,y),(Dz(X,y)), q)i € C[X7y];
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we can extendp to a birational map still denoted ki

d: (X:1y:2)--» <z”CD1 <)_z(’)2l> :2'd, <)—Z<,3—Z/> :z”>.

The line at infinity inP?(C) is z= 0. The map®: P?(C) --» P?(C) has a unique point of
indeterminacy which is on the line at infinity (Lemma 1.3.%)e can assume, up to conjuga-
tion by an affine automorphism, that this point(is: 0 : 0) (of course this conjugacy doesn’t
change the number of base-points®)f We will show that there existls: P?(C) --» P?(C) a
birational map induced by a polynomial automorphisnCéfsuch that

P%(C)
¢// \\qaocrl
// \A
]Pz((C)ff——q—Jfff>P2((C)

and # base-points abd ! < # base-points ofb. To do this we will rearrange the blow-ups of
the sequences; andtn appearing when we apply Zariski's Theorem: the mhag constructed
by realising some blow-ups af; and some blow-ups af.

2.2.1. Hirzebruch surfaces. —Let us consider the surfad® obtained by blowing-ugl :
0:0) € P?(C). This surface is a compactification 6 which has a natural rational fibration
corresponding to the lineg= constant. The divisor at infinity is the union of two rational
curves {.e. curves isomorphic t&*(C)) which intersect in one point. One of them is the strict
transform of the line at infinity ifP?(C), it is a fiber denoted byf;; the other one, denoted
by s1 is the exceptional divisor which is a section for the fibmatiolVe have: f2 = 0 and
§ = —1 (Proposition 1.1.8). More generally for anywve denote by, a compactification of
C? with a rational fibration and such that the divisor at infirigythe union of two transversal
rational curves: a fibef, and a sectiors, of self-intersection—n. These surfaces are called
Hirzebruch surfaces

Pri(c) (Oriic) ® Opcy (M)
Let us consider the surfadg,. Let p be the intersection of, and f,,, wheref, is a fiber. Let
14 be the blow-up ofp € F,, and letm, be the contraction of the strict transforfAh of f,. We
can go fromF,, to F,,.1 via T[2T[I11

—(n+1)

S S+l

Fn Fria

We can also go frorfn 1 to Fp, via To1; * where
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e T4 is the blow-up of a poinp € F,;1 which belongs to the fibef, and not to the sec-

tion Sn41,
e T, the contraction of the strict transforif of f, :

L

—(n+1)
Sl St Sh

Fri1 Fn

2.2.2. First step: blow-up of(1:0:0). — The point(1:0: 0) is the first blown-up point in
the sequenca;. Let us denote by, the blow-up of(1:0: 0) € P?(C), we have

Iy
¢1 // \\ 01
ﬁ/ \\
S

Note that # base-points gf = # base-points oo — 1. Let us come back to the diagram given
by Zariski’'s theorem. The first curve contractedmgywhich is a curve of self-intersectionl

is the strict transform of the line at infinity (Lemma 1.3.8s assertion); it corresponds to the
fiber f; in F1. Butin[F; we havef? = 0; the self-intersection of this curve has thus to decrease
so the point of indeterminacp of g; has to belong tdf;. But p also belongs to the curve
produced by the blow-up (Lemma 1.3.5, second assertiomthier wordsp = f; N 's;.

2.2.3. Second step: Upward induction. —

Lemma2.2.1 — Letn> 1and let h F, --» P2(C) be a birational map induced by a poly-
nomial automorphism of2. Suppose that h has only one point of indeterminacy p such
that p= fanNs,. Letd: Fy--» Fny1 be the birational map which is the blow-up of p
composed with the contraction of the strict transform @f Eet us consider the birational
mapH=ho¢1:

Fn-i—l
AN %
v ’ b N
Fn _______ > ]PZ((C)

Then
e #base-points of h=# base-points of h- 1;
e the point of indeterminacy of belongs to {, ;.
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Proof. — Let us apply Zariski Theorem tg we obtain

where S is a smooth projective surface amdr, are two sequences of blow-ups.
Sinces}2 < —2 (whereg, is the strict transform 0§,) the first curve contracted b, is
the transform off, (Lemma 1.3.5). So the transform &f in S is of self-intersection-1; we
also havef? = 0 in .. This implies that after the blow-up @fthe points appearing iy are
not on f,,. Instead of realising these blow-ups and then contractiegransform off, we first
contract and then realise the blow-ups. In other words we ta following diagram

whererttis the blow-up ofp andn the contraction of,. The mapnmt 1 is exactly the first link

mentioned in §2.2.1. We can see that to blowpugllows us to decrease the number of points
of indeterminacy and to contraft does not create some point of indeterminacy. So

# base-points dfi = # base-points dfi —1

Moreover the point of indeterminacy bfis on the curve obtained by the blow-upmfi.e. f,.
]

After the first step we are under the assumptions of the Lemiha @ithn= 1. The Lemma
gives an applicatioh’: F, --» P?(C) such that the point of indeterminacy is &n If this point
also belongs t@, we can apply the Lemma again. Repeating this as long as thenptiens
of the Lemma 2.2.1 are satisfied, we obtain the following idiag

Fn
02 7 Sl
s g h N
F1------ ~P2(C)

whered, is obtained by applying— 1 times Lemma 2.2.1. Moreover
# base-points of, = # base-points afj; —n+1

and the point of indeterminacy of is on f, but not ons, (remark: as, fon > 2, there is no
morphism fromF,, to P?(C), the mapg has a point of indeterminacy).
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2.2.4. Third step: Downward induction. —

Lemma2.2.2 — Letn> 2 and let h F, --» P?(C) be a birational map induced by a poly-
nomial automorphism of?. Assume that h has only one point of indeterminacy p, and that
p belongs to fbut not to §. Let¢: F,, --» F,,_1 be the birational map which is the blow-up
of p composed with the contraction of the strict transfornfofLet us consider the birational
map B =ho ¢

IE?n—l
o7 S n
v AN
/ \
Fp—=--—---- > P2(C)

Then
e #base-points of h= # base-points of k- 1;
e if b’ has a point of indeterminacy, it belongs t@ {f and notto §_1.

Proof. — Let us consider the Zariski decompositionhof

Sinces‘q2 = —nwith n > 2, the first curve blown down by is the transform off,, (Lemma
1.3.5). Like in the proof of Lemma 2.2.1 we obtain the follaggicommutative diagram

whererttis the blow-up ofp andn the contraction off,. We immediately have:
# base-points dfi = # base-points ofi — 1.

LetF’ be the exceptional divisor associateditehe maph has a base-point df. Assume that
this point isF’ N f,, then (g *(n))? < —2: contradiction with the fact that it is the first curve
blown down byr,. So the base-point dfis notF’ N f, and so it is the point of indeterminacy
of i’ that is onf,_1 but not ons,_1. O

After the second step the assumptions in Lemma 2.2.2 arsfiedti Let us remark that
if n> 3 then the magy given by Lemma 2.2.2 still satisfies the assumptions in tieisiina.
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After applyingn— 1 times Lemma 2.2.2 we have the following diagram

Iy
b3 /4 h N O3
/ N
s A\
Fp— - — - — — > P?(C)

The fourth assertion of the Lemma 1.3.5 implies that the ¢insve contracted by is either
the strict transform off; by 1y, or the strict transform o$; by . Assume that we are in
the first case; then after realising the sequence of blowry@nd contracting this curve the
transform ofs; is of self-intersection 0 and so cannot be contracted: adittion with the
third assertion of Lemma 1.3.5. So the first curve contraistéide strict transform of; which
can be done and we obtain

P?(C)

The morphismpg is the blow-up of a point and the exceptional divisor asgedito its blow-up
iS s1; up to an automorphism we can assume #as contracted orfl : 0 : 0). Moreover

# base-points ofl3 = # base-points of,.

2.2.6. Conclusion. —After all these steps we have

P%(C)
¢40¢30¢20¢/1 P AN W
v - \&
PC) - - - - 5~ - -~ B(C)

where # base-points gf = # base-points oo — 2n+ 1 (with n > 2).
Let us check thap = dsoP30do06¢; is induced by an element &f It is sufficient to prove
that¢ preserves the fibration= constantj.e. the pencil of curves througfl : 0 : 0); indeed
e the blow-upd; sends lines througfi : 0 : 0) on the fibers offy;
e (o andds preserve the fibrations associatedtcandFp,;
e the morphismp, sends fibers df'1 on lines through{1:0: 0).
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Finally g4 is obtained by composing with a birational map induced by an affine automor-
phism and a birational map induced by an elemenk & g4 is induced by a polynomial

automorphism; morevoer

# base-points ofl; < # base-points of.

2.2.7. Example. —Let us consider the polynomial automorphigiof C2 given by

O = (y+ (y+x2)2+ (y+x2)3y+x%).

Let us now apply tap the method just explained above. The point of indetermirafcp
is (0:1:0). Letus composeb with (y,x) to deal with an automorphism whose point of

indeterminacy ig1:0: 0). Let us blow up this point

Fy

e

P?(C)

Then we apply Lemma 2.2.1

]Fl/ \Fz
/

P?(C)

OnT5, the point of indeterminacy is on the fiber, we thus apply Len2n2a2

NN
//

P?(C)

and contracts;

(HY2.3) (%)
We get the decompositioth = &' (x -+ y2,y)(y, X) with
@' = (y+ 3 +3,%) = (X+ Y2+ Y%, Y) (%,X).
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We can check that’ has a unique point of indetermina¢y: 1 : 0). Let us blow up the point
(1:0:0

Iy

e

P2(C)
and then apply two times Lemma 2.2.1

NN
/

P2(C)
then two times Lemma 2.2.2

NSNS\
%

P?(C)



Finally we contract the section

NINSINSN

S \

P(C)— — — — — — — — — - — e e e e e e e — - -
' =(x+Y2+y2.Y) (%)

and obtain® = (x+y2+y3,y)(y,X).

WIHO3HL S.ONNC 40 4004dd ¢°¢

€e
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2.3. The de Jonquiéres group

Thede Jonquiéres mapare, up to birational conjugacy, of the following type

(a(y)X+ b(y) ay+ B)
c(y)x+d(y)’ yy+06 /)’

a(y) b(y) a B :
{ cly) d(y) ] €PELEW) [ y 3 } € PeLD):

let us remark that the family of lings= constant is preserved by such a Cremona transforma-
tion. De Jonquiéres maps are exactly the Cremona maps wiéskpe a rational fibratidR.
The de Jonquiéres maps form a group, catledlonquiéres grou@and denoted by dJ. Remark
that the exceptional set gfis reduced to a finite number of fibers= cte and possibly the line
at infinity.

In some sense dd Bir(PP?) is the analogue of C Aut(C?). In the 80's Gizatullin and
Iskovskikh give a presentation of Bi#?) (see[105, 124); let us state the result of Iskovskikh
presented i%(C) x P1(C) which is birationally isomorphic t&#2(C).

Theorem 2.3.1[124]). — The group of birational maps @ (C) x P*(C) is generated byJ
and Aut(P(C) x PX(C)) ).

Moreover the relations iBir (P1(C) x PX(C)) are the relations oflJ, of Aut(P1(C) x P(C))
and the relation

(ne)® = (%,%) where  n: (xy) — (,X) & e: (x,y) — (x, 3) .

Let f be a birational map oP?(C) of degreev. Assume thatf has a base-poinp; of
multiplicity m; = v — 1. Then we have

vz—(v—l)z—_imzzl, 3v—(v—1)—_im:3

where py, ..., pr are the other base-points 6fand m; the multiplicity of p;. This implies
thaty{_,m(m —1) =0, hencem, = ... =m, = 1 andr = 2v — 1. For simplicity let us assume
that thep;’s are inP?(C). The homaloidal system consists of curves of degreewith
singular pointp; of multiplicity v — 1 passing simply to®— 2 pointspy, ..., pv—1. The
corresponding Cremona transformation is a de Jonquieaasformation. Indeed Iét be an
element ofA;. Let = be the pencil of curves ofi; that have in common withi a pointm
distinct frompy, ..., p2y—1. The number of intersections bfwith a generic curve o that are
absorbed by th@;'s is at least

v=1)(v—2)+2v—24+1=v(v—-1)+1
2. Here a rational fibration is a rational application fr&(C) into P1(C) whose fibers are rational curves.

3. The de uiéres group is birationally isomorphic to the sabg of BirPX(C) x P1(C)) which preserves the
first projectionp: P1(C) x P(C) — P(C).
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one more than the number given by Bezout's theorem. The suf are thus all split intd”
and a line of the pencil centered ;. Let us assume tha, = (1: 0: 0); thenl is given by

XqJV—Z(y, Z) + l'lJV—l(ya 2)7 degl.lli =I.
To describe\s we need an arbitrary curve taken fraw and outsidez which gives
(XWy—2+Wy_1)(a0y+ a12) + xPy_1(Y,2) + oy (Y, 2), degd; =i.

Thereforef can be represented by

(X:1y:2) ==» (Xpy_1+ by 1 (XWy_2+ PYy_1)(ay+b2) : (XPy_2+ Yy_1)(cy+d2))

with ad — bc# 0. We can easily check thétis invertible and that\; and/\;-1 have the same
type. At last we have in the affine chare 1

<X¢v—1(y)+¢v(y) ay+b>
XPy_2(Y) +Py-1(y) "cy+d /)

2.4. No dichotomy in the Cremona group

There is a strong dichotomy in Ai?) (see§2.1); we will see that there is no such di-
chotomy in BiP?). Let us consider the family of birational mapf, g) given by

P?(C) --» P?(C), (X:y:2) — ((ax+Yy)z: By(X+2) : 2(x+2)),
a,BeC|a|=[Bl=1

X+
f(X.B(va) = < X_|_1y7By> .

so in the affine chaz=1

Theorem 2.4.1[70]). — The first dynamical degré® of fo g is equal tol; more preciselwlegf&‘ﬁﬁ ~n.
Assume thatt and 3 are generic and have modulds If g commutes withfg, then g
coincides with an iterate offs; in particular the centralizer of g is countable.
The elements(f]‘B have two fixed points jm; and

e there exists a neighborhooth of my on which § g is conjugate tqax, By); in particular
the closure of the orbit of a point @f; (under § g) is a torus of dimensiog,

e there exists a neighborhoof, of m, such that fB is locally linearizable on?%; the
closure of a generic orbit of a point @, (under ﬁs) is a circle.

In the affine chartx,y) the mapsfy g preserve the 3-manifoldy| = cte. The orbits pre-
sented below are bounded in a copyR3fx S*. The dynamic happens essentially in dimension
3; different projections allow us to have a good represamtaif the orbit of a point. In the
affine chartz= 1 let us denote by, and p, the two standard projections. The given pictures
are representations (in perspective) of the following gtipns.

4. For a birational mag of P?(C) thefirst dynamical degreés given byA(f) (degf”)l/”.

= lim
N—+-c0
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e Let us first consider the set

Qu(m.a,B) = { (po(15 (M), Im(p2( 5 5(m)))) | n = 1..30000};

this set is contained in the product&f with an interval. The orbit of a point under the
action of f, g is compressed by the double coveripgpe®) — (x,psing).
e Let usintroduce

Qz(m.a,B) = {(Re(pa(f5(m)), Pa( f35(m)) |n = 1.30000}

which is contained in a cylindeR x S*; this second projection shows how to “decom-
press” Q; to have the picture of the orbit.

Let us assume that = exp(2iv/3) and B = exp(2iv/2); let us denote byQ;(m) instead
of Q;(m,a,B).
The following pictures illustrate Theorem 2.4.1.

Q1(1074,10-%) Q,(1074i,10-%)

It is "the orbit" of a point in the linearization domain @ : 0 : 1); we note that the closure
of an orbit is a torus.

Q1(10000+ 1074i,10000+ 10°4i)  Q5(10000+ 10-4i,10000+ 10~4i)

It is “the orbit” underf(fB of a point in the linearization domain ¢0 : 1 : 0); the closure of
an “orbit” is a topological circle. The singularities areaifacts of projection.

Remark 2.4.2 — The linez= 0 is contracted by, g on (0: 1: 0) which is blow up ore=0:
the mapf, g is not algebraically stableseeChapter 3 that's why we considerf(fﬁ instead
of fan'

The theory does not explain what happens outside the lragn domains. Betweet;
and 75 the experiences suggest a chaotic dynamic as we can see below
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Q1(0.4+107%4,0.4+ 10°%) Q,(0.4+1074,0.4+ 107%)

We note a deformation of the invariant tori.

Q1(0.9+107%,0.9+ 10-4) Q2(0.9+107%,0.9+ 104)

Q1(1+ 1074, 1+ 1074) Qo(1+107%,1+10°4)

Q1(1.08+ 1074, 1.08+ 10-%) Q,(1.08+ 1074, 1.08+ 10-%)

The invariant tori finally disappear; nevertheless theyped seem to organize themselves
around a closed curve.

So if there is no equivalence between first dynamical degireetlys greater than 1 and
countable centraliser we have an implication; more précise have the following statement.

Theorem 2.4.3[47]). — Let f be a birational map of the complex projective plane Wit
dynamical degred (f) strictly greater thanl. If  is an element oBir(IP?) which commutes
with f, there exist two integers m i§* and n inZ such thatp™ = f".






CHAPTER 3

CLASSIFICATION AND APPLICATIONS

3.1. Notions of stability and dynamical degree

Let X, Y be two compact complex surfaces andfletX --» Y be a dominant meromorphic
map. Letl ¢ be the graph of and letry: '+ — X, o : '+ — Y be the natural projections.
If ¢ is a singular submanifold of x Y, we consider a desingularization Iof without chan-
ging the notation. If3 is a differential form of bidegre¢1,1) onY, then T3 determines
a form of bidegreg1,1) on '+ which can be pushed forward as a curréip := 1y, T3
on X thanks to the first projection. Let us note tHatinduces an operator betweef-HY, R)
and H-1(X,R) : if B andy are homologous, thefi" and f*y are homologous. In a similar
way we can define the push-forwafd := 1o, 11 : HP9(X) — HP9(Y). Note that whenf is
bimeromorphicf, = (f~1)*.

Assume thaX =Y. The mapf is algebraically stabldf there exists no curv¥ in X such
that fX(V) belongs to Ind for some integek > 0.

Theorem-Definition 3.1.1[77]). — Let f: S— S be a dominating meromorphic map on a
Kahler surface and let be a Kahler form. Then f ialgebraically stabldf and only if any of
the following holds:

e for anya € HY1(S) and any k inN, we have( f*)*a = (f¥)*qa;

e there is no curve” in Ssuch that £(C) c Ind f for some integer k 0;

o for allk > 0 we have( fK)*w = (f*)kw.

In other words for an algebraically stable map the followdtuges not happen
f f f f f
C

i.e. the positive orbit?) of p; € Ind f 1 intersects Ind.

1. The positive orbit op; under the action of is the se f"(p1)|n > 0}.
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Remark 3.1.2 — Let f be a Cremona transformation. The mijs not algebraically stable
if and only if there exists an integ&rsuch that

degf* < (degf)k.
Soif f is algebraically stable, thex(f) = degf.

Examples 3.1.3— e An automorphism oP?(C) is algebraically stable.
e The involutiona: P?(C) --» P2(C), (x:y: z) — (yz: xz: Xy) is not algebraically stable:
Indo—! = Indo~%; moreover deg? = 1 and(dego)? = 4.

Examples 3.1.4— Let A be an automorphism of the complex projective plane and le¢
the birational map given by

o: P?(C) --» P(C), (X:y:2) -—» (YZ: XZ: XY).

Assume that the coefficients Afare positive real numbers. The mag is algebraically stable
(158]).

Let A be an automorphism of the complex projective plane ang ket the birational map
given by

p: P?(C) --» P?(C), (X:y:2) —-» (xy: 2 :y2).

Assume that the coefficients &f are positive real numbers. We can verify tigt is alge-
braically stable. The same holds with

1: P?(C) --» P?(C), (X:y:2) --» (R xy: y?> —Xx2).

Let us say that the coefficients of an automorph#sof P?(C) are algebraically independent
if A has a representative in G{C) whose coefficients are algebraically independent Guer
We can deduce the following: |ét be an automorphism of the projective plane whose coeffi-
cients are algebraically independent o@githenAc and(Ac) ! are algebraically stable.

Diller and Favre prove the following statement.

Theorem 3.1.5[77], theorem 0.1) — Let S be a rational surface and let fS--» Sbe a
birational map. There exists a birational morphism S — Ssuch that fe1 is algebraically
stable.

Idea of the proaf — Let us assume thdtis not algebraically stable; hence there exists a curve
C and an integek such thatC is blown down ontop; andpx = f<~(py) is an indeterminacy
point of f.

The idea of Diller and Favre is the following: after blowing the pointsp; the image ofC
is, fori =1, ..., k, a curve. Doing this for any element of Ekovhose an iterate belongs
to Indf we get the statement. O

Remark 3.1.6 — There is no similar result in higher dimension. Let us Heite following
statement due to Lig[137, Theorem 5.7} suppose thaf = (&) € Mp(Z) is an integer
matrix with detA = 1. If A and X are the only eigenvalues @ of maximal modulus, also
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with algebraic multiplicity one, and X = |A|€™ with § € Q; then there is no toric birational
model which makes the corresponding monomial map

fa: C"— C", (xl,...,xn)»—>(Ux?”,...,mx?“j>

algebraically stable. A 8 3 example ig[116])

in higher dimensior{ A

0 I%I ] where 0 is the zero matrix and Id is the identity matrix works.

Thefirst dynamical degreef f is defined by
A(f) = limsup|(f")*[¥/"

Nn—-00
where|.| denotes a norm on Efd1(X,R)) ; this number is greater or equal toSe€[166,
96]). Let us remark that for all birational magswe have the inequality

A(F)" < degf”

where ded is the algebraic degree d¢f(the algebraic degree df= (fo: f1: f2) is the degree
of the homogeneous polynomiaty.

Examples 3.1.7— e The first dynamical degree of a birational map of the complex p

jective plane of finite order is equal to 1.

The first dynamical degree of an automorphisnP&fC) is equal to 1.

e The first dynamical degree of an elementary automorpliigsp. a de Jonquiéres map
is equal to 1.

e The first dynamical degree of a Hénon automorphism of degjieequal tod.

e The first dynamical degree of the monomial map

fe: (Xy) — O@YP,xey")

is the largest eigenvalue Bf= [ 2 3 ]

e Letus seE = C/Z[i],Y = E x E = C?/Z[i] x Z[i] andB = [ '2 3
linearly onC? and preserve&li] x Z[i] soB induces a magg: E x E — E x E. The
surfaceE x E is not rational whereaX =Y /(x,y) ~ (ix,iy) is. The matrixB induces a
mapGg: E x E — E x E that commutes withix,iy) so Gg induces a magg: X — X
birationally conjugate to an element of Bi#®). The first dynamical degree gg is equal
to the square of the largest eigenvalueBof

] . The matrixB acts
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Let us give some properties about the first dynamical degtest.us recall that &isot
number is a positive algebraic integer greater than 1 all of whosgugate elements have
absolute value less than 1. A real algebraic integetSalam numbeif all its conjugate roots
have absolute value no greater than 1, and at least one haatebslue exactly 1.

Theorem 3.1.8[77]). — The set
{A(f)| f €Bir(P?)}

is contained in{1} U P U.S where? (resp..S) denotes the set of Pis@esp. Salemnumbers.
In particular it is a subset of algebraic numbers.

3.2. Classification of birational maps

Theorem 3.2.1[104, 77, 3}). — Let f be an element d@ir(PP?); up to birational conjuga-
tion, exactly one of the following holds.
e The sequencég f")*| is bounded, the map f is conjugate either(tox: By : z) or to
(ax:y+z:2);
e the sequencg f")*| grows linearly, and f preserves a rational fibration. In thuase f
cannot be conjugate to an automorphism of a projective serfa
e the sequencé f")*| grows quadratically, and f is conjugate to an automorphism-p
serving an elliptic fibration.
¢ the sequencg f")*| grows exponentially; the spectrum of dutside the unit disk consists
of the single simple eigenvalué f), the eigenspace associatedX(f) is generated by
a nef clas®9, € HY1(PP?(C)). Moreover f is conjugate to an automorphism if and only
if (64,0,)=0.

In the second and third cases, the invariant fibration is ueiq

Definition. — Let f be an element of B{?).
o If {degf"}keN is boundedf is elliptic;
o if {degfk}keN grows linearly(resp. quadratically thenf is ade Jonquiéres twistresp.
anHalphen twisb;
o if {degf*}, _ grows exponentiallyf is hyperbolic

Remark 3.2.2 — If {degfk}kEN grows linearly(resp. quadraticallythen f preserves a pen-
cil of rational curvegresp. elliptic curvels up to birational conjugacy preserves a pencil of
lines,i.e. belongs to the de Jonquiéres grauesp. preserves an Halphen penicéd, a pencil
of (elliptic) curves of degre8n passing througl® points with multiplicity 1.

3.3. Picard-Manin space

Manin describes in140, Chapter 5] the inductive limit of the Picard group of anyface
obtained by blowing up any point of a surface S. Then he shbaistie group BifS) linearly
acts on this limit group.
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e Let S be a Kéhler compact complex surface. Le{®ide the Picard group of S and let
NS(S) be its Néron-Severi group). Let us consider the morphism from PR} into NS(S)
which associates to any line bundléts Chern class;(L); its kernel is denoted by PI(S).
The dimension of NR) ® R is called thePicard numberof S and is denoted by(S). There
is an intersection form on the Picard group, there is alsooorhie Néron-Severi group; when
S is projective, its signature {4, p(S) — 1). The nef cone is denoted by NES) or Pict(S)
when NSS) = Pic(S). Let S and Sbe two surfaces and let S— S be a birational morphism.
The morphisnit* is injective and preserves the nef come(NS*(S')) c NS*(S). Moreover
for any/, ¢' in Pic(S), we have(tt/, t*¢’) = (¢£,0').

e Let S be a Kahler compact complex surface. IB6) be the category which objects
are the birational morphisn®: S' — S. A morphism between two objects: S| — S and
m: S, — S of this category is a birational morphistn S; — S, such thatipe = . In
particular the set of morphisms between two objects in eignepty, or reduced to a unique
element.

This set of objects is ordered as follows; > 10 if and only if there exists a morphism
from 1y to T; we thus say thaty (resp. $) dominatest, (resp. $). Geometrically this means
that the set of base-points of * contains the set of base-pointsgf’. If Ty and are two
objects of B(S) there always exists another one which simultaneously datesm and To.
Let us set

2(S) =limNS(S)

the inductive limit is taken following the injective morsim 1t*.

The groupZz(S) is calledPicard-Manin spacespace of S. The invariant structurestof
induce invariant structures fdz(S):

e an intersection forng, ): Z(S) x Z(S) — Z;

e anefconezt(S) = IiLn NS™(S);

e a canonical class, viewed as a linear fadm Z(S) — Z.

Note that N$S') embeds intaz(S) so we can identify N&') and its image inz(S).

Let us now describe the action of birational maps of 08). Let S, and $ be two surfaces
and letf be a birational map from;30 S,. According to Zariski Theorem we can remove the
indeterminacy off thanks to two birational morphisnmg : S' — S; andm,: S — S, such that
f= nzrql. The mapm (resp. Tp) embedsB(S) into B(S;) (resp.B(S;)). Since any object
of B(S1) (resp.B(S,)) is dominated by an object af..(B(S)) (resp. o, (B(S))) we get two
isomorphisms

. 2(S) — 2(S1), . Z(S) = 2(S).
Then we sef, = Tp. 1.

Theorem 3.3.1[140], page 192) — The map #— f, induces an injective morphism frdair (S)
into GL(Z(S)).
If f belongs toBir(S), the linear map f preserves the intersection form and the nef cone.

2. The Néron-Severi group of a variety is the group of divdssmodulo algebraic equivalence.
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Let us denote by Eclé$) the union of the surfaces endowed with a birational morphism
m: S — S modulo the following equivalence relation:=Sp; ~ p, € S if and only ifsglsl
sendsp; onto pp and is a local isomorphism between a neighborhogg, @hd a neighborhood
of pz. A point of Ecla{S) corresponds either to a point of S, or to a point on an excegtio
divisor of a blow-up of S etc. Any surfac€ &hich dominates S embeds into E¢Bt Let
us consider the free abelian group(Ergenerated by the points of Ecl&); we have a scalar
product on E€S)

(p,pE =—1, (p,q) =0if p#£aq.

The group E€S) can be embedded iB(S) (see[47]). If pis a point of EclatS) let us denote
by e, the point of Z(S) associated t@, i.e. g is the class of the exceptional divisor obtained
by blowing upp. This determines the image of the basis of &cn Z(S) so we have the
morphism defined by

Ec(S) — Z(S), > ap)p— S a(p)ep

Using this morphism and the canonical embedding fronf®y$to Z(S) we can consider the
morphism
NS(S) x EC(S) — Z(S).

Proposition 3.3.2[140), p.197) — The morphisfNS(S) x Ec(S) — Z(S) induces an isome-
try betWEEI’(NS(S), ('7 )) D (EC(S)> ('7 )E) and (Z(S)> ('7 ))

Example 3.3.3 — Let us consider a poinp of P?(C), Bl,P? the blow-up ofp and let us
denote byE, the exceptional divisor. Let us now considie BIpIED2 and as previously we
define B}, 4P? andE,. The elemente, ande, belong to the image of N8l qP?) in Z(P?).

If Ep is the strict transform o in Bl oP? the element, (resp.e,) corresponds ttEp+ Eq
(resp.Eq). We can check thdep, eq) = 0 and(ep, ep) = 1.

e The completed Picard-Manin spaE(aS) of S is theL.2-completion ofz(S); in other words
D]+ Y aplEp)|[D] € NS(S), @p € R, § & < o}

Note that Z(S) corresponds to the case where tevanishes for all but a finite number
of pe EclatfS).

Example 3.3.4 — For S=P?(C) the Néron-Severi group NS) is isomorphic t&Z[H] whereH
is a line. Thus the elements af(S) are given by

aoH[+ 5 ap[Ep), with § a3 < co.
peEclatS)

The group Bi(S) acts onZ(S); let us give details when S P?(C). Let f be a bira-
tional map fromP?(C) into itself. According to Zariski Theorem there exist two mploisms
T, To: S— P?(C) such thatf = u1r; b, Defining f* by f* = (18) 15 andf, by f, = (f*)~1
we get the representatidn— f, of the Cremona group in the orthogonal groupzg®?) (resp.

Z(1P?)) with respect to the intersection form. Since for gniy P?(C) such thatf is defined at
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p we havef,(ep) = €y this representation is faithful; it also preserves thegriestructure
of z(P?) and the nef cone.

e Only one of the two sheets of the hyperboldifD] € Z(IP?) | [D]? = 1} intersects the nef
conez(P?); let us denote it byl . In other words

Hz = {[D] € Z(P?)|[D]* = 1, [H] - [D] > 0}.
We can define a distance &
cosfdist([Da], [D2])) = [D4] - [D2].

The spacélz is a model of the "hyperbolic space of infinite dimensions;igometry group
is denoted by Isoiflz) (see[109, §6). As the action of Bif?) on Z(P?) preserves the
two-sheeted hyperboloid and as the action also presereasefhcone we get a faithful repre-
sentation of BifP?) into Isom(Hz). In the context of the Cremona group we will see that the
classification of isometries into three types has an algelgeometric meaning.

¢ As H is a complete c&t-1) metric space, its isometries are either elliptic, or paliapo

or hyperbolic 6e€[103)). In the case of hyperbolic case we can characterize tlsesedtries
as follows:

— elliptic isometry: there exists an elemehin Z(S) such thatf*(¢) = ¢ and (¢,¢) > 0
then f, is a rotation around and the orbit of anyp in Z(S) (resp. anyp in H3) is
bounded,

— parabolic isometry: there exists a non zero eleriémtz* (S) such thatf, (¢) = ¢. More-
over (¢,¢) = 0 andR/ is the unique invariant line by, which intersectsz*(S). If p
belongs toz* (S), then lim f'(Rp) = RY.

— hyperbolic isometry: there exists a real number 1 and two elementé, and/_ in Z(S)
such thatf, (¢,) = A, andf.(¢_) = (1/N)(_. If pis a point of Z"(S) \ R(_, then

. n" .,
im <x> (p) =ve R, \ {0},
We have a similar property far_ and f 2.
This classification and Diller-Favre classification (Therar3.2.1) are related by the follo-
wing statement.

Theorem 3.3.5[47]). — Let f be a birational map of a compact complex surf&ed_et f,
be the action induced by f of(S).

e f, is elliptic if and only if f is an elliptic map: there exists @bement/ in Z*(S) such
that f(¢) = ¢ and(¢,¢) > 0, then { is a rotation around/ and the orbit of any p irz(S)
(resp. any p int%) is bounded.

e f, is parabolic if and only if f is a parabolic map: there exist:man zero/ in Z*(S)
such that f¢) = ¢. Moreover(¢,¢) = 0 andR/ is the unique invariant line by, fwhich
intersectsZ ™ (S). If p belongs taz*(S), thennﬂmm(f*)”(ﬂ%p) =RRY.

e f, is hyperbolic if and only if f is a hyperbolic map: there egist real numbei > 1
and two elementé; and/_ in Z(S) such that f(¢,+) =A¢. and f.(¢_) = (1/A\)(_. If p
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belongs taz™ \ R¢_ then

- (%)nff(p)zveRh\{O}:

N——+oo

there is a similar property fof_ and .

3.4. Applications
3.4.1. Tits alternative. — Linear groups satisfy Tits alternative.

Theorem 3.4.1[179). — Letk be afield of characteristic zero. LEtbe a finitely generated
subgroup ofGL, (k). Then

e eitherl” contains a non abelian, free group;

e or [ contains a solvablé subgroup of finite index.

Let us mention that the group of diffeomorphisms of a real ifiokth of dimension> 1
does not satisfy Tits alternativege[102] and references therein). Nevertheless the group of
polynomial automorphisms df? satisfies Tits alternative {B5]); Lamy obtains this property
from the classification of subgroups of AGP), classification established by using the action
of this group onZ":

Theorem 3.4.7[135)). — Let G be a subgroup oAut(C?). Exactly one of the followings
holds:
e any element o6 is conjugate to an element Bf then
— eitherG is conjugate to a subgroup &f
— or G is conjugate to a subgroup af
— orGis abelian,G = J;cy Gi with G; C Gi+1 and anyG; is conjugate to a finite cyclic
group of the form((ax, By)) with a, B roots of unicity of the same order. Any element
of G has a unique fixe poifit) and this fixe point is the same for any elemenGof
Finally the action ofG fixes a piece of the treg.
e G contains Hénon automorphisms, all having the same geqdeshis caseG is solvable
and contains a subgroup of finite index isomorphi&to
e G contains two Hénon automorphisms with distinct geodeskc#hus contains a free
subgroup on two generators.

One of the common ingredients of the proofs of Theorems 334412 3.4.6 is the following
statement, a criterion used by Klein to construct free pctsiu

Lemma 3.4.3 — LetG be a group acting on a s&t. Let us considel 1 and[l", two subgroups
of G, and sef” = (I'1,I,). Assume that
e 1 (resp.l"2) has only3 (resp.2) elements,

3. Let G be a group; let us setf® = G et G¥ = [Gk—D Gk-D] = (aba b~ 1|a be GKk D) fork > 1. The
group G is solvable if there exists an integesuch that & = {id}.
4. as polynomial automorphism 67



3.4. APPLICATIONS 37

e there exist Xand X% two non empty subsets of X such that
ng_xl; Va e rl\{id},d(X2) C X1; VBE rz\{id},B(Xl) C Xo.

Thenr is isomorphic to the free produ€t, x> of 'y andl».

1o ] generate a free subgroup of rank 2

. 1 2
Example 3.4.4 — The matrlces[ 0 1} and[ 5 1

in SLx(Z). Indeed let us set

S (R R R BN

X1={(xy) €R?||x > |y|} & Xa2={(xy) eR?||x <lyl}.

Let us consider an elemeypbf "1 \ {id} and(x,y) an element of X%, we note thay(x,y) is of
the form(x+ myy), with |m| > 2; thereforey(x,y) belongs to X. If ybelongs td , \ {id} and
if (x,y) belongs to X%, the image of(x,y) by y belongs to %. According to Lemma 3.4.3 we

have
1 2 10
([0 1:|,|:2 1]>:F2:Z*Z:F1*F2.

We also obtain that

1 k and 10
01 k 1
generate a free group of rank 2 in ) for anyk > 2. Nevertheless it is not true fdr= 1,
the matrices
11 10
o 1] 1]

generate Si(Z).

Example 3.4.5 — Two generic matrices in SILC), with v > 2, generate a free group isomor-
phic to F,.

In [47] Cantat characterizes the finitely generated subgroups @P8; Favre reformulates,
in [90], this classification:

Theorem 3.4.4[47]). — LetG be a finitely generated subgroup of the Cremona group. Ex-
actly one of the following holds:
e Any element o0& is elliptic thus
— eitherG is, up to finite index and up to birational conjugacy, contnn the con-
nected component &ut(S) whereS denotes a minimal rational surface;
— or G preserves a rational fibration.
e G contains a(de Jonquiéres or Halphgrwist and does not contain hyperbolic map, thus
G preserves a rational or elliptic fibration.
e G contains two hyperbolic maps f and g such thatg) is free.
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e G contains a hyperbolic map and for any p4if,g) of hyperbolic maps(f,g) is not a
free group, then

1—kerp—G-—57 1

andkerp contains only elliptic maps.
One consequence is the following statement.

Theorem 3.4.7[47]). — The Cremona groupir (P?) satisfies Tits alternative.

3.4.2. Simplicity. — Let us recall that a simple group has no non trivial normalgsobp.
We first remark that A4tC?) is not simple; letp be the morphism defined by

Aut(C?) — C*, f — detjacf.

The kernel ofgis a proper normal subgroup of A@?). In the seventies Danilov has estab-
lished that kerpis not simple (p4]). Thanks to some results of Schup&f]) he proved that
the normal subgroupy) generated by

(e, a=(y,—x), e= (x,y+ 3 —5x%)
is strictly contained in AutC?).

More recently Furter and Lamy gave a more precise staterBefdre giving it let us intro-
duce a lengttt(.) for the elements of AYC?).

e If f belongs taA NE, then?(f) =0;

e otherwise/( f) is the minimal integen such thatf = g; ...g, with g; in A orE.
The length of the element given by Danilov is.26

We note that(.) is invariant by inner conjugacy, we can thus assume thiaas minimal
length in its conjugacy class.

Theorem 3.4.§[99]). — Let f be an element @&ut(C?). Assume thadetjacf = 1 and that f
has minimal length in its conjugacy class.
e If f is non trivial and if¢(f) < 8, the normal subgroup generated by f coincides with the
group of polynomial automorphisms f 6f with detjacf = 1;
o if f is generic® and if ¢(f) > 14, the normal subgroup generated by f is strictly con-
tained in the subgroug f € Aut(C?) | detjacf =1} of Aut(C?).

Is the Cremona group simple ?

Cantat and Lamy study the general situation of a group G @diinisometries on &-
hyperbolic space and apply it to the particular case of tl@m@na group acting by isometries
on the hyperbolic spadé. Let us recall that a birational mapinduces a hyperbolic isometry
f, € Hz if and only if {degfX}xen grows exponentially (Theorem 3.3.5). Another character-
ization given in p(Q] is the following: f induces a hyperbolic isometry € H if and only if

5. Let G be a group and Iétbe an element of G; the normal subgroup generatetlinyG is (hfh™1 | he G).
6. See 99 for more details.
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there is af,-invariant plane in the Picard-Manin space that intersBgton a curve Axf,) (a
geodesic line) on whicli, acts by a translation:

dist(x, f.(x)) =logA(f), vx € Ax(f,).

The curve AXf,) is uniquely determined and is called the axisfof A birational mapf is
tight if
o f, € Isom(H3) is hyperbolic;
e there exists a positive numbersuch that: ifg is a birational map and i (Ax(f,))
contains two points at distanaewhich are at distance at most 1 from @x) then
0. (AX(f.)) = Ax(f,);
e if gis a birational map and. (Ax(f.)) = Ax(f,) thengfg™t = f or f 1.
Applying their results on group acting by isometries &hyperbolic space to the Cremona
group, Cantat and Lamy obtain the following statement.

Theorem 3.4.9[50]). — Let f be a birational map of the complex projective plane. i&f
tight, then ¥ generates a non trivial normal subgroup Bir (P?) for some positive interger k.

They exhibit tight elements by working with the unique imeible component of maximal
dimension
Va={o "¢ ¢ € Aut(P?), y € d] degp = d}
of Birg.

Corollary 3.4.10([50]). — The Cremona group contains an uncountable number of normal
subgroups.
In particular Bir(P?) is not simple.

3.4.3. Representations of cocompact lattices 8U(n, 1) in the Cremona group. — In [68]
Delzant and Py study actions of Kahler groups on infinite disi@nal real hyperbolic spaces,
describe some exotic actions of RB$R) on these spaces, and give an application to the study
of the Cremona group. In particular they give a partial amdev@ question of Cantat4[]):

Theorem 3.4.11[68]). — LetT be a cocompact lattice in the groupU(n,1) with n> 2.
If p: I — Bir(IP?) is an injective homomorphism, then one of the following tassibilities
holds:

e the groupp(l") fixes a point in the Picard-Manin space;

¢ the groupp(l") fixes a unique point in the boundary of the Picard-Manin space






CHAPTER 4

QUADRATIC AND CUBIC BIRATIONAL MAPS

4.1. Some definitions and notations

Let Rak be the projectivization of the space of triplets of homogersepolynomials of
degreekin 3 variables:

Ratk = P{(fo, f1, f2) | fi € C[x,y, 2}

An element of Rathasdegree< k.
We associate td = (fo: f1: f2) € Rak the rational map

fo: (X:y:2z) -+ 0(fo(x,y,2) : fa(x,y,2) : f2(x,y,2)),

whered = m

Let f be in Ra; we say thatf = (fo: f1: fy) is purely of degreeif the f;’s have no common
factor. Let us denote b§(a‘k the set of rational maps purely of degikeéVhereas Ratcan be
identified to a projective spacé,at( is an open Zariski subset of it. An element of Ralo?at(
can be writtengf = (Yfp : Yfy : Yfy) where f belongs to Rat where/ < k, andy is a
homogeneous polynomial of degrke- ¢. Let us denote by Rat the set of all rational maps

from P?(C) into itself: it is (| Rat. It's also the injective limite of the Rgis where
k>1

Raf = { f*

Note that if f € Raj is purely of degred then f can be identified td*. This means that the
application

f € Rak}.

Raj — Rag

is injective. Henceforth when there is no ambiguity we usenbtationf for the elements
of Rak and for those of Rgt We will also say that an element of Réis” a rational map.

The space Rat contains the group of birational mag&¢t). Let Bir, C Raj be the set of
birational maps of Rai such thatf® is invertible, and let us denote tﬁijrk C Birg the set of
birational maps purely of degrde Set

Birg = { f*| f € Bir}.
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The Cremona group can be identified@ I°3irk. Note thatl°3ir1 ~ PGL3(C) is the group of
k>1

automorphisms dP?(C); we haveBir; ~ Bir{ = Bir;. The set Ratcan be identified t&®%(C)
and I°?at1 is the projectivization of the space of matrices of rank gmethan 2

Fork =2 the inclusionl°3ir2 C Biry is strict. Indeed ifA is in PGLs(C) and if ¢ is a linear
form, /A is in Biry but not inI°3ir2.

There are two "natural” actions on RaThe first one is the action of PG(C) by dynamic
conjugation

PGLs(C) x Rak — Ra, (A, Q) — AQA™?
and the second one is the action of RGL)? by left-right composition(l.r.)
PGLs(C) x Rak x PGLs(C) — Ray, (A,Q,B) — AQB 1.

Remark thatFo{at(, Biry andl°3irk are invariant under these two actions. Let us denotody Q)
(resp. O,.(Q)) the orbit of Q € Rak under the action of PGJ(C) by dynamic conjugation
(resp. under the L.r. action).

Examples 4.1.1 — Let o be the birational map given by
P?(C) --» P%(C), (X1y:12) —-> (yZ: XZ: Xy).
The mapo is an involution whose indeterminacy and exceptional setgj&en by:
Indo={(1:0:0),(0:1:0),(0:0:1}, Exco = {x=0,y=0,z=0}.

The Cremona transformatiger (x:y:z) --» (xy: 22 : y2) has two points of indeterminacy
which are(0:1:0) and(1:0:0); the curves contracted lyarez= 0, resp.y = 0. LetT be
the map defined byx:y: z) --» (X% : xy: y? — x2); we have

Indt={(0:0:1)}, Exct = {x=0}.

Notice thatp andt are also involutions.

The Cremona transformatiorfsandy arebirationally conjugateif there exists a birational
mapn such thatf = gny~—2. The three maps, p andt are birationally conjugate to some
involutions of PGl3(C) (see for examplB4]).

Let us continue with quadratic rational maps.
Let C[x,y, Z)y be the set of homogeneous polynomials of degraeC3. Let us consider the
rational map detjac defined by

detjac: Rat --» P(C[xy,Z3) ~ {curves of degree 3
[Q --» [detjadQ=0].

Remark 4.1.2 — The map detjac is not defined for mgg} such that detja@ = 0; such a
map is up to L.r. conjugacyQo : Q1 : 0) or (X2 : y? : xy).

Proposition 4.1.3[56]). — The mapdetjacis surjective.
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Proof. — For the mapo we obtain three lines in general position, fwthe union of a "double
line" and a line, fort one "triple line" and for(x? : y? : (x—Yy)z) the union of three concurrent
lines.
With
1+a

detjac<—%x2 +7Z: —%xz+ 7 2 %yz : xy> = [y’z=X(x—2)(x—a2)]

we get all cubics having a Weierstrass normal form.

If Q: (x:y:2) --» (Xy: Xxz:X?+y2), then detja® = [x(x* — yz) = 0] is the union of a conic
and a line in generic position.

We have detjagy? : X2 +2xz: X2 +xy+Yy2) = [y(2x? —yz) = 0] which is the union of a conic
and a line tangent to this conic.

We use an argument of dimension to show that the cuspidat dgdongs to the image of
detjac.

Up to conjugation we obtain all plane cubics, we conclude sigauthe L.r. action. O

4.2. Criterion of birationality

We will give a presentation of the classification of the gadidrbirational maps. Let us
recall that if is a rational map an&® a homogeneous polynomial in three variables we say
that@ contractsP if the image byp of the curvelP = 0] \ Ind@is a finite set.

Remark 4.2.1 — In general a rational map doesn’t contract defjdit is the case forf : (x:
y:2) -—» (X2 :y?:7)). Buts if f is a birational map o?(C) into itself, then detjad is
contracted byf.

Let A andB be two elements of PGIC). SetQ = AoB (resp.Q = ApB, resp.Q = AtB).
Then detja€ is the union of three lines in general position (resp. thenmf a "double” line
and a "simple" line, resp. a triple line). We will give a critsn which allows us to determine
if a quadratic rational map is birational or not.

Theorem 4.2.2[56]). — Let Q be a rational map; assume that Q is purely quadratic aoid n
degeneratdi.e. detjadQ # 0). Assume that Q contractietjad; thendetjadQ is the union of
three lines(non-concurrent when they are distincend Q is birational.

Moreover:

o if detjadQ is the union of three lines in general position, Q is, up todquivalence, the

involution o;
e if detjadQ is the union of a "double" line and a "simple" line,=9p up to l.r. conjugation.
o if detjadQ is a "triple” line, Q belongs ta , (1).

Corollary 4.2.3([56]). — A quadratic rational map fron?(C) into itself belongs ta ; (o)
if and only if it has three points of indeterminacy.

Remark 4.2.4 — A birational mapQ of P?(C) into itself contracts detja@ and doesn’t con-
tract any other curve. Is the Theorem 4.2.2 avalaible ineakegtrictly larger than 2 ? No,
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as soon as the degree is 3 we can exhibit elem@rntentracting detja® but which are not
birational:

Q: (X1y:2) --» Py xZ 1 Y?2).

Remark 4.2.5 — We don’t know if there is an analogue to Theorem 4.2.2 indinyension;
[16Q can maybe help to find an answer in dimension 3.

Remark 4.2.6 — In [56, Chapter 1, 86] we can find another criterion which allows as t
determine if a quadratic rational map is rational or not.

Proof of Theorem 4.2.2— Let us see that detj&gis the union of three lines.

Assume that detjaQ is irreducible. Let us se®: (x:y:2) --» (Qp: Q1:Q2). Upto l.r.
conjugacy we can assume that deQais contracted or{1 : 0 : 0); then detja€ divides Q;
andQ, which is impossible.

In the same way if det ja@ = Lq wherelL is linear andy non degenerate and quadratic, we
can assume that= 0 is contracted oii1 : 0: 0); thenQ: (x:y:2z) --» (g1 : ¢:0q) and so is
degenerate.

Therefore detjaQ is the product of three linear forms.

First of all let us consider the case where, up to conjugastjadQ = xyz If the linesx=10
andy = 0 are contracted on the same point, for exanifle0 : 0), thenQ: (x:y:2z) --» (q:
Xy : axy) which is degenerate. The lings= 0, y =0 andz = 0 are thus contracted on three
distinct points. A computation shows that they cannot bgnalil. We can assume that 0
(resp.y =0, resp.z=0) is contracted o1 : 0:0) (resp.(0:1:0), resp.(0:0:1); let us
note thatQ is the involution(x: y: z) --» (yz: xz: xy) up to L.r. conjugacy.

Now let us consider the case when detjacas two branches = 0 andz= 0. As we just
see, the linex = 0 andz = 0 are contracted on two distinct points, for examle O : 0) and
(0:1:0. The mapQ is up to I.r. conjugacy: (X:Y:2z) --» (z(ay+ Bz) : X(yx+ dy) : X2). A
direct computation shows th@tis birational as soon g — ay # 0 and in fact |.r. equivalent
to p.

Then assume that d@cQ) = Z>. We can suppose that= 0 is contracted ofil : 0 : 0); then
Q: (X:y:2z) --»(q: zf1: z¢>) whereq is a quadratic form and th&'s are linear forms.
e If (2 ¢1,07) is a system of coordinates we can write up to conjugacy

Q: (X:y:2) --» (q:xZ:y2), q=ax + by’ + cZ +dxy

The explicit computation of dgacQ) implies:a=b=d =0, i.e. eitherQ is degenerate,
or Q represents a linear map which is impossible.
e Assume thatz ¢1,¢,) is not a system of coordinatdsg.

(1 =az+L(Xy), U = bz+el(X,Y).

Let us remark that is nonzero (otherwis® is degenerate), thus we can assumedhaxk.
Up to L.r. equivalence

Q: (x:y:2) --» (q:xz: B).
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An explicit computation implies the following equality: GEcQ = —2223—3; thuszdivides
3—3. In other wordsy = oz + Bxz+ yx? + dyz Up to .r. equivalence, we obtai@ = T.

Finally let us consider the case: atQ) = xy(x—Yy). As we just see the lines= 0 and
y = 0 are contracted on two distinct points, for examidle0: 0) and(0:1:0). So

Q: (X:y:2) --» (y(ax+by+c2) : x(ax+ By+Vyz) : xy)

with a, b, ¢, a, B,y € C. Let us note that the image of the lime=y by Q is ((a+ b)x+cz:
(a4 B)x+vyz: x); itis a point if and only ifc andy are zero, the® does not depend an [

Set
%= 0..(0), 2= 0 (p), == 0n(n).
Let us consider a birational map represented by
Q: (X:y:2)——»L(lo:l1:02)

where/ and the¢;’s are linear forms, thé;’s being independent. The line given By= 0 is
an apparent contracted line; indeed the actio®@ain P?(C) is obviously the action of the
automorphisn(/o : £1 : £2) of P?(C). Let us denote by the set of these maps

0= {l(to: t1:02)

£, ¢; linear forms, the;’s being independer}t
We will abusively call the elements af linear elements; in fact the set

(20 ={f*|f 2%

can be identified to PGJ(C). We havez® = O (x(x:y:2)): up to l.r. conjugacy a mapA
can be writterxA' thenxid. This approach allows us to see degenerations of quadnaps on
linear maps.

Let us remark that an element Bfhasi points of indeterminacy anidcontracted curves.

An element of£' cannot be linearly conjugate to an elemenkbivherej # i; nevertheless
they can be birationally conjugate: the involutiooisp andt are birationally conjugate to
involutions of PGIg(C). Let us mention that a generic elementbfi > 1, is not birationally
conjugate to a linear map.

Corollary 4.2.7([56]). — We have
Bir, = s1Us2Us3, Bir, = s0ustus?uss.
Remarks 4.2.8 — i. A Naether decomposition qfis
(z—y:y—x:y)o(y+z:z:x)o(X+2z2:y—2z:2).

We recover the classic fact already mentionedl2f], 3: for any birational quadratic maR
with two points of indeterminacy there exi&t, /> and/3 in PGLs(C) such thaQ = ¢10/¢,0/3.
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ii. The mapt = (X2 : xy: y? —x2) of ! can be writter/10¢,0/30¢40/5 where

b= (y—X:2y—X:Z-y+X), la=(X+2z:X:y),
l3=(—y:X+z-3y:Xx), ly=(X+2:XY),
ls=(y—X:—2X+2:2Xx—Y).

Therefore each element &t is of the following typel,6¢20¢30¢40¢5 wherel; is in PGLs(C)
(se€[122, 3). The converse is false: if thigs are generic thety0/,0¢30/40/5 is of degree 16.

4.3. Some orbits under the left-right action

As we saw Big is a finite union of L.r. orbits but it is not a closed algebrsibset of Rat:
the "constant” magyz: 0: 0) is in the closure oD, (o) but not in Bir. To precise the nature
of Bir, we will study the orbits ob, p, T andx(x:y: z).

Proposition 4.3.1([56]). — The dimension af® = O, (o) is 14.

Proof. — Letus denote by Isatthe isotropy group ofi. Let (A, B) be an element dfSLz(C))?
such thatAc = oB; a computation shows théf, B) belongs to

(((%:%:aﬁz), (ax:By:%)),yexye\G,BGC*>

Fo={id, (x:z:y), (z:y:X), (Y:1X:2),(y:Z:X), (Z:X1Y)}.
This implies that dimlsaf = 2. O

where

Proposition 4.3.[56]). — The dimension af? = O (p) is 13.

Proof. — We will compute Isop, i.e. let A andC be two elements of S(C) such that
Ap = npC wheren is in C*. Let us recall that

Indp={(0:1:0,(1:0:0};

the equalityAp = npC implies thaiC preserves Ind. But the points of indetermincay pf"are
not the same", they don’t have the same multiplicityCsfixes (0 : 1: 0) and(1: 0 : 0); thus
C = (ax+bz: cy+dz: ez, whereace# 0. A computation shows that

A= (nydx+npdz: nay: nadz), C=(yx+pBz:dy:az)
with n3028 = ayd = 1. The dimension of the isotropy group is then 3. O
Notice that the computation of Isptshows that we have the following relations
(yox+PBdz: a?y: adz)p = p(yx+ Bz: dy: az), a,y,0e C*,BeC.
We can compute the isotropy groupwé@nd show that:

Proposition 4.3.3[56]). — The dimension af! is 12.
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In particular we obtain the following relationét = 1B when

oe 0 Be a B O
A= | ey+20B a? (e8+P? |, B=|0 ¢ 0 |,
0 0 g2 y & a/e

wheref,y,0€ C, a, e e C*.
A similar computation allows us to state the following resul

Proposition 4.3.4[56]). — The dimension af® = O, (x(x:y: 2)) is 10.

4.4. Incidence conditions; smoothness @&ir, and non-smoothness oBir»

Let us study the incidence conditions betweenZtgand the smoothness of Bir
Proposition 4.4.1([56]). — We have

30 c 31, 1c 32 233
(the closures are taken MBiry); in particular =2 is dense irBir.
Proof. — By composingo with (z:y: ex+ z) we obtain
of = (Y(ex+2) : Z(ex+2) 1 y2)
which is fore # 0 in O, (o). Butadj is L.r. conjugate to
05 = (xy: (ex+2)z:yz).

Let us note that linw} = (xy: Z:y2) =p;s03? C 33

If we composep with (z: x+Yy: x), we have up to l.r. equivalencgyz+xz: x? : xy).
Composing with(x: y : y-+z), we obtain up to Lr. conjugation the mdp= (yz+ y? 4 xz: X :
Xy). Setge := f(x/€:y: —€2z); up to |.r. conjugatiorge can be writter( —eyz+y? —xz: X2 : xy).

Fore = 0 we have the map. Therefore>! is contained irz2.
If € is nonzero, them can be written up to I.r. conjugation:

(X xy: €22 +x2);
for € = 0 we obtainx(x : y : z) which is in=°. Hencez® c 31. O
Thus we can state the following result.
Theorem 4.4.2[56]). — The closures being taken Bir, we have
50=5° s1=35%st 2 =3%0stuz?,
Bir, = s1Us2Us3, Bir, = 53 =50ustus2ys®
with
dim=° = 10, dimzt=12 dim=?=13 and dim=3 =14
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Theorem 4.4.3[56]). — The set of quadratic birational maps is smooth in the set tibnal
maps.

Proof. — Because any' is one orbit and because of the incidence conditions it ificgerfit
to prove that the closure & is smooth along?.
The tangent space & in x(x: y: 2) is given by:
Tx(xy2) 0 = {(C(lxz ~+ Q4Xy+ OsXZ: lez + [32y2 + Baxy+ Bsxz+ Beyz:
Y& + BoZ + Yaxy+ Ysxz+ Bay2) | ai, Bi, vi € C}.

The vector spac8generated by
(y>:0:0), (Z:0:0), (yz:0:0), (0:2:0),
(0:0:y?), (0:0:2), (0:0:y2)
is a supplementary of,Jy., =° in Rab. Let f be an element 0¥ {x(x:y: z)+ S}, it can
be written
(X% 4+ AY? + BZ +Cyz: xy+ aZ : xz+ ay* + BZ +yy2).

Necessarilyf has three points of indeterminacy.
Assume that = 0O; let us remark that the second component of a point of inchétecy of f
is nonzero. If(x:y: z) belongs to Ind, thenx = —az/y. We have
f(—aZ/y:y:2) = (a?'+AV'+ByYZ+Cy’z:0:—-az+ay’ +ByZ+ w2
= (P:0:Q).
As f has three points of indeterminacy, the polynomialand Q have to vanish on three
distinct lines. In particulaf dividesP:

a’Z* + Ay + BY’Z + Cy’z= (My+N2)(—aZ + ay’ + ByZ + w?2).
Thus
(4.4.1) B=-p>—-ay, C=-By—aa, A=—ap.

These three equations define a smooth graph thréuagidx(x : y : z), of codimension 3 a&3.
Assume now thad is zero; a point of indeterminady : y : z) of f satisfiesxy=0. If x=0
we have

f(0:y:2) = (A +BZ +Cyz: 0:ay* + Bx +yy2)

and ify = 0 we havef(x:0:2) = (xX*+B2Z: 0 : xz+ Bz%). The mapf has a point of inde-
terminacy of the formx: 0 : z) if and only if B= —B2. If it happens,f has only one such
point of indeterminacy. Sincé has three points of indeterminacy, two of them are of the form
(0:y: z) and the polynomial&y? 4 BZ 4 Cyzanday? + Bz + yyzare C-colinear. We obtain
the conditions

e a=0B=—p% A= —ap andC = —yif B is nonzero;

e a=B=[f=Ay—aC = 0 otherwise.
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Let us remark that in this last cageannot have three points of indeterminacy. Finally we note
that=3N {x(x:y:2)+ S} is contained in the graph defined by the equations (4.4.19.sBme
holds for the closur&3n {x(x:y: ) + S} which, for some reason of dimension, coincides
thus with this graph. TheE? is smooth along®. O

Remark 4.4.4 — Since=3 is smooth along® and since we have incidence conditioB3,is
smooth along? and=!. Nevertheless we can show these two statements by constylicegar
families of birational mapgsee[56)]).

Proposition 4.4.5[56]). — The closure oBir, in P’ ~ Rab is not smooth.

Proof. — Let@be a degenerate birational map givereby: y: 0). The tangent space @, (¢)
in @is given by

TeOr (@) = {(00XP+ 032+ 0axy+ AsXZ+ Ogyz: sy + PaZ
+a1Xy+ PBsxz+ Beyz: Ysxz+ Yey2) | ati, Bi, vi € C}.

A supplementans of ToO 1. (@) is the space of dimension 8 generated by
(y*:0:0), (0:x%:0), (0:y?:0), (0:xy:0),
(0:0:%%), (0:0:y?), (0:0:2), (0:0:xy).

We will prove that{ ¢+ S} NZ3 contains a singular analytic subset of codimension 3. SiAce

is also of codimension 3 we will obtain, using the L.r. actitie non-smoothness &f along
the orbit of@. An elementQ of {¢+ S} can be writen

(xz+ay? : yz+ b2 + cy? + dxy: e + fy? +gZ + hxy).
The points of indeterminacy are given by the three followéogliations

xz+ay’ =0, yz+ by 4 cy? + dxy=0, exX + fy? + hxy=0;
after eliminatingz this yields toP, = P, = 0 where
P, = —ay’ + b + cxy? + dx4y, P, = eX + £x%y2 + a’gy* + hxcy.

Let us remark that if, for some values of the paramefrsanishes on three distinct lines and
dividesP,, then the corresponding m#&phas three points of indeterminacy and is birational,
more preciselQ is in 3. The fact thaPy dividesP» gives

e=DbA
f =cA+dB
(4.4.2) P, = (Ax+By)P, <& a’g=—aB
h=dA+DbB
aA=cB
Let us note that the sét of parameters such that

a=0, bf—-ce=0, bh—de=0
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satisfies the system (4.4.2) (with=e/b andB = 0). The sef\ is of codimension 3 and is not
smooth. The intersectioft’ of quadricsb f — ce= 0 andbh— de= 0 is not smooth. Indeed’
contains the linear spad¢egiven byb = e= 0 but is not reduced t&: for example the space
defined byb = c=d =e= f = his contained im\’ and not inE. Since codimE = codimA\’
the set\\ is thus reducible and then not smooth; it is the saméfdf a=b=e=0 (resp.b=
c=d=e= f =h=1, a=0) the polynomiaP; is equal tocxy? + dx?y (resp.x® + xy? + x2y)
and in general vanishes on three distinct lines. So we hanstrmted inZ3 N {(p+ S} a
singular analytic set of codimension 3 O

4.5. A geometric description of quadratic birational maps

4.5.1. First definitions and first properties. — In a plane? let us consider a net of conics,
i.e. a 2-dimensional linear systefa of conics. Such a system istmmaloidal net if it pos-
sesses three base-points, that is three points througthahithe elements of\ pass. There
are three different such nets

e the nets/\3 of conics with three distinct base-points;

e the nets/A\, of conics passing through two points, all having at one ofrthhe same

tangent;

e the nets/\; of conics mutually osculating at a point.

In order to have three conics that generate a homaloidahriesuffices to annihilate the
minors of a matrix

bo l1 L
{ lo 4 b }

whose elements are linear forms in the indeterminatgsandz. Indeed the two conics de-
scribed by

(4.5.1) Col, — Lty =0, Coly — Lol =0

have four points in common. One of therffd = 0) N (¢, = 0)) doesn't belong to the third
conic (14, — ¢} ¢, = 0 obtained from (4.5.1) by eliminating/¢;. SOA is given by

ao(£o€’1 — 5651) + al(fof/ — 5256) + az(flf/ — 3_52) =0

with (ag : a1 : @) € P?(C).

Letx, y, zbe some projective coordinatesdhand letu, v, w be some projective coordinates
in 7', another plane which coincides with Let f be the algebraic correspondance between
these two planes; it is defined by

d(x,y,Zu,v,w) =0
P(Xx,y,zZu,v,w) =0

As f is a birational isomorphism we can wripeand as follows

q)(xa Y,z u,V, W) = UEO(X, Y, Z) + V£1(X, Y, Z) + W€2(X7 Y, Z)a
W(X,Y,Z U, V,W) = Ulg(X,Y,2) +VE4 (X, 2) + Wl5(X, Y, 2)
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and also
¢(X>y> Z U,V,W) = XL()(U,V,W) +yL1(U,V,W) + ZLZ(U>V7W)7
P(X, Y,z u,v,w) = XLo(u, v, w) +yL] (u, v,w) + zL5 (u, v, w)

wheret;, ¢, Li andL] are some linear forms. This implies in particular that
(4.5.2) (Ui VW) = (010 — bl < Lol — Lol - Loly — (14)

i.e. u(resp.v, resp.w) is a quadratic form irx, y, z
On can note that im= (u: v:w) € 2’ belongs to the lineD given byagu+ a;v+ a;w = 0
the point(x:y: z) corresponding to it via (4.5.2) belongs to the conic given by

ao(€1£’2 — 5253_) + 31(5256 — foelz) + a2(€o€’1 — eleé)) =0.

So the lines of a plane thus correspond to the conics of a luadahhet of the other plane.

Conversely we can associate a quadratic map between twesptara homaloidal net of
conics in one of them. Lek be an arbitrary homaloidal net of conics4hand let us consider
a projectivity ® between\ and the net of lines i?’. Let mbe a point of? and let us assume
thatmis not a base-point of. The elements of\ passing througimis a pencil of conics with
four base-points: the three base-pointg\aindm. To this pencil corresponds a pencil of lines
whose base-poinin is determined bym. To a pointm’ € P’ corresponds a pencil of conics
in P, the image of the pencil of lines centerednm Therefore the map which sendsto m
gives rise to a Cremona map frafinto 2’ which sends the conics @ into the lines of?’.

So we have the following statement.

Proposition 4.5.1 — To give a quadratic birational map between two planes is, a@n
automorphism, the same as giving a homaloidal net of conicsié of them.

Remark 4.5.2 — To a base-point of one of the two nets is associated a litleeiother plane
which is an exceptional line.

4.5.2. Classification of the quadratic birational maps betwen planes. —We can deduce
the classification of the quadratic birational maps betwganes from the description of the
homaloidal netg\ of conics in?.
e If A has three distinct base-points we can assume that thests poépo = (1:0: 0),
p1=(0:1:0), po=(0:0:1) andA is thus given by

agyz+ ayxz+ apxy = 0, (ag: ay : ap) € P?(C).

The mapf is defined by(x:y: z) --» (yz: xz: xy) and can easily be inverted s an
involution).

e If A\ has two distinct base-points, we can assume that the cohitsue tangent ap, =
(0:0: 1) to the linex= 0 and also pass througiy = (1: 0: 0). ThenA is given by

aoXz+ arxy+ apy? = 0, (ag: ay : @) € PA(C).
The mapf is defined by(x:y: z) --» (xz: xy: y?) and its inverse igu: v:w) --» (V2 :

VW UW).
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e Ifthe conics ofA are mutually osculating gz = (0: 0: 1), we can assume thAtcontains
the two degenerated conig$= 0 andxy= 0. LetC be an irreducible conic in; assume
that CN (y = 0) = pp and thatp; = (0:1: 0) is the pole ofy = 0 with respect toC.
Assume finally that1 : 1 : 1) belongs taC then( is given byxz-+y? = 0 andA is defined
by

ag(xz+Y?) +ap + apxy = 0, (ag:ay:ap) € P2(C).

The mapf is (x:y:2z) --» (xz—y? : ¥% : xy) and its inverse igu: v:w) --» (V2 :vw:

uv+4wA).

Remark 4.5.3 — We can see thaf and f~! have the same type. So the homaloidal nets
associated td and f ~* have the same type.

4.6. Cubic birational maps

The space of birational maps which are purely of degree 2 mofimand connected. Is
it the case in any degree ? Let us see what happens in degraetBe bld texts we can
find a description of cubic birational maps which is based umngerative geometry. Irbp,
Chapter 6] we give a list of normal forms up to l.r. conjugatithe connectedness appearing
as a consequence of this classification. The methods astoghdopology of the complement
of some plane curves, contraction of the jacobian detemmindJnfortunately, as soon as the
degree is greater than 3 we have no criterion as in degreef2isithe map(x?y : xZ : y?2),
the zeroes of detjaicare contracted but is not invertible. Nevertheless ff is birational, the
curve detjad = 0 is contracted and it helps in a lot of cases. We show that gnede3 the
possible configurations of contracted curves are the fatigwnions of lines and conics:

— L N X

{5}
{6} {7} {9} {10}
\/ N/
{11} {12} {13} {14} {15}

The following table gives the classification of cubic biosal maps up to conjugation:



(xZ+y3:y2: 2
(X2 : X%y )
(x2:x3+xyz: %)
(X%z: 3 + 2+ xyz: x2)
(Xz: %y + 2 x2)
(xyz: y2 : 2 — x2y)
(@ :y?z:xy2)
0C(y—2) i xy(y—2) :¥°2)
(X%z: xyz: y?(x—2))
(Xyz: Y?z: X(y? —x2))
03 3%y (x—y)y2)
O@(x—Y) 1 xy(X—Y) : Xyz+y?)
(X2x+Y)  yzAX+y) i Xy)
(XX+Y)(Y+2) 1 y(x+Y)(y+2) 1 xy2
(X(X+Y+2)(X+Y) 1 Y(X+Y+2)(X+Y) 1 xy2)
(XOC+Y2 +yy) 1 YO + Y2 +YXy) 1 Xy2), VP # 4
(xz(y+x) 1yzZy+x) 1 Xy(x—y))
(XO@ + Y + Y)Y+ V4 XZ+Y2) 1 YO + Y + VXY + V4 XZ+Y2) 1 Xy2)
(YX=Y)(X+2) 1 X(x=y)(z—Y) 1 yAX+Y))
(X +y2) 1 Y31 y(2 +y2))
Yz X(xz+Y?) 1 y(xz+Y?))
(Y +x2) 1 Y(Y* +x2) : xy2)
(Y2 +Xx2) 1 Y(Y? +X2) : Xy?)
(X(€ +y2)  Y(¥* +y2) 1 xy)

(

(
( (
¥

(X(Xy+ xz+Yy2) : y(Xy+Xz+Y2) : Xy2)
Y
(

X
X

(XOR +yz+X2) : Y(X2 +yZ+X2) : Xy2)
(XO2 +xy+Y2)  YO@ + Xy+Y2) : Xy2)
(XO€ +y2) 1 y(X +y2) 1 xy(x—y))
(X(Y2 +YXy+YZ+X2) 1 Y(Y? +YXy+YZ+X2) 1 Xy2), Y #0, 1
(X0 +Y? +Yxy+X2) 1 Y + Y2+ YXy+X2) 1 Xy2), Y # 4,
(X2 +yz+Xx2) : Y +yz+X2) : xy(X—Y))

(XO@ + Y2 4 Yxy+ Oxz+Y2) 1 YO + Y2 +yXy+ OXz+Y2) : Xy2), V> # 4, 8 # Y

{1}
{2}
{2}
{2}
{2}
{2}
{3}
{3}
3}
{3}
{4}
{4}
{5}
{5}
{5}
{6}
{7}
{7}
{7}
{8}
{9}
{10}
{10}
{10}
{11}
{11}
{12}
{12}
{13}
{14}
{14}
{15}

{1}
{2}
{2}
{2}
{2}
{8}
{3}
{10}
{10}
{10}
{4}
{4}
{5}
{12}
{12}
{6}
{7}
{14}
{14}
{2}
{9}
{3}
{3}
{3}
{11}
{11}
{5}
{5}
{13}
{7}
{7}
{15}

13
15
15
14
15
14
15
15
15
15
15
16
16
16
16
15
16
16
16
14
15
15
15
15
16
16
16
16
16
16
16
16

1 parameter

1 parameter

1 parameter
1 parameter

2 parameterq
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wherey denotes a complex number and where
Vo= y+vy -4 _ Y- VY -4
= > : .

For any model we mention the configuration of contracted esinf the map (second column),
the configuration of the curves contracted by the inversed(ttolumn), the dimension of its
orbit under the Lr. action (fourth column) and the paramse(&fth column).

Any cubic birational map can be written, up to dynamical cgaition,Af whereA denotes
an element of PGJ(C) and f an element of the previous table. This classification allos/t
prove that the “generic” element has the last configuratimh alows us to establish that the
dimension of the spacéirg of birational maps purely of degree 3 is.18p to |.r. conjugation
the elements having the generic configuratj@as} form a family of 2 parameters: in degree 2
there are 3 L.r. orbits, in degree 3 an infinite number.

Let us note that the configurations obtained by degeneresdesm picture{15} do not all
appear. In degree 2 there is a similar situation: the cordtgur of three concurrent lines is
not realised as the exceptional set of a quadratic birdtinag.

Let us denote by?" the set of birational maps purely of degree 3 having configamg 15} .
We establish that the closure &f in Birs is Birs. We can show thair is irreducible, in fact
rationally connected g6, Chapter 6]); but if Big is smooth and irreducible Bjr viewed in
P?9(C) ~ Rat, doesn't have the same propertieS&[Theorem 6.38]).

Let us mention another result. Letydde the subset of dJ made of birational maps of degree
and let \jy be the subset of B{P?) defined by

Vg = {AfB|A BePGLs(C), f € dk}.

The dimension of By is equal to 4 + 6 and \4 its unique irreducible component of maximal
dimension (150Q).



CHAPTER 5

FINITE SUBGROUPS OF THE CREMONA GROUP

The study of the finite subgroups of B?) began in the 1876 with Bertini, Kantor and
Wiman (27, 130, 184). Since then, many mathematicians have been interestibe isubject,
let us for example mentiorift, 17, 18, 31, 65, §3In 2006 Dolgachev and Iskovkikh improve
the results of Kantor and Wiman and give the description atiefisubgroups of BiiP?) up to
conjugacy. Before stating one of the key result let us into@dsome notions.

Let S be a smooth projective surface.cAnic bundlen: S— PY(C) is a morphism whose
generic fibers have genus 0 and singular fibers are the unitwodfnes. A surface endowed
with conic bundles is isomorphic eitherlfg, or toF, blown up in a finite number of points, all
belonging to different fibers (the number of blow-ups is d¢yathe number of singular fibers).

A surface S is called del Pezzo surfacd —Kg is ample, which means thatKs- C > 0
for any irreducible curve” C S. Any del Pezzo surface excdpt(C) x P1(C) is obtained by
blowing upr points py, ..., pr of P2(C) with r < 8 and no 3 ofp; are collinear, no 6 are on
the same conic and no 8 lie on a cubic having a singular poimm&bf them. The degree of S
is9—r.

Theorem 5.0.1[139, 123). — LetG be a finite subgroup of the Cremona group. There exists
a smooth projective surfacd and a birational mapg: P?(C) --» S such thateGe ! is a
subgroup ofAut(S). Moreover one can assume that

e eitherSis a del Pezzo surface;

e or there exists a conic bund&— P(C) invariant by@Ge .

Remark 5.0.2 — The alternative is not exclusive: there are conic bundleslel Pezzo sur-
faces.

Dolgachev and Iskovskikh give a characterization of peBsS) satisfying one of the pos-
sibilities of Theorem 5.0.1. Then they use Mori theory toedetine when two pairs are bira-
tionally conjugate. Let us note that the first point was pdlstisolved by Wiman and Kantor
but not the second. There are still some open questi@® §P), for example the descrip-
tion of the algebraic varieties that parametrize the camjygclasses of the finite subgroups
of Bir(P?). Blanc gives an answer to this question for finite abeliargsalps of BifP?) with
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no elements with an invariant curve of positive genus, atscefements of finite order (resp.
cyclic subgroups of finite order) of the Cremona grogi([33).

5.1. Birational involutions

5.1.1. Geiser involutions. —Let py, ..., p7 be seven points dP?(C) in general position.
Let L be the linear system of cubics through thés. A cubic is given by a homogeneous
polynomial of degree 3 in three variables. The dimensiorhefgpace of homogeneous poly-
nomials of degree 3 in 3 variables is 10 thus @@nC cubic} = 10— 1 = 9; cubics have to
pass througlpy, ..., p7 so dimL = 2. Let p be a generic point dP?(C); let us consider the
pencilL, containing elements df throughp. A pencil of generic cubics

agCo+ a1C1, Co, C1 two cubics (ag : a1) € PY(C)

has nine base-points (indeed by Bezout's theorem the @uéos of two cubics is ¥ 3=9
points); so we define bys(p) the ninth base-point dfp,.

The involution I = Is(ps, .-, p7) which send9 to Ig(p) is aGeiser involution

We can check that such an involution is birational, of ded@gés fixed points form an
hyperelliptic curve of genus,8legree 6 with 7 ordinary double points which are gis. The
exceptional locus of a Geiser involution is the union of semgbics passing through the seven
points of indeterminacy ofg and singular in one of these seven points (cubics with double
point).

The involution I can be realized as an automorphism of a del Pezzo surfacgael2.

5.1.2. Bertini involutions. — Let py, ..., pg be eight points of??(C) in general position.
Let us consider the set of sextiss= S(pa, ..., ps) with double points inp;, ..., ps. Letm
be a point ofP?(C). The pencil given by the elements gfhaving a double point im has
a tenth base double point'. The involution which swapsn andnt is a Bertini involution
Ig = Ig(p1,---,Ps).

Its fixed points form a non hyperelliptic curve of genusiégree 9 with triple points in the
pi’s and such that the normalisation is isomorphic to a sirrgatarsection of a cubic surface
and a quadratic cone ®*(C).

The involution Iz can be realized as an automorphism of a del Pezzo surfacgeealé.

5.1.3. de Jonquieres involutions. —Let C be an irreductible curve of degree> 3. Assume
that ¢ has a unique singular poiptand thatp is an ordinary multiple point with multiplicity
v —2. To (C,p) we associate a birational involutioh which fixes pointwiseC and which
preserves lines througp. Let m be a generic point oP?(C) )\ C; let ry, gm and p be the
intersections of the lin@mp) and C; the pointZ;(m) is defined by the following property: the
cross ratio ofm, I;(m), qm andry is equal to—1. The mapl; is ade Jonquiéres involution
of degreev centered inp and preserving”. More precisely its fixed points are the curgeof
genusv — 2 forv > 3.
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Forv = 2 the curveC is a smooth conic; we can do the same construction by choeasing
point p not on(C.

5.1.4. Classification of birational involutions. —

Definition. — We say that an involution is afe Jonquiéres typé is birationally conjugate
to a de Jonquiéres involution. We can also speak about iwnlof Geiser typeresp.Bertini

type

Theorem 5.1.1[27, 14). — A non-trivial birational involution ofP?(C) is either of de Jon-
quieres type, or Bertini type, or Geiser type.

More precisely Bayle and Beauville obtained the followitatement.

Theorem 5.1.2[14]). — The map which associates to a birational involutionPsfits nor-
malized fixed curve establishes a one-to-one correspoedegigveen:
e conjugacy classes of de Jonquiéres involutions of degreeddisomorphism classes of
hyperelliptic curves of genus-d2 (d > 3);
e conjugacy classes of Geiser involutions and isomorphismssels of non-hyperelliptic
curves of genus;
e conjugacy classes of Bertini involutions and isomorphidasses of non-hyperelliptic
curves of genud whose canonical model lies on a singular quadric.
The de Jonquiéres involutions of degform one conjugacy class.

5.2. Birational involutions and foliations

5.2.1. Foliations: first definitions. — A holomorphic foliation ¥ of codimension 1 and
degreev onP?(C) is given by a 1-form

W= Uu(X,Y,z)dx+ Vv(X,y,z)dy +w(X,Y,z)dz
whereu, v andw are homogeneous polynomials of degvee 1 without common component
and satisfying the Euler identityu+ vy+ wz = 0. The singular locus Sing¥ of ¥ is the
projectivization of the singular locus oj
Singw = {(xY,2) € C®|u(x,y,2) = V(x,¥,2) = W(x,y,2) = 0}.

Let us give a geometric interpretation of the degree. % dte a foliation of degree onP?(C),
let D be a generic line, and lgt a point of D\ Sing¥. We say thatf is transversalto D if
the leafL, of F in pis transversal ta in p, otherwise we say that is apoint of tangency
betweent and®. The degree® of ¥ is exactly the number of points of tangency betwgen
andD. Indeed, ifw be a 1-form of degree + 1 onC? defining 7, it is of the following type

w = Pydx+ Pidy -+ P,dz, P homogeneous polynomial of degree- 1.
Let us denote by the restriction otw to the affine chark =1

Wo = w|X:l = P1(17y7 Z)dy+ P2(1a Y Z)dZ.
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Assume that the lin@ = {z= 0} is a generic line. In the affine chart= 1 the fact that the
radial vector field vanishes af implies that

Po(1,y,0) +yPi(1,y,0) = 0.

Generically (on the choice ab) the polynomialPy(1,y,0) is of degreev +1 soPy(1,y,0) is
of degreev. Sincewyp = P1(1,y,0)dy, the restriction ofwp to 2 vanishes inta points: the
number of tangencies betwegnandD is v.

The classification of foliations of degree 0 and 1R5iC) is known since the XIXth century.
A foliation of degree 0 o??(C) is a pencil of linesj.e. is given byxdy — ydx = x?d (¥), the
pencil of lines being = cte. Each foliation of degree 1 on the complex projectiva@lhas 3
singularities (counting with multiplicity), has, at leasine invariant line and is given by a
rational closed 1-form (in other words there exists a homegas polynomiaP such thato/P
is closed); the leaves are the connected components oftyelst of a primitive of this 1-form.
The possible 1-forms are

xPoyMAz )\ e C, Z)\i =0, 3exp<§> , x%
whereQ is a quadratic form of maximal rank. More generally a fobatof degree 0 oi?"(C)
is associated to a pencil of hyperplanies, is given by the levels of; /¢, wherels, ¢, are two
independent linear forms. L&t be a foliation of degree 1 a&"(C). Then

o either there exists a projectian P"(C) --» P?(C) and a foliation of degree 1 dP?(C)

such thatf = 1* %,

e or the foliation is given by the levels @/L2 whereQ (resp.L) is of degree 2 (resp. 1).

Forv > 2 almost nothing is known except the generic nonexistenandhvariant curve
([125, 57). Let us mention that

o there exists a description of the space of foliations of éed inP3(C) (see[58]);

e any foliation of degree 2 is birationally conjugate to amuttnot necessary of degree 2)

given by a linear differential equatioﬁi = P(x,y) whereP is in C(x)[y] (se€[59]).

A regular pointmof ¥ is aninflection pointfor ¥ if £, has an inflection point im. Let us
denote by Fle¥ the closure of these points. A way to find this set has beemdiyePereira
in [162): let

0 0 0
Z= E& +F 3y + Ga_z
be a homogeneous vector field 64 non colinear to the radial vector fieRl= x% +y% + za%
describing¥ (i.e. w=irizdxA dyAdz). Let us consider

x E ZE)
y F Z(F)
z G ZG)

,'7-[:

the zeroes of/ is the union of Fleg and the lines invariant by .
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5.2.2. Foliations of degree and involutions. — To any foliation ¥ of degree 2 orP?(C)
we can associate a birational involutidp : let us consider a generic pointof 7, since F
is of degree 2the tangent L, to the leaf throughmis tangent tof at a second poinp, the
involution I+ is the map which swaps these two points. More precisely lasaame tha¥ is
given by the vector fielgf. The image byl# of a generic pointmis the pointm+ sx(m) where
sis the unique nonzero parameter for whjgm) andy (m+ sx(m)) are colinear.

Let g be a singular point off and let?(q) be the pencil of lines throughy. The curve of
points of tangency Tand ,P(q)) between¥ and?(q) is blown down byl ong. We can
verify that all contracted curves are of this type.

5.2.2.1. Jouanolou example— The foliation 7; is described in the affine chart= 1 by

0y —L)ck— (¢ —y)al;

this example is due to Jouanolou and is the first known folatvithout invariant algebraic
curve.
We can computé, :

(xy’ +3Cy2z— X8 — 52 + 237 + Py —xZ
372 + 27 — X'y — 5V + X+ yZ — B
Y7 — 5?72 —y' 74 23y 4+ 3x%y2 — B+ X'2).
its degree is 8 and
Ind Iy, = SingFy = { (¢} : €72 : 1)| j=0,....6, &’ =1}.
As there is no invariant algebraic curve gy we have
Flex#; = Fix Iy, = 2(3%%y?Z — xy° — X°z— y2);

this curve is irreducible.
The subgroup of Aui??) which preserves a foliatioF of P?(C) is called theisotropy
groupof F; itis an algebraic subgroup of Ai?) denoted by

IsoF = {¢ € Aut(P?)|¢*F = F }.

The point(1:1:1) is a singular point of Fleg;, it is an ordinary double point. If we let
Iso #; act, we note that each singular pointffis an ordinary double point of Flek and that
Flex 73 has no other singular point. Therefore Figxhas genuw -7=3

The singular points of Sing are in general position sby, is a Geiser involution.

The group( Iy, Iso ;) is a finite subgroup of Bii?); it cannot be conjugate to a subgroup
of Aut(P?) because Fix; is of genus 3This group of order 42 appears in the classification of
finite subgroups of BiiP?) (see[84)).

5.2.2.2. The generic case— Let us recall that iff is of degreev, then #SingF =v?+v+1
(let us precise that points are counted with multiplicitfhius a quadratic foliation has seven
singular points counted with multiplicity; moreover if wa@ose seven poingsy, ..., py in
general position, there exists one and only one foliaffosuch that Sing” = {py, ..., pr}
(se€[106]).
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Theorem 5.2.1([54]). — Let py, ..., p7 be seven points @?2(C) in general position. LefF
be the quadratic foliation such th&ing7 = {ps, ..., pr} and letig be the Geiser involution
associated to thejjs. ThenIg and I coincide.

Corollary 5.2.2([54]). — The involution associated to a generic quadratic foliatafP?(C)
is a Geiser involution.

This allows us to give explicit examples of Geiser involato Indeed we can explicitely
write a generic foliation of degree 2 @?(C) : we can assume th&0:0:1), (0:1:0),
(1:0:0 and(1:1:1) are singular forf and that the line at infinity is not preserved $yso
the foliation ¥ is given in the affine chaz= 1 by the vector field

0 0
(X%y + a3 + bxy+ cx+ ey) =+ (xy? + AY? + Bxy+Cx+ Ey) 5

with1+a+b+c+e=1+A+B+C+E =0. Then the construction detailed in 5.1.1 allows
us to give an explicit expression for the involutid.

Remark 5.2.3 — Let us consider a foliatior¥ of degree 3 orP?(C). Every generic line
of P?(C) is tangent tgF in three points. The “application” which switches thesethpoints is
in general multivalued; we give a criterion which says whas application is birational. This
allows us to give explicit examples of trivolutions and fnstubgroups of Bii??) (see[54)]).

5.3. Number of conjugacy classes of birational maps of finiterder

The number of conjugacy classes of birational involutionsBir(IP?) is infinite (Theo-
rem 5.1.2). Let be a positive integer; what is the numhgn) of conjugacy classes of bi-
rational maps of ordem in Bir(P?) ? De Fernex gives an answer foprime ([65]); there is a
complete answer ir2@).

Theorem 5.3.1[29]). — For n eveny(n) is infinite; this is also true for B= 3, 5.

For any odd integer B£ 3, 5 the number of conjugacy classe@) of elements of order n
in Bir(P?) is finite. Furthermore

e v(9) =3

e V(15 =9,

e v(n) = 1 otherwise.

Let us give an idea of the proof. Assume tha even. Let us consider an eleménif C[x"]
without multiple root. Blanc proves that there exists atbirzal mapf of order 2 such thatf"
is the involution (x,P(x) /y) that fixes the hyperelliptic curvg? = P(x). So the case = 2
allows to conclude for any evan> 4.

To any elliptic curveC we can associate a birational mép of the complex projective
plane whose set of fixed points (& Indeed let us consider the smooth cubic plane curve
C={(x:y:2) € P%(C) |P(x,y,z) = 0} whereP is a non-singular form of degree 3 in 3 variables.
The surface S {(w: x:y:2) € P3(C) |[w® = P(x,y,2)} is a del Pezzo surface of degreesgé
for example[137). The mapf,: w— exp(%T)w gives rise to an automorphism of S whose
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set of fixed points is isomorphic tg. Since the number of isomorphism classes of ellitpic
curves is infinite the number of conjugacy classes irfIBif of elements of order 3 is thus also
infinite. A similar construction holds for birational mapkarder 5.

To show the last part of the statement Blanc applies Theorérh & the subgroup generated
by a birational map of odd order> 7.

5.4. Birational maps and invariant curves

Examining to Theorem 5.1.2, it is not surprising that simuodiously Castelnuovo was inter-
ested in birational maps that preserve curves of positiveigieLetC be an irreducible curve
of P?(C); the inertia group of ¢, denoted by IngC), is the subgroup of Bji??) that fixes
pointwiseC. Let C C P?(C) be a curve of genus 1, then an element of Ii€) is either a de
Jonquiéres map, or a birational map of order 2, 3 @e£[52]). This result has been recently
precised as follows.

Theorem 5.4.1([35]). — LetC c P?(C) be anirreducible curve of genus1. Any f ofine(C)
is either a de Jonquiéres map, or a birational map of or@er 3. In the first case, if f is of
finite order, it is an involution.

To prove this statement Blanc, Pan and Vust follow Castelo'sddea; they construct the
adjoint linear systenof C: let : Y — P?(C) be an embedded resolution of singularitiegof
and letC be the strict transform of. LetA be the fixed part of the linear systej@ + Ky|.

If |C+Ky| is neither empty, nor reduced to a divistir|C+ Ky |\ Ais the adjoint linear system.
By iteration they obtain that any elemehbf Ine((C) preserves a fibratioff that is rational or
elliptic. If F is rational, f is a de Jonquiéres map. Let us assume fhas elliptic. SinceC

is of genus> 1 the restriction off to a generic fiber is an automorphism with at most two
fixed points: f is thus of order 2, 3 or 4. Applying some classic results aloitthmorphisms
of elliptic curves Blanc, Pan and Vust show tHais of genus 2 or 3. Finally they note that
this result cannot be extended to curves of geduk; this eventuality has been dealt with
in [159, 3Q with different technics.

Let us also mention results due to Diller, Jackson and Somried are obtained from a
more dynamical point of view.

Theorem 5.4.2[78]). — Let S be a projective complex surface and f be a birational map
on S. Assume that f is algebraically stable and hyperbolic. Cdie a connected invariant
curve of f. TherC is of genu or 1.

If C is of genusl, then, after contracting some curves $) there exists a meromorphic
1-form such that

o f*w=0awwitha € C,

e and—( is the divisor of poles ab.
The constantt is determined solely by and f.
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They are also interested in the number of irreducible coraptanof an invariant curve of
a birational mapf € Bir(S) where S denotes a rational surface. They prove that except in
particular case, this number is bounded by a quantity tHgtdepends on S.

Theorem 5.4.3[78]). — Let S be a rational surface and let f be a birational map &n
Assume that f is algebraically stable and hyperbolic. Cet Sbe a curve invariant by f.
If one of the connected componentg’aé of genusl the number of irreducible components
of C is bounded bylim Piq(S) + 2.
If every connected component©@has genu® then
e either C has at mostlim Pig(S) + 1 irreducible components;
e or there exists an holomorphic map S— P*(C), unique up to automorphismsBf(C),
such thatC contains exactly & 2 distinct fibers oft, and C has at mostlimPiq(S) + k— 1
irreducible components.



CHAPTER 6

AUTOMORPHISM GROUPS

6.1. Introduction

Several mathematicians have been interested in and aiatstiested in the algebraic prop-
erties of the diffeomorphisms groups of manifolds. Let useikample mention the following
result. Let M and N be two smooth manifolds without boundany et Diff°(M) denote
the group of CP-diffeomorphisms of M In 1982 Filipkiewicz proves that if Diff(M) and
Diff9(N) are isomorphic as abstract groups thes- q and the isomorphism is induced by
a CP-diffeomorphism from Mto N

Theorem 6.1.1[91]). — Let M and N be two smooth manifolds without boundary. Ipet
be an isomorphism betwediff (M) and Diff (N). Then p is equal to g and there exists
Y: M — N of classCP such that

o(f) =wfy, vV € DiffP(M).

There are similar statements for diffeomorphisms whicts@nee a volume form, a sym-
plectic form ([7, §))... If M is a Riemann surface of genus larger than 2, thengitoup of
diffeomorphisms which preserve the complex structure igefinThus there is no hope to ob-
tain a similar result as Theorem 6.1.1: we can find two distncves of genus 3 whose group
of automorphisms is trivial. More generally if M is a compleampact manifold of general
type, then AutM) is finite and often trivial. On the contrary let us mention tesxamples of
homogeneous manifolds:

e any automorphism of A(P?) is the composition of an inner automorphism, the action of

an automorphism of the fiel@ and the involutioru— ‘u~* (seefor example 75));
e the automorphisms group of the tor@sT is the semi-direct product /I x Z /27 ~
R? /72 % 7./ 27 for all latticesI” # Z[i], Z[j].

In the first part of the Chapter we deal with the structure ef dlmtomorphisms group of
the affine group AffC) of the complex line (Theorem 6.2.1). Let us say a few wordauabo
it. Let @ be an automorphism of Aff) and let G be a maximal (for the inclusion) abelian
subgroup of AffC); then@(G) is still a maximal abelian subgroup of Aff). We get the
nature ofgp from the precise description of the maximal abelian subgsaf Aff(C).
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In the second part of the Chapter we are focused on the auptisors group of polynomial
automorphisms of'?. Let @ be an automorphism of A(f?). Using the structure of amalga-
mated product of AYC?) (Theorem 2.1.2) Lamy determines the centralisers of thaeés
of Aut(C?) (see[135]); we thus obtain that the set of Hénon automorphisms isgpves by
(Proposition 6.3.5). Since the elementary gr&up maximal among the solvable subgroups of
length 3 of AufC?) (Proposition 6.3.7) we establish a property of rigidity forup to conjuga-
tion by a polynomial automorphism of the plag) = E (seeProposition 6.3.8). This rigidity
allows us to characterize.

We finish Chapter 6 with the description of ABir(PP?)). Let @ be an automorphism of
Bir(P?). The study of the uncountable maximal abelian subgroups Bir¢P?) leads to the
following alternative: either G owns an element of finite@nbr G preserves a rational fibra-
tion (that is G is, up to conjugation, a subgroup ofdPGL,(C(y)) x PGLy(C)). This allows
us to prove that PGJ(C) is pointwise invariant byp up to conjugacy and up to the action of
an automorphism of the fiel@. The last step is to establish thiato) = o; we then conclude
with Theorem 2.1.4.

6.2. The affine group of the complex line
Let Aff(C) = {z»—> az+ b\ acCrbe (C} be the affine group of the complex line.

Theorem 6.2.1 — Let@be an automorphism dff (C). Then there exist an automorphism
of the fieldC and ) an element oAff (C) such that

o(f) =t(wfy?), Vv f € Aff(C).
Proof. — If G is a maximal abelian subgroup of Aff) then@(G) too. The maximal abelian
subgroups of AffC) are
T:{Zn—>z+a|ae(c} and Dzoz{z'—>0((z—zo)+zo\ae<c*}.

Note that T has no element of finite order@d) = T and@(D,) = Dz . Up to a conjugacy by
an element of T one can suppose tipddy) = Do. In other words one has
e an additive morphismy: C — C such that

oz+a) =z+1(0), Va e,
e a multiplicative oner,: C* — C* such that
®(az) =12(0)z, VaeC".
On the one hand we have
@az+a) =@az)@(z+1) =1(a)z+12(a)T1(1)
and on the other hand
@az+a) = @z+a)@(0z) = T2(a)z+ 11 (0).

Thereforety(a) =12(a)k wherek =141(1). In particularty is multiplicative and additive,e. 11
is an automorphism of the field (andt, too).
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Then
®az+B) = Tp(a)z+T11(B) = T2(0)z+ T2(B)K = To(0z+ T, 1 (K)B)
= Tp(1,}(K)zoaz+BoTa(K)2).
O

Let us denote by AGC") the group of polynomial automorphisms@¥f. Ahern and Rudin
show that the group of holomorphic automorphism«6fand the group of holomorphic au-
tomorphisms ofC™ have different finite subgroups when# m (see[2]); in particular the
group of holomorphic automorphisms @f is isomorphic to the group of holomorphic auto-
morphisms ofC™ if and only if n=m. The same argument holds for A@") and Au{C™).

6.3. The group of polynomial automorphisms of the plane
6.3.1. Description of the automorphisms group ofut(C?). —

Theorem 6.3.1[70]). — Let@be an automorphism @ut(C?). There existp in Aut(C?) and
an automorphisnt of the fieldC such that

o(f) =t(wfy™), vV f € Aut(C?).

Remark 6.3.2 — Let us mention the existence of a similar result for thegsabp of tame
automorphisms of AYC"): every automorphism of the group of polynomial automonpiss
of complex affinen-space inner up to field automorphisms when restricted tsubgroup of
tame automorphismg134)).

The section is devoted to the proof of Theorem 6.3.1 whicls tise well known amalga-
mated product structure of AWE?) (Theorem 2.1.2). Let us recall thaH&non automorphism
is an automorphism of the tyml...gpqu

¢ € Aut(C?), g = (y.P.(y) — &), P € Cly], degP, > 2, & € C*,
and that
A = {(aax+b1y+c1,ax+bay+C2) | &, by, ¢ € C, aghy — aghy # 0},

E= {(oax+P(y),By+y)|a,B,ye C,ap #0,Pc C}}.
Let us also recall the two following statements.

Proposition 6.3.3[97]). — Let f be an element aut(C?).
Either f is conjugate to an element®for f is a Hénon automorphism.

Proposition 6.3.4[135)). — Let f be a Hénon automorphism; the centralizer of f is coun-
table.

Proposition 6.3.3 and Proposition 6.3.4 allow us to esthlilie following property:
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Proposition 6.3.5[70]). — Let@be an automorphism &ut(C?). Theng(H) = H where

H = {f € Aut(C?) | f is a Hénon automorphis%n

We also have the following: for anf/in E, ¢(f) is up to conjugacy ifE. But Lamy proved
that a non-abelian subgroup whose each element is conjt@ateelement oF is conjugate
either to a subgroup df, or to a subgroup aE. So we will try to "distinguish"A andE.

We seteV) = [E,E] = {(x,y) — (X+P(y),y+a)|aeC,Pe (C[y]} and

E® = [ V] = {(xy) = (x+P(y),y)|Pe Tl }.
The groupE'? satisfies the following property.
Lemma 6.3.6[70]). — The groupE? is a maximal abelian subgroup &f

Proof. — LetK > E® be an abelian group. Let= (g1,92) be inK. For any polynomiaP
and for anyt in C let us setfip = (x+tP(y),y). We have

(x) fipg=gfip.
If we consider the derivative df) with respect td att = 0 we obtain

) p(y) = P(gy). (00) %2p(y)—0,

The equality(co) implies thatg, depends only ofy. Thus from(x*) we get: % is a function
ofy,i.e. % = R(y) andgi(x,y) = R(y)x+ Q(y). As g is an automorphisnR is a constantt
which is non-zero. Thefwx) can be rewrittemP(y) = P(g,). ForP = 1 we obtain thatt = 1
and forP(y) = y we haveg,(y) =y. In other wordsy = (x+ Q(y),y) belongs t&?. O

Let G be a group; set
GO =g, GV =G,G,...,GP = [GP-Y GP-1] ..

The group G issolvableif there exists an integec such that & = id; the smallest integek
such that & = id is thelength of G. The Lemma 6.3.6 allows us to establish the following
Statement.

Proposition 6.3.7[70]). — The grougk is maximal among the solvable subgroupAof(C?)
of length3.

Proof. — LetK be a solvable group of length 3. Assume thab E. The groupK @ is abelian
and contain€®?. AsE®@ is maximal,K? = E®. The groupk @ is a normal subgroup df
so for all f = (fy, o) € K andg = (x+ P(y),y) € K@ =E®@ we have

(*) fl(x+ P(y)7y) = fl(x7y) + O(P)( fz(X,y))

(**) f2(X+ P(y)ay) = fz(X7 y)
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where®: C[y] — Cly] depends orf. The second equality implies th&t = f»(y). The deri-

vative of (x) with respect tocimplies % (x4 P(y),y) = 4 (x,y) thus 3% = R(y) and

f1(x,y) = Rly)x+Q(y), Q,ReClyl.

As f is an automorphism we havig(x,y) = ax+ Q(y), a # 0. In other wordK =E. O

This algebraic characterization 8fand the fact that a non-abelian subgroup whose each
element is conjugate to an elementEadb conjugate either to a subgroup 0br to a subgroup
or E (see[135) allow us to establish a rigidity property concerniiRg

Proposition 6.3.8[70]). — Let@be an automorphism @ut(C?). There exists a polynomial
automorphismp of C? such thatg(E) = YEY L.

Assume thatp(E) = E; we can show thap(D) = D and@(T;) = T; where

D={(xy) - (oxpy)| o, BeC},

Ti={(y) = xrayacc  T2={(xy) ~ (xy+B)[BeC}.

With an argument similar to the one used in §86.2 we obtaindhewing statement.

Proposition 6.3.9[70]). — Let@be an automorphism @ut(C?). Then up to inner conjuga-
cies and up to the action of an automorphism of the figlthe groupE is pointwise invariant

by .
It is thus not difficult to check that i is pointwise invariant, the@(x,x+Yy) = (X,X+Y).
We conclude using the following fack and(x, X+ Y) generate AutC?).

6.3.2. Corollaries. —

Corollary 6.3.10([70]). — An automorphisnp of Aut(C?) is inner if and only if for any f
in Aut(C?) we have

jace(f) =jacf

wherejacf is the determinant of the jacobian matrix of f

Proof. — There exists an automorphismof the fieldC and a polynomial automorphismh
such that for any polynomial automorphisiwe haveg(f) = t(W~1fy). Hence

jaco(f) =jact(f) =1(jacf),
so jaop(f) =jacf for any f if and only if T is trivial. O

Corollary 6.3.11 — An isomorphism of the semi-grolgnd(C?) in itself is inner up to the
action of an automorphism of the fietd
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Proof. — Let @ be an isomorphism of the semi-group E@Gd) in itself; @ induces an auto-
morphism ofC?. We can assume that, up to the action of an inner automorpéisirup to
the action of an automorphism of the fielij the restriction ofpto Aut(C?) is trivial (Theo-
rem 6.3.1).

For anya in C?, let us denote by, the constant endomorphism ©f, equal too. For anyg
in End(C?) we havefyg = fq. This equality implies thatp sends constant endomorphisms
onto constant endomorphisms; this defines an invertible kfipm C? into itself such that
®(fq) = fy()- Sincegfy = fyq) for anygin End(C?) and anya in C2 we get:((g) = Kgk 1.
The restriction®ayy(c) is trivial sok is trivial. O

6.4. The Cremona group
6.4.1. Description of the automorphisms group oBir(P?). —

Theorem 6.4.1([71]). — Any automorphism of the Cremona group is the compositiomof a
inner automorphism and an automorphism of the fiéld

Let us recall the definition of foliation on a compact complex surfacd_et S be a compact
complex surface; let?/) be a collection of open sets which cover/foliation F on S is
given by a family(x;); of holomorphic vector fields with isolated zeros defined om tls.
The vector fieldy; satisfy some conditions

on U NU;we havexi:gijxj, Oij EO*(‘Uiﬂ‘UJ‘).

Note that a non trivial vector fielg on S defines such a foliation.
The keypoint of the proof of Theorem 6.4.1 is the followinguaa.

Lemma 6.4.2[71]). — LetG be an uncountable maximal abelian subgroufP?). There
exists a rational vector fielg such that

f.x =X, vfieG.
In particular G preserves a foliation.
Proof. — The group G is uncountable so there exists an intageich that
Gn={f € G| degf =n}
is uncountable. Then the Zariski’s closu®g of Gy, in
Birn = { f € Bir(P?)| degf <n}
is an algebraic set and diGy > 1. Let us consider a curve B, i.e. a map
n: D — Gy, t—n(t).
Remark that the elements Gf, are commuting birational maps.

For eachp in P?(C) \ Indn(0)~* set

X(p) = s

0s Is=0

O ~(p)).
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This formula defines a rational vector field BA(C) which is non identically zero. By derivat-
ing the equalityfn(s) f ~1(p) = n(s)(p) we obtainf,x = x. Theny is invariant byGy; we note
that in facty is invariant by G O

So take an uncountable maximal abelian subgroup G dfPBjrwithout periodic element
and an automorphismp of Bir(P?). Then@(G) is an uncountable maximal abelian subgroup
of Bir(IP?) which preserves a foliatioff .
Let F be an holomorphic singular foliation on a compact complesjqmtive surface S
Such foliations have been classified up to birational edemnee by Brunella, McQuillan and
Mendes (§0, 145, 149. Let Bir(S, ¥) (resp. AutS, ¥)) be the group of birational (resp.
biholomorphic) symmetries of , i.e. mappingsg which send leaf to leaf. For a foliatioft
of general type, BiiS, #) = Aut(S, ¥) is a finite group. In49] the authors classify those
triples (S, #,g) for which Bir(S, #) (or Aut(S, #)) is infinite. The classification leads to five
classes of foliations listed below:
e 7 is left invariant by a holomorphic vector field;
e 7 is an elliptic fibration;
e S= .7 /G s the quotient of a complex 2-tory8 by a finite group and is the projection
of the stable foliation of some Anosov diffeomorphism. %t

e ‘F is arational fibration;

e ¥ is a monomial foliation or*(C) x P*(C) (or on the desingularisation of the quotient
PY(C) x PX(C) by the involution(z,w) — (1/z,1/w)).

We prove that ag(G) is uncountable, maximal and abelian without periodic elen€ is
a rational fibrationV. In other wordsp(G) is up to conjugacy a subgroup of

dJ=PGLy(C(y)) x PGLy(C).
The groups

dk = {(xy) > (x+a(y).y)[ac Cy) |

and

T= {(x,y) = (x+a,y+PB)|a,Be C}

are uncountable, maximal, abelian subgroups of the Crergamg; moreover they have no
periodic element. Se(dJ,) and@(T) are contained in dAfter some computations and alge-
braic considerations we obtain that, up to conjugacy (byatibnal map),

@dd) =dX and oT)=T.

As D= {(ax, By) \ a,Be (C*} acts by conjugacy on T we establish tiggD) = D. After
conjugating® by an inner automorphism and an automorphism of the fielthe groups T

and D are pointwise invariant by. Finally we show thatp preservesy,x) and ()—1(,)%) ;in

1. Here a rational fibration is a rational application fré#{C) into P*(C) whose fibers are rational curves.
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particular we use the following identity due to Gizatull[iQ5])

(ho)® = id, h:( X X_y>.

Xx—1"x—1
Since Bil(IP?) is generated by A@P?) = PGLs(C) and ()—1(, %) (Theorem 2.1.4) we have af-
ter conjugatingp by an inner automorphism and an automorphism of the flelglg;, z2) = id.

We will give another proof of Theorem 6.4.1 in Chapter 7.

6.4.2. Corollaries. — We obtain a similar result as Corollary 6.3.11.

Corollary 6.4.3([71]). — An isomorphism of the semi-group of the rational maps f3C)
into itself is inner up to the action of an automorphism offileé C.

We also can prove the following statement.

Corollary 6.4.4([71]). — LetSbe a complex projective surface and ¢ebe an isomorphism
betweerBir (S) and Bir(P?). There exists a birational map: S --» P?(C) and an automor-
phism of the fieldC such that

o(f) =t(pfy™b v f € Bir(S).



CHAPTER 7

CREMONA GROUP AND ZIMMER CONJECTURE

7.1. Introduction

In the 80’s Zimmer suggests to generalise the works of Mégul the linear representations
of the lattices of simple, real Lie groups of real rank slyigfreater than 19ee[141, 182) to
the non-linear ones. He thus establishes a program camgaseveral conjecturesi@s, 189,
190, 191); among them there is the following one.

Conjecture (Zimmer). Let G be a real, simple, connected Lie group and leke a lattice
of G. If there exists a morphism of infinite image frdminto the diffeomorphisms group of a
compact manifold M, the real rank of G is bounded by the diritansf M.

There are a lot of results about this conjectuseefor example 100, 185, 101, 41, 42, 149,
164, 95, 4¢). In the case of the Cremona group we have the followingestant.

Theorem 7.1.1[69]). — 1) The image of an embedding of a subgroup of finite indStefZ)
into Bir(P?) is, up to conjugation, a subgroup BiGLs(C).

More precisely lef” be a subgroup of finite index 8L3(Z) and letp be an embedding &f
into Bir(P?). Thenp is, up to conjugation, either the canonical embedding oritivelution
u— {(u™d).

2) Letl be a subgroup of finite index &L,(Z) and letp be an embedding df into the
Cremona group. Ip has infinite image, then n is less or equabto

In the same context Cantat proves the following statement.

Theorem 7.1.7[47]). — LetT be an infinite countable subgroup Bfr(P?). Assume thak
has Kazhdan’s property); then up to birational conjugacy is a subgroup oPGLs(C).

The proof uses the tools presented in Chapter 3 and in plarti€beorem 3.4.6. Let us give
an idea of the proof: sinde has Kazhdan property the imageloby anyp: I' — Bir(P?) is a
subgroup of BifP?) whose all elements are elliptic. According to Theorem 3wieéhave the

1. Let us recall that G has Kazhdan'’s property if any contirsuaffine isometric action of G on a real Hilbert
space has a fixed point.
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following alternative: eithep(I") is conjugate to a subgroup of P&IC), or p(I") preserves a
rational fibration that implies that has finite image (Lemma 7.4.3).

Let T be an automorphism of the field ; we can associate to a birational méghe bi-
rational mapr(f) obtained by the action af on the coefficients of given in a fixed system
of homogeneous coordinates. Theorem 7.1.1 allows us toagigther proof of the following
result.

Theorem 7.1.3[71]). — Let @ be an automorphism of the Cremona group. There exist a
birational mapy and an automorphism of the fieldC such that

o(f) =t(wfy™), v f € Bir(P?).

The Cremona group has a lot of common points with linear ggogvertheless we have the
following statement.

Proposition 7.1.4[56]). — The Cremona group cannot be embedded Gitg (k) wherek is
a field of characteristic zero.

First let us recall a result of linear algebra due to Birkhoff

Lemma 7.1.5][28]). — Letk be a field of characteristic zero and let B, C be three elements
of GL,(k) such thatA,B] =C, [A,C] = [B,C] =id and @ = id with p prime. Then p< n.

Proof of Proposition 7.1.4— Assume that there exists an embeddjrf the Cremona group
into GLy(k). For all primep let us consider in the affine chart= 1 the group

(enl 2o (o))

The images by of the three generators satisfy Lemma 7.1.5s0 n ; as it is possible for
every primep we obtain a contradiction. O

This Chapter is devoted to the proof of Theorem 7.1.1. Leessbe the steps of the proof.
First of all let us assume to simplify that= SL3(Z). Let p denote an embedding 6f into
Bir(IP?). The group Sk(Z) contains many Heisenberg groups, groups having the following
presentation

H = (f,g,h[[f,g =h,[fh]=g,h] =id).

The key Lemma (Lemma 7.4.2) saysiis an embedding of{ into Bir(P?) thenA(¢(h)) = 1.
Then either¢(h) is an elliptic birational map, og(h) is a de Jonquiéres or Halphen twist
(Theorem 3.2.1). Using the well-known presentation o§@L) (Proposition 7.2.4) we know
that the image of any generatey of SL3(Z) satisfies this alternative; moreover the relations
satisfied by the;’s imply the following alternative

¢ one of thep(g;) is a de Jonquiéres or Halphen twist;

e anyp(e;) is an elliptic birational map.
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In the first situatiorp(SLs(Z)) thus preserves a rational or elliptic fibration that nevepem
because of the group properties ofsGL) (Proposition 7.4.4). In the second situation the first
step is to prove that the Heisenberg grdpge:2), p(ei13), p(€23)) is, up to finite index and up
to conjugacy, a subgroup of A®) where S is eithe??(C), or a Hirzebuch surface (87.3).
In both cases we will prove that(I") is up to conjugacy a subgroup of Alif) = PGLs(C)
(Lemmas 7.4.5, 7.4.6).

7.2. First Properties

7.2.1. Zimmer conjecture for the groupAut(C?). — Let us recall the following statement
that we use in the proof of Theorem 7.1.1.

Theorem 7.2.1[51]). — LetG be a real Lie group and I€t be a lattice ofG. If there exists
embedding off into the group of polynomial automorphisms of the planen tAés isomorphic
either toPSQ1,n) or to PSU1,n) for some integer n.

Idea of the proof (for detailsseg[51]). The proof of this result uses the amalgamated pro-
duct structure of AYtC?) (Theorem 2.1.2). Let us recall that the group of affine autmmisms
is given by

A= {(x,y) — (21X + bry + C1, 82X+ bay + C2) | &, by, ¢ € C, agb, — aghy # 0}

and the group of elementary automorphisms by
E= {(x,y) = (ax+P(y),By+y)[a,Be C",yeC,Pe C[y]}.

Theorem 7.2.2[129, 136). — The groupAut(C?) is the amalgamated product afand E
alongAn E.

There exists a tree on which A(@@?) acts by translation (Bass-Serre the@ge§2.1) ; the
stabilizers of the vertex of the tree are conjugate either do to E. So if a group G can be
embedded into AYC?), then :

e either G acts on a tree without fixing a vertex;

e or G embeds into either or E.

Using this fact, Cantat and Lamy study the embeddings of Hazlyroupsgee[67], chap-
ter | or [141], chapter Ill) having (FA) property and thus the embeddinfj$attices of Lie
groups with real rank greater or equal to 2.

7.2.2. The groupsSL,(Z). — Let us recall some properties of the groups,&L) (see[175
for more details).

For any integen let us denote by : SLn(Z) — SLa(Z/qZ) the morphism which sends
M onto M modulog. Lety(q) be the kernel 0By and IetFn(q) be the reciprocical image of
the diagonal group of SIZ/qZ) by ©q ; the1(q) are normal subgroups of {(Z), called
congruence groups
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Theorem 7.2.3[11]). — Let n> 3 be an integer and let be a subgroup o8L,(Z).

If I is of finite index, there exists an integer g such thabntains a subgroup,(q) and is
contained i (q).

If I is of infinite index, thell is central and, in particular, finite.

Let &;; be the Kronecker matrix 8 3 and let us set; = id + &;;.
Proposition 7.2.4 — The groupSLs(Z) admits the following presentation :
idifi #(& j#KkK
(@j.izjl 8, 8¢) = ecifi #0& =k , (ez&iern)* =id)
e ifi =& j#k

The e,qj generatel 3(q) and satisfy equalities similar to those verified by #e except

(elzegllelz)“ = id ; we will call them standard generatorof I'3(q). The system of roots
of sl3(C) is of type A (see[98]) :

e} )

l4 I

s e

Each standard generator of g(q) is an element of the group of one parameter associated
to a rootr; of the system ; the system of roots thus allows us to find masteofelations which
appear in the presentation of §Z). For example +r3 = rp corresponds tfe; o, ex3] = €13,
the relationr, +rs =rsto [e13, 1] = e,ggl and the fact that; +r; is not a root tde; 2, €13 = id.

7.2.3. Heisenberg groups. —

Definition. — Letk be an integer. We cal-Heisenberg grouf group with the presentation :
He=(f,g.h|[f.n] = [g,h] =id, [f.g] = h).

By convention{ = #, ; it is a Heisenberg group.

Let us remark that the Heisenberg group generated by f, g faislahsubgroup of indek
of H.. We call f, g and h thetandard generatoref #.

2
Remark 7.2.5 — Eache]l can be written as the commutator of twfy with whom it com-

mutes. The group SI(Z) thus contains a lot dé-Heisenberg groups ; for exampig,, €5, €35)
is one(for k=q).
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7.3. Representations of Heisenberg groups

As we said the groups RIZ) contain Heisenberg groups, we thus naturally study the re-
presentations of those ones in the automorphisms groupsasliuch surfaces and Bf(C).
Let us begin with some definitions and properties.

Definition. — Let S be a compact complex surface. The birational rhafs --» S is an
elliptic birational mapif there exist a birational map: S--» S and an integen > 0 such that
nf'~1is an automorphism & isotopic to the identityi.e. nf"n~1 € Aut%(S)).

Two birational mapd andg on S aresimultaneously ellipticif the pair(n,§) is common
to f andg.

Remark 7.3.1 — Let C; and C, be two irreducible homologous curves of negative auto-
intersection therC; andC, coincide. Thus an automorphisinof S isotopic to the identity
fixes each curve of negative self-intersection; for any saqa of blow-downsgp from S to a
minimal modelS of S the elementpf 1 is an automorphism 53 isotopic to the identity.

Lemma 7.3.2[69]). — Let f and g be two birational elliptic maps on a surfaSe Assume
that f and g commute; then f and g are simultaneously elliptic

Proof. — By hypothesis there exist a surfaSea birational mag : S--» S and an integenm
such that ~1f" is an automorphism @& isotopic to the identity. Let us work @&; to simplify
we will still denote byf (resp.g) the automorphisnd=f"Z (resp.{~1g).

First let us prove that there exists a birational nlapY --» S such than~1f‘n is an
automorphism o¥ isotopic to the identity for some integérand thatn —1gn is algebraically
stable. Let us denote By(g) the minimal number of blow-ups needed to majagebraically
stable.

If N(g) is zero, then we can takp=

Assume that the result is true for the mapandg satisfyingN(g) < j; let us consider the
pair (f,§) and assume that it satisfies the assumption of the statemetrthatN(g) = j + 1.
As gis not algebraically stable, there exists a cowi Excg and an integeq such thagd(V)
is a point of indeterminacy of §. As f andg commute,fX fixes the irreducible components
of Indg for some integek. Let us considek the blow-up ofp; this point being fixed byf¥,
on the one hand 1k is an automorphism and on the other hatg1gk) = j. Then, by
induction, there existg : Y --» S and¢ such thaty~1fn is an automorphism isotopic to the
identity and that)~1gn is algebraically stable.

Let us setf =n~1f‘n andg=n—1gn. Using [77], Lemma 41, the mapsf andg are
simultaneously elliptic. Indeed the first step to get an lmaaigohism fromg is to consider the
blow-down g, of a curve of Ex@! ; as the curves contracted loy! are of negative self-
intersection and a§ is isotopic to the identity, these curves are fixedfbso bye; fe; . The
i-th step is to repeat the firstone with ; ...&;fe;t.. g% andei ;... &19e; ... &Y, we then
obtain the result. According t&f] the process ends and a powersofge is isotopic to the
identity. O
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We have a similar result for the standard generatorskelHaisenberg group.

Proposition 7.3.3[69]). — Let¢be a representation off into the Cremona group. Assume
that each standard generator qf ) is elliptic. Theng(f), ¢(g) and¢(h) are simultaneously
elliptic.

Proof. — According to Lemma 7.3.2 the magd) andg(h) are simultaneously elliptic. Since g
and h commute, Exg{g) and Indg(g) are invariant by;(h). The relationf,g] = h* implies that
Excg(g) and Indg(g) are invariant by(f). Using the idea of the proof of Lemma 7.3.2 and
([77], Lemma 41), we obtain the result. O

In the sequel we are interested in the representatiorsg df the automorphisms groups
of minimal surfaces which a@!(C) x P1(C), P?(C) and the Hirzebruch surfac@,. In an
affine chart(x,y) of such a surface S, if is an element of B{iS), we will denotef by its two
componentg f1(x,y), f2(x,y)). Let us recall that in some good affine charts we have

Aut(PY(C) x PY(C)) = (PGLy(CT) x PGLy(C)) x (¥, X)

and
(7.3.1)

AUt(Fr) — { (Zx+ P(y) ay+b

(cy+d)™ cy+d

> ‘ [ 2 3] € PGLx(C), e Cr, PGC[y],dengm},

Lemma 7.3.4[69]). — Let ¢ be a morphism fron#4 into Aut(P(C) x P*(C)). The mor-
phismc is not an embedding.

Proof. — We can assume that f, g and h fixe the two standard fibratibibss(not the case we
can considerto C H), i.e. im¢is contained in PGL(C) x PGLy(C). For j =1, 2 let us de-
note by the j-th projection. The image af( ) by 1 is a solvable subgroup of PG(C);
asTr; (¢(h¥)) is a commutator, this homography is conjugate to the tréinala+ Bj. As-
sume thag; is nonzero ; them; (¢(f)) andTj(¢(g)) are also some translations (they commute
with 15 (¢(h*))). The relation[r; (¢(f)), 1 (¢(9))] = 1 (¢(h%)) thus implies thaB; is zero :
contradiction. S@; is zero and the image ofhby ¢is trivial : ¢is not an embedding. O

Concerning the morphisms fromg to Aut(Fr,), m > 1, we obtain a different statement.
Let us note that we can see AGP) as a subgroup of B{P?); indeed any automorphism
(f1(x,y), f2(x,y)) of C? can be extended to a birational map:

(2'f1(x/2,y/2) : Z'f2(x/2,y/2) : Z") wheren = max(degf;,degf,).
Lemma 7.3.5[69]). — Letgbe a morphism frontH into Aut(F,) with m> 1. Theng(#) is

birationally conjugate to a subgroup &f Moreover,¢(h®) can be written(x+ P(y),y) where P
denotes a polynomial.

Remark 7.3.6 — The abelian subgroups of P&IC) are, up to conjugation, some subgroups
of C, C* or the group of order 4 generated by and%.
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Proof. — Let us consider the projectianfrom Aut(F) into PGLy(C). We can assume that

T(¢(#H)) is not conjugate tc{y,—y, %,—%} (if it is the case let us considetby). Therefore

T(G(#H)) is, up to conjugation, a subgroup of the group of the affinestdphe line; sag( H)
is, up to conjugation, a subgroup Bf(see(7.3.1)). The relations satisfied by the generators
imply that¢(h?) can be written(x+ P(y), y). O

Lemma 7.3.7[69]). — Letgbe an embedding df into PGL3(C). Up to linear conjugation,
we have

§(f) = (x+2y,y+B), G(9) = (X+Yy,y+9) and ¢(h*) = (x+k,y)
with 28— By = k.

Proof. — The Zariski closure(H) of ¢(#4) is an algebraic unipotent subgroup of P{EC) ;

as¢is an embedding, the Lie algebragif#) is isomorphic to:

0 C P
h={|0 0 y ‘L&yec.
00 0

Let us denote byt the canonical projection from S[C) into PGLg(C). The Lie algebra
of T1(¢(74)) is, up to conjugation, equal fp The exponential map sengsin the group H
of the upper triangular matrices which is a connected aljelgroup. Therefore the identity
component oft1(¢(#)) coincides with H. Any element g af1(¢(%4)) acts by conjugation
on H so belongs to the group generated by H pittwherej3 = id. Sincert(j.id) is trivial,
the restriction ofrtto H is surjective ong(#) ; but it is injective so it is an isomorphism.

Thereforeg can be lifted in a representatigrfrom % into H :

He— - H
RN
G(H)

As ¢(hK) can be written as a commutator, it is unipotent. The relatisatisfied by the
generators imply that we have up to conjugation &L

() = (x+k,y), &) =x+q,y+PB) and €g) = (x+yyy+9d)
with 25— By = k. 0

7.4. Quasi-rigidity of SL3(Z)
7.4.1. Dynamic of the image of an Heisenberg group. —

Definition. — Let G be a finitely generated group, Ie, ..., a,} be a part which gene-
rates G and lef be an element of G.
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e Thelengthof f, denoted by f|,
(St,--,%), S € {a,....an, a7 ..., a0}, with f =s7... 5.

|4
e The quantlty lim —

I is thestable lengthof f (see[66]).

k— o0

e An elementf of G isdistortedif it is of infinite order and if its stable length is zero. This
notion is invariant by conjugation.

Lemma 7.4.1([69]). — Let H = (f,g,h) be a k-Heisenberg group. The eleméhtis dis-
torted. In particular the standard generators 8E,(Z) are distorded.

Proof. — As|[f,h] = [g,h] =id, we have K"™= [f", g"] for any pair(n,m) of integers. Fon= m
we obtain K™ = [f",g"] ; therefore| k™| < 4n.

Each standard generat®y of SL,(Z) can be written as follows; = [ei, &j], moreover we
have(ej,ex] = [8j,&;] = id (Remark 7.2.5). O

Lemma 7.4.2[69]). — LetG be afinitely generated group and Iy, ..., a,} be a set which
generatesG. Let f be an element @ and let¢ be an embedding of G intBir(P?). There
exists a constant m O such that

1<A(¢(f)) < exp(m’f—r:’> .

In particular, if f is distorted, the stable length of f is meand the first dynamical degree
of ¢(f)is 1.

Proof. — The inequalities\(¢( f))" < degg(f)" < max (degg(a;))!"! imply

7]

0.<logA(q(f)) < = log(max(degq(a)))-

If fis distorted, the quantlt¥ Imlu— is zero and the first dynamical degreecof) is1. O

7.4.2. Notations. —In the sequelp will denote an embedding of $(Z) into Bir(P?). Lem-
mas 7.4.1 and 7.4.2 imply thafp(ej)) = 1. Thanks to Proposition 7.2.4 and Theorem 3.2.1,
we have :

e either one of the(g;) preserves a unique fibration, rational or elliptic;

e or each standard generatorlaf(q) is an elliptic birational map.

We will study these two possibilities.
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7.4.3. Invariant fibration. —

Lemma 7.4.3[69]). — LetT be a finitely generated group with the Kazhdan'’s property (T)
Letp be a morphism fromh to PGL,(C(y)) (resp.PGLx(C)). Then the image gf is finite.

Proof. — Let us denote by; the generators df and Iet{ () zi v)
|

} be their image by.
c(y) di(y)

A finitely generated)-group is isomorphic to a subfield &f soQ(a;(y),bi(y),ci(y),di(y)) is
isomorphic to a subfield of and we can assume that inC PGLy(C) = Isom(Hs). AsT has
property (T), each continuous actionloby isometries on a real or complex hyperbolic space
has a fixed point ; the image pfis thus, up to conjugacy, a subgroup of $R). A result of
Zimmer implies that the image @fis finite (seg[67]). O

Proposition 7.4.4[69]). — Letp be a morphism from a congruence subgrdigfq) of SL3(Z)
into Bir(P?). If one of thep(qu) preserves a unigue fibration, then the image o finite.

Proof. — Let us denote bfq“j the image oi?ﬂ- by p ; Remark 7.2.5 implies that the different
generators play a similar role; we can thus assume, witlosstdf generality, thaﬁﬂz preserves
a unique fibratiorfF .

The relations imply thatF is invariant by all the’é,qu‘s. Indeed as], commutes withg],
andé),, the element&], and&}, preserve7 (it's the unicity) ; then the relatiofg],, &, =

&%, which can also be writtesl.&1,6,9 = &8, implies thatel, preservesf. Thanks to
6,80 = & we obtain thatf is invariant byel,. Finally as[el,, &), = &, the element
&f, preserves .

Then, for eacl@,"f, there existdyj in PGLy(C) and

F: P?(C) — Aut(PY(C))
defining & such that~ o’e}qj2 = hjj oF. Let us consider the morphisggiven by
2
M3(o?) — PGLy(C), &l — hij.

As I'3(9?) has Kazhdan’s property (T) the grolip= kerc is of finite index (Lemma 7.4.3)
so it also has Kazhdan’s property (T). H is rational, we can assume thét= (y = cte)
wherey is a coordinate in an affine chart B%(C) ; as the group of birational maps which
preserve the fibratiog = cte can be identified with PGIC(y)) x PGLz(C), the image of”
by p is contained in PGE(C(y)). In this casep(I") is thus finite (Lemma 7.4.3) which implies
that p("'3(g?)) and p(I"'3(q)) are also finite. The fibratiof cannot be elliptic ; indeed the
group of birational maps which preserve pointwise an dédlifibration is metabelian and a
subgroup of 3(g?) cannot be metabelian. O

7.4.4. Factorisation in an automorphism group. —Assume that every standard generator
of SL3(Z) is elliptic; in particular every standard generator og&L) is isotopic to the identity.
According to Remark 7.3.1, Proposition 7.3.3, Lemmas 7a#d 7.4.2, the images €f,, €],
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andée); by p are, for somen, automorphisms of a minimal surface S. First of all let ussider
the case S= P?(C).

Lemma 7.4.5[69]). — Let p be an embedding dBL3(Z) into Bir(IP?). If p(€},), p(€]s)
andp(€),) belongs, for some integer n,RGLs(C), thenp(I"'3(n?)) is a subgroup oPGLg(C).

Idea of the proaf — According to Lemma 7.3.7 we have normal formsoe},), p(€ef5) and
p(€)3) up to conjugation. A computation gives the following altive

e either allp(eﬂ-z) are polynomial automorphisms @f;

e of all p(q”jz) are in PGlg(C).
The first case cannot occur (Theorem 7.2.1). O

The following statement deals with the case of Hirzebrucfeses.

Lemma 7.4.6[69]). — Let p be a morphism fronSL3(Z) to Bir(P?). Assume thap(€],),
p(€l3) andp(€);) are, for some integer n, simultaneously conjugate to sosraahts oAut(Fmy,)
with m> 1; then the image af is either finite, or contained, up to conjugation,RGLs(C).

7.4.5. Proof of Theorem 7.1.1 1). —According to Proposition 7.4.4 any standard generator
of SL3(Z) is virtually isotopic to the identity. The mapge],), p(€];) andp(€),) are, for some
integern, conjugate to automorphisms of a minimal surface S (Prtipasy.3.3); we don't
have to consider the case-SPY(C) x PY(C) (Lemma 7.3.4). We finally obtain that3(n?))

is, up to conjugation, a subgroup of P&LC) (Lemmas 7.4.5 and 7.4.6).

The restriction op to I'3(n?) can be extended to an endomorphism of Lie group of FGL
(see[179)); as PGlg(C) is simple, this extension is injective and thus surjectidecording
to [75], chapter 1V, the automorphisms of PEIC) are obtained from inner automorphisms,
automorphisms of the fiel@ and the involutioru+— {(u=1) ; since automorphisms of the fiefd
don’t act onl"3(n?), we can assume, up to linear conjugation, that the restnicti p to '3(?)
coincides, up to conjugation, with the identity or the intan u — {(u=1).

Let f be an element gf(SLs(Z)) \ p(I'3(n?)) which contracts at least one curge= Excf.
The groupls(n?) is normal inl" ; therefore the curve is invariant byp(3(n?)) and so by
p(M3(n?)) = PGLg(C) (where the closure is the Zariski closure) which is impdssitSo f
belongs to PGE(C) andp(SLs(Z)) is contained in PG4(C).

7.4.6. Proof of Theorem 7.1.1 2). —

Theorem 7.4.4[69]). — Each morphism from a subgroup of finite indexSifs(Z) in the
Cremona group is of finite image.

Proof. — Letl be a subgroup of finite index of Q[Z) and letp be a morphism front
into Bir(IP?). To simplify we will assume thdt = SL4(Z). Let us denote b;; the images of
the standard generators of §Z) by p. The morphisnp induces a faithful representatign
from SLs(Z) into Bir(P?) :

SLs(Z) O

Sly(Z) > [ 0 1

] — Bir(P?).
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According to the first assertion of Theorem 7.1.1, the mag, up to conjugation, either the
identity or the involutionu — (u=1).

Let us begin with the first case. The elem&al commutes withEz; and E3, so p(Eja)
commutes with(x,y,ax+ by+ z) wherea andb are two complex humbers and Ex&Esa) is
invariant by(x,y,ax+ by+ z). MoreoverEs, commutes withE;, andEj1, in other words with
the following SLy(Z):

SLy(Z) 0 0
SM(Z)D{ 0o 1 o] — Bir(P?).
0 01

But the action of Sk(Z) on C? has no invariant curve; the curves contractedpbifz,) are
contained in the line at infinity. The image of this one (yy,ax+ by + z) intersectsC?;
so Exq(Ezs) is empty andp(Eza) belongs to PGE(C). With a similar argument we show
thatp(E43) belongs to PGE(C). The relations thus imply that(4(q)) is in PGLs(C) ; so the
image ofp is finite.

We can use a similar idea wheris the involutionu + (u~1). O

Conclusion of the proof of Theorem 7.1-4& Letn be an integer greater or equal to 4 and let
I be a subgroup of finite index of Q(Z). Let p be a morphism front to Bir(P?) ; let us
denote byl (q) the congruence subgroup contained iiTheorem 7.2.3). The morphism
induces a representation frdiy(q) to Bir(P?); according to Theorem 7.4.7 its kernel is finite,
so ke is finite. O

7.5. Automorphisms and endomarphisms of the Cremona group

We will prove Theorem 7.1.3. To do it we will use that (Theor2rh.4)

Bir (P?) = (Aut(P?) = PGLs(C), ()—1( $>>
Lemma 7.5.1[69]). — Let@be an automorphism of the Cremona grouppdf , z) is trivial,
then, up to the action of an automorphism of the figldppg,(c) is trivial.

Proof. — Let us denote by H the group of upper triangular matrices :

1 ab
H= 0 1c abceCy.
0 01

The groups H and SI(Z) generate PG4(C) so PGlz(C) is invariant bypif and only if (H) =
H. Let us set :
foy) = @x+Dby),  dalxy) =@(x+ayy) and  he(xy) = @xy+c).

The birational magy (resp.hc) commutes withx+ 1,y) and(x,y+ 1) so f, (resp.h¢) can be
written as(x+n(b),y+ (b)) (resp.(x+y(c),y+ B(c))) wheren and{ (resp.y andp) are two
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additive morphisms; ag, commute with(x+y,y) and(x+ 1,y) we have:ga = (X+ Aa(y),y).

The equality

(x-+ayy)(xy+c)(x+ayy) *(x,y+c) t = (x+acy)

implies that, for any complex numbeasand c, we have: gsh; = fachcga. Thereforef, =
(x+n(b),y), ga = (X+ u(a)y+90(a),y) andu(a)B(c) = n(ac). In particularg(H) is contained
in H. Sincep(a)B(c) = n(ac) we haven = u= B (because (1) = u(1) = B(1) = 1); let us
note that this equality also implies thais multiplicative.

Let T denote by the group of translationsGR ; each element of T can be written

(x+ay)(xy+b).

As fp, resp. he is of the type(x+n(b),y), resp. (x+n(c),y+n(c)), the image of T bypis
a subgroup of T. The group of translations is a maximal abelisogroup of Bif?), so does
@(T) and the inclusiomp(T) C T is an equality. The mapis thus surjective angH) = H. So@
induces an automorphism of PE(C) trivial on SL3(Z). But the automorphisms of PG(C)
are generated by inner automorphisms, automorphisms dietfldeC and the involutioru —
Yu~1) (see[75]). Then up to conjugation and up to the action of an automisrplof the field
C, @pcLy(c) Is trivial (the involutionu — u™t) on Sly(Z) is not the restriction of an inner
automorphism). O

Corollary 7.5.2([69]). — Let@be an automorphism of the Cremona group@#,,z) is the
involution u— {u™?) then@pgi,(c) also.

Proof. — Letus denote by the composition ofys ,(z) with the restrictiorC of the involution
u+ {(u1) to SLs(Z). The morphismp can be extended to a morphigprfrom PGLg(C) into
Bir(P?) by § = @pgis(c) ©C. The kernel of contains Sk(Z) ; as the group PGJ(C) is
simple, I is trivial. O

Lemma 7.5.3[69]). — Let @ be an automorphism of the Cremona group such @hat, , c)
is trivial or is the involution u— (u~1). There exist a, b two nonzero complex numbers such

that g(c) = (%, 5) whereg is the involution<)—1(, %)

Proof. — Assume thatppgy,(c) is trivial. The mapg(o) can be WrittEﬂ(%,%) whereF
andG are rational. The equality(Bx, py) = (B~1x, u~ty)o implies (F,G)(Bx,uy) = (F,G) ; as
this equality is true for any paii}, u) of nonzero complex numbers, the functidghendG are
constant.

The involutionu — (u~t) preserves the diagonal group; PPcLy(c) coincides withu —
fut). O

Proof of Theorem 7.1.3— Theorem 7.1.1, Corollary 7.5.2 and Lemma 7.5.1 allow ugsto
sume that up to conjugation and up to the action of an autonirpof the fieldC, @pgi,(c) IS
trivial or is the involutionu +— (u~1). Assume we are in the last case and let uhiset (x,x —
y,x—2) ; the map(ho)? is trivial (see[104]). But ¢(h) = (x+y+2z—y,—2) and@(0) =
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(%,5,%) (Lemma 7.5.3) s@uho)® # id: contradiction. We thus can assume thab, o) is

trivial ; the equality(ho)® = id implies@(c) = o and Theorem 2.1.4 allows us to concludél

Using the same type of arguments we can describe the endbisimp of the Cremona
group.

Theorem 7.5.4[72]). — Let @ be a non-trivial endomorphism @&ir(P?). There exists an
embedding of the fieldC into itself and a birational mag of P2(C) such that

of) =t(wfy™), Y f € Bir(P?).
This allows us to state the following corollary.

Corollary 7.5.5([72]). — The Cremona group is hopfian: any surjective endomorphisir iP?)
is an automorphism.






CHAPTER 8

CENTRALIZERS IN THE CREMONA GROUP

8.1. Introduction

The description of the centralizers of the discrete dynahsigstems is an important problem
in real and complex dynamic. Julial@7, 126) and then Ritt (165) show that the set

Cen(f,RatP!) = {y: P* - P!| fy = pf}

of rational functions commuting with a fixed rational furstif is in generalf)’ = { f}'|ne N}
for somefy in Cenf f, RatP!) except in some special cases (up to conjugaeyZ, Tcheby-
chev polynomials, Lattés examples...) In the 60's Smals ésthe centralizer of a generic
diffeomorphismf: M — M of a compact manifold is triviali.e. if

Cent( f,Diff*(M)) = {g € Diff *(M) | fy = pf}

coincides withf” = {f"|n € Z}. A lot of mathematicians have worked on this problem, for
example Bonatti, Crovisier, Fisher, Palis, Wilkinson, ¥oz ([L33, 38, 93, 94, 156, 157, 1p8
Let us precise some of these works. 8§ Kopell proves the existence of a dense open
subsetQ of Diff*(S') having the following property: the centralizer of any elemef Q is
trivial.
Let f be aC"-diffeomorphism of a compact manifold M without boundarypgint p of M
is non-wanderingif for any neighborhoodu of p and for any integeny > O there exists an
integern > ng such thatf" 2N U # 0. The set of such points is denoted Qyf), it is a closed
invariant setQ( f) is hyperbolicif
¢ the tangent bundle of M restricted €@(f) can be written as a continuous direct sum of
two subbundles §1\M = E*® E" which are invariant by the differential Dof f;
e there exists a riemannian metric on M and a constanfiG< 1 such that for anp € Q(f),
ve Ej,we Eg

D fovl| < |Vl IDf5w]| < i jw].-
In this case the sets

We(p) = {ze M |d(f"(p), f"(2)) — 0 asn — e}
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and

W4(p) = {zeM|d(f"(p),f"(2)) - 0asn— o}
are some immersed submanifolds of M cal&dbleandunstable manifoldsof p € Q(f). We
say thatf satisfies axiom Af Q(f) is hyperbolic and ifQ(f) coincides with the closure of
periodic points off (see[174]). Finally we impose dstrong” transversality condition for
any p € Q(f) the stable \¥(p) and unstable W(p) manifolds are transverse. 166 Palis
proves that the set of diffeomorphisms of M satisfying axi@rand the strong transversality
condition contains a dense open subSefuch that: the centralizer of arfyin A is trivial.
Anderson shows a similar result for the Morse-Smale diffeqrhisms (§]).

In the study of the elements of the group D@ 0) of the germs of holomorphic diffeomor-
phism at the origin ofC, the description of the centralizers is very important. [EEcparoves
that if f € Diff (C,0) is tangent to the identity, then, except for some exceptioases, its
centralizer is afoZ (see[88, 89); it allows for example to describe the solvable non almelia
subgroups of DiffC,0) (see[60]). Conversely Perez-Marco gets the existence of uncoletab
non linearizable abelian subgroups of DEf0) related to some difficult questions of small
divisors ([L63).

In the context of polynomial automorphisms of the plane, katains that the centralizer
of a Hénon automorphism is almost trivial. More preciselyvese the following statement:
let f be a polynomial automorphism @®; then

e eitherf is conjugate to an element of the type

(ax+P(y),By+v), PcCly,a,B,ycC,aB#0

and its centralizer is uncountable,
e or f is a Hénon automorphismg; . .. g~ where

W € Aut(C?), g = (,P.(y) — 8x), B € C[y], deghP > 2, & € C*

and its centralizer is isomorphic Bx Z/ pZ (see[135, Proposition 4.8]).
We will not give the proof of Lamy but will give a “related” rek due to Cantat (Corol-
lary 8.2.4)
Let us also mention the recent work9] of Dinh and Sibony.

8.2. Dynamics and centralizer of hyperbolic diffeomorphisns

Let S be a complex surface and et S— S be a holomorphic map. Letbe a periodic
point of periodk for f,i.e. fX(q) = gandf‘(q) # qforall 1< ¢ <k-—1. LetAY(q) andAS(q)
be the eigenvalues of £3,). We say thatf is hyperbolicif

A(@)] <1< ]A%(g)].

Let us denote by /) the set hyperbolic periodic points of perikaf f.

Let us consideq € Py(f); locally aroundq the mapf is well defined. We can linearizg".
The local stable manifoldWs .(q) andlocal unstable manifoldW! (q) of f¥in g are the
image by the linearizing map of the eigenvectors dﬁD To simplify we can assume that
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up to conjugation D" is given by{ } with |a| < 1 < |B]; there exists a holomorphic

0B
diffeomorphismk: (71,q) — (C?,0) where U is a neighborhood off such thatk fkk =1 =

|: ((;; 8 :| - Then V\foc(q) = Kil(y: 0) and V\!‘(')C(q) — Kil(X: 0):

Wie(a)

Wiec(a)

In the sequel, to simplify, we will denoteinstead off.

Lemma 8.2.1 — There exist entire curveg, &;: C — Ssuch that
* £5(0) =&3(0) =
° theglobal stableand global unstable manifold®f f in q are defined by

U 1 (Wiee(a U F(Wise(d

n>0 n>0
o f(&q(2) =&4(a"(2)), f(&5(2) = &5(a®(2)) for all z€ C;
e if ng: C — S(resp. ng: C — S) satisfies the first three properties, thef(z) = &;(12)
(resp Ng(2) = &5(W2)) for some e C* (resp. jie C*).

Proof. — As we just see there exists a holomorphic diffeomorphismi?, q) — D whereU
a O
o 6
Moreover W (q) = k~1(x=0) and W,.(q) = k~1(y = 0). Let us extendk. Letzbe a point
which does not belong t®; there exist an integan such thatz/a™ belongs tdD. We then set
&4(2) = fM (k1 (&))- Let us note that itZ; and % both belong td we have

m(,— z _ —1(Z
(< () = (< (@)
andé&g(2) is well-defined. By construction we get
e &q(0 ) &(0) =
e W¥(q U fn WIoc ), WH(q) = U fn(Wl%c(q))
n>0
. f(Eq( 7)) = EH( "(2), 1(&5(2) = &g(a*(2)) for all ze C.
y—o- LetA be a subset ofy = 0} containing 0.
() be a non-constant map such that

is a neighborhood af andD a small disk centered at the origin such théfk 1 = {

The mapgy is the analytic extension of !
Setq= ES( 1). Letr]q A — WP,

e Ng0)=aq,

e Ng(az) = f(ng(2)) for anyzin A such thatiz belongs taA.
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Working withng o (z— p2) for some good choice gfinstead ofij we can assume thag(1) = g.
Since

NS0 =80,  nYO=£1, (i> _g (%) vnez

an
we haveng = &. O

Let  be an automorphism of S which commutes witiThe map) permutes the elements
of Pk(f). If P(f) is finite, of cardinalNk > 0, the mapp™' fixes any element of @f). The
stable and unstable manifolds of the poigtsf P«(f) are also invariant under the actionf
When the union of W(q) and W(q) is Zariski dense in S, then the restrictiongjofo W;! .(q)
and W .(q) completely determine the majp: S— S.

Let us denote by the subgroup of Ceff, Aut(S)) which contains the automorphisms of
S fixing any of the\y points of R(f). Theny preserves W(q) and W¢(q). We thus can define
the morphism

a: Ay — CFx C*, Y= a(y) = (a3(g),a" (W)
such that
VzeC, E(°(W)2) = w(E3(2) and €0 (W)2) = W(&y(2)-

When the union of W(g) and W/(q) is Zariski dense, this morphism is injective. In par-
ticular A is abelian and Ceff, Aut(S)) contains an abelian subgroup of finite index with
index < Ny!.

Lemma 8.2.4[47]). — The subsef of C x C defined by
AN={(xy) € CxCIEX) =&(Y)}

is a discrete subset @ x C.
The set\ intersects{0} x C (resp.C x {0}) only at(0,0).

Proof. — Let(x,y) be an element of and letmbe the point of S defined by = &§(x) = &;(y)-
In a sufficiently small neighborhood ah, the connected components offly) and W'(q)
which containm are two distinct complex submanifolds and so intersect imigefinumber
of points. Therefore there exist a neighborhotidof x and a neighborhood’ of y such
that &3(U) N&L(V) = {m}. The point(x,y) is thus the unique point ok in U x ¥ soA is
discrete.

SinceEg andﬁa are injective, we have the second assertion. O

Proposition 8.2.3[47]). — Let f be a holomorphic diffeomorphism of a connected complex
surfaceS. Assume that there exists an integer k such that

e the setPy(f) is finite and non empty;

o for at least one point q i (f) we have#(W3(q) "WY(q)) > 2.
Then the cyclic group generated by f is of finite index in thmugrof holomorphic diffeomor-
phisms ofS which commute to f.
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Proof. — Let us take the notations introduced previously and lesetA := a(Ax). Sin-
ce #HW3(q) "WY(q)) > 2, the manifolds \WW(qg) and W/(q) intersect in an infinite number of
points and there exists a neighborhodf g such that any holomorphic function dii which
vanishes ontZ N WY(q) vanishes everywhere. The morphismis thus injective and\ is a
discrete and infinite subset @fx C invariant under the diagonal action Af

Let us show thaf is discrete. Lef be the closure of\in C* x C*. SinceA is discrete A
is A-invariant. Let us assume thaAtis not discrete; the contains a 1-parameter non-trivial
subgroup of the type— (€Y, €V). SinceA is discrete, one of the following property holds:

e A={(0,0)},

e u=0andA c C x {0},

e v=0andA c {0} x C.
But according to Lemma 8.2.2 none of this possibilities hol8o A doesn't contain a 1-
parameter non-trivial subgroup ardis discrete. In particular there is a finite index abelian
free subgroupy of A such that the rank o&' is less or equal to 2. Sinckis an element of
infinite order of Centf, Aut(S)), the group(fX) is a free subgroup of rank 1 & so the lower
bound of the rank of\ is 1 and if this lower bound is reached théf is of finite index in
Cen( f,Aut(S)). Let us consider

exp:CxC— C*xC,

then exp ! (AN (C* x C*)) is a discrete subgroup @ ~ R*. Its rank is 3 or 4; indeed the
kernel of exp containsi®Z x 2inZ and alsoa"(f),as(f)).

If A'is of rank 2, ther is a discrete and co-compact subgrouCofx C* and there exists
an elementp in Cen{ f,Aut(S)) such that

a (W) <1, a®(w)| <1, (@"(w),a®(y)) € A
Let (x,y) be a point ofA \ {(0,0)}; the sequence
W(xy) = ((@"(W)"™, (@%())"y)
is thus an infinite sequence of elementg\céindY"(x,y) — (0,0) asn — +oco: contradiction.

This implies thatd’ is of rank 1. O

Corollary 8.2.4([47]). — Let f be a Hénon automorphism. The cyclic group generated by f
is of finite index in the group of biholomorphisms@fwhich commute with f.

Proof. — According to R5] if k is large enough, then the automorphidnhasn > 0 hy-
perbolic periodic points of periok whose unstable and stable manifolds intersect each other.
Proposition 8.2.3 allows us to conclude. O

8.3. Centralizer of hyperbolic birational maps

In this context we can also define global stable and unstalleifoids but this time we
take the union of strict transforms of yYMq) and W, _(q) by f". They are parametrized by
holomorphic applicationég, Ea which are not necessarily injective: if a curges contracted
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on a pointp by f and if W8(q) intersect<€ infinitely many times, then Wq) passes through
infinitely many times.

Lemma 8.3.1[47]). — LetA be the set of pairgx,y) such thaty(x) = &3(y). The set\is a
discrete subset df x C which intersects the coordinate axis only at the origin.

Proof. — Let(x,y) be a point ofA and setm = &(x) = &3(y). The unstable and stable mani-
folds can a priori pass through infinitely many times. But since each of these manifolds is
the union of thef *"(W/%(q)), there exist two open subsets> x and ¥ 5 y of C and an open
subset?/ of S containingm such thag(u) N W and&3(7) N W are two distinct analytic
curves of . We can assume tha&#{(U) N&3(7) = 1 (if it is not the case we can consi-
der W' C U and ¥’ C ¥ such that &5(U') N&3(7") = 1); therefore(x,y) is the only point

of A contained inU x V. The setA is thus discrete. Since is periodic there is no curve
contracted onta| by an iterate off, the maptg (resp.&3) doesn't pass again through SoA

intersects the axis-coordinates only(@t0). O

Let us recall that if a may is algebraically stable then the positive orbit¥ p), n > 0, of
the elementp of Ind f~* do not intersect Ind. We say thatf satisfies theBedford-Diller
condition if the sum

Z)\ ~log(dist(f"(p),Ind f))

is finite for anyp in Ind f ~1; in other words the positive orbit"(p), n > 0, of the elementp

of Ind f~1 does not go too fast to Inid Note that this condition is verified by automorphisms
of P?(C) or also by birational maps whose points of indeterminacyetanite orbit. Let us
mention the following statement.

Theorem 8.3.2[20, 87). — Let f be a hyperbolic birational map of complex projective-su
face. Assume that f satisfies the Bedford-Diller conditibhen there is a infinite number of
hyperbolic periodic points whose stable and unstable rno&dsfintersect.

8.3.1. Birational maps satisfying Bedford-Diller conditon. —

Proposition 8.3.3[47]). — Let f be a hyperbolic birational map of a complex projective-s
faceS. If f satisfies the Bedford-Diller condition, then the cgdubgroup generated by f is
of finite index in the group of birational maps &fwhich commute with f.

Proof. — The set of hyperbolic periodic points éfof periodk is a finite set. According to
Theorem 8.3.2 there exists an integesuch that

e qis a hyperbolic periodic point of peridd

e W5(qg) and W/(q) are Zariski dense in S;

o #(WS(g)NWY(q)) is not finite.

Let Y be a birational map of S which commutes withThe map) permutes the unstable
and stable manifolds of hyperbolic periodic pointsfoéven if these manifolds pass through
a point of indeterminacy o). Indeed, ifq is a periodic point off and W/(q) is Zariski-
dense, them is holomorphic in any generic point of ¥fj) so we can extend analytically
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along W/(qg). Sincef hasvy hyperbolic periodic points of periok, there exists a subgroup
By of Cen( f,Bir(S)) of index less thawy!; any element oBy fixes W¢(q) and W!(q). More
precisely there exists a morphism

a: By — C*x C*, W= (at(g),a(y))

such thatp(£55(2)) = &5/°(a¥/S(y)z) for any g of B, and for anyz of C such thaty is holo-
morphic on a neighborhood &/%(2).

As W5(q) and WH(q) are Zariski densey is injective. Then we can apply the arguments of
Proposition 8.2.3. O

8.3.2. Birational maps that don’t satisfy Bedford-Diller condition. — Let f be a birational
map of a complex surface S; assume tha algebraically stable. Lat be a point of indeter-
minacy of f. If C is a curve contracted opby an iteratef ", n > 0, of f, then we say that
comes fromp. If gis a point of S for which there exists an integesuch that

vo<t<m, fi(q) &Indf, fM(q) =p

we say thaf is a point of indeterminacy of passing throughp at the time m. Sincef is
algebraically stable, the iteratés™ of f, m> 0, are all holomorphic in a neighborhood jof
so the unique point passing througtat the timemis f~™(p). We say thatp has an infinite
negative orbit if the sef f~™(p) |m > 0} is infinite.

Lemma 8.3.4[47]). — Let f be a birational map oB. Assume that f is algebraically stable.
Let p be a point of indeterminacy of f having an infinite negabrbit. One of the following
holds:
i. there exist an infinite number of irreducible curves canted on p by the iteratesf
of f,neN;
ii. there exists a birational morphism: S— S such thatrtf 2 is an algebraically stable
birational map ofS whose all iterates are holomorphic in a neighborhoodtop).

We will say that a point of indeterminaqy is persistent if there exists no birational mor-
phismT: S— S satisfying propertyi.

Proof. — Assume that the union of the curves contractedfby, n > 0, ontop is a finite
union C of curves.

Let us consider a curg in C such that

e fMis holomorphic orC;

e fM(C) is a point.

We can then contract the divisGrby a birational mapt: S— S and the maptfr ! is still
algebraically stable. By induction we can suppose thaetfseno such curv€ in C.

If Cis empty the second assertion of the statement is satisfied.

Assume that” is not empty. IfC belongs toC and f™(C) does not belong tg” then f™(C)
is a point which does not belong @and f™ is holomorphic alongC: contradiction. So for
any curveC of ¢, f™(C), m> 0, belongs toC. We can hence assume th@tis invariant
by any f™ with m> 0. The setC is invariant by f" for anynin Z so f"(p), n> 0, is a
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sequence of points af. LetC be an irreducible component ¢f passing througip. SinceC
contains curves coming from there exists an integdrsuch thatf % is holomorphic along
and contract€ onto p. Therefore the negative orbit qf passes periodically through and
cannot be infinite: contradiction. O

Lemma 8.3.5[62, 7§). — LetShe a compact complex surface and let f be a birational map
of S. If f preserves an infinite number of curves, then f preseavidgration.

Proposition 8.3.6[47]). — Let f be an algebraically stable birational map of a compact
complex surfaces. Let p be a persistent point of indeterminacy of f whose iegairbit
is infinite. IfY is a birational map ofS which commutes with f then

e eithery preserves a pencil of rational curves;

e or an iterateg™ of Y, m+£ 0, coincides with an iterate "fof f.

Proof. — Let us seb :=#Indf, and considetp”! instead ofy). Since the negative orbit qf
is infinite, there exists an integég such thatp is holomorphic around the points™(p) for
anyk > Kkg. For anyn > 0 let us denote by}, the union of curves coming from. The periodic
point pis persistent, so according to Lemma 8.3.4 there is an iefinitnber of curves coming
from p. Hence there exists an integgrsuch that for any > ng the map) does not contraaf;,.
Sincef andy commute P(f%(p)) is a point of indeterminacy of™ for at least an integer

0<m<np+k+1(Vk> ko).

This point of indeterminacy passes throughLet us considetp f for some good choice df
we can thus assume théf f ~%(p)) is a point of indeterminacy of passing througlp at the
time k and soy(f~(p)) = f~X(p) for anyk > ko. Moreover forn sufficiently large we have
W(Gh) = Gy We conclude with Lemma 8.3.5. O

Corollary 8.3.7([47]). — Let f be a birational map of a compact complex surf&ehich is
algebraically stable. Assume that

e the map f is hyperbolic;

o f has a persistent point of indeterminacy whose negativé @rinfinite.

If Y is a birational map ofS which commutes with f, there existsa% \ {0} and ne Z
such thatp™ = ",

Proof. — Let s be in Centf,Bir(IP?)). Assume thatp preserves a pencil of curve® As

f is hyperbolic, f doesn’t preserve a pencil of curves yreserves two distinct pencil8
and f (). According to [7] an iterate ofy is conjugate to an automorphism isotopic to the
identity on a minimal rational surface’;Set us still denote byf and by the maps of S
obtained fromf andy by conjugation. Assume thgthas infinite order; let us denote by G the
Zariski closure of the cyclic group generatedipyn Aut(S)). It is an abelian Lie group which
commutes withf. Any subgroup of one parameter of G determines a flow whichneotas
with f: fq = @ f. If the orbits of @ are algebraic curved, preserves a pencil of curves:
contradiction withA(f) > 1. Otherwisep fixes a finite number of algebraic curves and among
these we find all the curves contracted bgr by somef"; hence there is a finite number of
such curves: contradiction with the second assumption. O
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Since then Blanc and Cantat got a more precise statement.

Theorem 8.3.§[33]). — Let f be a hyperbolic birational map. Then
Cent f,Bir(P?))~Z x F

where F denotes a finite group.

8.4. Centralizer of elliptic birational maps of infinite ord er

Let us recall (B4, Proposition 1.3]) that an elliptic birational mapof P?(C) of infinite
order is conjugate to an automorphismR3{C) which restricts to one of the following auto-
morphisms on some open subset isomorphi€4o

e (ax,By), wherea, B € C*, and where the kernel of the group homomorphigfn— C*

given by(i, j) — a/Bl is generated byk, 0) for somek € Z.

e (ax,y+1), wherea € C*.

We can describe the centralizers of such maps.

Lemma 8.4.1([34]). — Let us consider £ (ax,By) wherea, (3 are in C*, and where the
kernel of the group homomorphisAt — C* given by(i, j) — a'Bl is generated byk,0) for
some ke Z. Then the centralizer of f iBir(P?) is

Cent f,Bir(P?)) = {(r](x),yR(xk)) |Re C(x),n € PGLz(C),n(ax) = an(x)}.

Lemma 8.4.2[34]). — Letus consider £ (ax,y-+B) wherea, B € C*. ThenCen{ f, Bir(P?))
is equal to

{(n(x),y+RX)|n € PGLy(C),n(ax) = an(x), R € C(x),R(ox) = R(x)}.

8.5. Centralizer of de Jonquieres twists

Let us denote byt the morphism from dJsgeChapter 2, §2.3) into PGIC), i.e. Tp(f) is
the second component 6fc dJ. The elements of dJ which preserve the fibration with &triv
action on the basis of the fibration form a normal subgroupodldlJ (kernel of the morphism
TR); of course dgd~ PGLy(C(y)). Let f be an element of dJit is, up to conjugacy, of one of

the following form Eeefor example ¥1])
c(y)x+F(y) >

a (x+a(y),y), b (b(y)xy), ‘ ( X+ c(y)

with ain C(y), bin C(y)* andc, F in Cly], F being not a square (F is a square, theff is
conjugate to an element of typé.
The non finite maximal abelian subgroups of dde

dh = {(x+a(y),y)|ac C(y)}, dJn = {(b(y)x.y)|be C(y)*},

dk = {(x,y), (%&;my) o C(y)}
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whereF denotes an element @f[y] which is not a square Tfl]). We can assume thé&t is a
polynomial with roots of multiplicity one (up to conjugatidy a map(a(y)x,y)). Therefore
if f belongs to dgand if Ab(f) is the non finite maximal abelian subgroup of ddat con-
tains f then, up to conjugacy, Al) is either dg, or dJ,, or dk. More precisely iff is of
typea (resp.b, resp.c), then Al f) = d3, (resp. Al f) = dJy, resp. Alf f) = dJ).

In [55] we first establish the following property.

Proposition 8.5.1([55]). — Let f be an element all. Then
e eitherCen( f,Bir(P?)) is contained indJ;
e or f is periodic.

Proof. — Letf = (Y(x,y),y) be an element of gJi.e. Y € PGLy(C(y)).

Letd = (P(x,y),Q(x,y)) be a rational map that commutes withif ¢ does not belong to dJ,
thenQ = cte is a fibration invariant by which is noty = cte. Hencef preserves two distinct
fibrations and the action on the basis is trivial in both casekis periodic. O

This allows us to prove the following statement.

Theorem 8.5.4[55]). — Let f be a birational map which preserves a rational fibratidime
action on the basis being trivial. If f is a Jonquiéres twisten Cen{ f, Bir(P?)) is a finite
extension oAb(f).

This result allows us to describe, up to finite index, the @@isers of the elements of §d,
question related to classical problems of difference egnst A generic element of dJg
has a trivial centralizer.

In this section we will give an idea of the proof of Theorem.8.5

8.5.1. Maps ofd},. —

Proposition 8.5.3[55]). — The centralizer of = (x+1,y) is
{ (x+b(y),v(y)) [be C(y),v € PGLy(C)} ~ dJ x PGLy(C).

Proof. — The mapf is not periodic and so, according to Proposition 8.5.1, aapnwhich
commutes withf can be written asi1(x,y),v(y)) with v in PGLy(C). The equalityfy = @f
implies@(x+1,y) = Y1(x,y) + 1. Thus% (x+1y) = %(x,y) and% depends only ow,
i.e.

W1(x,y) = A(y)x+B(y).
Writing againg1 (x+ 1,y) = W1(x,y) + 1 we getA = 1. Hence

P = (x+B(y),v(y)), B e C(y)v € PGLy(C).
O

Corollary 8.5.4 — The centralizer of a non trivial elemerik+ b(y),y) is thus conjugate
to dy x PGLy(C).
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Proof. — Let f = (x4 a(y),y) be a non trivial element of gJi.e. a 0; up to conjugation by
(a(y)x,y) we can assume thdit= (x+ 1,y). O

8.5.2. Maps ofdJ,. — If a e C(y) is non constant, we denote stap the finite subgroup
of PGLy(C) defined by
stalfa) = {v € PGLy(C) | a(v(y)) =a(y)}.
Let us also introduce the subgroup
Stal{a) = {v € PGLy(C) |a(v(y)) = a(y)™}.
We remark that stala) is a normal subgroup of Stédy.

Example 8.5.5 — If kis an integer and if(y) = y¥, then

stal{a) = {w'y|wk =1} & Stab(a) = <$, wfy| o =1).

Let us denote bgtalja) the linear group

stal{a) = {(x,v(y)) |v € stal{a) }.

By definition the groupStal{a) is generated bgtal{a) and the element$,v(y)), with v
in Stal{a) \ stal{a).

Proposition 8.5.§[55]). — Let f = (a(y)x,y) be a non periodic element d,.
If fis an elliptic birational map, i.e. a is a constant, thentalizer of f is

{(byx.v(y)) b€ C(y)",v € PGLy(C)}.
If f is a Jonquiéres twist, the@en{ f, Bir(P?)) = dJ, x Stala).

Remarks 8.5.7— e For generica the groupStalja) is trivial; so for genericf € dJy, the
group Centf,Bir(PP?)) coincides with dg = Ab(f).
e If f = (a(y)x,y) with anon constant, then Ceft, Bir(IP?)) is a finite extension of gy=
Ab(f).
o If f = (axy), ac C*, we have Cerftf,Bir(P?)) = dJ, x Stalfa) (here we can define
Stal{a) = PGLy(C)).

8.5.3. Maps ofdJx. — Let us now consider the elements ofdas we said we can assume
thatF only has roots with multiplicity one. We can thus writes follows:
c(y)x+F(y) >
f= " — ce C(y);
< oy ) (v)

the curve of fixed pointg of f is given byx? = F(y). Since the eigenvalues a%

<) F) ]

1 <y
arec(y) + \/F(y) we note thatf is periodic if and only ifc is zero; in that casé is periodic of
period 2. Assume now thdtis not periodic. Ad- has simple roots the genus ¢fis > 2 for
degF > 5, is equal to 1 for def € {3, 4}; finally C is rational when def € {1, 2}.
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8.5.3.1. Assume that the genus@®is positive — Sincef is a Jonquiéres twistf is not
periodic. The magd has two fixed points on a generic fiber which correspond tovtleegobints
on the curve = F(y). The curves = F(y) and the fibery = constant are invariant bfyand
there is no other invariant curve. Indeed an invariant cuvkiech is not a fibely = constant
intersects a generic fiber in a finite number of points necgdegariant by f; since f is of
infinite order it is impossible (a Moebius transformationigthpreserves a set of more than
three elements is periodic).

x+c(y)
is a polynomial of degree> 3 with simple roots(i.e. the genus of" is > 1). Then if F is

generic,Cent f, Bir(P?)) coincides withdJ; if it is not, Cent f, Bir(P?)) is a finite extension
of dJ = Ab(f).

Proposition 8.5.8[55]). — Let f= ( CXHF(y ),y> be a non periodic mafi.e. c#£0), where F

8.5.3.2. Suppose that is rational. — Let f be an element of ¢J assume that is a Jon-
quieres twist.

The curve of fixed pointg’ of f is given byx? = F (y). Lety be an element of Cefit, Bir (P?));
eithery contractsC, or Y preserveg”. According to Proposition 8.5.1 the mappreserves the
fibrationy = cte; the curve’ is transverse to the fibration gocannot contract”. Thereforey
belongs to dJ and preserves As soon as def§ > 3 the assumptions of Proposition 8.5.8
are satisfied; so assume that &eg 2. The case ddg = 2 can be deduced from the case

degF = 1. Indeed let us considdr= ( X(Hf(”, ) Let us seth = (cyﬁ, %) We can check
that¢p—1f¢ can be written

C(y)x+ (ay+b)(cy+d)
( X+Cly) ’ >

and this allows to obtain all polynomials of degree 2 with ienroots. If dedr = 1, i.e.

F(y) = ay+ b, we have, up to conjugation t(w, y%") F(y) =Y.

Lemma 8.5.9[55]). — Let f be a map of the forr6 XLy ) with cinC(y)*. If @is an ele-

x+c(y)
ment ofCen{ f, Bir(P?)), thentp(y) is elthery, a € C*, or &y, & root of unity; moreovenp(y)

belongs tcstab( C‘gjgfy) .

Fora in C* we denote by R(a) the infinite dihedral group
a o\
Do(a) = <§, wy | o root of unlty>,

let us remark that any o) is conjugate to R(1).
If cis a non constant element®fy)*, then Sc; a) is the finite subgroup of PGIC) given

by

2
S(ca) = stab( C?;(zy)_ y> N Dew(a).

The description of Cenf, Bir(P?)) with f in dJ andC = Fix f rational is given by:
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Proposition 8.5.1Q[55]). — Let us consider £ (‘;(Jyg(f&)y,y) with ¢ inC(y)*, ¢ non constant.
There existsx in C* such that

Cen f,Bir(P?)) = dJ, x S(c; ).
Propositions 8.5.3, 8.5.6, 8.5.8 and 8.5.10 imply Theores28

8.6. Centralizer of Halphen twists
For the definition of Halphen twists, see Chapter 3, §3.2.

Proposition 8.6.1([47, 104). — Let f be an Halphen twist. The centralizer of fBir(P?)
contains a subgroup of finite index which is abelian, free ahnk < 8.

Proof. — Up to a birational change of coordinates, we can assunteftiman element of
a rational surface with an elliptic fibration: S — P! and that this fibration i< -invariant.
Moreover we can assume that this fibration is minimal (therea smooth curve of self in-
tersection—1 in the fibers) and sd is an automorphism. The elliptic fibration is the unique
fibration invariant byf (see[77]) so it is invariant by Certf, Bir(P?)); thus Centf,Bir (P?))

is contained in AutS).

As the fibration is minimal, the surface S is obtained by biayvup P?(C) in the nine
base-points of an Halphen penéil and the rank of its Neron-Severi group is equal to 10
(Proposition 1.1.8). The automorphism group of S can be dddxin the endomorphisms of
H?(S,Z) for the intersection form and preserves the cl#s$ of the canonical divisoi,e. the
class of the elliptic fibration. The dimension of the orthogbhyperplane tdKs| is 9 and the
restriction of the intersection form on its hyperplane ismisaegative: its kernel coincides with
Z[Kg]. Hence AutS) contains an abelian group of finite index whose rank 8. O

1. An Halphen pencil is a pencil of plane algebraic curvesagirde 8 with nine n-tuple base-points.






CHAPTER 9

AUTOMORPHISMS WITH POSITIVE ENTROPY, FIRST
DEFINITIONS AND PROPERTIES

Let V be a complex projective manifold. Lebe a rational or holomorphic map on When
we iterate this map we obtain a “dynamical system”: a ppiof V moves top; = @(p), then
to po=@(p1),to ps=@(p2) ... So@“induces a movement on V”. The s{ap, P1, P2, P3; - - - }
is theorbit of p.

Let A be a projective manifold is anAbelian varietyof dimensiork if A(C) is isomorphic
to a compact quotient aE¥ by an additive subgroup.

Multiplication by an integem > 1 on an Abelian variety, endomorphisms of degiteel1 on
projective spaces are studied since XIXth century in paldicby Julia and Fatou4]). These
two families of maps “have an interesting dynamic”. Consithe first case; lef, denote the
multiplication bym. Periodic points off, are repulsive and denseAdC) : a point is periodic
if and only if it is a torsion point ofy; the differential offy, at a periodic point of period is an
homothety of ratian” > 1.

Around 1964 Adler, Konheim and McAndrew introduce a new wageasure the complex-
ity of a dynamical system: the topological entrop¥]){ Let X be a compact metric space. Let
¢ be a continuous map froiX into itself. Lete be a strictly positif real number. For all integer
nletN(n,€) be the minimal cardinal of a pax, of X such that for ally in X there existxin X
satisfying

dist(f/(x), fi(y)) <&, vo<ij<n
We introduce Ry(f,€) defined by
heop(f,€) = Iimsup} log N(n,€).

n—+oe N

Thetopological entropyof f is given by
htop(f) = lmhtop( f>€)-

For an isometry oK the topological entropy is zero. For the multiplicationroyn a complex
Abelian variety of dimensiok we have: kyp(f) = 2klog m. For an endomorphism @&*(C)
defined by homogeneous polynomials of degteee have: ky(f) = klog d (see[110).

Let V be a complex projective manifold. On which conditiomsrdtional maps with chaotic
behavior exist ? The existence of such rational maps implies of constraints on V:
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Theorem 9.0.4[16]). — A smooth complex projective hypersurface of dimensiongrdaanl
and degree greater thadadmits no endomorphism of degree greater tthan

Let us consider the case of compact homogeneous manifoldsevgroup of holomorphic
diffeomorphisms acts faithfully on V and there are a lot didmeorphic maps on it. Meanwhile
in this context all endomorphisms with topological degraetty greater than 1 come from
endomorphisms on projective manifolds and nilvarieties.

So the "idea” is that complex projective manifolds with rigblynomial dynamic are rare;
moreover it is not easy to describe the set of rational ormolphic maps on such manifolds.

9.1. Some dynamics

9.1.1. Smale horseshoe. —¥The Smale horsehoe is the hallmark of chaos. Let us now de-
scribe it 6ee for examplgl7(Q]). Consider the embedding of the discA into itself. Assume
that
e f contracts the semi-disd§A) and f(E) in A;
¢ f sends the rectangl&andD linearly to the rectangle$(B) and f (D) stretching them
vertically and shrinking them horizontally, in the caseDoit also rotates by 180 degrees.
We don't care what the imag&C) of Cis, as long ag (C) N (BUCUD) = 0. In other words
we have the following situation

W OO m
©
o

>

There are three fixed pointgie f(B), g € A, s€ f(D). The pointsqg is asink in the sense
that for allze AUCUE we haven IiJ[n f"(2) = g. The pointsp ands aresaddle pointsif mlies
— 00

on the horizontal througp then f" squeezes it tp asn — +o, while if mlies on the vertical
throughp thenf " squeezes it tp asn — +. In some coordinates centeredprnwe have

v(xy) €B, f(xy) = (kx my)
for some O< k < 1 < m; similarly f(x,y) = (—kx,—my) on D for some coordinates centered
ats. Let us recall that the sets

WS(p) = {z| f"(2) — pasn — +o},
WY(p) = {z| {"(z) —+ pasn — —o}
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are called stable and unstable manifoldpofhey intersect at which is what Poincaré called
ahomoclinic point Homoclinic points are dense fme A| f"(m) € A,ne Z}.
The keypart of the dynamic df happens on the horseshoe

N={z|f"(2) e BUD Vne Z}.

Let us introduce the shift map on the space of two symbolse Tak symbols 0 and,land
look at the sef = {O, 1}Z of all bi-infinite sequencea = (an)nez Where, for eachn, a, is 0
or 1. The mapo: Z — X that sends = (ap) to (a) = (an+1) is @ homeomorphism called the
shift map Let us consider the itinerary map/A —  defined as followsi(p) = (Sy)nez Where
sy=1if f"(p)isinBands,=0if f"(p) belongs taD. The diagram

s 9.5

|

N——N

commutes so every dynamical property of the shift map isgssexl equally by,. Due to
conjugacy the chaos af is reproduced exactly in the horseshoe: the mdms positive en-
tropy: log2; it has 2 periodic orbits of perioch, and so must be the set of periodic orbits
of f|/\

To summarize: every dynamical system having a transverg@dinic point also has a
horseshoe and thus has a shift chaos, even in higher dimensibthe mere existence of a
transverse intersection between the stable and unstabliéofda of a periodic orbit implies a
horseshoe; since transversality persists under pertonbitfollows that so does the horseshoe
and so does the chaos.

The concepts of horseshoe and hyperbolicity are relatettheldescription of the horseshoe
the derivative off stretches tangent vectors that are parallel to the vegiwhkontracts vectors
parallel to the horizontal, not only at the saddle points,usuformly throughout\. In general,
hyperbolicity of a compact invariant set such Asis expressed in terms of expansion and
contraction of the derivative on subbundles of the tangantlte.

9.1.2. Two examples. —Let us consideP.(z) = z°+c. A periodic pointp of P, with periodn
isrepellingif |(PZ(p))’| > 1 and thelulia setof P is the closure of the set of repelling periodic
points. P is a complex horseshoe if it is hyperbolice{ uniformly expanding on the Julia set)
and conjugate to the shift on two symbols. THandelbrot setM is defined as the set of all
pointsc such that the sequen¢B’(0)), does not escape to infinity

M= {ceC|3seR,VneN, |P}(0)| <s}.
The complex horseshoe locus is the complement of the Maraledbt.
Let us consider the Hénon family of quadratic maps
@ap: R? = R?, @ap(X,Y) = (€ +a—by,x).

For fixed parametera andb, @, defines a dynamical system, and we are interested in the
way that the dynamic varies with the parameters. The pasarnbes equal to detja@,p;
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whenb = 0, the map has a one-dimensional image and is equivald?t #s soon ad is non
zero, these maps are diffeomorphisms, and maps similar aleé@nhorseshoe example occur
whena << 0 (see[74]).

In the 60’s it was hoped that uniformly hyperbolic dynamisgstems might be in some
sense typical. While they form a large open sets on all mifsfahey are not dense. The
search for typical dynamical systems continues to be a gnedilem, in order to find new
phenomena we try the framework of compact complex surfaces.

9.2. Some algebraic geometry

9.2.1. Compact complex surfaces. —tet us recall some notions introduced in Chapters 1
and 3 and some others.

To any surface S we associate its Dolbeault cohomology grél?d(S) and the cohomo-
logical groups (S, Z), H¥(S,R) and H(S,C). Set

HE'(S) = HM(S) NHA(S,R).

Let f: X --+ S be a dominating meromorphic map between compact comptéacss, let”

be a desingularization of its graph andiet T be the natural projections. A smooth foom
in Cg4(S) can be pulled back as a smooth forgo € (4 () and then pushed forward as a
current. We defind* by

ffa = m, %0

which gives a [t . form on X that is smooth outside Irfd The action off * satisfies:f*(da) =
d(f*a) so descends to a linear action on Dolbeault cohomology.
Let {a} € HPY(S) be the Dolbeault class of some smooth farm/e set

f*{a} = {m.ma} € HPI(X).

This defines a linear map* from HPA(S) into HPA(X). Similarly we can define the push-
forward f, = T, 1; from HPY(X) into HP9(S). When f is bimeromorphic, we havé, =
(f~1)*. The operationa,B) — [a A on smooth 2-forms induced a quadratic intersection
form, calledproduct intersection denoted by(-, -) on H*(S,C). Its structure is given by the
following fundamental statement.

Theorem 9.2.1[9]). — Let S be a compact Kahler surface and let! denote the dimen-
sion of HY1(S,R) c H2(S,R). Then the signature of the restriction of the intersection-pr
duct toHY (S R) is (1,ht! —1). In particular, there is na2-dimensional linear subspade
in HY1(S,R) with the property thatv, v) = Oforall vin L.

The Picard group P{@?) is isomorphic toZ (seeChapter 1, Example 1.1.2); similarly
H2(P2(C),Z) is isomorphic tdZ. We may identify Pi¢P?) and H(P?(C),Z).
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9.2.2. Exceptional configurations and characteristic matces. — Let f € Bir(P?) be a
birational map of degree. By Theorem 1.3.1 there exist a smooth projective surfa@n&rm,
n two sequences of blow-ups such that

S

>N
P2(C) - - - - - - = PX(C)

We can rewritatas follows
mS=5%S.1 5 .. 85 8 5=P4C)
wherers is the blow-up of the poinp;_; in S_1. Let us set
E =1 '(pi), E = (Thy10...0Tk)"E;.

The divisorsZ; are called thexceptional configuration®f rtand thep; base-points of .

For any effective divisor B4 0 onP?(C) let mult, D be defined inductively in the following
way. We set mul, D to be the usual multiplicity of D gp, : it is defined as the largest integar
such that the local equation of D pi belongs to thenth power of the maximal ideahy: ,, .
Suppose that mytD is defined. We take the proper inverse transfhoﬁD of Din § and
define mulg,,,D = mult,_ 15 'D. It follows from the definition that

ﬂ‘lDzTﬁ(D)—_imﬂ

wherem; = mult, D.
There are two relationships betweeand them’s (Chapter 1, §1.2):

k k
1:v2—i;mz, 3:3v—i;m.

An ordered resolutionof f is a decompositiorf = nm! wheren and are ordered se-
quences of blow-ups. An ordered resolutionfahduces two basis of P(&)

o B={e=TrH e =[Z],....a=[E},

e B ={g=n"H, & =[E] ...,& =[E]},

where H is a generic line. We can writeas follows

k k
€ =Vvep— ) me, € =vje— ) mje, j>1
2 e,
The matrix of change of basis
\Y A\ Vk
—mMm —M ... —Mgk

—Me —Ma ... — Mk
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is calledcharacteristic matrixof f. The first column oM, which is thecharacteristic vector
of f, is the vector(v,—my,...,—m). The other columngv;,—my;,...,—my;) describe the
“behavior of £ if vj > 0, thenTi(%;) is a curve of degree; in P2(C) through the pointsy,
of f with multiplicity my;.

Example 9.2.2 — Consider the birational map
o: P?(C) --» P(C), (X:y:2) -—» (Y21 XZ: XY).
The points of indeterminacy af areP=(1:0:0),Q=(0:1:0 andR=(0:0: 1); the
exceptional set is the union of the three lides {x =0}, A’ = {y = 0} andA” = {z= 0}.

First we blow upP; let us denote by E the exceptional divisor abdthe strict transform of
D. Set

y=t E={u =0} y=rsi E={s1=0}
zZ=uvp A ={v; =0} z=9 N, ={r; =0}
On the one hand
1 1 1 1
Uz, V1) — (Ug, U1V, —(Uviiviil)=(—,— (== ;
(Ur,v1) = (Ug,U1V1)yz) — (UaVa iV 1) <u1 U1V1>(yz) <u1 V1>(u17vl)

on the other hand

(r1,s1) = (r1S1,81) (yz) — (ns1:l:r)= <i,i> — <1,£> .
51 51/ vz 151/ ()
Hence E is sent oAA1; asac is an involutionA; is sent on E
Now blow up Qg; this time let us denote by F the exceptional divisor @bgdthe strict
transform of D, :

X=Uy F:{U2:O} X=Tr2% E:{SQZO}
Z= UpV2 AIZIZ{VZZO} 2= A2:{r2:0}
We have
1 1 1 1
Uz, v2) — (U2, UpV. —(V2ive:l) = —,— - (==
(Uz,V2) — (U2,UpV2) (xz) — (V21 UV2 1) <u2 U2V2>(xz) <u2 V2>(uz7v2)

and
1 1 11
r2,S) = (22, 2)(xg — (Lirxsp:r :<—,—> —><—,—> .
(r2,5) = (2 )(XZ) (L:rz 2) 2% 92/ (x2) 12 2/ (1,8)
Therefore F— A, andA, — F.
Finally we blow upRy; let us denote by G the exceptional divisor and set

{x:u3 G={uz=0} {x:r353 E={ss=0}
y=UsVs Az = {vs =0} z=s5 Ay ={r3=0}
Note that

1

(us,V3) — (U3, U3V3) —>(V'1'uv)—<i—> —><ii>
3, V3 3,U3V3 (x7y) 3. - U3Vva U37U3V3 (X7y) U3’V3 (u37V3)
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and

(r3,s3) — (rsss, s3) —(1:r3:r3s3) <l 1> —><1 1)
35 393, : -13.13 - oy P .
o r3Ss S5/ (xy) 3 8B/ (13.5)

Thus G— Aj andA; — G. There are no more points of indeterminacy, no more excegition
curves; in other words is conjugate to an automorphism Ofp%h.RZPZ.

Let H be a generic line. Note thay = E, £, = F, £3 = H. Consider the basifH, E, F, G}.
After the first blow-upA and E are swapped; the point blown up is the intersectids ahdA”
s0A — A+ F+G. Theno*E =H — F— G. Similarly we have:

0'F=H-E-G and 0'G=H-E-F.

It remains to determine*H. The image of a generic line hyis a conic hence*H = 2H —
m E — myF — mgG. Let L be a generic line described byx+ a1y + a»z. A computation shows
that

(Ul,Vl) — (ul,ulvl)(y’z) — (U%Vl suUgvy sl Ul) — ul(aov2 —|—a1u2v2+a2)
vanishes to order 1 on £ {u; = 0} thusmy = 1. Note also that

(Up,V2) — (U2, UpV2) (xz) — (UpV2  UBV, : Up) — Up(8oV2 + BqlpVo + @),
respectively

(U3, V3) — (U3, U3V3)(xy) — (UsV3 @ U3: U3v3) — Us(agVs -+ a1 + axUzva)

vanishes to order 1 on+ {u, = 0}, resp. G= {uz = 0} sonmp = 1, resp.mz = 1. Therefore
0*H = 2H— E— F— G and the characteristic matrix ofin the basis{H, E, F, G} is

2 1 1 1
-1 0 -1 -1
Mo = -1 -1 0 -1
-1 -1 -1 0

Example 9.2.3 — Let us consider the involution given by

p: P?(C) --» P?(C), (X:y:2) - (xy: 2 :y2).
We can show tha¥l, = M.

Example 9.2.4 — Consider the birational map
T: P?(C) --» P?(C), (X:y:2) - (P :xy:y> —x2).

We can verify thaiM; = Mg.
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9.3. Where can we find automorphisms with positive entropy ?

9.3.1. Some properties about the entropy. —Let f be a map of clasg® on a compact
manifold V; the topological entropy is greater than the hithan of the spectral radius of the
linear map induced by on H*(V,R), direct sum of the cohomological groups of V:

htop(f) > logr(f*).

Remark that the inequalitya(f) > logr(f*) is still true in the meromorphic cases(]).
Before stating a more precise result when V is Kéhler we ¢thioe some notation: for all
integer p such that 0< p < dimcV we denote byAp(f) the spectral radius of the mafy
acting on the Dolbeault cohomological groug MV, R).

Theorem 9.3.1[110, 108, 18p. — Let f be a holomorphic map on a compact complex Kéh-
ler manifoldV; we have

htop(f) = Osprggécv log Ap(f).
Remark 9.3.2 — The spectral radius of* is strictly greater than 1 if and only if one of
theAp(f)'sis and, in fact, if and only iA(f) = Ay(f) > 1. In other words in order to know if
the entropy off is positive we just have to study the growth(df')*{a} where{a} is a Kéhler
form.

Examples 9.3.3— e LetV be a compact Kahler manifold and A(¥) be the connected
component of AufV) which contains the identity element. The topological epyrof
each element of AtV) is zero.

e The topological entropy of an holomorphic endomorphisrof the projective sapce is
equal to the logarithm of the topological degreefof

e Whereas the topological entropy of an elementary autonenpfs zero, the topological
entropy of an Hénon automorphism is positive.

9.3.2. A theorem of Cantat. — Before describing the pairsS, f) of compact complex sur-
faces S carrying an automorphisfwith positive entropy, let us recall that a surface S is
rational if it is birational toP?(C). A rational surface is always projectived]]. A K3 surface

is a complex, compact, simply connected surface S with #lréanonical bundle. Equiv-
alently there exists a holomorphic 2-forammon S which is never zerap is unique modulo
multiplication by a scalar. Let S be a K3 surface with a holgohac involutiont. If 1 has no
fixed point the quotient is aBnriques surface otherwise it is a rational surface. As Enriques
surfaces are quotients of K3 surfaces by a group of orderi@gaeatithout fixed points, their
theory is similar to that of algebraic K3 surfaces.

Theorem 9.3.4[44]). — Let S be a compact complex surface. Assume $hhas an auto-
morphism f with positive entropy. Then
e either f is conjugate to an automorphism on the uniqgue mihimadel of S which is
either a torus, or a B surface, or an Enriques surface;
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e or Sis rational, obtained fronP?(C) by blowing upP?(C) in at least10 points and f is
birationally conjugate to a birational map @?(C).
In particular Sis kahlerian.

Examples 9.3.5— e SetA = Z[i] andE = C/A. The group Sk(A) acts linearly onC?
and preserves the lattiok x A; then each element A of $[A) induces an automor-
phism fa onE x E which commutes with(x,y) = (ix,iy). Each automorphisnfi, can be
lifted to an automorphisni, on the desingularization dE x E) /1 which is a K3 surface.
The entropy offa is positive as soon as the modulus of one eigenvalue of Aitlgtr
greater than 1

¢ We have the following statement due to Torelli.

Theorem 9.3.6 — LetSbe a K3 surface. The morphism
Aut(S) — GL(H?(S,7)), fis f*
is injective.
Conversely assume thatis an element oGL(H?(S,Z)) which preserves the inter-

section form orH?(S,Z), the Hodge decomposition &f?(S,Z) and the Kahler cone
of H2(S,Z). Then there exists an automorphism f®such that f = (.

The case of K3 surfaces has been studied by Cantat, McM@&Ierman, Wang and others
(seefor example §5, 143, 172, 18. The context of rational surfaces produces much more
examples geefor example 144, 21, 22, 23, 73.

9.3.3. Case of rational surfaces. —Let us recall the following statement due to Nagata.

Proposition 9.3.1[147], Theorem5). — Let S be a rational surface and let f be an auto-
morphism onS such that f is of infinite order; then there exists a sequence of holoimorp
mapsTj.1: Sj+1 — Sj such thatS; = P(C), Sy;1 = Sand .4 is the blow-up of pe S;.

Remark that a surface obtained frdPi(C) via generic blow-ups has no nontrivial auto-
morphism (.20, 131). Moreover we have the following statement which can bentbior
example in Y6, Proposition 2.2.].

Proposition 9.3.8 — Let S be a surface obtained frof#?(C) by blowing up n< 9 points.
Let f be an automorphism d& The topological entropy of f is zero.

Moreover, if n< 8 then there exists an integer k such th&ti< birationally conjugate to an
automorphism of the complex projective plane.

Proof. — Assume thatf has positive entropy log(f) > 0. According to #4] there exists
a non-trivial cohomology clas8 in H?(S,R) such thatf*6 = A(f)8 and8? = 0. Moreover
f.Ks= f*Kg=Ks. Since

(8,Ks) = (70, f*Ks) = (A(f)B,Ks)
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we have(8,Ks) = 0. The intersection form on S has signat(ten— 1) and K& > 0forn <9
500 = cKg for somec < 0. But thenf*8 = 8 £ A(f)0: contradiction. The map thus has zero
entropy.

If n <8, then K% > 0. The intersection form is thus strictly negative on théhogbnal
complemenH C H2(S,R) of Ks. But dimH is finite, H is invariant underf* and f* preserves
H2(S,Z) so f* has finite order omd. Thereforef** is trivial for some integek. In particular
fk preserves each of the exceptional divisorX ithat correspond to the< 8 points blown up
in P?(C). So fX descends to a well-defined automorphisnP#fC). O

Let f be an automorphism with positive entropy on a Kahler surfdde following state-
ment gives properties on the eigenvalued of

Theorem 9.3.9[19], Theorem 2.8, Corollary 2.9) — Let f be an automorphism with posi-
tive entropylogA(f) on a Kéhler surface. The first dynamical degieg ) is an eigenvalue
of f* with multiplicity 1 and this is the unique eigenvalue with modulus strictly ggethanl.

If ) is an eigenvalue of*f then eithem belongs to{A(f),A(f)~1}, or |n| is equal tol.

Proof. — Letvy, ..., W denote the eigenvectors 6f for which the associated eigenvalue
has modulus> 1. We have

(Vj>Vk)Z(f*be*Vk):HjW(Vj»Vk), V1< J <Kk

S0 (Vj, W) = 0. LetL be the linear span ofy, ..., w. Each element = 5;a;v; in L satisfies
(v,v) = 0. According to Theorem 9.2.1 dim< 1. But sinceA(f) > 1, L is spanned by a
unique nontrivial eigenvector. if has eigenvalug, thenv has eigenvalug@ so we must have
H=p=A(f).

Let us see thaa(f) has multiplicity one. Assume that it has not; then thereteXssuch
that f*6 = A(f)0+cv. In this case

(8,v) = (£°6, V) = (A(1)B-+ cuAv) = A2(8,)

so(6,v) = 0. Similarly we have0,8) = 0 so by Theorem 9.2.1 again, the space spannédl by
andv must have dimension 1; in other word§f ) is a simple eigenvalue.

We know thatA(f) is the only eigenvalue of modulus 1. Since(f*)~1 = (f~1)*, if nis
an eigenvalue of *, then% is an eigenvalue off ~1)*. Applying the first statement t6~ we

obtain thaf\ is the only eigenvalue dff ~*)* with modulus strictly larger than 1. O

Let x¢ denote the characteristic polynomial ©f. This is a monic polynomial whose con-
stant term ist1 (constant term is equal to the determinantfdf. Let W; be the minimal
polynomial of A(f). Except forA(f) andA(f)~! all zeroes ofx+ (and thus o) lie on the
unit circle. Such polynomial is &alem polynomialand such a(f) is aSalem number So
Theorem 9.3.9 says that ffis conjugate to an automorphism theff) is a Salem number;
in fact the converse is true3g]). There exists another birational invariant which allougsto
characterize birational maps that are conjugate to autonigms éee[34, 33).



9.4. LINEARIZATION AND FATOU SETS 109

9.4. Linearization and Fatou sets

9.4.1. Linearization. — Let us recall some facts about linearization of germs of imalighic
diffeomorphism in dimension 1 when the modulus of the mlidip is 1 Let us consider

(9.4.1) f(z2) =az+aZ+aZ+..., a=€e® BcR\Q

We are looking fon)(z) = z+ bpZ° + ... such thatfy(z) = Y(az). Since we can formally
compute the coefficients

_ an+Qn

b2:—,...,bn an_a

with Q, € Z[a;, i <n—1, by, i <n] we say thaff is formally linearizable If ¢ converges, we
say that the gernfi is analytically linearizable

Theorem 9.4.1Cremer). — If liminf |a% — a|Y9 = 0, there exists an analytic germ f of the
type(9.4.1) which is not analytically linearizable.
More precisely ifiminf ja% — 0(|v11 = 0, then no polynomial germ

f(z) =az+aZ+...+2°

of degreev is linearizable.

Theorem 9.4.4Siegel) — If there exist two constants ¢ and M strictly positive sucht th
o9 —al > qiM then any germ (z) = az+ a7 + ... is analytically linearizable.

Let us now deal with the case of two variables. Let us consider

f(x,y) = (ax,By) + h.o.t.

with a,  of modulus 1 but not root of unity. The pdim, 3) is resonantif there exists a relation
of the forma = a®BP or B = a?BP wherea, b are some positive integers such thatb > 2. A
resonant monomialis a monomial of the fornx2y°. We say thatr and aremultiplicatively
independentf the unique solution o&?B® = 1 with a, b in Z is (0,0). The numbersr and(
aresimultaneously diophantinéf there exist two positive constantsandM such that

min (\aaBb—ay, ]aaBb—B]> Va,beN,a+b>2

> C
~ |la+bM

Theorem 9.4.3 — If a andf3 are simultaneously diophantine then f is linearizable.
If a and are algebraic and multiplicatively independent then they simultaneously dio-
phantine.

For more detailseg[6, 37, 117, 171

9.4.2. Fatou sets. —
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9.4.2.1. Definitions and properties— Let f be an automorphism on a compact complex ma-
nifold M. Let us recall that th&atou set¥ (f) of f is the set of points which own a neighbor-
hood % such that{ f")V, n> 0} is a normal family. Let us consider
. 77 ; nj
G=G(Uu)={p: u— ﬂ““:nj"ﬂlmf i}
We say thatil is arotation domainif G is a subgroup of Auttl), that is, if any element of
defines an automorphism @f. An equivalent definition is the following: if/ is a component
of #(f) which is invariant byf, we say thattl is a rotation domain iffj¢; is conjugate to a
linear rotation; in dimension 1 this is equivalent to haveieg€l disk. We have the following
properties (24]).
e If f preserves a smooth volume form, then any Fatou componembiateon domain.
e If U is a rotation domaing is a subgroup of A4 ).
e A Fatou componentl is a rotation domain if and only there exists a subsequertethat
(nj) — 400 and such thatf") converges uniformly to the identity on compact subsets of
u.
e If U is arotation domaing is a compact Lie group and the action@fon U is analytic
real.
Let Go be the connected component of the identityhfSince G is a compact, infinite,
abelian Lie group( is a torus of dimensiod > 0; let us note thadl < dim¢c M. We say thatl
is therank of the rotation domain The rank is equal to the dimension of the closure of a
generic orbit of a point irti.
We have some geometric information on the rotation domaing? is a rotation domain
then it is pseudo-convexdfl]).
Let us give some details when M is a kéhlerian surface cagrgim automorphism with
positive entropy.

Theorem 9.4.4[24]). — LetSbe a compact, kéhlerian surface and let f be an automorphism
of Swith positive entropy. Letl be a rotation domain of rank d. Then<d2.

If d = 2 the Go-orbit of a generic point ofil is a real 2-torus.

If d = 1, there exists a holomorphic vector field which induces a fiolaby Riemann sur-
faces orSwhose any leaf is invariant bgo.

We can use an argument of local linearization to show thaesiaxed points belong to the
Fatou set. Conversely we can always linearize a fixed poitiieoFatou set.

9.4.2.2. Fatou sets of Hénon automorphisms Let f be a Hénon automorphism. Let us
denote byX* the subset of2 whose positive/negative orbit is bounded:

&= = {(xy) € C?[ {*"(x,y) |n > 0} is boundeq.
Set
K=K"NK", JE=0K*, J=3n7", Ut =C?\ K+

Let us state some properties.
e The family of the iterate$”, n > 0, is a normal family in the interior of{ .
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e If (x,y) belongs toJ* there exists no neighborhodd of (x,y) on which the family
{f"& n> 0} is normal.
We have the following statement.

Proposition 9.4.5 — The Fatou set of a Hénon mapGg \ 7.

Definitions. — LetQ be a Fatou componer® is recurrentif there exist a compact subget
of Q and a poinmin C such thatf"i (m) belongs taC for an infinite number ofi; — +o. A
recurrent Fatou component is periodic.

A fixed pointmof f is asink if mbelongs to the interior of the stable manifold

wWe(m) = {p| nﬂ)rﬂmdist(f”(m), f"(p)) = 0}.

We say that VB(m) is thebasinof m. If mis a sink, the eigenvalues Bff, have all modulus
less than 1

A Siegel disk(resp. Herman ring) is the image of a diskresp. of an annulysA by an
injective holomorphic mag having the following property: for angin A we have

fo(2) = ¢(az), a:eZiTle’eeR\Q.
We can describe the recurrent Fatou components of a Hénon map

Theorem 9.4.6[26]). — Let f be a Hénon map with jacobian 1 and letQ be a recurrent
Fatou component. The@ is

e either the basin of a sink;

e or the basin of a Siegel disk;

e or a Herman ring.

Under some assumptions the Fatou component of a Hénon audiisros are recurrent.

Proposition 9.4.7 — The Fatou component of a Hénon map which preserves the varene
periodic and recurrent.

9.4.3. Fatou sets of automorphisms with positive entropy otorus, (quotients of) K3, ra-
tional surfaces. — If S is a complex torus, an automorphism of positive entrgpgsisentially
an element of Gh(Z); since the entropy is positive, the eigenvalues satigfyf < 1 < |Ay]
and the Fatou set is empty.

Assume that S is a K3 surface or a quotient of a K3 surface eShere exists a volume form,
the only possible Fatou components are rotation domaindViiMen proved there exist non
algebraic K3 surfaces with rotation domains of ranlks@e[143); we can also look atl55].

The other compact surfaces carrying automorphisms withip@gntropy are rational ones;
in this case there are rotation domains of rank 1sée(22, 144). Other phenomena like
attractive, repulsive basins can happ&t®([144).






CHAPTER 10

WEYL GROUPS AND AUTOMORPHISMS OF POSITIVE
ENTROPY

In [144) McMullen, thanks to Nagata’s works and Harbourne’s wodsablishes a result
similar to Torelli’s theorem for K3 surfaces: he construatgomorphisms on some rational
surfaces prescribing the action of the automorphisms onroological groups of the surface.
These rational surfaces own, up to multiplication by a camista unique meromorphic nowhere
vanishing 2-formQ. If f is an automorphism on S obtained via this constructioq) is pro-
portional toQ and f preserves the poles 6. When we project S on the complex projective
plane, f induces a birational map preserving a cubic.

The relationship of the Weyl group to the birational geometf the plane, used by Mc-
Mullen, is discussed since 1895 ihdd and has been much developed since th&6,(L47,
148, 61, 104, 138, 111, 140, 112, 151, 113, 81, 120, 18, 85

10.1. Weyl groups

Let S be a surface obtained by blowing up the complex preegiiane in a finite number
of points. Let{ey, ..., e} be a basis of AS,Z); if

& e =1 gj-e=-1v1i<j<k 6-6=0VvV0<i#j<n

then{ey, ..., &} is ageometric basisConsidei in H%(S, Z) such thatx - o = —2, thenRq (x) =
X+ (x-a)a sendsa on —a andRy fixes each element af; in other wordsR, is a reflection
in the directiona.

Consider the vectors given by

Oo=€—€—€—8; oj=¢ej;+1—6,1<j<n-1

Foralljin {0,...,n—1} we haven; -aj = —2. Whenj is nonzero the reflectioR,; induces
a permutation ofe;j, ej,1}. The subgroup generated by tRg's, with 1< j < n— 1,isthe
set of permutations on the elemefits, ..., e }. Let W, C O(Z'") denote the group

(Ro;[0<j<n-1)
which is calledWeyl group
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The Weyl groups are, for 8 n < 8, isomorphic to the following finite groups
A1 x Ag, As, Ds, Es, Ez, Es

and are associated to del Pezzo surfaces.nEe© Weyl groups are infinite and far > 10
Weyl groups contain elements with a spectral radius strignater than 1

If Y and S are two projective surfaces, let us recall thatldfminatessS if there exists a
surjective algebraic birational morphism from Y to S

Theorem 10.1.1[82]). — LetSbe a rational surface which dominat&s(C).
e The Weyl grouWy C GL(Pic(S)) does not depend on the chosen exceptional configura-

tion.
e If £ and £’ are two distinct exceptional configurations, there exist; WV such that
W(E)="E'.

e If Sis obtained by blowing up k generic points andifis an exceptional configuration,
then for any w in the Weyl group(# ) is an exceptional configuration.

If fisan automorphism of, ®y a theorem of Nagata there exists a unique eleméntw,

such that

Z1n w 71N

| |s
H2(S,Z) —~ H2(S,Z)

commutes; we said that the automorphismealizesw.

A product of generatorBy,is aCoxeter elemenof Wy. Note that all Coxeter elements are
conjugate so the spectral radius of a Coxeter element isdeéiied.

The mapo is represented by the reflectienk = Ry, Whereaijx = e — & —e€j — e andi,
J, k> 1 are distinct elements; it acts as follows

& — 26— — € —&, & —e—€ —& € 66— &

& — €& —8§—€j, e — e if £Z{0,1, j, K}
Whenn = 3, we say thaki,3is thestandard elemendf W3. Consider the cyclic permutation
(123. .. n) = K123Rq1 cee qul €2n C Wy

let us denote it byt,. Forn > 4 we define thestandard elementv of W, by w = TiK123. It
satisfies

w(ep) = 2ep— € — €3 — €y, w(e) = ey — e3— ey, w(ey) =ey— e — ey,

W(es) = € — & — €3, w(ej) =1, 4<j<n-2 W(en-1) = €1.
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10.2. Statements

In [144) McMullen constructs examples of automorphisms with pasiéntropy “thanks to”
elements of Weyl groups.

Theorem 10.2.1[144]). — For n > 10, the standard element &¥,, can be realizable by an
automorphism fwith positive entropyog(A,) of a rational surfacesS,.

More precisely the automorphisiia: S, — S, can be chosen to have the following addi-
tional properties:
e S, is the complex projective plane blown up indistinct pointspy, ..., pn lying on a
cuspidal cubic curve’,
o there exists a nowhere vanishing meromorphic 2-fgron S, with a simple pole along
the proper transform aof,
e fi(n)=An-n,
e ((f1),Sn) is minimal in the sense of Mani.
The first three properties determirfig uniquely. The pointg; admit a simple description
which leads to concrete formulas féy.
The smallest known Salem number is a rdgthmer~ 1.17628081 of Lehmer’s polynom

L(t) =tO04+ %=t -t -t —t*— 34t + 1

Theorem 10.2.7[144]). — If f is an automorphism of a compact complex surface with po-
sitive entropy, thefop( ) > I0gALehmer

Corollary 10.2.3([144]). — The map {fo: Si0 — S10 is an automorphism 08;9 with the
smallest possible positive entropy.

Theorem 10.2.4[144]). — There is an infinite number of n for which the standard element
of Wy, can be realized as an automorphismR#(C) blown up in a finite number of points
having a Siegel disk.

Let us also mention a more recent work in this directid8(]). Diller also find examples
using plane cubics Tp)).

10.3. Tools

10.3.1. Marked cubic curves. —A cubic curveC C P?(C) is a reduced curve of degree 3. It
can be singular or reducible; let us denoted®yits smooth part. Let us recall some properties
of the Picard group of such a curveeg[114] for more details). We have the following exact
sequence

0 — Picy(C) — Pic(C) — H3(C,Z) — 0
where Pig(C) is isomorphic to

1. Let Z be a surface and G be a subgroup of(8utA birational mapf: S--» Sis G-equivariant iG =
fGf~1 c Aut(S). The pair(G,S) is minimal if every G-equivariant birational morphism isiaomorphism.
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e either a torusC/A (when( is smooth);

e or to the multiplicative grouC* (it corresponds to the following cas€:is either a nodal
cubic or the union of a cubic curve and a transverse line, ®mfion of three line in
general position);

e or to the additive grouf (when( is either a cuspidal cubic, or the union of a conic and
a tangent line, or the union of three lines through a singlatpo

A cubic marked curves a pair(C,n) of an abstract curve€ equipped with a homomorphism

n: Z*" — Pic(C) such that

e the sections of the line bundigey) provide an embedding af into P?(C);

e there exist distinct base-poings on C* for whichn(e) = [pi] foranyi=2, ..., n.

The base-pointg; are uniquely determined hy sinceC* can be embedded into R{C).

Conversely a cubic curvé which embeds int@®?(C) and a collection of distinct points af
determine a marking of .

Remark 10.3.1 — Different markings of” can yield different projective embeddings— P?(C)
but all these embeddings are equivalent under the actiorutg{A.

Let (C,n) and(C’,n’) be two cubic marked curves; asomorphismbetween(C,n) and
(C’',n’) is a biholomorphic applicatiof: ¢ — ¢’ such than’ = f.on.
Let (C,n) be a cubic marked curve; let us set

W(C,n) = {we Wq|(C,nw) is a cubic marked curJe

Aut(C,n) = {weW(C,n)|(C,n)& (C',n’) are isomorphig.
We can decompose the markingf C in two pieces

No: ker(degen) — Picy(C), degon: ZM" — H2(C,Z).
We have the following property.

Theorem 10.3.2[144]). — Let(C,n) be amarked cubic curve. The applicationsanddegon
determing(C,n) up to isomorphism.

A consequence of this statement is the following.

Corollary 10.3.3([144]). — An irreducible marked cubic curveC,n) is determined, up to
isomorphism, byo: Ly — Picy(C).

10.3.2. Marked blow-ups. — A marked blow-up(S, @) is the data of a smooth projective
surface S and an isomorphistn Z" — H2(S, Z) such that
e ® sends the Minkowski inner produgt-x) = x> = x —x% — ... — X2 on the intersection
pairing on H(S,7Z);
e there exists a birational morphism S — P?(C) presenting S as the blow-up Bf(C) in
n distinct base-pointgs, ..., pn;
e ®(ey) = [H] andPd(g) = [E] for anyi =1, ..., nwhere H is the pre-image of a generic
line in P?(C) and E the divisor obtained by blowing up.
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The marking determines the morphism S — P?(C) up to the action of an automorphism
of P?(C).

Let (S,®) and(S, ®) be two marked blow-ups; asomorphismbetweenS, ®) and(S, d’)
is a biholomorphic applicatioR : S— S such that the following diagram

71N
>
H2(S,Z) =

H2(S,Z)

commutes. If(S,®) and(S,d') are isomorphic, there exists an automorphigrof P?(C)
such thatp) = ¢(pi).

Assume that there exist two birational morphism# : S— P?(C) such that S is the surface
obtained by blowing u@®?(C) in py, ..., pn (resp. pj, ..., pj) via Tt (resp. ). There exists a
birational mapf : P?(C) --» P(C) such that the diagram

S
>N
P2(C) - - - - - - = PX(C)

commutes; moreover there exists a unique elemantZ" such thatd’ = dw.

The Weyl group satisfies the following property due to Nagka(S, @) be a marked blow-
up and letw be an element gE". If (S, ®w) is still a marked blow-up, thew belongs to the
Weyl group Wi. Let (S, ®) be a marked blow-up; let us denote WS, ®) the set of elements
w of Wy, such that(S, ®w) is a marked blow-up:

W(S,®) = {we Wp|(S,®w) is a marked blow-up.

The right action of the symmetric group reorders the basetpof a blow-up so the group
of permutations is contained W(S, ®). The following statement gives other examples of
elements oW (S, ®).

Theorem 10.3.4[144]). — Let (S, @) be a marked blow-up and letbe the involutionx:y:
z) --» (yz: xz: xy). Let us denote byjp..., pn the base-points dfS, ®). If, forany4 <k <n,
the point g does not belong to the line through and p, wherel <i,j <3, i # j, then
(S, PK123) is a marked blow-up.

Proof. — Let: S— P?(C) be the birational morphism associated to the marked blow-up
(S,@). Let us denote by, g andgs the points of indeterminacy af. Let us choose some
coordinates for whiclp, = q; fori = 1, 2, 3; thent’ = om: S— P?(C) is a birational morphism
which allows us to seéS, Pk123) as a marked blow-up with base-poimis, pz, ps ando(p;)

for i > 4. These points are distinct since, by hypothepis,..., pn, do not belong to the lines
contracted by. O
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Aroot a of @y is anodal rootfor (S, ®) if ®(a) is represented by an effective dividdr In
this caseD projects to a curve of degreke> 0 onP?(C); thusa = dey — Yi>1Mg is a positive
root. A nodal root igeometricif we can writeD as a sum of smooth rational curves.

Theorem 10.3.5[144]). — Let (S,®) be a marked blow-up. If three of the base-points are
colinear, (S, @) has a geometric nodal root.

Proof. — After reordering the base-points, ..., pn, We can assume thak, p, and ps are
colinear; let us denote by the line through these three points. We can suppose thatides b
points which belong th. areps, ..., px. The strict transforni of L induces a smooth rational
curve on SwithL] = [H— YK ; Ej] so

k
D(0123) = [E+_ZlEi]-
O

Theorem 10.3.6[144]). — Let(S, ®) be a marked blow-up. [fS, ®) has no geometric nodal
root, then

W(S, q)) — Wn.

Proof. — If (S,®) has no geometric nodal root andifbelongs toN (S, ®), then(S, dw) has
no geometric nodal root. It is so sufficient to prove that teeegyators of Wbelong toN (S, ®).
Since the group of permutations is containedAiiS, ®), it is clear for the transpositions;
for K123 it is a consequence of Theorems 10.3.4 and 10.3.5. O

Corollary 10.3.7([144]). — A marked surface has a nodal root if and only if it has a geomet-
ric nodal root.

10.3.3. Marked pairs. —

10.3.3.1. First definitions— Let (S,®) be a marked blow-up. Let us recall that anti-
canonical curveis a reduced curvé C S such that its class in#iS, Z) satisfies

(10.3.1) Y] = [8H- 3 Ei] = Ks.

A marked pair(S,®,Y) is the data of a marked blow-yf$, ®) and an anticanonical cur¥e
An isomorphismbetween marked paif$, ®,Y) and(S,®’,Y’) is a biholomorphisnt from S
into S, compatible with markings and which sendso Y’. If n> 10, then S contains at most
one irreducible anticanonical curve; indeed if such a ciyrexists, thert¥2 =9—n < 0.
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10.3.3.2. From surfaces to cubic curves- Let us consider a marked pdi, ®,Y). Let tbe
the projection of S t@®?(C) compatible withd. The equality (10.3.1) implies that = 1(Y) is
a cubic curve through any base-pomtwith multiplicity 1. Moreover, E-Y = 1 implies that
T Y — Cis an isomorphism. The identification of{§,Z) and Pi¢S) allows us to obtain the
natural marking

n: 24" -2 H4(S,Z) = Pic(S) - Pic(Y) = Pic(C)

wherer is the restrictiorr : Pic(S) — Pic(Y). Therefore a marked pailS,Y,®) determines
canonically a marked cubic curve,n).

10.3.3.3. From cubic curves to surfaces- Conversely let us consider a marked cubic cyg).
Then we have base-poings € ¢ determined byn(g))1<i<n and an embedding ¢ P?(C)
determined by)(ep). Let (S, ®) be the marked blow-up with base-poimisandY C S the strict
transform ofC. Hence we obtain a marked p&B, ®,Y) called blow-up of(C,n) and denoted
BI(C,n).

This construction inverts the previous one, in other wordshave the following statement.

Proposition 10.3.§[144]). — A marked pair determines canonically a marked cubic curve
and conversely.

10.4. Idea of the proof

The automorphisms constructed to prove the previous eeatdtobtained from a birational
map by blowing up base-points on a cubic cugiethe cubic curves play a very special role
because its transforméare anticanonical curves.

Assume thatv € W, is realized by an automorphiskof a rational surface S which preserve
an anticanonical curvé. A marked cubic curvéC,n) is canonically associated to a marked
pair (S, ®,Y) (Theorem 10.3.8). Then there exists a birational maf?(C) --» P?(C) such
that:

e the lift of f to S coincides withr,

o f preservey,

e and f induces an automorphismi. of Picy(C) which satisfiesngw = f.no. In other

words|no] is a fixed point for the natural action ofon the moduli space of markings.

Conversely to realize a given elemenf the group W we search a fixed poimig in the
moduli space of markings. We can associatgg@ marked cubi¢C,n) up to isomorphism
(Corollary 10.3.3). Let us denote K5, @,Y) the marked pair canonically determined by
(C,n). Assume that, for ang in ©,, no(a) is non zero (which is a generic condition); the
base-pointg; do not satisfy some nodal relation (they all are distinctthree are on a line,
no six are on a conic, etc). According to a theorem of Nagadeetkxists a second projection
: S— P?(C) which corresponds to the markirw. Let us denote by the cubict?(Y).
Since[no] is a fixed point ofw, the marked cubic$C’,nw) and(C,n) are isomorphic. But
such an isomorphism is an automorphiBrof S satisfyingF, ® = ®dw.
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Let us remark that in120, 111, 161, 7j6there are also constructions with automorphisms
of surfaces and cubic curves.

10.5. Examples

Let us consider the family of birational magps P?(C) --» P?(C) given in the affine chart

z=1by
f(x,y):(a+y,b+3—(l), abeC.

Let us remark that the cafe= —a has been studied ir161] and [12].

The points of indeterminacy dfarep; =(0:0:1), p,=(0:1:0)andps=(1:0:0). Let
us setpy = (a: b: 1) and let us denote & (resp.A’) the triangle whose vertex am, p2, ps
(resp.p2, p3, pP4). The mapf sendsA ontoA’ : the pointp; (resp. p,, resp.pz) is blown up on
the line (p1ps) (resp. (p2ps), resp. (psps)) and the lineg pip2) (resp.(p1ps), resp. (p2ps))
are contracted op, (resp. ps, resp. ps).

If aandb are chosen such thai = ps, thenA is invariant byf and if we blow upP?(C)
at p1, p2, p3 we obtain a realization of the standard Coxeter element oflideed,f sends a
generic line onto a conic through tipg sow(ey) = 2ep — €1 — &2 — e3. The pointp; (resp.po,
resp. pz3) is blown up on the line througlp, and ps (resp. p; and ps, resp. p1 and py).
Therefore

w(er) = ey — e — e, w(e) =€ — €1 — €g, w(es) =ey—er —&.
More generally we have the following statement.

Theorem 10.5.1[144]). — Let us denote by;py the i-th iterate f(ps) of ps.
The realization of the standard Coxeter elementgfcorresponds to the pair&, b) of C?
such that

Pi & (PLP2) U (P2p3) U (P3p1), Pnt+1 = P1.

Proof. — Assume that there exists an intedesuch thatf'(ps) = pi.4. Let (S, 1) be the
marked blow-up with base-points. The mapf lifts to a morphismFy: S — P?(C). Since
any p; is now the imagé—(¢;) of a line in S the morphisny lifts to an automorphisnir of

S such thatf lifts to F. Let us find the element realized byF. Let us remark thaf sends a
generic line onto a conic throughy, ps and ps thusw(ep) = 2ep — e, — 3 — 4. The pointp;

is blown up to the line througps and ps sow(e;) = ey — €3 — e4; similarly we obtain

w(ex) =eg— e —ey, w(es) =ep— e —e3,
w(e)=egp1for4a<i<n, w(en) = €.

Conversely if an automorphisf: S— S realizes the standard Coxeter elenveni T;,K123,
we can normalize the base-points such that

{p1,p2,p3} ={(0:0:12),(0:1:0,(1:0:0};
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the birational magd : P?(C) --» P?(C) covered byF is a composition of the standard Cremona
involution and an automorphism sendif@, p2) onto(p., ps). Such a mag has the form in
the affine charz=1

f(x,y) = (a,b) + (Ay, By/x)
S0 up to conjugacy byBx By/A), we havef (x,y) = (a,b) + (y,y/x). O






CHAPTER 11

AUTOMORPHISMS OF POSITIVE ENTROPY: SOME
EXAMPLES

A possibility to produce an automorphisfron a rational surface S is the following: starting

with a birational magf of P?(C), we find a sequence of blow-ups S — P?(C) such that the
induced mapfs = mtf it 1 is an automorphism of S he difficulty is to find such a sequente.
If fis not an automorphism of the complex projective plane, thenntracts a curve; onto
a point py; the first thing to do to obtain an automorphism frdnis to blow up the poinf;
via 1y S; — P?(C). In the best casdg, = T[lfT[Il sends the strict transform @f; onto
the exceptional divisor £ But if p; is not a point of indeterminacyfs, contracts E onto
p2 = f(p1). This process thus finishes onlyfifis not algebraically stable.

In [23] Bedford and Kim exhibit a continuous family of birationalas ( fa),cck-2. We
will see that this family is conjugate to automorphisms wgtsitive entropy on some rational
surface §(Theorem 11.6.1). Let us hold the parametéixed; the family f, induces a family
of dynamical systems of dimensiéi2 — 1: there exists a neighborhoddof 0 in C¥/2-1 such
that if a= (ap,az,...,a-2), b= (bg,bz,...,bx_2) are in U then f, and f, are not smoothly
conjugate (Theorem 11.6.3). Moreover they showkior 4, the existence of a neighborhood
2 of 0in C¥2-1 such that ifa, b are two distinct points of1, then S is not biholomorphically
equivalent to §(Theorem 11.6.4).

The results evoked in the last section are also due to BedfwicKim ([24]); they concern
the Fatou sets of automorphisms with positive entropy oiemat non-minimal surfaces ob-
tained from birational maps of the complex projective plaBedford and Kim prove that such
automorphisms can have large rotation domains (Theorefm1)1.

11.1. Description of the sequence of blow-up$41])
Let fap be the birational map of the complex projective plane given b
fab(X,Y,2) = (X(bx-+y) : Z(bx+Y) : x(ax+2)),

or in the affine chark=1

a+z
f )=z, —— ).
a,b(ya ) <’b—|—y>
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We note that Indap = {p1, P2, P} and Excfap = ZoU Zg U Z, with

p1=(0:1:0), p2=(0:0:1), p.=(1:-b:-a),
o= {x=0}, 23 = {bx+y=0}, Z, = {ax+z=0}.
29
>
/4 C
/ \
// q \\
l// p1 ZB \\
ZB pZ p*
2y

SetY = Bly, p,P?, T Y — P2(C) and fapy = 0 1fapTt Let us prove that after these two
blow-upsg does not belong to Exig .y

To begin let us blow um,. Let us sek = r, andy = r>sp; then(r,,s,) is a system of local
coordinates in whicltg = {s;+b =0} and & = {r> = 0}. We remark that

Ua@—ﬂmm@mw%UﬂH&%b+&aQ+D=(

. <r2(b+52)’1> .
al'2 + 1 I’2 (I'27SQ)
ThusZyg is sent onto Eand & surZo.

Let us now blow upp;. Setx = upxv, andy = v; the exceptional divisor Hs given byv, =0
andXy by u, = 0. We have

u®+&)b+&>

(U2, V2) = (UpV2,V2) (xy) — (UaV2(blp + 1) 1 bip +1 :up(atpve + 1))

_ (vz(bu2+1) b +1 > . (uzvz bw +1 > )
awVe +1 7 w(ave +1) / ) "w(awVe+1) ) )

therefore & is sent onta.
Let us sek =r1, z=r15;; in the coordinatesr;,s;) we have £ = {r; = 0}. Moreover

(r1,81) = (r1,r181)(xz — (bra+21:b+si(bry +1) :ri(a+s)).

Hence g is sent ontdg.
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Setx = u;v3 andz = vy; in these coordinatesy, = {u; = 0}, E; = {v; = 0} and
(Ug,v1) = (UgV1, V1) (xz — (Ur(bugvy +1) D bugvy + 1 upva(aug + 1))
_ (Ul, uivi(au + 1)) . <U17 vi(aw + 1)) .
buvi +1 (x2) buvi +1 (rus)
So0xg — EyandZg — E; — 29 — E1 — Zg. In particular

Ind fapy = {p:} & Exc fapy = {Zy}.

We remark thaf H, E1, E,} is a basis of Pi¢Y). The exceptional divisor Eis sent on¥g;
since p; belongs tozg we have ik — Zg — g+ E;. On the other hand £Eis sent onta;
asp; andp, belong tozy we have

Eo — 20— 20+E1+ B

Let H be a generic line aP?(C); it is given by ¢ = 0 with ¢ = agx+ a1y + a,z Its image by
fap,v is a conic thus

2
fipyH=2H—Y mE;.
> i; l
Let us find them’s. As
(r2,%2) = (r2,12%2) (xy) — (r2(b+%) :b+s:arp+1)
— rz<aorz(b+ $) +ai(b+ ) +ay(arz + 1))
and E = {r, = 0} the integem, is equal to 1Since
(re,s1) = (r1,r81) (xz — (bra+21:b+si(bry+1) :ri(a+s))
— 811 <ao(bslr1 +1)+asi(bsri+1)+siri(a+ 81))
and g = {s; = 0} we getmy = 1. That's why
2 1 1
Mioy=| -1 -1 —1|.
-1 0 -1

The characteristic polynomial My, ., is 1+t —t3. Let us explain all the information contained
in My,, .. LetL be aline and L its class in Ri). If L does not intersect neither;Enor B,
then L=H. As f;b.YH = 2H—E; — E> the image of L byfap v is a conic which intersects,E
and B with multiplicity 1. If L containsp,, thenfap v (L) is the union ofc and a second line.
Assume thap, does not belong to U fa v (L), then

flv (L) =MZ = 2H— Ey;

O O
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in other WordsfabY(L) is a conic which intersects,Eout not K. If p, does not belong
toL U fapy(L) U fabv( ), then

1
f;’jb.Y(L):lvl?a~b 0 | =3H—E;—Ey,
0

ie. fng(L) is a cubic which intersects;Eand B with multiplicity 1. If p, does not belong to
LU fapy(L)U...U I L (L),
the iterates off,, v are holomorphic on the neighborhood of L and

(fapy)"(H) = fap L.

(o)

The parametera andb are saidgenericif p, does not belong th fa{.b’Y(L).
j=0

Theorem 11.1.1 — Assume that a and b are generig;pfy is algebraically stable andl( fap) ~
1.324is the largest eigenvalue of the characteristic polynortiatt — 1.

11.2. Construction of surfaces and automorphismg21])

Let us consider the subsgf, of C? given by
Th=1{(ab) GCZ‘ faybY Q) #p. VO j<n—1, flyy(q) =p.}.

Theorem 11.2.1 — The map {p v is conjugate to an automorphism on a rational surface if
and only if(a,b) belongs tol}, for some n

Proof. — If (a,b) does not belong tdy, Theorem 11.1.1 implies thai(fap) is the largest
root of t2 —t — 1; we note thal\(f,p) is not a Salem number sfap is not conjugate to an
automorphism (Theorem 9.3.9).

Conversely assume that there exists an integerch thata, b) belongs to?4,. Let S be the
surface obtained frod by blowing up the points|, fap v (), ..., fiy v (d) = p. of the orbit
of g. We can check that the induced mép, s is an automorphism of S O

Let us now considef;, s which will be denoted by,

Theorem 11.2.2 — Assume thata, b) belongs tol/}, for some integer n. If &< 5, the map
fap is periodic of period< 30. If n is equal to6, the degree growth of,}, is quadratic. Finally

if n > 7, then {degf b}k grows exponentially and(fap) is the largest eigenvalue of the
characteristic polynomial

Xn(®) =t —t—1) + 34121

Moreover, when n tends to infinity( f4p) tends to the largest eigenvalue 8ftt — 1.
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The actionf, b s, on the cohomology is given by
E2—>Zo:H—El—E2—>E1—>ZB:H—El—Q

where Q denotes the divisor obtained by blowing up the pginthich is onZg. As p, is
blown-up byf,p onZc, we have

Q— fap(Q) — ... = f2p(Q) = Zc =H-E2—- Q.

Finally a generic line L intersect, Zg andZ, with multiplicity 1; the image of L is thus a
conic throughg, p; andp, so H— 2H—E; — E; — Q. In the basis

{Ha Ela E2a Q7 fa,b(Q)7 (R {Qb(Q)}

we have ) )
2 1 1 0 0. 0 1

-1 -1 -1 0 0 . 0 O

-1 0 -1 0 0 . 0 -1

-1 -1 0 0 0. 0 -1

0O 0 1 0. 0 O

Mfa,b_
0O 0 01 O 0
0

: 0 O
| 0 0 0 00 0 1 0

11.3. Invariant curves (22])

In the spirit of [/8] (seeChapter 5, 85.4) Bedford and Kim study the curves invarignt.lp.
There exists rational mags : C — C2 such that if(a,b) = ¢;(t) for some complex number
t, then fo, has an invariant curve with j irreducible components. Let us set

¢1(t)_(t_t3_t4 1—t5>’ ¢2(t)_(t+t2+t3 t3—1>’

14+2t4+t27t2 43 14+2t4+t27t+12

b3(t) = (1+t,t—%).

Theorem 11.3.1— Lett beinC\ {-1,1,0,j,j?}. There exists a cubic invariant by f, if
and only if(a,b) = ¢ (t) for a certainl < j < 3; in that caseC is described by an homogeneous
polynomial P, of degrees.

Moreover, if Rap eXists, it is given, up to multiplication by a constant, by

Pab(x,Y;2) = ad(t — Dt +yzt — Dt (z+ty)
+ x(2byzt3 FY(t—- DB+ 2t - 1)(1+ bt))

3t — 1)t3(a(y+tz) FHy+ (- 2b)z)).
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More precisely we have the following description.

e If (a,b) = ¢1(t), thenl'; = (R ap = 0) is a irreducible cuspidal cubic. The mdg, has
two fixed points, one of them is the singular pointc@f

e If (a,b) = ¢(t), thenl, = (R ap = 0) is the union of a conic and a tangent line to it. The
map fp has two fixed points.

e If (a,b) = ¢3(t), thenl 3 = (R ap = 0) is the union of three concurrent linek;, has two
fixed points, one of them is the intersection of the three acamapts ofC.

There is a relationship between the parametars) for which there exists a complex num-

bert such thath;(t) = (a,b) and the roots of the characteristic polynonyal

Theorem 11.3.2— Let n be an integer, let < j < 3 be an integer and let t be a complex
number. Assume thaa, b) := ¢;(t) does not belong to anyj for k < n. Then(a,b) belongs
to 7}, if and only if j divides n and t is a root ofy.

We can writex, asCnWn whereC, is the product of cyclotomic factors adg is the minimal
polynomial ofA(fap).

Theorem 11.3.3— Assume that & 7. Let t be a root of(, not equal tol. Then eithertis a
root of Yy, or t is a root ofx; for some0 < j <5.

Bedford and Kim prove that@# ;N 14) is, forn > 7, determined by the number of Galois
conjugates of the unique root gk, strictly greater than 1: ih > 7 and 1< j < 3 dividesn,
then

FiN%h={0;(t)|t root of Yn};

in particularl”j N 44 is not empty.

Let X be a rational surface and lgtbe an automorphism of. The pair(X,g) is said
minimal if any birational morphisntt: X — X’ which sendgX,g) on (X’,d'), whered' is an
automorphism oK’, is an isomorphism. Let us recall a question b44]. Let X be a rational
surface and leg be an automorphism of. Assume thatX, g) is minimal. Does there exist a
negative power of the class of the canonical divisgr#hich admits an holomorphic section ?
We know since 115 that the answer is no if we remove the assumptipg, y) minimal”.

Theorem 11.3.4 — There exists a surfacé and an automorphism with positive entropy, f
on Ssuch that(S, f,)) is minimal and such that,f, has no invariant curve.

If gis an automorphism of a rational surfasesuch that a negative power ofkadmits an
holomorphic sectiong preserves a curve; so Theorem 11.3.4 gives an answer to Neivul
question.

11.4. Rotation domains [22])

Assume thah > 7 (sof is not periodic); if there is a rotation domain, then its résmk or 2
(Theorem 9.4.4). We will see that both happen; let us begih miation domains of rank 1.
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Theorem 11.4.1 — Assume that &> 7. Assume that j divides n and th@ b) belongs td” ;N 7.
There exists a complex number t such tf@b) = ¢(t). If t is a Galois conjugate ok(fap),
not equal to\(fap)*L, then f, has a rotation domain of rank centered in

3 3 t2 t2
(1—+t’1—+t> if j =1, <_1—+t’_1—+t> if j =2, (—t,—t)if j =3.
Let us now deal with those of rank 2
Theorem 11.4.2 — Let us consider an integer i 8, an integer2 < j < 3 which divides n

Assume thata,b) = ¢;(t) and that|t| = 1; moreover suppose that t is a root ¢f,. Let us
denote byn1, N2 the eigenvalues of 3 f at the point

I+t+t2 1+t+t2\ .
= s f — 2,
t+t2 7 tt?

If |n1| = |n2| = 1then £, has a rotation domain on rank centered at m.

m= <1+%,1+%> if j =3.

There are examples where rotation domains of rank 1 and 2stoex

Theorem 11.4.3— Assume that i 8, that j= 2 and that j divides nThere exist§a,b)
in ;N 9, such that £, has a rotation domain of ranR centered at

1+t+t2 1+t+t2\ . . 1. 1\ ...
<++ ++>|f _2 <1+?,1+?>m=3

t+t2 7 t412
and a rotation domain of rank centered at
t2 t2
_ —— Jifi=2 —t,—t)ifj =3.
<1+t,1+t>1 : (—t,—t)if

11.5. Weyl groups [22])

Let us recall that Eand B are the divisors obtained by blowing yg and p,. To simplify
let us introduce some notationsy E H, Ez = Q, E4 = f(Q), ..., En = f"3(Q) and letrg be
the blow-up associated tq.B et us set

& = Eo, & = (Ty1...TH)"E, 1<i<nm;

the basis{ep, ..., e} of Pic(S=) is geometric.
Bedford and Kim prove that they can apply Theorem 10.5.1 aaldicke from it the following
statement.

Theorem 11.5.1 — Let X be a rational surface obtained by blowing B(C) in a finite
number of pointst: X — P?(C) and let F be an automorphism on X which represents the
standard element of the Weyl groW,, n > 5. There exists an automorphism ARF(C) and
some complex numbers a and b such that

fapATT = ATTF.

Moreover they get that a representation of the standardeglenf the Weyl group can be
obtained fromf,py.
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Theorem 11.5.2— Let X be a rational surface and let F be an automorphism on Xclwvhi
represents the standard element of the Weyl gMap There exist

e asurfaceY obtained by blowing up Y in a finite number of distinct pomt¥ — Y,

e an automorphism g o¥,

e (a,b)in 1,3
such that(F, X) is conjugate tdg,Y) and1g = fap yTT

11.6. Continuous families of automorphisms with positive tropy ([23])

In [23] Bedford and Kim introduce the following family:

k=2 4.

(11.6.1) fa(ly,2 = (z, —y+cz+ le %+ %) ,a=(a,...,a2) €C2 ceR, k>2
] pair

Theorem 11.6.1 — Let us consider the familff,) of birational maps given by11.6.1).

Let j, n be two integers relatively prime and such that j < n. There exists a non-empty
subset G of R such that, for any even k 2 and for any(c,a;) in C, x C, the map { is
conjugate to an automorphism of a rational surfegewith entropylogAnx wherelogAk is
the largest root of the polynomial

n-1
Xnk=1-k$ x)+x"
)

Let us explain briefly the construction 6f,. The lineA = {x = 0} is invariant by f,. An
element ofA\ {(0:0: 1)} can be written ag0 : 1 :w) and f(0:1:w) = (0:1:c—3). The
restriction off, to A coincides withg(w) = c— vlv The set of values af for which g is periodic
of periodnis

{2cogjm/n)[0< j<n, (j,n)=1}.
Let us sews = g*>(c) for 1 < s< n—1, in other words thev;’s encode the orbit of0 : 1 : 0)
under the action of . Thew; satisfy the following properties:

® WijWn_1-j = 1;

e if nis even, thew;...w,_»=1;

e if nis odd, let us sew,(C) = W_1)/2 thenwy ... wh_2 = w.

Let us give details about the case- 3, k=2, thenC3 = {—1, 1}. Assume that = 1; in
other words

fa=f=(xZ2:2:3+2-y7).

The mapf contracts only one lind” = {z= 0} onto the pointR= (0: 0 : 1) and blows up
exactly one pointQ = (0: 1: 0). Let us describe the sequence of blow-ups that allows us to
“solve indeterminacy™:
e first blow-up. First of all let us blow ufQ in the domain and in the range. Let us denote
by E (resp. F) the exceptional divisor obtained by blowindQfresp.R). One can check
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that E is sent onto FA] is contracted ont&= (0,0) a, b,) andQy = (0,0)y, v, is a point
of indeterminacy;

e second blow-up. Let us then blow uf; in the domain and in the range; let Gresp.
H be the exceptional divisors. One can verify that the exoppt divisor G is contracted
ontoT = (0,0)(c,.q,), &5 onto T andU = (0,0), ,) is @ point of indeterminacy;

e third blow-up. Let us continue by blowing ug in the domain and in the range, where K
and L denote the associated exceptional divisors. One @okthatWV = (1,0),, s, is @
point of indeterminacy, K is sent onto L and @ contracted oV = (1,0) ¢, q,) andA3
onV,

e fourth blow-up. Let us blow up¥V in the domain an® in the range, let M and N be the
associated exceptional divisors. ThEhis contracted oiX = (0,0) ¢, 4,), Y = (0,0)(r, &)
is a point of indeterminacy, s sent onto N and M onto H;

o fifth blow-up. Finally let us blow upY in the domain an& in the range, wherd, Q are
the associated exceptional divisors. ds sent ontcQ andA ontoAz.

Theorem 11.6.2— The map f= (xZ: 22 : x*+ 22 —yZ) is conjugate to an automorphism
of P?(C) blown up in15 points.
The first dynamical degree of f §§‘2L§

Proof — Let us denote by, (resp. P,) the point infinitely near obtained by blowing @
Q1, U, W andY (resp. R, S T, V and X). By following the sequence of blow-ups we get
that f induces an isomorphism betweer}ngll2 and B|52]P’2, the components being switched as
follows

E—F, A —Q, K—L, M —H, A= 4, G—N.

A conjugate off has positive entropy dB?(C) blown up in/ points if¢ > 10; we thus search
an automorphism of P2(C) such that(Af)2A sendsP, onto P;. We remark thatf (R) = (0 :
1:1) andf2(R) = Q then thatf2(P,) = P, soA = id is such tha{Af)2A sendsP, ontoP;.

The components are switched as follows

A — fQ, E— fF, G— fN, K— fL, M — fH,
A— fA", fF— f°F, fN — 2N, fL — 2L, fH — f2H,
fQ — f2Q, f2F — E, 2N — G, f2L — K, f2H — M,
20 — A

Therefore the matrix of * is given in the basis

{A" E,G,K,M, A, fF, fN, fL, fH, fQ, f2F, £2N, f2L, f?H, f°Q}
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00000 3 000O0O0O0O0TGO0O0 1
01 000-10000O0O0O0O0O00O
00001-3000000O0TO0TO0 0
00010-3000000O0O0TO0 0|
00100-20000000000
10000-3000000UO0O0TGO0O
00000 O 10000000 O0C
00000 O 0100000UO0GO0C
00000 O O0O0O100000O0GO0Q
00000 O O0O0DO0O10000O0O0C
00000 O O0O0OOOT1O0UO0TUO0TO0C

the largest root of the characteristic polynomial
(X2=3X4+1) (X2 =X+ (X+1)3 X2+ X+1)3(X —1)*

is 3/5 i.e. the first dynamical degree dfis 3¥°. Let us remark that the polynomigb

introduced in Theorem 11.6.1 is-12X — 2X?+ X3 whose the largest root %Zﬁ’ O
The considered family of birational maps is not triviad, parameters are effective.

Theorem 11.6.3 — Let us hold the parameter&C, fixed. The family of mapsf,) defined
by (11.6.1 induces a family of dynamical systems of dimensigh-k1. In other words there
is a neighborhoodl! of 0in C¥/2-1 such that if a= (ag, @y, ..., ak_2), b= (bo, by, ..., bx_>) are

in U then f and f, are not smoothly conjugate.

Idea of the proaf — Such a mag, hask+ 1 fixed pointspy, ..., pkr1. Letus se= (ay,...,a-_2).
Bedford and Kim show that the eigenvaluesiof, at p;(a) depend org; it follows that the
family varies non trivially witha. More precisely they prove that the trace®f, varies in

a non-trivial way. Lettj(a) denote the trace dDf, at p;(a) and let us consider the mdp
defined by

a—T(a) = (t1(a),...,k+1(a)).

The rank of the maj is equal to§ — 1 ata= 0. In fact the fixed points of, can be written
(&s,&s) whereég is a root of
k2a 1

(11.6.2) E=(Cc-1g+ Y E_H?'

j pair
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Whena s zero, we have for any fixed poiglt™t = 2%0 By differentiating (11.6.2) with respect
to ay we get fora = 0 the equality

k \ ¢ 1
@”*@H%@Z@'

this implies that

o8y ___ 1
0ay la=o ~ (2—c)(k+1)&""
The trace oD fa(y.z) is given by
k-2
_ iy  k
j pair
Fory =&, we have
01(&a) B l k(k+1)0&a ¢ k 1
da; la=0 i1 VK2 93, yitl T 2 — CEKHIElHI
l k k-—¢

YATE T
If we let ; range over'g — 1 distinct choices of rootw, the matrix essentially is

a(¥—1) x (¥ —1) Vandermondian and so of rark 1.

There exists a neighborhoad of 0 in C5‘1 such that, for any, b in U with a# b, the
map f is not diffeomorphic tofy. In fact the mapC5*1 — C*1 a T(a) is locally injective
in a neighborhood of OMoreover, fora = 0, the fixed pointgy, ..., pkr1, and so the values
11(0), ..., Tk+1(0), are distinct. Thu€?-15a— {t1(a),...,+1(a)} is locally injective in 0
Soif U is a sufficiently small neighborhood of 0 andhiindb are two distinct elements dfl,
the sets of multipliers at the fixed points are not the samfaglliws that f, and f, are not
smoothly conjugate. O

Let f, be a map which satisfies Theorem 11.6.1. Bedford and Kim shatiri all the cases
under their consideration the representation

Aut(S;) — GL(Pic(S,)), Qo @,

is at most((k? — 1) : 1); moreover ifa,_» is non zero, it is faithful. Whem = 2, the image
of Aut(S;) — GL(Pic(S,)), @+— @. coincides with elements of GPic(S,)) that are isome-
tries with respect to the intersection product, and whiagserve the canonical class of &

well as the semigroup of effective divisors; this subgrosiphie infinite dihedral group with
generatorsf,, andi, wherel denotes the reflectiofx,y) — (y,x). They deduce from it that,
always forn = 2, the surfaces Sare, in general, not biholomorphically equivalent.

Theorem 11.6.4— Assume that B= 2 and that k> 4 is even. Let a be if©¥2~! and ¢ be
in C,. There exists a neighborhoat! of 0 in C¥/2-1 such that if ab are two distinct points
of U and if a._1 is nonzero, thei%, is not biholomorphically equivalent 18,.
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11.7. Dynamics of automorphisms with positive entropy: roation domains (24])

If S is a compact complex surface carrying an automorphisth positive entropyf, a
theorem of Cantat (Theorem 9.3.4) says that

e either f is conjugate to an automorphism of the unique minimal mo#@& which has to

be a torus, a K3 surface or an Enriques surface;

e or f is birationally conjugate to a birational map of the compbesjective plane ¢4]).

We also see that if S is a complex torus, the Fatou sétisfempty. If S is a K3 surface or
a guotient of a K3 surface, the existence of a volume formimsghat the only possible Fatou
components are the rotation domains. McMullen proved thetence of non-algebraic K3
surfaces with rotation domains of rank ge€[143). What happen if S is a rational non-
minimal surface ? The automorphisms with positive entropyational non-minimal surfaces
can have large rotation domains.

Theorem 11.7.1 — There exists a rational surfacgcarrying an automorphism with positive
entropy h and a rotation domaifil. Moreover, U is a union of invariant Siegel disks, h acting
as an irrational rotation on any of these disks.

The linearization is a very good tool to prove the existenceotation domains but it is a
local technique. In order to understand the global natuthefatou componerit, Bedford
and Kim introduce a global model and get the following staetn

Theorem 11.7.2 — There exist a surfacé obtained by blowing uf?(C) in a finite number
of points, an automorphism L of, a domainQ of £ and a biholomorphic conjugac: U — Q
which sendsgh, U) onto (L, £).

In particular, h has no periodic point ofdl \ {z= 0}.

Let us consider fon, m> 1 the polynomial
t"m—1)(t" -2t 1)
Pam(t) =
nm(t) (th—1)(t—1)
If n>4, m>1orif n=23, m> 2 this polynomial is a Salem polynomial.

+1

Theorem 11.7.3 — Let us consider the birational map f given in the affine chagt Z1 by
1
f(X7 y) = <y7 _6X+ Cy+ 9)

whered is a root of &, i, which is not a root of unity and € 2v/dcog jr/n) with1 < j <n—1,
(j,n)=1.

There exists a rational surfacgobtained by blowing ufp?(C) in a finite number of points
T S— P?(C) such thatt 1 ftis an automorphism o8.

Moreover, the entropy of f is the largest root of the polyredrd .

Bedford and Kim use the pafif¥,S) to prove the statements 11.7.1 and 11.7.2.



CHAPTER 12

A “SYSTEMATIC” WAY TO CONSTRUCT
AUTOMORPHISMS OF POSITIVE ENTROPY

This section is devoted to a “systematic” construction afregles of rational surfaces with
biholomorphisms of positive entropy. The strategy is thibofang: start with a birational
map f of P?(C). By the standard factorization theorem for birational mapsorfaces as a
composition of blow-ups and blow-downs, there exist twe st (possibly infinitely near)
points P, and P, in P2(C) such thatf can be lifted to an automorphism betweerblBF

and BBZIP’Z. The data ofP; and P, allows to get automorphisms of rational surfaces in the
left PGLs(C)-orbit of f : assume th&kt € N is fixed and leth be an element of PGI(C) such
thatPy, dPs, (¢ F)OP, ..., (& f)* LdP, have all distinct supports iB2(C) and(¢ f)*¢P, = Py.
Then ¢ f can be lifted to an automorphism &(C) blown up atPy, ¢Ps, (¢ 0P, ...,
(¢f)k‘1¢|32. Furthermore, if the conditions above are satisfied for arnolghic family ofd,
we get a holomorphic family of rational surfaces (whose disien is at most eight). Therefore,
we see that the problem of lifting an element in the B@&L-orbit of f to an automorphism
is strongly related to the equatiaifP,) = Py, whereu is a germ of biholomorphism d#?2(C)
mapping the support dP, to the support of;. In concrete examples, wheé® and P, are
known, this equation can actually be solved and involvegmhial equations in the Taylor
expansions ofi at the various points of the support Bf. It is worth pointing out that in the
generic caseP; andP; consist of the same numberof distinct points in the projective plane,
and the equatiom(P,) = P, gives 2l independent conditions am (which is the maximum
possible number iP, andP, have lengthd). Conversely, infinitely near points can consider-
ably decrease the number of conditionswas shown in our examples. This explains why
holomorphic families of automorphisms of rational suraoecur when blow-ups on infinitely
near point are made. We illustrate the method on two examples

We end the chapter with a summary about the current knowledgautomorphisms of
rational surfaces with positive entropy.
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12.1. Birational maps whose exceptional locus is a line

Let us consider the birational map defined by
Pn= (x2 1y iyl 2, n>3.

The sequencédegdX)cn is bounded (it's easy to see in the affine chagt 1), sod, is
conjugate to an automorphism on some rational surface Sraitdrate of®, is conjugate to
an automorphism isotopic to the identity {]). The map®,, blows up one poinP = (1:0:0)
and blows down one curvk = {z= 0}.

Here we will assume that = 3 but the construction is similar far > 4 (see[73]). We
first construct two infinitely near poinﬁl and P, such thatd; induces an isomorphism be-
tween B}, P2 and BJ; P. Then we give “theoretical” conditions to produce automdspts ¢
of P?(C) such thath®s is conjugate to an automorphism on a surface obtained Be(@) by
successive blow-ups.

12.1.1. First step: description of the sequence of blow-ups—

12.1.1.1. First blow up the poinP in the domain and in the range. Set u; andz= uyv;;
remark thaf(u;,vy) are coordinates ne& = (0,0)y, v,), coordinates in which the exceptional
divisor is given by E= {u; = 0} and the strict transform o is given byA; = {v; = 0}.
Sety =r1s; andz= s; note that(r;,s;) are coordinates ne& = (0,0),, s,), coordinates in
which E= {s; = 0}. We have

(Ul,Vl) — (Ul, U1V1)(y’z) — (V21 “+Up: V21U1 . V%Ul)

= > ) 2 ?
Vl + U1 Vl + ul (yiz) Vl + ul (U]_,V]_)

(r1,s1) = (r181,51) gz — (14138101181 51)

and

rs; S1 S1 .
= 3.0 3 — | I, 1, 34 )
1+ris 14+ris (%2 1+r3s (rus1)
thereforeP; is a point of indeterminacy); is blown down toP; and E is fixed.
12.1.1.2. Let us blow upP; in the domain and in the range. Sgt= u, andv; = uv,. Note
that(uz,Vv2) are coordinates arour®} = (0,0)(y, v,) in WhichA; = {v, = 0} and F= {u, = 0}.

If we setu; =rys; andvy = s, then (rz,s,) are coordinates nea = (0,0), ,); in these
coordinates = {s, = 0}. Moreover

(Up,V2) = (U, UpV2) (g vy) — (14 UpV5 1 UBVS : U3V3)
and
(r2.%2) = (1252,%2) (ry.81) — (T2 +2 11285 1 1253).
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Remark tha®\ is a point of indeterminacy. We also have

ud\v2 ud\v3
(Up,V2) = (Up, UpV2) (g vy) — (14 UpV5 1 UBVS : U3V3) — ( 272 2°2 >
2

1+upv3’ 14 upV3

2

udva UpVa

—><1 222,U2V2> —><71 5, U2V2
TV, (ug,v1) T Vs (r2,%2)

so F and); are blown down tdA.

12.1.1.3. Now let us blow upA in the domain and in the range. Set=uz; ands, =
U3vs; (U3, V3) are coordinates nedy = (0,0)(y, v,), coordinates in which £= {v3 = 0} and
G = {uz= 0}. If rp =rzs3 ands, = s3, then(rz,s3) is a system of coordinates in which
E, = {r3 =0} and G= {s3 =0}. We have

(U3, V3) — (U3, UsVa) (r,5,) — (1+Va: USVE : USVZ),

(r3,3) — (r383,88) (1) — (l+ rs: r3§ : rgi).
The pointT = (—1,0), s, is a point of indeterminacy. Moreover

2\ 2 3 2\ 2
(U3 V3) — < U3V3 U3V§ > — < U3V3 U3V3>
7 14V 14Vs )y \1+Va" 7 )

%<“3V3uv> %< 1 uv) -
q ., oy Y3V3 T, 2 U3V3 ’
1+vs (r2,%) 1+vs (r3,83)

so G is fixed and Fis blown down taS= (1,0), ,)-

12.1.1.4. Let us blow upT in the domain an&in the range. Sat; = uy — 1 andsz = UgVy; in
the system of coordinatésis, v4) we have G = {v4 = 0} and H= {us = O}. Note that(rs,s),
whererz =ry& — 1 andsg = 4, is a system of coordinates in which-H{s, = 0}. On the one

hand
(ua,Va) = (Us — 1,UaVa)(ry 5) — ((Ua —1)uaV, (us — DURv3)

— ((U4 — :I.)U4V27 U4V4) (Upvi) — ((U4 — :I.)V47 U4V4) (r2%2)

u
— ((u4— 1)y, 4 l>
Ua =2/ ()

so H is sent on & On the other hand
(ra,84) = (FaSa— 1,84 (rye0) = (ra: (rasa— L5 2 (rasa— 1)s});
henceB = (0,0), s, is a point of indeterminacy.

Setrz=as+1, s3=a4bas; (a4,b4) are coordinates in which{G= {b, = 0} and K= {a; = 0}.
We can also set; = c4ds + 1 andsz = dg; in the system of coordinatés,, ds) the exceptional
divisor K is given byd, = 0.

Note that

1 V3
(Uz,V3) — < ,U3V3> — <— 7—U3(1+V3)> ;
1+vs (a.55) 1+vs (auba)
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thus B is sent on K
We remark that

2 U
(ug,vi) — +U1 U1V2 U1V3) < wvy 11 >
¥2)

Up+V2 ug + V2

U uiVvq

- ) 1> — < ,V1>
< u1 + 2 Ul Vl) Ul + 2 (I’z.SQ)
(

Uy Vi
— i V2 ,V1 — | = Ur + V2 ,V1i ;
U +Vy (r3,s) 17TV, (Ca,04)

so/\4 is blown down taC = (0 0) (ca,dla)-

12.1.1.5. Now let us blown uB in the domain an€ in the range. Sat; = us, 4 = Usvs and
ra=rsS, 3 =Ss. Then(us,vs) (resp.(rs,ss)) is a system of coordinates in which+{us = 0}
(resp. H = {vs =0} and L= {s; = 0}). We note that
(Us,V5) — (Us,UsV5) (1 s,) — (1:Vs(UBVs — 1) : usv3(udvs — 1))
and
(rs,S5) — (I'sS5,S5) (ry.s) — (15155 — 1 :55(rs2 — 1)).
Therefore L is sent o5 and there is no point of indeterminacy.

Setcy = a5, dg = aghs andcy = csds, ds4 = ds. In the first (resp. second) system of coordi-
nates the exceptional divisor M is given bgs = 0} (resp.{ds = 0}). We have

V. 1
(ulyvl) — <_ ! 27V1> — <_727V1> ;
ULtV (cada) ULtV (es.06)

in particularAsg is sent on M

Proposition 12.1.1[73]). — LetP; (resp. I52) be the point infinitely near P obtained by blo-
wing upP?(C) at P, P, A, T and U (resp. PP, A, S and U).
The mapds induces an isomorphism betweBh; P> and Bl g P2.

The different components are swapped as follows

A—M, E—E, F— K, G—G, H—F, L—A

12.1.2. Second step: gluing conditions. —The gluing conditions reduce to the following
problem: ifuis a germ of biholomorphism in a neighborhoodRyfind the conditions omi in
order thatu(P,) = P;.

Proposition 12.1.3[73]). — Let uy,z) = ( S my'z, S ni7jyizj> be a germ of bi-
(i.f)ene (i.f)ene
holomorphism at P
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Then u can be lifted to a germ of biholomorphism bet\/\BlgziP’2 and BlﬁllP’2 if and only if

3mg 1N
3 2 1Mo 1
Moo =Noo=Mo=Mio+Ng1 =0, Npo=—F—-.

3 s 2m1.0

12.1.3. Examples. —In this section, we will use the two above steps to producdi@ip
examples of automorphisms of rational surfaces obtairwed hirational maps in the PGLC)-
orbit of ®3. As we have to blow ufP?(C) at least ten times to have non zero-entropy, we want
to find an automorphisr of P?(C) such that

(12.1.1)  (0D3)kd(P,) = Py with (k+1)(2n—1) > 10(¢P3)'dp(P) #P for 0<i <k—1
First of all let us introduce the following definition.

Definition. — LetU be an open subset @" and let¢: U — PGL3(C) be a holomorphic
map. If f is a birational map of the projective plane, we say that thalfaof birational maps
(as,....an F(as,....aneu is holomorphically trivial if for every a® = (a?, ..., af) in U there
exists a holomorphic map from a neighborhadg of a® to PGLs(C) such that

* Myo .0 = Id,

° \V/(CX]_, ey (Xn) S Uao, (I)gl ..... qnf = Mgl’““gn(q)qg“”’ag f)Mal:I;<<<7Gn'

Theorem 12.1.3— Let ¢y be the automorphism of the complex projective plane given by
a 21-a) (2+a-—oa?)
b= -1 0 (a+1) , aeC\{0,1}.
1 -2 (1-0)
The maph D3 is conjugate to an automorphism Bf(C) blown up in15 points.

The first dynamical degree ¢fPs is “Tﬁ’ > 1
The familyd,P3 is holomorphically trivial.

Proof. — The first assertion is given by Proposition 12.1.2.
The different components are swapped as follows (812.1.1)

A — oM, E— ¢qE, F— ¢aK,

G — §4G, H— ¢qF, L — ¢ad,

boE — 0o P3dqE, boF — daP3daF, oG — 0o P304 G,
oK — oo P3daK, daM — §aP3doM, ba P30 E — E,
baP30aF — F, baP30aG — G, baP3paK — H,
PaP3doM — L.

So, in the basis
{A7 E> F> Gv H> Lv ¢GE7 ¢(1F7 q)C(Gv (I)(XKv ¢(1M ¢dq)3¢(1E7
¢GCD3¢(XF7 ¢a¢3¢aG7 ¢a¢3¢aK7 ¢qu)3¢cxM }7
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the matrix of(¢qP3). is

O OO O oo
O OO O oo
O OO O oo
o OO oOPr o
O OO kr oo
O oOoOpr OOO0o
O pr OO OO0
2P O O O O Qi

|
w
O OO oo
O OO oo
O OO oo
O OO oo
O OO oo
O OO oo
O OO oo
O O O O O

0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

OCO0OO0OO0OO0OO0O0OORrROO0OOOO O
OO0OO0OO0OO0ORrROOO0OOOO OO O
OCO0OO0OO0OO0OO0OO0ORrROOOOO OO O
OCO0OO0OO0OO0OO0OORrROOOO OO O
|
N
OCo0OO0ORrRo0oOPOOO0OO 000000
RO O0OO0OOOPOOOO 00000

O OO Ok
O oOoOr OO
OFr OO0OOo
o O O oo
O OO oo
o OO oo
o O O oo
0 O O O O

0

and its characteristic polynomial is

(X2 =3X 4+ 1) (X2 =X+ 1) (X +1)*(X2+ X+ 1)3(X - 1%

o
o
o

Thus

)\(¢a¢3) = 3_|_2\/S >

Fix a pointag in C\ {0, 1}. We can find locally around, a matrixMy depending holomor-
phically ona such that for albi nearag we have

dqP3 = Mc;1¢aoq)3Mor :

1

if s a local holomorphic solution of the equatian= "o such thajpy = 1 we can take

1 0 ogp—a
Mq=|0 1 0
00 1

12.2. A birational cubic map blowing down one conic and onefiie
Let Y denote the following birational map
W= (Y2z: X(xz+Y?) 1 y(Xz+ Y?));
it blows up two points and blows down two curves, more prédgise
Indp={R=(1:0:0,P=(0:0:1)},
Excy = (C= {xz+y*=0})uU (&' = {y=0}).
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We can verify thatp—! = (y(Z2 — xy) : 2(Z —xy) : xZ) and
Indy~={Q=(0:1:0,R},
Excy = (C'={Z-xy=0})uU(a"={z=0}).
The sequence of blow-ups is a little bit different; let usali it. Denote byA the linex = 0.

e First we blow upRin the domain and in the range and denote by E the exceptiorisbd
We can show that; = {u; +vi = 0} is sent on EE is blown down taQ = (0: 1: 0) and
S=ENA/ is a point of indeterminacy.

e Next we blow upP in the domain and) in the range and denote by F (resp. G) the
exceptional divisor associated wikth(resp.Q). We can verify that F is sent off}, E; is
blown down toT = GN A, and4, is blown down toT.

e Then we blow upSin the domain and in the range and denote by H (resp. K) the
exceptional divisor obtained by blowing @{resp.T). We can show that H is sent on K;
E,, A; are blown down to a point on K and there is a point of indeterminadyon H.

o We will now blow upU in the domain an¥l in the range; let L (resp. M) be the exceptional
divisor obtained by blowing up (resp.V). There is a point of indeterminadyon L, L
is sent on G, E3 on M andA), is blown down to a poinZ of M.

e Finally we blow upY in the domain and in the range. We have; is sent onQ and N
onAz, whereQ (resp. N) is the exceptional divisor obtained by blowingZfresp.Y).

Proposition 12.2.1 — Let P, (resp. |52) denote the point infinitely near Resp. Q obtained
by blowing up RS, U and Y (resp. Q T,V and 2. The mapy induces an isomorphism
betweerBls P? andBlg ¢ P2. The different components are swapped as follows:

C—E F—=(C, H-=K L—=-G E—-M  A-=Q N=A.
The following statement gives the gluing conditions.

Proposition 12.2.2 — Letux,z) = < S mixz, § nm-xizj) be a germ of biholomor-
(.f)en (.f)en
phism at Q
Then u can be lifted to a germ of biholomorphism betwikrP? andBlg P? if and only if
® Moo= Ngo=0;
Moy =0;
No2+Nio-+ng, =0;
No.3+Ny1+2Mo1(Mo2 + My o) = 0.

Let ¢ be an automorphism &?. We will adjust$ such that o) d sends?, ontoP; andR
ontoP. As we have to blow ufP? at least ten times to have nonzero entrdpgust be larger
than two,

PL, 0P, QUOP2, (9W)*P2, ..., (0W)< 10P,
must all have distinct supports a(ﬂqu)kcl)ﬁz =P.. We provide such matrices fér= 3; then
by Proposition 12.2.2 we have the following statement.
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Theorem 12.2.3— Assume thaip = (yzz: X(Xz+y?) :y(xz+y2)) and that
20(37W3+3) o —2(5iv/3+11)
0o = | &(-15+11W3) 1 —&(5iV3+11) |, aeC

~%(2iv3+3) 0 0

The maphq\P is conjugate to an automorphism Bf blown up in15 points.
The first dynamical degree ¢fW is A(dq W) = 352,
The familyd, is locally holomorphically trivial.

Proof. — In the basis
{A/7 E7 F7 Ha L7 Na ¢GE7 ¢0Ga ¢0Ka ¢GM7 ¢GQ7
¢C(LIJ¢(XE7 (I)(Xqu)GG» ¢C(LIJ¢(XK7 (I)(Xqu)GMv ¢C(qJ¢C(Q}

the matrixM of (¢poW). is
00 2 00 1 00O0O0O0O0GO0TUO0OO(
00 2 00 1 000O0O0O0T1O0O0d
00 2 00 1 000O0O0T1O00O0d
00 2 00 1 000O0O0O0O0TU1O0d
00 2 00 1 000O0O0O0O0GO0OT1d
00 2 00 1 00O0O0O0OO0OO0UO0O0 1
00-100-10000000D0TV0O0
00-101-100000000P0D0
00-210-1000000W00P0O0
01 -300-10000000O0T0O0
10 -400-100000000O00
00 0 00O O 1000O0OOO0TU OO
00 0 00 0 010000O0O0OTO0(
00 0 00O 0 0010000O0OTGO0(
00 0 00O 0 00OO0O1O0UO0O0TO0O(
00 0 00O 0 00O0O0OO1000O0d

Its characteristic polynomial is
(X = D)HX+1)?(X2 =X+ 1)(X?+X+1)3(X2—3X +1).
HenceA ($q) = 5.

Fix a pointag in C*. We can find locally aroundg a matrixMy depending holomorphically

ona such that for alb nearag, we havedq P = Mg 1y, WM, : take

1 0 O
Mazoa%o
0 0 «
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12.3. Scholium

There are now two different points of view to construct aubgphisms with positive en-
tropy on rational non-minimal surfaces obtained from lorzdl maps of the complex projec-
tive plane.

The first one is to start with birational mapsks(C) and to adjust their coefficients such that
after a finite number of blow-ups the maps become automarnshan some rational surfaces
S. Then we compute the action of these maps on the Picard gfd@pnd in particular obtain
the entropy. There is a systematic way to do explaine@3hdnd applied to produce examples.
Using examples coming from physicists Bedford and Kim

e exhibit continuous families of birational maps conjugateattomorphisms with positive
entropy on some rational surfaces;

e show that automorphisms with positive entropy on ratiolwal-minimal surfaces obtained
from birational maps oP?(C) can have large rotation domains and that rotation domains
of rank 1 and 2 coexist.

Let us also mention the idea of]: the author begins with a quadratic birational map that
fixes some cubic curve and then use the “group law” on the cubienderstand when the
indeterminacy and exceptional behavior of the transfaonatan be eliminated by repeated
blowing up.

The second point of view is to construct automorphisms onesaational surfaces pre-
scribing the action of the automorphisms on cohomologicalps; this is exactly what does
McMullen in [144]: for n > 10, the standard element of the Weyl group, \%an be realized by
an automorphisn, with positive entropy log\,) of a rational surface S This result has been
improved in [L81]:

{\(f)| f is an automorphism on some rational surface
= {spectral radius of¢ > 1|w € Wy, n> 3}.

In [48] the authors classify rational surfaces for which the imaf¢he automorphisms
group in the group of linear transformations of the Picamlgris the largest possible; it can
be rephrased in terms of periodic orbits of birational axgiof infinite Coxeter groups.
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