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REPRESENTATIONS OF SOME LATTICES INTO THE GROUP OF ANALYTIC
DIFFEOMORPHISMS OF THE SPHERE S2

by

Julie Déserti

November 19, 2018

Abstract. — In [10] it is proved that any morphism from a subgroup of finite indexof SL(n,Z) to the group of
analytic diffeomorphisms ofS2 has a finite image as soon asn≥ 5. The casen= 4 is also claimed to follow along
the same arguments; in fact this is not straightforward and this case indeed needs a modification of the argument. In
this paper we recall the strategy forn≥ 5 and then focus on the casen= 4.
2010 Mathematics Subject Classification. — 58D05, 58B25

1. Introduction

After the works of Margulis ([14, 19]) on the linear representations of lattices of simple, realLie groups
with R-rank larger than 1, some authors, like Zimmer, suggest to study the actions of lattices on compact
manifolds ([20, 21, 22, 23]). One of the main conjectures of this program is the following: let us consider
a connected, simple, real Lie group G and letΓ be a lattice of G ofR-rank larger than 1. If there exists
a morphism of infinite image fromΓ to the group of diffeomorphisms of a compact manifoldM, then the
R-rank of G is bounded by the dimension ofM. There are a lot of contributions in that direction ([3, 4, 5, 7,
8, 9, 10, 11, 16, 17]). In this article we will focus on the embeddings of subgroups of finite index of SL(n,Z)
into the group Diffω(S2) of real analytic diffeomorphisms ofS2 (see[10]).

The article is organized as follows. First of all we will recall the strategy of [10]: the study of the nilpo-
tent subgroups of Diffω(S2) implies that such subgroups are metabelian. But subgroups of finite index of
SL(n,Z), for n≥ 5, contain nilpotent subgroups of lengthn−1 of finite index which are not metabelian; as
a consequence Ghys gets the following statement.

Theorem A ([10]). — LetΓ be a subgroup of finite index ofSL(n,Z). As soon as n≥ 5 there is no embedding
of Γ into Diff ω(S2).

To study nilpotent subgroups of Diffω(S2) one has to study nilpotent subgroups of Diffω
+(S

1) (see§2) and
then nilpotent subgroups of the group of formal diffeomorphisms ofC2 (see§3). The last section is devoted
to establish the following result.

The author is supported by the Swiss National Science Foundation grant no PP00P2_128422 /1 and the A.N.R. project “BirPol“.
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Theorem B. — LetΓ be a subgroup of finite index ofSL(n,Z). As soon as n≥ 4 there is no embedding ofΓ
into Diff ω(S2).

The proof relies on the characterization, up to isomorphism, of nilpotent subalgebras of length 3 of the
algebra of formal vector fields ofC2 which vanish at the origin.

Acknowledgements. —The author would like to thank Dominique Cerveau and ÉtienneGhys for interest-
ing discussions and advices.

2. Nilpotent subgroups of the group of analytic diffeomorphisms ofS1

Let G be a group; let us set

G(0) = G & G(i) = [G,G(i−1)] ∀ i ≥ 1.

The group G isnilpotentif there exists an integern such that G(n) = {id}; the length of nilpotenceof G is the
smallest integerk such that G(k) = {id}.

Set

G(0) = G & G(i) = [G(i−1),G(i−1)] ∀ i ≥ 1.

The group G issolvableif G(n) = {id} for a certainn; the length of solvabilityof G is the smallest integerk
such that G(k) = {id}.

We say that the group G (resp. algebrag) is metabelianif [G,G] (resp.[g,g]) is abelian.

Proposition 2.1 ([10]). — Any nilpotent subgroup ofDiff ω
+(S

1) is abelian.

Proof. — Let G be a nilpotent subgroup of Diffω
+(S

1). Assume that G is not abelian; it thus contains a
Heisenberg group

〈 f , g, h| [ f ,g] = h, [ f ,h] = [g,h] = id〉.

The application “rotation number“

Diff ω
+(S

1)→ R/Z, ψ 7→ lim
n→+∞

ψn(x)−x
n

is not a morphism but its restriction to a solvable subgroup is ([1]). Thus the rotation number ofh is zero and
the set Fix(h) of fixed points ofh is non-empty and finite. Considering some iterates off andg instead off
andg one can assume thatf andg fix any point of Fix(h). The set of fixed points of a non trivial element of
〈 f , g〉 is finite and invariant byh so the action of〈 f , g〉 is free(1) on each component ofS1\Fix(h). But the
action of a free group onR is abelian: contradiction.

1. The stabilizer of every point is trivial,i.e. the action of a non trivial element of〈 f , g〉 has no fixed point.
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3. Nilpotent subgroups of the group of formal diffeomorphisms ofC2

Let us denotêDiff (C2,0) the group of formal diffeomorphisms ofC2, i.e. the formal completion of the
group of germs of holomorphic diffeomorphisms at 0. For anyi let Diff i be the quotient of̂Diff (C2,0) by
the normal subgroups of formal diffeomorphisms tangent to the identity with multiplicity i; it can be viewed
as the set of jets of diffeomorphisms at orderi with the law of composition with truncation at orderi. Note
that Diffi is a complex linear algebraic group. One can seêDiff (C2,0) as the projective limit of the Diffi ’s:
D̂iff (C2,0) = lim

←
Diff i . Let us denote bŷχ(C2,0) the algebra of formal vector fields inC2 vanishing at 0.

One can define the setχi of the i-th jets of vector fields; one has lim
←

χi = χ̂(C2,0).

Let Ô(C2) be the ring of formal series in two variables and letK̂(C2) be its fraction field;Oi is the set of
elements of̂O(C2) truncated at orderi.

The family
(

expi : χi → Diff i
)

i is filtered, i.e. compatible with the truncation. We then define the expo-

nential application as follows: exp= lim
←

expi : χ̂(C2,0)→ D̂iff (C2,0).

As in the classical case, ifX belongs tôχ(C2,0), then exp(X) can be seen as the “flow at time 1” ofX.
Indeed an elementXi of χi can be seen as a derivation ofOi ; so it can be writtenSi +Ni whereSi andNi are
two semi-simple, resp. nilpotent derivations which commute. Taking the limit, one getsX = S+N whereS
is a semi-simple vector field andN a nilpotent one and[S,N] = id (see[15]). A semi-simple vector field is a
formal vector field conjugate to a diagonal linear vector field which is complete. A vector field is nilpotent if
and only if its linear part is; let us remark that the usual flowϕt of a nilpotent vector field is polynomial int

ϕt(x) = ∑
I

PI(t)x
I , PI ∈ (C[t])2

so ϕ1(x) is well defined. As a consequence exp(tX) = exp(tS)exp(tN) is well defined fort = 1. Note that
the Jordan decomposition is purely formal: ifX is holomorphic,SandN are not necessary holomorphic.

Proposition 3.1 ([10]). — Any nilpotent subalgebra of̂χ(C2,0) is metabelian.

Proof. — Let l be a nilpotent subalgebra ofχ̂(C2,0) and letZ(l) be its center. Sincêχ(C2,0)⊗ K̂(C2) is a
vector space of dimension 2 overK̂(C2) one has the following alternative:

• the dimension of the subspace generated byZ(l) in χ̂(C2,0)⊗ K̂(C2) is 1;

• the dimension of the subspace generated byZ(l) in χ̂(C2,0)⊗ K̂(C2) is 2.

Let us study these different cases.
Under the first assumption there exists an elementX of Z(l) having the following property: any vector field

of Z(l) can be writtenuX with u in K̂(C2). Let us consider the subalgebrag of l given by

g=
{

X̃ ∈ l |∃u∈ K̂(C2), X̃ = uX
}
.

SinceX belongs toZ(l), the algebrag is abelian; it is also an ideal ofl. Let us assume thatl is not abelian:
letY be an element ofl whose projection onl/g is non trivial and central. Any vector field ofl can be written
asuX+vY with u, v in K̂(C2). As X belongs toZ(l) andY is central modulog one has

X(u) = X(v) =Y(v) = 0.

The vector fields∂
∂x and ∂

∂y being some linear combinations ofX andY with coefficients inK̂(C2,0), the
partial derivatives ofv are zero sov is a constant. Therefore[l, l] ⊂ g; butg is abelian sol is metabelian.
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In the second caseZ(l) has two elementsX andY which are linearly independent on̂K(C2). Any vector
field of l can be written asuX+vY with u andv in K̂(C2). SinceX andY belong toZ(l) one has

X(u) = X(v) =Y(u) =Y(v) = 0.

As a consequenceu andv are constant,i.e. l⊂ {uX+vY|u, v∈ C}; in particularl is abelian.

Proposition 3.2 ([10]). — Any nilpotent subgroup of̂Diff (C2,0) is metabelian.

Proof. — Let G be a nilpotent subgroup of̂Diff (C2,0) of lengthk. Let us denote Gi the projection of G
on Diff i . The Zariski closureGi of Gi in Diff i is an algebraic nilpotent subgroup of lengthk. It is sufficient to
prove thatGi is metabelian.

SinceGi is a complex algebraic subgroup it is the direct product of the subgroupGi,u of its unipotent
elements and the subgroupGi,s of its semi-simple elements (see for example[2]).

An element of Diffi is unipotent if and only if its linear part, which is in GL(2,C), is; soGi,s projects
injectively onto a nilpotent subgroup of GL(2,C). ThereforeGi,s is abelian.

Let us now considerGi,u; this group is the exponential of a nilpotent Lie algebrali of χi of lengthk. Taking
the limit one thus obtains the existence of a nilpotent subalgebral of χ̂(C2,0) of lengthk such that exp(l)
projects ontoGi,u for any i. According to Proposition3.1 the subalgebral and thusGi,u are metabelian.

4. Nilpotent subgroups of the group of analytic diffeomorphisms ofS2

Proposition 4.1 ([10]). — Any nilpotent subgroup ofDiff ω(S2) has a finite orbit.

Proof. — Let G be a nilpotent subgroup of Diffω(S2); up to finite index one can assume that the elements
of G preserve the orientation. Letφ be a non trivial element of G which commutes with G. Let Fix(φ) be the
set of fixed points ofφ; it is a non empty analytic subspace ofS

2 invariant by G. Ifp is an isolated fixed point
of φ, then the orbit ofp under the action of G is finite. So it is sufficient to study the case where Fix(φ) only
contains curves; there are thus two possibilities:
• Fix(φ) is a singular analytic curve whose set of singular points is afinite orbit for G;
• Fix(φ) is a smooth analytic curve, not necessary connected. One of the connected component ofS

2\ Fix(φ)
is a disk denotedD. Any subgroupΓ of finite index of G which containsφ fixesD. Let us consider an
elementγ of Γ and a fixed pointm of γ which is inD. By constructionφ has no fixed point inD so
according to the Brouwer Theorem(φk(m))k has a limit point on the boundary∂D of D. Thereforeγ has
at least one fixed point on∂D. The groupΓ thus acts on the circle∂D and any of its elements has a fixed
point onD. ThenΓ has a fixed point on∂D (Proposition2.1).

Theorem 4.2 ([10]). — Any nilpotent subgroup ofDiff ω(S2) is metabelian.

Proof. — Let G be a nilpotent subgroup of Diffω(S2) and letΓ be a subgroup of finite index of G having a
fixed pointm (such a subgroup exists according to Proposition4.1). One can embedΓ into D̂iff (R2,0), and so
into D̂iff (C2,0), by considering the jets of infinite order of elements ofΓ in m. According to Proposition3.2
the groupΓ is metabelian.

One can assume that G is a finitely generated group.
Let us first assume that G has no element of finite order. Then G is a cocompact lattice of the nilpotent,

simply connected Lie group G⊗R (see[18]). The group G is metabelian if and only if G⊗R is; but Γ is
metabelian so G⊗R also.
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Finally let us consider the case where G has at least one element of finite order. The set of such elements
is a normal subgroup of G which thus intersects non triviallythe centerZ(G) of G. Let us consider a non
trivial elementφ of Z(G) which has finite order. Let us recall that a finite group of diffeomorphisms of the
sphere is conjugate to a group of isometries. Denote by G+ the subgroup of elements of G which preserve the
orientation. It is thus sufficient to prove that G+ is metabelian; indeed ifφ does not preserve the orientation,φ
has order 2 and G= Z/2Z×G+. So let us assume thatφ preserves the orientation;φ is conjugate to a direct
isometry ofS2 and has exactly two fixed points on the sphere. The group G has thus an invariant set of two
elements. By considering germs in the neighborhood of thesetwo points, one gets that G can be embedded
into 2·Diff (R2,0) (2) and thus into 2·Diff (C2,0):

1−→ Diff (C2,0)−→ 2·Diff (C2,0)−→ Z/2Z−→ 0.

Let us remark that 2·Diff (C2,0) is the projective limit of the algebraic groups 2·Diff i . The end of the proof is
thus the same as the proof of Proposition3.2except that the subgroup of the semi-simple elements of 2·Diff i

embeds now in 2·GL(2,C); it is metabelian because it contains an abelian subgroup ofindex 2.

Let Γ be a subgroup of finite index of SL(n,Z) for n≥ 5. SinceΓ contains nilpotent subgroups of finite
index of lengthn−1 (for example the group of upper triangular unipotent matrices) which are not metabelian
one gets the following statement.

Corollary 4.3 ([10]). — LetΓ be a subgroup of finite index ofSL(n,Z); as soon as n≥ 5 there is no embed-
ding ofΓ into Diff ω(S2).

5. Nilpotent subgroups of length3 of the group of analytic diffeomorphisms ofS2

Let us precise Proposition3.1 for nilpotent subalgebras of length 3 ofχ̂(C2,0). Let l be such an algebra.
The centerZ(l) of l generates a subspace of dimension at most 1 ofχ̂(C2,0)⊗ K̂(C2), for elsel would be
abelian (Proposition3.1) and this is impossible under our assumptions. So let us assume that the dimension of
the subspace generated byZ(l) in χ̂(C2,0)⊗ K̂(C2) is 1. There exists an elementX in Z(l) with the following
property: any element ofZ(l) can be writtenuX with u in K̂(C2). Let g denote the abelian ideal ofl defined
by

g=
{

X̃ ∈ l
∣∣∃u∈ K̂(C2), X̃ = uX

}
.

By hypothesisl is not abelian. LetY be in l; assume that its projection ontol/g is a non trivial element
of Z(l/g). Any vector field ofl can be written

uX+vY, u, v∈ K̂(C2).

SinceX, resp.Y belongs toZ(l), resp.Z(l/g) and since the length ofl is 3, one has

X(u) =Y3(u) = X(v) =Y(v) = 0. (5.1)

If X andY are non singular, one can choose formal coordinatesx andy such thatX = ∂
∂x andY = ∂

∂y. The
previous conditions can be thus translated as follows:v is a constant andu is a polynomial iny of degree 2.
We will see that we have a similar property without assumption onX andY.

2. Let G be a group and letq be a positive integer;q ·G denotes the semi-direct product of Gq by Z/qZ under the action of the
cyclic permutation of the factors.
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Lemma 5.1. — Let X and Y be two vector fields ofχ̂(C2,0) that commute and are not colinear. One

can assume that(X,Y) =
(

∂
∂x̃,

∂
∂ỹ

)
wherex̃ andỹ are two independent variables in a Liouvillian extension

of K̂(C2,0).

Proof. — SinceX andY are non colinear, there exist two 1-formsα, β with coefficients inK̂(C2) such that

α(X) = 1, α(Y) = 0, β(X) = 0, β(X) = 1.

The vector fieldsX andY commute if and only ifα and β are closed (this statement of linear algebra is
true for convergent meromorphic vector fields and is also true in the completion). The 1-formα is closed so
according to [6] one has

α =
r

∑
i=1

λi
dφ̂i

φ̂i

+d
(ψ̂1

ψ̂2

)
= d

( r

∑
i=1

λi logφ̂i +
ψ̂1

ψ̂2

)

whereψ̂1, ψ̂2 and theφ̂i denote some formal series and theλi some complex numbers. One has a similar
expression forβ. So there exists a Liouvillian extensionκ of K̂(C2) having two elements̃x andỹ with α = dx̃
andβ = dỹ. One thus has

X(x̃) = 1, X(ỹ) = 0, Y(x̃) = 0, Y(ỹ) = 1.

From (5.1) one gets:v is a constant andu is a polynomial inỹ of degree 2; so one proves the following
statement.

Proposition 5.2. — Let l be a nilpotent subalgebra of̂χ(C2,0) of length3. Thenl is isomorphic to a subal-
gebra of

n=
{

P(ỹ)
∂
∂x̃

+α
∂
∂ỹ

∣∣∣ α ∈ C, P∈C[ỹ], degP= 2
}
.

Remark 5.3. — We use a real version of this statement whose proof is an adaptation of the previous one: a
nilpotent subalgebral of length 3 ofχ̂(R2,0) is isomorphic to a subalgebra of

n=
{

P(ỹ)
∂
∂x̃

+α
∂
∂ỹ

∣∣∣α ∈ R, P∈R[ỹ], degP= 2
}
.

Theorem 5.4. — Let Γ be a subgroup of finite index ofSL(n,Z); as soon as n≥ 4 there is no embedding
of Γ into Diff ω(S2).

Proof. — Let U(4,Z) (resp. U(4,R)) be the subgroup of unipotent upper triangular matrices of SL(4,Z)
(resp. SL(4,R)); it is a nilpotent subgroup of length 3. Assume that there exists an embedding from a
subgroupΓ of finite index of SL(4,Z) into Diffω(S2). Up to finite indexΓ contains U(4,Z). Let us
set H= ρ(U(4,Z)). Up to finite index H has a fixed point (Proposition4.1). One can thus see H as a
subgroup of Diff(R2,0)⊂ D̂iff (R2,0) up to finite index.

Let us denotej1 the morphism from̂Diff (R2,0) to Diff i . Up to conjugationj1(ρ(U(4,Z))) is a subgroup
of {[

λ t
0 λ

] ∣∣∣λ ∈ R
∗, t ∈R

}
.
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Up to index 2 one can thus assume thatj1◦ρ takes values in the connected, simply connected group T defined
by

T =
{[

λ t
0 λ

] ∣∣∣λ, t ∈ R, λ > 0
}
.

Let us set
Diff i(T) =

{
f ∈ Diff i | j

1( f ) ∈ T
}

;

the group Diffi(T) is a connected, simply connected, nilpotent and algebraic group. The morphism

ρi : U(4,Z)→ Diff i

can be extended to a unique continuous morphismρ̃i : U(4,R)→ Diff i(T) (see[13, 12]) so to an algebraic
morphism(3). Let us note that̃ρi(U(4,Z)) is an algebraic subgroup of Diffi(T) which containsρi(U(4,Z));
in particularHi = ρi(U(4,Z))⊂ ρ̃i(U(4,R)). By construction the family(Hi)i is filtered; since the extension
is unique, the family(ρ̃i)i is also filtered. Therefore K= lim

←
Hi is well defined. Sinceρ is injective, H is a

nilpotent subgroup of length 3; as H⊂K and as anyHi is nilpotent of length at most 3 the group K is nilpotent
of length at most 3. Fori sufficiently largeρ̃i(U(4,R)) is nilpotent of length 3; this group is connected so its
Lie algebra is also nilpotent of length 3. Therefore the image of

Dρ̃ := lim
←

Dρ̃i : u(4,R)→ χ̂(R2,0)

is isomorphic ton (Proposition5.2). So there exists a surjective mapψ from u(4,R) onton. The kernel ofψ
is an ideal ofu(4,R) of dimension 2; hence kerψ = 〈δ14,aδ13+ bδ24〉 where theδi j denote the Kronecker
matrices. One concludes by remarking that dimZ(u(4,R)/kerψ) = 2 whereas dimZ(n) = 1.

Corollary 5.5. — The image of a morphism from a subgroup ofSL(n,Z) of finite index toDiff ω(S2) is finite
as soon as n≥ 4.
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