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REPRESENTATIONS OF SOME LATTICES INTO THE GROUP OF ANALYTIC DIFFEOMORPHISMS OF THE SPHERE S 2 by

it is proved that any morphism from a subgroup of finite index of SL(n, Z) to the group of analytic diffeomorphisms of S 2 has a finite image as soon as n ≥ 5. The case n = 4 is also claimed to follow along the same arguments; in fact this is not straightforward and this case indeed needs a modification of the argument. In this paper we recall the strategy for n ≥ 5 and then focus on the case n = 4. 2010 Mathematics Subject Classification. -58D05, 58B25

1. The stabilizer of every point is trivial, i.e. the action of a non trivial element of f , g has no fixed point.

Introduction

After the works of Margulis ([14,[START_REF] Vinberg | Discrete subgroups of Lie groups[END_REF]) on the linear representations of lattices of simple, real Lie groups with R-rank larger than 1, some authors, like Zimmer, suggest to study the actions of lattices on compact manifolds ( [START_REF] Zimmer | Kazhdan groups acting on compact manifolds[END_REF][START_REF] Zimmer | On connection-preserving actions of discrete linear groups[END_REF][START_REF] Zimmer | Actions of semisimple groups and discrete subgroups[END_REF][START_REF] Zimmer | Lattices in semisimple groups and invariant geometric structures on compact manifolds[END_REF]). One of the main conjectures of this program is the following: let us consider a connected, simple, real Lie group G and let Γ be a lattice of G of R-rank larger than 1. If there exists a morphism of infinite image from Γ to the group of diffeomorphisms of a compact manifold M, then the R-rank of G is bounded by the dimension of M. There are a lot of contributions in that direction ( [3,[START_REF] Cantat | Version kählérienne d'une conjecture de Robert J. Zimmer[END_REF][START_REF] Cantat | Sur les groupes de transformations birationnelles des surfaces[END_REF][START_REF] Déserti | Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer[END_REF][START_REF] Farb | Real-analytic actions of lattices[END_REF][START_REF] Franks | Area preserving group actions on surfaces[END_REF][START_REF] Ghys | Sur les groupes engendrés par des difféomorphismes proches de l'identité[END_REF][START_REF] Ghys | Actions de réseaux sur le cercle[END_REF][START_REF] Navas | Actions de groupes de Kazhdan sur le cercle[END_REF][START_REF] Polterovich | Growth of maps, distortion in groups and symplectic geometry[END_REF]). In this article we will focus on the embeddings of subgroups of finite index of SL(n, Z) into the group Diff ω (S 2 ) of real analytic diffeomorphisms of S 2 (see [START_REF] Ghys | Sur les groupes engendrés par des difféomorphismes proches de l'identité[END_REF]).

The article is organized as follows. First of all we will recall the strategy of [START_REF] Ghys | Sur les groupes engendrés par des difféomorphismes proches de l'identité[END_REF]: the study of the nilpotent subgroups of Diff ω (S 2 ) implies that such subgroups are metabelian. But subgroups of finite index of SL(n, Z), for n ≥ 5, contain nilpotent subgroups of length n -1 of finite index which are not metabelian; as a consequence Ghys gets the following statement.

Theorem A ([10]

). -Let Γ be a subgroup of finite index of SL(n, Z). As soon as n ≥ 5 there is no embedding of Γ into Diff ω (S 2 ).

To study nilpotent subgroups of Diff ω (S 2 ) one has to study nilpotent subgroups of Diff ω + (S 1 ) (see §2) and then nilpotent subgroups of the group of formal diffeomorphisms of C 2 (see §3). The last section is devoted to establish the following result.

Theorem B.

-Let Γ be a subgroup of finite index of SL(n, Z). As soon as n ≥ 4 there is no embedding of Γ into Diff ω (S 2 ).

The proof relies on the characterization, up to isomorphism, of nilpotent subalgebras of length 3 of the algebra of formal vector fields of C 2 which vanish at the origin.
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Nilpotent subgroups of the group of analytic diffeomorphisms of S 1

Let G be a group; let us set

G (0) = G & G (i) = [G, G (i-1) ] ∀ i ≥ 1.
The group G is nilpotent if there exists an integer n such that G

(n) = {id}; the length of nilpotence of G is the smallest integer k such that G (k) = {id}. Set G (0) = G & G (i) = [G (i-1) , G (i-1) ] ∀ i ≥ 1.
The group G is solvable if G (n) = {id} for a certain n; the length of solvability of G is the smallest integer k such that G (k) = {id}.

We say that the group G (resp. algebra g) is metabelian if [G, G] (resp. [g, g]) is abelian.

Proposition 2.1 ([10]

). -Any nilpotent subgroup of Diff ω + (S 1 ) is abelian.

Proof. -Let G be a nilpotent subgroup of Diff ω + (S 1 ). Assume that G is not abelian; it thus contains a Heisenberg group

f , g, h | [ f , g] = h, [ f , h] = [g, h] = id .
The application "rotation number"

Diff ω + (S 1 ) → R/Z, ψ → lim n→+∞ ψ n (x) -x n
is not a morphism but its restriction to a solvable subgroup is ( [START_REF] Bavard | Longueur stable des commutateurs[END_REF]). Thus the rotation number of h is zero and the set Fix(h) of fixed points of h is non-empty and finite. Considering some iterates of f and g instead of f and g one can assume that f and g fix any point of Fix(h). The set of fixed points of a non trivial element of f , g is finite and invariant by h so the action of f , g is free (1) on each component of S 1 \ Fix(h). But the action of a free group on R is abelian: contradiction.

Nilpotent subgroups of the group of formal diffeomorphisms of C 2

Let us denote Diff(C 2 , 0) the group of formal diffeomorphisms of C 2 , i.e. the formal completion of the group of germs of holomorphic diffeomorphisms at 0. For any i let Diff i be the quotient of Diff(C 2 , 0) by the normal subgroups of formal diffeomorphisms tangent to the identity with multiplicity i; it can be viewed as the set of jets of diffeomorphisms at order i with the law of composition with truncation at order i. Note that Diff i is a complex linear algebraic group. One can see Diff(C 2 , 0) as the projective limit of the Diff i 's: Diff(C 2 , 0) = lim ← Diff i . Let us denote by χ(C 2 , 0) the algebra of formal vector fields in C 2 vanishing at 0. One can define the set χ i of the i-th jets of vector fields; one has lim

← χ i = χ(C 2 , 0).
Let O(C 2 ) be the ring of formal series in two variables and let K(C 2 ) be its fraction field; O i is the set of elements of O(C 2 ) truncated at order i.

The family exp i : χ i → Diff i i is filtered, i.e. compatible with the truncation. We then define the exponential application as follows: exp = lim

← exp i : χ(C 2 , 0) → Diff(C 2 , 0).
As in the classical case, if X belongs to χ(C 2 , 0), then exp(X ) can be seen as the "flow at time 1" of X .

Indeed an element X i of χ i can be seen as a derivation of O i ; so it can be written S i + N i where S i and N i are two semi-simple, resp. nilpotent derivations which commute. Taking the limit, one gets X = S + N where S is a semi-simple vector field and N a nilpotent one and [S, N] = id (see [START_REF] Martinet | Normalisation des champs de vecteurs holomorphes (d'après A.-D Brjuno)[END_REF]). A semi-simple vector field is a formal vector field conjugate to a diagonal linear vector field which is complete. A vector field is nilpotent if and only if its linear part is; let us remark that the usual flow ϕ t of a nilpotent vector field is polynomial in t

ϕ t (x) = ∑ I P I (t)x I , P I ∈ (C[t]) 2
so ϕ 1 (x) is well defined. As a consequence exp(tX ) = exp(tS) exp(tN) is well defined for t = 1. Note that the Jordan decomposition is purely formal: if X is holomorphic, S and N are not necessary holomorphic.

Proposition 3.1 ([10]

). -Any nilpotent subalgebra of χ(C 2 , 0) is metabelian.

Proof. -Let l be a nilpotent subalgebra of χ(C 2 , 0) and let Z(l) be its center. Since χ(C 2 , 0) ⊗ K(C 2 ) is a vector space of dimension 2 over K(C 2 ) one has the following alternative:

• the dimension of the subspace generated by

Z(l) in χ(C 2 , 0) ⊗ K(C 2 ) is 1;
• the dimension of the subspace generated by

Z(l) in χ(C 2 , 0) ⊗ K(C 2 ) is 2.
Let us study these different cases. Under the first assumption there exists an element X of Z(l) having the following property: any vector field of Z(l) can be written uX with u in K(C 2 ). Let us consider the subalgebra g of l given by

g = X ∈ l | ∃ u ∈ K(C 2 ), X = uX .
Since X belongs to Z(l), the algebra g is abelian; it is also an ideal of l. Let us assume that l is not abelian: let Y be an element of l whose projection on l/g is non trivial and central. Any vector field of l can be written as uX + vY with u, v in K(C 2 ). As X belongs to Z(l) and Y is central modulo g one has

X (u) = X (v) = Y (v) = 0.
The vector fields ∂ ∂x and ∂ ∂y being some linear combinations of X and Y with coefficients in K(C 2 , 0), the partial derivatives of v are zero so v is a constant. Therefore [l, l] ⊂ g; but g is abelian so l is metabelian.

In the second case Z(l) has two elements X and Y which are linearly independent on K(C 2 ). Any vector field of l can be written as uX + vY with u and v in K(C 2 ). Since X and Y belong to Z(l) one has

X (u) = X (v) = Y (u) = Y (v) = 0.
As a consequence u and v are constant, i.e. l ⊂ {uX + vY | u, v ∈ C}; in particular l is abelian.

Proposition 3.2 ([10]). -Any nilpotent subgroup of Diff(C 2 , 0) is metabelian. Proof. -Let G be a nilpotent subgroup of Diff(C 2 , 0) of length k. Let us denote G i the projection of G on Diff i . The Zariski closure G i of G i in Diff i is an algebraic nilpotent subgroup of length k. It is sufficient to prove that G i is metabelian.
Since G i is a complex algebraic subgroup it is the direct product of the subgroup G i,u of its unipotent elements and the subgroup G i,s of its semi-simple elements (see for example [START_REF] Borel | Linear algebraic groups[END_REF]).

An element of Diff i is unipotent if and only if its linear part, which is in GL(2, C), is; so G i,s projects injectively onto a nilpotent subgroup of GL(2, C). Therefore G i,s is abelian.

Let us now consider G i,u ; this group is the exponential of a nilpotent Lie algebra l i of χ i of length k. Taking the limit one thus obtains the existence of a nilpotent subalgebra l of χ(C 2 , 0) of length k such that exp(l) projects onto G i,u for any i. According to Proposition 3.1 the subalgebra l and thus G i,u are metabelian. Proof. -Let G be a nilpotent subgroup of Diff ω (S 2 ); up to finite index one can assume that the elements of G preserve the orientation. Let φ be a non trivial element of G which commutes with G. Let Fix(φ) be the set of fixed points of φ; it is a non empty analytic subspace of S 2 invariant by G. If p is an isolated fixed point of φ, then the orbit of p under the action of G is finite. So it is sufficient to study the case where Fix(φ) only contains curves; there are thus two possibilities:

Nilpotent subgroups of the group of analytic diffeomorphisms of S 2

• Fix(φ) is a singular analytic curve whose set of singular points is a finite orbit for G;

• Fix(φ) is a smooth analytic curve, not necessary connected. One of the connected component of S 2 \ Fix(φ) is a disk denoted D. Any subgroup Γ of finite index of G which contains φ fixes D. Let us consider an element γ of Γ and a fixed point m of γ which is in D. By construction φ has no fixed point in D so according to the Brouwer Theorem (φ k (m)) k has a limit point on the boundary ∂D of D. Therefore γ has at least one fixed point on ∂D. The group Γ thus acts on the circle ∂D and any of its elements has a fixed point on D. Then Γ has a fixed point on ∂D (Proposition 2.1).

Theorem 4.2 ([10]

). -Any nilpotent subgroup of Diff ω (S 2 ) is metabelian.

Proof. -Let G be a nilpotent subgroup of Diff ω (S 2 ) and let Γ be a subgroup of finite index of G having a fixed point m (such a subgroup exists according to Proposition 4.1). One can embed Γ into Diff(R 2 , 0), and so into Diff(C 2 , 0), by considering the jets of infinite order of elements of Γ in m. According to Proposition 3.2 the group Γ is metabelian. One can assume that G is a finitely generated group. Let us first assume that G has no element of finite order. Then G is a cocompact lattice of the nilpotent, simply connected Lie group G ⊗ R (see [START_REF] Raghunathan | Discrete subgroups of Lie groups[END_REF]). The group G is metabelian if and only if G ⊗ R is; but Γ is metabelian so G ⊗ R also.

Finally let us consider the case where G has at least one element of finite order. The set of such elements is a normal subgroup of G which thus intersects non trivially the center Z(G) of G. Let us consider a non trivial element φ of Z(G) which has finite order. Let us recall that a finite group of diffeomorphisms of the sphere is conjugate to a group of isometries. Denote by G + the subgroup of elements of G which preserve the orientation. It is thus sufficient to prove that G + is metabelian; indeed if φ does not preserve the orientation, φ has order 2 and G = Z/2Z × G + . So let us assume that φ preserves the orientation; φ is conjugate to a direct isometry of S 2 and has exactly two fixed points on the sphere. The group G has thus an invariant set of two elements. By considering germs in the neighborhood of these two points, one gets that G can be embedded into 2 • Diff(R 2 , 0) (2) and thus into 2 • Diff(C 2 , 0):

1 -→ Diff(C 2 , 0) -→ 2 • Diff(C 2 , 0) -→ Z/2Z -→ 0.
Let us remark that 2 • Diff(C 2 , 0) is the projective limit of the algebraic groups 2 • Diff i . The end of the proof is thus the same as the proof of Proposition 3.2 except that the subgroup of the semi-simple elements of 2 • Diff i embeds now in 2 • GL(2, C); it is metabelian because it contains an abelian subgroup of index 2.

Let Γ be a subgroup of finite index of SL(n, Z) for n ≥ 5. Since Γ contains nilpotent subgroups of finite index of length n -1 (for example the group of upper triangular unipotent matrices) which are not metabelian one gets the following statement.

Corollary 4.3 ([10]

). -Let Γ be a subgroup of finite index of SL(n, Z); as soon as n ≥ 5 there is no embedding of Γ into Diff ω (S 2 ).

Nilpotent subgroups of length 3 of the group of analytic diffeomorphisms of S 2

Let us precise Proposition 3.1 for nilpotent subalgebras of length 3 of χ(C 2 , 0). Let l be such an algebra. The center Z(l) of l generates a subspace of dimension at most 1 of χ(C 2 , 0) ⊗ K(C 2 ), for else l would be abelian (Proposition 3.1) and this is impossible under our assumptions. So let us assume that the dimension of the subspace generated by Z(l) in χ(C 2 , 0) ⊗ K(C 2 ) is 1. There exists an element X in Z(l) with the following property: any element of Z(l) can be written uX with u in K(C 2 ). Let g denote the abelian ideal of l defined by

g = X ∈ l ∃ u ∈ K(C 2 ), X = uX .
By hypothesis l is not abelian. Let Y be in l; assume that its projection onto l/g is a non trivial element of Z(l/g). Any vector field of l can be written

uX + vY, u, v ∈ K(C 2 ).
Since X , resp. Y belongs to Z(l), resp. Z(l/g) and since the length of l is 3, one has

X (u) = Y 3 (u) = X (v) = Y (v) = 0. ( 5.1) 
If X and Y are non singular, one can choose formal coordinates x and y such that X = ∂ ∂x and Y = ∂ ∂y . The previous conditions can be thus translated as follows: v is a constant and u is a polynomial in y of degree 2. We will see that we have a similar property without assumption on X and Y .

2. Let G be a group and let q be a positive integer; q • G denotes the semi-direct product of G q by Z/qZ under the action of the cyclic permutation of the factors.

Lemma 5.1. -Let X and Y be two vector fields of χ(C 2 , 0) that commute and are not colinear. One can assume that (X ,Y ) = ∂ ∂ x , ∂ ∂ ỹ where x and y are two independent variables in a Liouvillian extension of K(C 2 , 0).

Proof. -Since X and Y are non colinear, there exist two 1-forms α, β with coefficients in K(C 2 ) such that

α(X ) = 1, α(Y ) = 0, β(X ) = 0, β(X ) = 1.
The vector fields X and Y commute if and only if α and β are closed (this statement of linear algebra is true for convergent meromorphic vector fields and is also true in the completion). The 1-form α is closed so according to [START_REF] Cerveau | Formes intégrables holomorphes singulières[END_REF] one has

α = r ∑ i=1 λ i d φ i φ i + d ψ 1 ψ 2 = d r ∑ i=1 λ i log φ i + ψ 1 ψ 2
where ψ 1 , ψ 2 and the φ i denote some formal series and the λ i some complex numbers. One has a similar expression for β. So there exists a Liouvillian extension κ of K(C 2 ) having two elements x and y with α = d x and β = d y. One thus has

X ( x) = 1, X ( y) = 0, Y ( x) = 0, Y ( y) = 1.
From (5.1) one gets: v is a constant and u is a polynomial in y of degree 2; so one proves the following statement.

Proposition 5.2. -Let l be a nilpotent subalgebra of χ(C 2 , 0) of length 3. Then l is isomorphic to a subalgebra of

n = P( y) ∂ ∂ x + α ∂ ∂ y α ∈ C, P ∈ C[ y], deg P = 2 .
Remark 5.3. -We use a real version of this statement whose proof is an adaptation of the previous one: a nilpotent subalgebra l of length 3 of χ(R 2 , 0) is isomorphic to a subalgebra of 

n = P( y) ∂ ∂ x + α ∂ ∂ ỹ α ∈ R, P ∈ R[
(ρ(U(4, Z))) is a subgroup of λ t 0 λ λ ∈ R * , t ∈ R .
Up to index 2 one can thus assume that j 1 • ρ takes values in the connected, simply connected group T defined by

T = λ t 0 λ λ, t ∈ R, λ > 0 .
Let us set Diff i (T) = f ∈ Diff i | j 1 ( f ) ∈ T ; the group Diff i (T) is a connected, simply connected, nilpotent and algebraic group. The morphism ρ i : U(4, Z) → Diff i can be extended to a unique continuous morphism ρ i : U(4, R) → Diff i (T) (see [START_REF] Malcev | On a class of homogeneous spaces[END_REF][START_REF] Malcev | On a class of homogeneous spaces[END_REF]) so to an algebraic morphism (3) . Let us note that ρ i (U(4, Z)) is an algebraic subgroup of Diff i (T) which contains ρ i (U(4, Z)); in particular H i = ρ i (U(4, Z)) ⊂ ρ i (U(4, R)). By construction the family (H i ) i is filtered; since the extension is unique, the family ( ρ i ) i is also filtered. Therefore K = lim ← H i is well defined. Since ρ is injective, H is a nilpotent subgroup of length 3; as H ⊂ K and as any H i is nilpotent of length at most 3 the group K is nilpotent of length at most 3. For i sufficiently large ρ i (U(4, R)) is nilpotent of length 3; this group is connected so its Lie algebra is also nilpotent of length 3. Therefore the image of

D ρ := lim ← D ρ i : u(4, R) → χ(R 2 , 0)
is isomorphic to n (Proposition 5.2). So there exists a surjective map ψ from u(4, R) onto n. The kernel of ψ is an ideal of u(4, R) of dimension 2; hence ker ψ = δ 14 , aδ 13 + bδ 24 where the δ i j denote the Kronecker matrices. One concludes by remarking that dim Z(u(4, R)/ ker ψ) = 2 whereas dim Z(n) = 1.

Corollary 5.5. -The image of a morphism from a subgroup of SL(n, Z) of finite index to Diff ω (S 2 ) is finite as soon as n ≥ 4.

Proposition 4 . 1 (

 41 [START_REF] Ghys | Sur les groupes engendrés par des difféomorphismes proches de l'identité[END_REF]). -Any nilpotent subgroup of Diff ω (S 2 ) has a finite orbit.

  Proof. -Let U(4, Z) (resp. U(4, R)) be the subgroup of unipotent upper triangular matrices of SL(4, Z) (resp. SL(4, R)); it is a nilpotent subgroup of length 3. Assume that there exists an embedding from a subgroup Γ of finite index of SL(4, Z) into Diff ω (S 2 ). Up to finite index Γ contains U(4, Z). Let us set H = ρ(U(4, Z)). Up to finite index H has a fixed point (Proposition 4.1). One can thus see H as a subgroup of Diff(R 2 , 0) ⊂ Diff(R 2 , 0) up to finite index.Let us denote j 1 the morphism from Diff(R 2 , 0) to Diff i . Up to conjugation j 1

y], deg P = 2 . Theorem 5.4. -Let Γ be a subgroup of finite index of SL(n, Z); as soon as n ≥ 4 there is no embedding of Γ into Diff ω (S 2 ).
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