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ABSTRACT. This article studies the sequence of iterative degreedimdtional map of the plane. This sequence
is known either to be bounded or to have a linear, quadratxponential growth.

The classification elements of infinite order with a boundedugnce of degrees is achieved, the case of
elements of finite order being already known. The coeffisiaftthe linear and quadratic growth are then
described, and related to geometrical properties of the Mag@ dynamical number of base-points is also studied.

Applications of our results are the description of embegsliof the Baumslag-Solitar groups and @LQ)
into the Cremona group.
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1. INTRODUCTION

A rational mapof the complex projective plare? = P2 into itself is a map of the following type

®: ]PZ -2 PZ? (X Wy Z) -2 ((R)(Xaya Z) : (pl(x7y7 Z) : (Pz(X,y, Z))7
where theg’s are homogeneous polynomials of the same degree withooinom factor. Thalegreedege

of @ is by definition the degree of these polynomials. We will oobnsiderbirational maps, which are
rational maps having an inverse, and denote byMir the group of such maps, classically cal@temona

group.
We are interested in the behaviour of the seque[mmg@}keN. According to [L3], the sequence is either
bounded or has a linear, quadratic or exponential growthwilVsay that@is

(1) elliptic if the growth is bounded;
(2) aJonquiéres twisif the growth is linear;
(3) anHalphen twistf the growth is quadratic;

Both authors were supported by the Swiss National Scienaadation grant no PPO0OP2_128422 /1.
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(4) hyperbolicif the growth is exponential.

This terminology is classical, and consistent with the rataction of BiP?) on an hyperbolic space of
infinite dimension, where Jonquiéres and Halphen twistparabolic (P, Theorem 3.6]).

Recall that the first dynamical degree@é Bir(P?) is A(@) = Jim (degg)¥k € R. This is an invariant
400

of conjugation which allows to distinguish the first threses (where\ (@) = 1) from the last case (where
A(@) > 1). There are plenty of articles on hyperbolic elements bagobssible values for the algebraic integer
A(@), we are here more interested in the growth of the first threexca

The nature of the growth is invariant under conjugation, @uidices geometric properties gnthat we
describe now.

An elementp € Bir (IP?) is elliptic if and only if it is conjugate to an automorphigye Aut(S) of a smooth
projective rational surface S such tigitbelongs to the connected component %8y of Aut(S) for some
n > 0 (see[13, Theorem 0.2, Lemma 4.1]). Reading this description, onaldvexpect to find examples
whereg has infinite order and does not belong to the connected coempoW/e will remove this possibility
and refine the result oflp] in Section2, by showing that, up to conjugation, eithghas finite order or
S=P?. The complete classification of elements of finite order af[Bi) can be found ing]; for elements
of infinite order, one has (Propositi@?3):

Theorem A. If @ € Bir(IP?) is elliptic of infinite order, therpis conjugate to an automorphism Bf, which
restricts to one of the following automorphisms on some spdset isomorphic tg2:
(1) (xy) = (ax,By), wherea, B € C*, and where the kernel of the group homomorphsm- C* given
by (i, j) — a'B! is generated byk, 0) for some ke Z;
(2) (xy) — (ax,y+1), wherea € C*.

The end of Sectiof is devoted to the description of the conjugacy classes df swaps (Propositio.4)
and their centralizers in the Cremona group (Lem&@and?2.8).

A birational mapg € Bir (P?) has a finite numbel(@) of base-points (that may belong or correspond
to infinitely near points). We will call the number
b(¢)

k=40 K

the dynamical number of base-points @f In Section3, we study the sequend (@) }keny and deduce
some properties on the numbgip); let us state some of them. It is a non-negative integer imwaunder
conjugation; it also allows us to give a characterisatiohitional maps conjugate to an automorphism of a
smooth projective rational surface (Proposit&s):

)

Theorem B. Let S be a smooth projective surface; the birational mag Bir(S) is conjugate to an auto-
morphism of a smooth projective surface if and only(@)p= 0.

In the case wher@is a Jonquiéres twist, the numhe€xp) determines the degree growth@fA Jonquiéres
twist preserves an unique pencil of rational curves [Theorem 0.2]. The sequent{elegqf}keN grows as
ok for some constantt € R. The number is not invariant under conjugation, but one can show that the
minimal value is attained when the rational curves of thecpame lines, and is an integer divided by 2. More
precisely, one has (Propositidrd):

Theorem C. Let@ < Bir(PP?) be a Jonquiéres twist.
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(1) The set
-1
{ jim 92AVIVD | Bir(IP’Z)}
k—+-00 k
admits a minimum, which is equal ¥ ¢ 1N.
(2) There exists an integeraN such that
lim ded @) _H9 -a.
k—+o0 k 2

Moreover, a= 1if and only if@ preserves a pencil of lines.

The case of Halphen twists is similar. An Halphen twist prés an unique pencil of elliptic curvesge
[14], [13, Theorem 0.2]). Any such pencil can be sent by a birationg) ordo a pencil of curves of degree
3n with 9 points of multiplicityn, called Halphen pencil. We obtain the following (Propasitb.1):

Theorem D. Let@ ¢ Bir(PP?) be an Halphen twist.

(1) The set
- dequgiy?) 2
{99 ey
admits a minimunk (@) € Q-o.
(2) There exists an integer:a 3 such that
. degqf) a?
)

Moreover, a= 3 if and only if@ preserves an Halphen pencil.

An application of our results is the description of biragbmaps whose two distinct iterates are conjugate,
the non-existence of embeddings of Baumslag-Solitar grantp the Cremona group and the description of
the embeddings of GI2,Q) into the Cremona group @&:

Theorem E. Let@denote a birational map d? of infinite order. Assume thgt' and ¢™ are conjugate and
that |m| # |n|. Then,@is conjugate to an automorphism @f of the form(x,y) ~ (ax,y+ 1), wherea € C*
such thatot™™" = 1oro™ "= 1.

In particular, if @is conjugate tag” for any positive integer n, thepis conjugate tax,y) — (X,y+1).

Theorem F. If |m|, [n|, 1 are distinct, there is no embedding of
BS(m,n) = (r, s[rs™r 1 =g"), m,n € Z, mn# 0
into the Cremona group.

Theorem G. Letp: GL(2,Q) — Bir(P?) be an embedding. Up to conjugation by an elemerBiofP?),
there exists an odd integer k and an homomorphis®* — C* (with respect to multiplicationsuch that

([ a])-(MGrarie): "¢ a]eaeo

Remark 1.1. All these statements hold replacifigby an algebraically closed field of characteristic zero.
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2. ELLIPTIC MAPS

2.1. Classification of elliptic maps of infinite order. If @is a birational map oP? such that{degqﬁ}keN

is bounded, it is conjugate to an automorphigof a smooth rational surface S such that the actiog o
Pic(S) is finite [13, Lemma 4.1]. Ifg has finite order, the possible conjugacy classes are coshptdassified
in [8]. Here we deal with the case of elements of infinite ordessifging the possibilities and describing its
centralizers in BifP?).

Proposition 2.1. Let g be an automorphism of a smooth rational surf&ehich has infinite order but has
a finite action orPic(S). Then, there exists a birational morphisn- X whereX is equal either tdP? or to
an Hirzebruch surfac&,, for n £ 1, which conjugates g to an automorphismxof

Remark 2.2. The proof of this result follows from a study of possible mmail pairs, which is similar to the
one made inT] for finite abelian subgroups of BiP?) (see[7, Lemmas 3.2, 6.1, 9.7]).

Proof. Contracting the possible sets of disjo{prt1)-curves on S which are invariant loy we can assume
that the action of on S is minimal. The action af on PiqS) being of finite order, the process corresponds
to applying aG-Mori program, wherés is a finite group acting on P(i8) (we only look at parts of the Picard
group which are invariant). Then one of the following occ{jiis, 15]):

(1) PidS)% has rank 1 and S is a del Pezzo surface;

(2) PidS)Y has rank 2, and there exist a conic burmieS — P! on S, together with an automorphigm
of P such thahom=T10g.

We want to show that S 82 or an Hirzebruch surfacg, for n =1, and exclude the other cases.

In the case where Ri§)9 has rank 1, the fact thathas infinite order but finite action on R&) implies
that the kernel of the group homomorphism £8jt— Aut(Pic(S)) is infinite. So S is a del Pezzo surface of
degreg(Ks)? > 6. The surface cannot [ otherwise the exceptional section would be invariant. Birlyi
it cannot be the unique del Pezzo surface of degree 7, wheleectly thre€—1)-curves, forming a chain
(one touches the two others, which are disjoint), becausedhve of the middle (and also the union of the
two others) would be invariant. The only possibilities dresP?, P! x P! = Fy, and the del Pezzo surface of
degree 6.

If S is the del Pezzo surface of degree 6, any elerhenfut(S) acting minimally on S has finite order,[
Lemma 9.7]. Let us recall the simple argument. The del Peuface of degree 6 is isomorphic to

S={(x:y:2),(u:v:w) € P> x P?|xu=yv=zw}.

The projectionsmy, ™ on each factor are birational morphisms contracting thre#)-curves onp; =
(1: 0:0,p2=(0:1:0 andps=(0:0:1). The group Pi€S) is generated by the six-1)-curves of S,
which areE; = (Ty)~Y(pi) andF = (o) ~*(p;) for 1 <i < 3 and form an hexagon. In fact, the action on the
hexagon gives rise to an isomorphism f8)t~ (C*)? x (Sym, x Z/27,) = (C*)? x Dg. The action oyon S
being minimalg permutes cyclically the curves, and eitigeor g~ acts agE; — F, — E3 — F; — E; — Fa).
This implies thag or g~! is equal to

(x:y:2),(u:viw)) — ((av:pw:u),(By: az:apx)),
for someaq, 3 € C*, and has order 6.
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We can now assume the existence of an invariant conic bumdse— P*. If rthas no singular fibre, then S
is a Hirzebruch surfackE,, andn # 1 because of the minimality of the action. It remains to edelthe case
wheretthas at least one singular fibre. The minimality of the actiorsamplies that the two components of
any singular fibré® (which are twa(—1)-curves) are exchanged by a powgnof g, and in particular that the
whole singular fibre is invariant by*. Note thatk a priori depends of.

We now prove that® does not act trivially on the basis of the conic bundle glifacts trivially on the
basis of the fibration, the automorphisyft acts trivially on Pi¢S); taking a birational morphism Ss F,,
which contracts a component in each singular fibre one catgsg® to an automorphism af,,, which
fixes pointwise at least one section. The pull-back on S efdhttion intersects only one component in each
singular fibre and its image hy gives thus another section, also fixedd®y. The action ofg¥ on a general
fibre of texchanges the two points of the two sections and hence has2irdontradiction.

The action ofg* on the basis is non-trivial and fixes the pointffcorresponding to the singular fibre; so
the same holds fog (recall that the fixed points of an element of ABt) and any of its non-trivial powers
are the same). This implies thatis invariant byg, so its two components are exchanged by it (and khgs
odd).

In particular, g exchanges the two components of any singular fibre. Thisiémhat the number of
singular fibres oftis at most 2, so S is the blow-up of one or two points of an Hirzel surface.

The fact that the two components of at least one singular fibseexchanged gives a symmetry on the
sections, that will help us to determine S. Denote-liy the minimal self-intersection of a sectionfand
let s be one section which realises this minimum. Contractingcthraponents in the singular fibres which
do not intersecs, one has a birational morphism-S IF,,. The image ofs is a section with minimal self-
intersection, san = n. If n= 0, then taking some section &% = P! x P! of self-intersection 0 passing
through at least one blown-up point, its strict transfornSomould be a section of negative self-intersection,
which contradicts the minimality a®, som=n > 0. Let us denote by the sectiorny(s), which also has
self-intersection—-mon S but self-intersectior-m+r on Fy,, wherer is the number of singular fibres of
Because any section Bf, distinct from the exceptional section has self-intergectt m, we get—m-+r > m,
so 2> r > 2m, which implies tham= 1 andr = 2.

The surface S is thus the blow-up of two pointsin not lying on the exceptional section and not on the
same fibre, so is a del Pezzo surface of degree 6. The fagg tieis minimally on S is impossible, as we
already observed. O

Proposition 2.3. Let @ be a birational map oP? of infinite order, such tha{degcpk}kEN is bounded.

Thengis conjugate to an automorphism Bf, which restricts to one of the following automorphisms on
some open subset isomorphicé:

(1) (xy) — (ax,By), wherea, B € C*, and where the kernel of the group homomorphm- C* given
by (i, j) — a'B! is generated byk, 0) for some ke Z;
(2) (x,y) — (ox,y+ 1), wherea € C*.

Proof. According to Propositio2.1the mappis conjugate to an automorphism of a minimal surface S, equal
to eitherP? or an Hirzebruch surface.

Suppose first that S P2. Looking at the Jordan normal form, any automorphisri?ois conjugate to

— either(x:y:z) — (ox:By: 2),

—or(x:y:z)— (ax:y+z:2z),

—or(xX:y:z)— (X+y:y+z:2).
This latter automorphism is conjugate (to: y : z) — (x:y+z: 2) in Bir(IP?) (for instance by(x:y:z) --»
(xz— % (y—2):yz: 7%), as already observed if,[Example 1]). It remains to study the case of diagonal auto-
morphisms to show the assertion on the kernel stated in tpopition. As in the proof ofd, Proposition 6],
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we associate to each diagonal automorphism(x :y : z) — (ax: By : z) the kernelAy of the following
homomorphism of groups:

dy: Z? — C¥, i) — o'pl.
Y )

For anyM = [ ‘2 b ] € GL(2,Z), we denote by (y) the diagonal automorphism

d
(x:y:2) = (a®BPx: a°Bly: 2),
which is the conjugate af by the birational magx,y) --» (xayb,xcyd) (viewed in the charz=1). We can
check that
Buy) = dyo M,
which implies that\yy) = tM‘l(AqJ). We can always choodd (by a result on Smith’s normal form) such
thatAy ) is generated biue; andk; kx€;, wheree,, &; are the canonical basis vectorsZs, andky, kp are

non-negative integers, and replagavith M(¢@), which is conjugate to it. Since andM(¢) have infinite
order, we see thdb = 0, and get the assertion on the kernel stated in the propositi

If S =TFo =P x P, we can reduce to the casel# by blowing-up a fixed point and contracting the strict
transform of the members of the two rulings passing throbgtpoint.

Suppose now that S T, for n > 2. If g fixes a point of,, which is not on the exceptional section, we
can blow-up the point and contract the strict transform effthre to go tdf, 1. We can thus assume that all
points of [, fixed by g are on the exceptional section. The actiorgahn the basis of the fibration is, up to
conjugationx— axorx — X+ 1 for somea € C*. Removing the fibre at infinity and the exceptional section,
we getC?, where the action af is

— either(x,y) - (ax, By +Q(x)),

—or (Xay) = (X+ 1, By+ Q(X))’
whereaq, B € C* andQ is a polynomial of degreec n. The action on the fibre at infinity is obtained by
conjugating by(x,y) --» (%, %).

In the first case, there is no fixed point on the fibre at infingycept the point on the exceptional section)
if and only if B = a" and de@ = n. There is no fixed point ox = 0 if and only if Q(0) # 0 andp = 1.
This implies thato is a primitive k-th rooth of unity, wherek is a divisor ofn. Conjugating by(x,y -+ yx®)
we replaceQ(x) with Q(x) +y(a¥ — 1)x¥, so we can assume that the coefficienxdfs trivial if d is not
a multiple ofk, which means thaQ(x) = P(xX) for some polynomiaP € C[x]. In particular,g is equal

to (x,y) — (§x,y+ P(x)) and is conjugate t(x,y) — (&x,y+ 1) by (x,y) --» (x, %)

In the second case, there is no fixed point@n and no point on the fibre at infinity if and only ff= 1
and de@Q = n. Conjugatingg by (x,y) — (x,y+ yx"1) (which corresponds to performing an elementary link
Fn --+ .1 at the unique fixed-point and then coming back with an eleargiink at a general point of the
fibre at infinity), we get

(%y) = (X+Ly—y" Q) +y(x+ )M,
Choosing the right elemegte C, we can decrease the degre€Xk), and getx,y) — (x+1,y) by induction.
[

2.2. Conjugacy classes of elliptic maps of infinite order.Following [6], we will call elements of the form
(x,y) — (ax,By), resp.(x,y) — (ax,y+ 1) diagonalautomorphisms, res@imost-diagonabutomorphisms
of C? (or P?). The conjugacy classes in each family are given by the fatigw



DEGREE GROWTH OF BIRATIONAL MAPS OF THE PLANE 7

Proposition 2.4([6], Theorem 1) (1) A diagonal automorphism and an almost-diagonal automanphi
of C2 are never conjugate iBir(C?).

(2) Two diagonal automorphism(,y) — (ax,By) and (x,y) — (yx,dy) are conjugate irBir(C?) if and

only if there exists{ 2 3 } € GL(2,7) such that(a®p®, acB?) = (y,d).
(3) Two almost diagonal automorphisnig,y) — (ax,y+ 1) and (x,y) — (yx,y + 1) are conjugate
in Bir(C?) if and only ifa = y*1.

Corollary 2.5. Let < Bir(IP?) be an elliptic map which has infinite order.¢f" is conjugate tag” in Bir (P?)
for some m, re Z, |m| # |n|, theng@is conjugate to an automorphism @ of the form(x,y) — (ax,y+ 1),
wherea € C* such than™™" = 1ora™ "= 1.

Proof. Note thatmn= O since@ has infinite order. Theis conjugate to one of the two cases of Proposi-
tion 2.3

First of all, assume that up to conjugatigris (x,y) — (ax,By) and that the kerned, of the group ho-
momorphismZ? — C* given by (i, ) — o'l is generated byk,0) for somek € Z. Sinceq@™ and " are
conjugate there exists a matrix

N:{‘Z‘ S]GGL(Z,Z)

such that((am)a([sm)b, (am)C(Bm)d) — (oM, B") (Proposition2.4). This means that

(amaﬁanb’achmdfn) — (l, 1)’

so (ma— n,mb), (mcgmd— n) belong toA,. In particularmb= md—n = 0, which implies thab = 0, so
ad = +1, which is impossible since £ +n.

Assume now thatp is conjugate tax,y) — (ax,y+ 1) for somea in C*. The fact thatp™ and @ are
conjugate implies thaa™ ™" = 1 ora™ " = 1 (Propositior2.4). O

2.3. Centralisers of elliptic maps of infinite order. If @is a birational map oP?, we will denote by Cg)
the centraliser ofin Bir (P?):
C(9) = {w € Bir(P?) | oy = Yo} .
In the sequel, we describe the centralisers of elliptic maffisfinite order of BifP?). The results are
groups which contain the centralisers of some elements fRE&). We recall the following result, whose
proof is an easy exercise. Recall that RG&IC) is the group of automorphisms 8, or equivalently the

group of Mdbius transformations--» Z-.

Lemma 2.6. For anya € C*, we have
PGL(2,C) if a=1
{nepPeL20) ( n@g=an()}={ {x-—->ytlyec} it a=-1
{x—yx|ye C*} if a#=£l

Lemma 2.7. Let us considerp: (x,y) — (ox,By) wherea, B are in C*, and where the kernel of the group
homomorphisnZ? — C* given by(i, j) — a'B! is generated byk,0) for some ke Z. Then the centraliser
of @in Bir(P?) is

C(e) = { (6y) - (N(X),YRX)) | Re C(0,n € PGLE2,C),n(ax) =an(x)}
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Proof. Let Y: (x,y) --» (W1(X,y),W2(x,y)) be an element of @). The fact thaty commutes withg is
equivalent to

(*) llJl((XX, By) = O(llJl(Xa y) and (0) llJz(GX, By) = BllJZ(Xa y)

Writing g = % fori=1,2, whereR, Q; are polynomials without common factors, we see BaP,,Q1,Q>
are eigenvectors of the linear automorphighof the C-vector spac€|x,y] given byg*: f(x,y) — f(ax,By).
This means that each of tii&, Q; is a product of a monomial ir,y with an element ofC[x¢]. Using (x)
and(¢), we get the existence &, R, € C(x) such that

W1(xy) = xRy (X°), W2(X,Y) = YRe(X).
The fact thatp is birational implies that; (x,y) is an element)(x) € PGL(2,C); it satisfiesn(ax) = an(x)
because ofx). O

Lemma 2.8. Let us considerp: (x,y) — (ax,y+ B) wherea, € C*. The centraliser ofp in Bir(P?) is
equal to

C(@) = {(xy) - (n(x),y+R(X)) [n € PGL(2,C),n(ax) = an(x),R e C(x),R(ox) =R(X) } .
Proof. Conjugating by(x,y) — (X, By), we can assume thft= 1.
Letw: (x,y) - (W1(XY), W2(x,y)) be a birational map dP? which commutes withp. One has
(%) Wa(ax,y+1) = oy (x,y) and (0) Wa(ax,y+1) = Wa(xy) + 1.

Equality (x) implies thatp; only depends or (se€[6, Lemma 2]). Therefore; is an element of PG(2,C)
which commutes withx — ax.
Equality (¢) implies that
[oJUP) ~ 0y oy, 10y
ay (GX,y+l) - ay (Xay) and aX (GX,y+ 1) =a ax (Xay)a
which again means tha?g%(x,y) and "a—”;z(x,y) only depend orx. The second component gf can thus be
written ay+ B(X), wherea € C*, B € C(x). Replacing this form ir{c), we get
B(ax) =B(x)+1—a,
which implies that32 (ax) = a1%(x), and thus thax‘g—‘i (X) is invariant undex — ax.

0X
If a is not a root of unity, this means th%& = ¢/x for somec € C; sinceB is a rational function, one

getsc = 0 andB is a constant (or equivalently an element such Biatx) = B(x)). It implies moreoven =1
and we are done.
If a is a primitivek-th root of unity, the fact thap: (x,y) --+ (n(X),ay+ B(x)) commutes with

d<: (X7y) -2 (X7y+k)
yieldsa(y+ k) + B(x) = ay+ B(x) + k, soa= 1. We again geB(ax) = B(x). O

3. ON THE GROWTH OF THE NUMBER OF BASEPOINTS

If S is a projective smooth surface, any elemert Bir (S) has a finite number of base-points, which can
belong to S or be infinitely near. We denotetiqyp) the number of such points. We will call the number
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thedynamical number of base-pointscp)fSinceb((qu) b(@) + b(W) for any@, W € Bir(S), we see tha(p)
is a non-negative real number. Moreoviefyp 1) andb(¢) being always equal, we gaf@) = |k- u(¢)| for
anyk € Z.

In this section, we precise the properties of this numbaet,veill in particular see that it is an integer.

If @< Bir(S) is a birational map, we will say that a (possibly infinitelyangbase-poinp of @is apersistent
base-pointf there exists an integeéd such thatp is a base-point of* for anyk > N but is not a base-point
of ¢ K for anyk > N.

If pis a point of S or a point infinitely near, which is not a bas@pof ¢ € Bir(S), we define a poing®(p),
which will also be a point of S or a point infinitely near. Foisthtake a minimal resolution

wherery, Th are sequences of blow-ups. Becapde not a base-point aj, it corresponds, viar, to a point
of Z or infinitely near. Usingt, we view this point on S, again maybe infinitely near, andicagt (p).

Remark 3.1. If pis not a base-point o € Bir(S) and @(p) is not a base-point op € Bir(S), we have
(W)*(p) = W*(¢"(p))- If pis a general point of S, thegt (p) = @(p) € S

Example 3.2.1fS=1P?, p=(1:0:0) andgis the birational magx:y: z) --» (yz+x? : xz: 7%), the point
¢ (p) is not equal tgp = @(p), but is infinitely near to it.

Using this definition, we put an equivalence class on thefgmiots that belong to S or are infinitely near,
by saying thaip is equivalentto q if there exists an integdrsuch that{@)*(p) = q (this implies thatp is not
a base-point off* and thatg is not a base-point ap ¥). The set of equivalence classes is the generalisation
of the notion of set of orbits for birational maps.

Proposition 3.3. Let @ be a birational map of a smooth projective surfa®&e Denote by the number of
equivalence classes of persistent base-points @hen, the set

{b(cpk)—vk( k> o} cZ

is bounded.
In particular, (@) is an integer, equal to.

Proof. Let us say that a base-poigtis periodic if (g)*(q) = q for somek # 0, or if g is a base-point off
for anyk € Z\ {0} (which implies that(¢)*(q) is never defined fok # 0). Let us denote by the set of
periodic base-points af and by@ the finite set of points equivalent to a point®f

The number of base-points gfand ¢~ being finite, there exists an integhr such that for any non-
periodic base-poinp and for anyj, j/ > N, pis a base-point of/ (respectively ofp~1) if and only if pis a
base-point ofpl’ (respectively ofp ).

We decompose the set of non-periodic base-poingsiatio four sets:

B, = {p]| pisabase-point o¢>1 and is a base-point af ! for j > N},

B, = gp] pis a base-point of , but is not a base-point qu for j > N},
B_. = {p]| pis not abase-point GI)J but is a base-point ap! for j > N}
B = §p| pis not a base-point ap’,and is not a base-point gf | for j > N}
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Note thatB, _ is the set of persistent base-pointspaind thatB_, is the set of persistent base-pointgf..
This decomposes the set of base-pointgpafto five disjoint sets. Two base-poings p’ of @ which are
equivalent belong to the same set.

We fix an integerk > 2N and compute the number of base-pointsghf Any such base-point being
equivalent to a base-point gf we take a base-poirg of ¢, and count the numben, . of base-points o
which are equivalent tp.

If pbelongs taP, the number of points equivalent s less than (cﬁ?), sompk < #@).

If pis not in®, any point equivalent tg is equal to(@ )*(p) for somei, and all are distinct, so we have

Mpk = # pk, Wherelpy = {i Y/ ‘ pis not a base-point aff, but p is a base-point orﬂ*"}.

If pe B, ., sincepis not a base-point aff one has-N < i < N, thusmpy < 2N.

A point p € B__ is a base-point off ** hence—N < i +k < N andmp < 2N.

If pe B_., the fact thatp is not a base-point af implies that—N < i and the fact thap is a base-point
of @ ¥ implies thati +k < N. With these two inequalities one hadN < i < N —k. Sincek > 2N, we get
Mpk = 0.

If pe B,_, the fact thatp is not a base-point off implies thati < N and the fact thap is a base-
point of @** implies that—N < i +k. This yields—N —k < i < N, sompx < 2N +k. Conversely, if
i < —Nandi+k > N, pis not a base-point off, but p is a base-point off™* (or equivalentlyi € Ip),
sompk > #N —k,—N] =k—2N + 1. The two conditions together imply tha, x — k € [-2N,2N].

Recall thatB, _ is the set of persistent base-pointsgfThe above counting explains that the number of
base-points o, for k big, behaves likek, wherev is the set of equivalence classes of of persistent base-
points ofg. More precisely, there exist two integersd which do not depend ok such that the total number

of base-points o is betweervk + ¢ andvk + d, for anyk > 2N. Recalling tha(g) = I(Iim L‘k"k) where
—s+00
b(¢@¥) is the number of base-points gf, we obtainu(g) = v. O

Corollary 3.4. The dynamical number of base-points is an invariant of agaiion: if 6: S--» Z is a
birational map between smooth projective surfaces @adBir(S), then

(@) = H(Bg8 ™ 1).
In particular, if @is conjugate to an automorphism of a smooth projective setfthen i) = 0.

Proof. The mapB factorises into the blow-up of a finite number of base-poiat®wed by the contraction
of a finite number of curves. The number of equivalence ctasgeersistent base-points @fand8@d—1 is
thus the same, and we get the result from Proposgi8n

It is thus clear thafi(@) = O if @is conjugate to an automorphism of a smooth projective sarfa [

Proposition 3.5. Let S be a smooth projective surface, and ¢t Bir(S). The following conditions are
equivalent:

1) ne) =0
(2) @is conjugate to an automorphism of a smooth projective satfa

Proof. Corollary 3.4yields (2) = (1). It suffices then to shoWl) = (2).

Denote byK the set of points, that belong to S as proper or infinitely peémts, which are base-points of
¢ andg/, for somei, j > 0. Let us prove tha is a finite set. Choosing the smallest possibjeassociated
to p € K, the pointp is equivalent to/@—1)*(p), which is a base-point af, and the same holds replacipg
with (¢€)*(p), for —j < k < i. By this way, we associate a finite number of pointafo each base-point
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of @. This shows thaK is finite. Observing that any point & is either a proper point of S or is infinitely
near, we can blow-up the siét and obtain a birational morphism S S.

By construction, the birational mape Blr( S) given byt g has less base-points thq;nand satisfies
that no point ofS is a base- -point oﬁ and(p I, for somei, j > 0 (in the notation of 13, the map(p iS now
algebraically stablg If a (—1)-curve of S (a smooth curve isomorphic ®' and having self- mtersectlon
(—1)) is contracted byp, we contract it, via a birational morphism : S— S,;. The mapp = nzo@o (n1)~*
is again algebraically stable, and we continue the procfess(Hl) curve ofS; is contracted byp_L At the
end, we obtain a birational morph|sr|n: Nko---oMN: S— S = S which conjugatesp to ¢« = ¢, and such
that no(—1)-curve ofS is contracted byp.

It remains to show thapis an automorphism d3. Assuming the converse, we will deduce a contradiction.
We writeT;: X1 — S the blow- up of the base-points (p;‘ and writex;: X1 — S the morphisny; = (pl'l,
which is the blow-up of the base-points @f'. Denote byC; C X1 a (—1)-curve contracted by, onto a
base-poinp of (p‘l (such a curve exists for each base-point). Because base-point (I[)_ itis not a base-
point of ¢ for anyr > 0. The mapp has no persistent base-point, becauss = u( @) = 0 (Proposition3.3
and Corollary3.4). In consequence, there exigts- 1 such thafp is not a base-point ap.

We ertex2 X5 — X3 the blow-up of the base-points (piE kt,, and denote by, : X, — Sthe morphism
T, = @ %112, Which is the blow-up of the base-points (@f) ¢ 1; this yields the following commutative
diagram:

X2
N
T2 Xl
"
S
¢t )

Becausep is not a base-point ap ¥, the curveC; C X, has to be contracted by o (Xx2)~%, and the curve
Co = (X2)(Cy) has self-intersection-1 (otherwisep K would have a base-point infinitely nearpoandp
itself would then be a base-point).

The curver;(C,) is contracted by, and is then not &-1)-curve. Because it is contracted ¥ ¥, there is
a base-poing of <p1 K that is a proper point of;(Cy). Sincert, is a morphismy;x2 blows-up all base- pomts
of @1, and thus blows-up. The fact that is a base- pomt op' K, implies that it is not a base-point @f
and thus that it is not blown-up byi. In consequence(t;)~1(q) is a point blown-up by,, and which lies
onC;. This is incompatible with the fact th@ = (x2)~1(C;) has self-intersection-1. O

Remark 3.6. In [13, Theorem 0.4] one can find a characterisation of hyperbatatibnal mapsp which
are conjugate to an automorphism of a projective surface.clBir(P?) is hyperbolic, we conjugate it to a
birational map of a smooth projective surface S where therads algebraically stable (this means that the
(@lr1(9)" = (@) |H11(g) for eachn); its action on H1(S) admits the eigenvaluk(g) > 1 with eigenvector
8, . The mapypis birationally conjugate to an automorphism if and onlyif )? =

Proposition3.5 gives another characterisation, for all maps Bir(P?) (not only hyperbolic maps), de-

pending only onu(®).
Example 3.7.1In [2, 3, 4, 5, 12], automorphisms with positive entropy are constructedistafrom a bira-
tional map ofP?. In [12] the authors take a birational mape Bir(P?), and choosé € Aut(PP?) such that
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AU is conjugate to an automorphism of a surface with dynamiegteke> 1. The way to findA is exactly to
ensure thafAy has no persistent base-poine( WAY) = 0). Let us give an examplel(f)):
Let @ = Ay be the birational map given by

A: (x:1y:2) --» (0x+2(1—a)y+ (240 —0?)z: —=x+ (0 + 1)z: x— 2y + (1 - a)2)
with a € C\ {0, 1} and
P: (X:1y:2) --» (X2 4y :yZ: D).

The mapy (resp. 1) has five base-pointgg = (1: 0 : 0) and four points infinitely near; we will denofd
(resp.P,) the collection of these points. The automorphi&ns chosen such that:

e Pi, AP,, AYAP; have distinct supports;

o P = (AD)?AP,.
In particular the base-points gf are non-persistent, sp is conjugate to an automorphism of a rational

surface. More preciselgis conjugate to an automorphism with positive entropyP8rblown up inPy, AP,
andAQAP; (se€g[12, Theorem 3.1]).

4. GROWTH OFJONQUIERES TWISTS

Lemma 4.1. Let @ be a birational map of?? which preserves the pencil of lines passing through some
point . The set

{degq}‘—k-@‘kzo}cz

is bounded.
In particular, the sequencédegqi(}kEN grows linearly if and only if xp) > 0 and its growth is given by
He 1
5 € ZN'

Remark 4.2. Conjugatingg by a map which preserves the pencil does not change the gl{aﬁe@tﬁ‘}keN,
but conjugating it by a map which does not preserve the perailincrease itsSeePropositiord.4).

Proof. For anyk, ¢¢ preserves the pencil of lines passing through It implies that the linear system gf
(which is the pull-back of the system of lines Bf by @) has multiplicity deg — 1 at pp and has exactly
2(degg — 1) other base-points, all of multiplicity 1. In particular, gigt = Lde()J- The result follows then
directly from Propositior8.3. O
Example 4.3. Let us consider the family of birational maps studiedlift][and defined as

fap: (X:y:2) -—» ((ax+y)z: By(x+2) : 2(X+2)), a,BeC.

Any of the f, g has three base-pointgl : 0:0), (0:1:0) and(—1:a: 1), and preserves the pencil of lines
passing througlil: 0: 0). Checking that—1:a : 1) is the only one persistent base-poiritl[ Theorem 1.6]),

the growth of{ degf(';B}kEN is given byX (see[11, Lemma 1.4]).

Proposition 4.4. Let@ € Bir(IP?) be a Jonquiéres twist. There exists an integer M such that

kiTw deg{(cpk) _ 2 H(Z(P) .

Moreover, a= 1if and only if@ preserves a pencil of lines.
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Proof. Since@is a Jonquiéres twist, there exispsc Bir(IP?) such thafp Popt preserves t the pencil of
lines passmg through some poipte P2. Let : F1 — P? be the blow-up ofp € P?, and Ietq)e Bir(F1)
be(p 1 1gr. Denote byl g2 the linear system of lines @ and byA the linear system oR; corresponding
to the image byt 1y of the system of lines dP2. The degree of is equal to the free intersection bfz
with @*(Lpz), which is the free intersection @f with @(A).

On Ty, A'is linearly equivalent t@lL + bf, whereL = r1(Lp2), f is the divisor of a fibre and wheia
be N. Note thatg*(L) is the transform oif; of the linear system ap ¥, and is thus equal tb+ (d — 1),
wheredy is the degree off (and ofgX). The systen?ﬁ((/\) is then linearly equivalent tal. + (a(dx — 1) +
b) f, so the total intersection a‘ N) with A is a®dy + 2ab. Becausefpk N)- f = a, each base-point af( N)
has at most multiplicitya. By Lemma4.1, ide—; H(Z(P) The number of base-points Afbeing bounded,
the free intersection aﬂ< ) with A grows Ilkeaz@ -k.

It remains to see that 'Ei: 1 theng preserves a pencil (the other direction follows from Lemfr. If
a=1, one getsf - A = 1. This implies that the free intersection @fr(f) with ¢ 11(A) = Lp2 is 1; so
@ m(f) is a pencil of lines, invariant bg. O

Lemma4.1and the second assertion of Coroll&yimply the following statement ofl[3, Theorem 0.2.]
Corollary 4.5. Let@be a Jonquiéres twist; thepis not conjugate to an automorphism.
We can also derive the following new results.

Corollary 4.6. Letbe a Jonquiéres twist. " and @ are conjugate irBir(P?) for some m, re Z, then
Im| = |n].

Proof. The fact th<';1t{deg<d<}keN grows linearly implies thatp preserves a pencil of rational curvek3]

Theorem 0.2]. In particula@ is conjugate to a birational map & which preserves the pencil of lines
passing through some fixed poipg. According to Lemmat.1, one findgu(g) > 0.

As @™ and@" are conjugate in B{i??) one hagi(@") = u(¢@") (Corollary3.4). Sinceu(q) = |k-u(@)| for
anyk, we getm| = |n|. O

5. GROWTH OFHALPHEN TWISTS

In Section4 (especially Lemmd.1), we described the degree growth of a Jonquiéres tpviahd showed
that it is given byp(¢), a birational invariant given by the growth of base-poirfter an Halphen twist, the
dynamical number of base-points is trivial, but the growdh also be quantified by an invariant. Recall that
an Halphen twistp preserves an unique pencil of elliptic curves. By,[Theorem 2 and Proposition 7, page
127], a power ofp preserves any member of the pencil, and acts on this via sldtam.

Proposition 5.1. Let@ ¢ Bir(P?) be an Halphen twist.
(1) The set

k—+-c0

{ lim w e Blr(IP’Z)}
admits a minimum, which is a posmve rational numkép) € Q. If g acts via a translation on each
member of its invariant pencil of elliptic curves, thefp) € 9N.

(2) There exists an integer:a 3 such thatkirﬂoo %2“%) =K(Q)- a—92

(3) The following conditions are equivalent:
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(@) a=3;
(b) @ preserves an Halphen pendile. a pencil of(elliptic) curves of degre8n passing throug!®
points with multiplicity n.

Proof. An Halphen twist preserves an unique elliptic fibration, fseré exists an elemetin Bir(P?) such
that@ = Q@1 preserves an Halphen pencil. DenotingrbyS — P? the blow-up of the 9 base-points of the
pencil, @ = T 1@'mtis an automorphism of S, which preserves the elliptic fioraB— P given by| — mKg|
for some positive integem. R
Replacingp by some power if needed, we can assumegtigt translation on a general fibre. As explained

in the proof of [L4, Proposition 9, page 132], this yields the existence of amehtA € Pic(S) (depending
on @) with A - Ks = 0 such that the action afon PidS) is given by

D—D—-m(D-Ks)-A+YKs,
wherey is an integer depending dhwhich can be computed using the self-intersection:

m?
y=——(DKs) N>+ m(D-A).

We denote by the linear system of lines @2 and byA = 1t 1y(L) its transform on S. The degree @f
is equal to the free intersection bfwith ¢"(L), which is equal to the free intersectiondfwith @"(A).
The mapy® acts on Pi¢S) as

D+ D—m(D-Kg)- (nA)+ (—%(D Ks) - (nA)24+m(D- (nA))> Ks.

This yields

AGN) = A2=m(A-Ks)- (B A)+ (= (A-Ks)(nd)2+ m(nA-4) ) (Ks-A)
N2+ (~ (A -Ke)(B)2) P,

The free intersection betweénand@(A) is thus equal to
m? K ~
N (TSP )= 3 (N - u@ ().
=

wherep;(A) and (@'(A)) denote the multiplicities of respectively and@(A) at ther base-points of.
Since@is an automorphism of S, the contribution given by the basetp is bounded, so we find that

im 9899 _ 2 (n ke)?- (‘TAZ> .

N—+-c0 n2
Note thatA is the lift by ! of the homaloidal linear systemi(L), SOA - (—Ks) > 3, and equality holds
if and only if A has no base-point. This shows that the minimum among all oidad systems is attained
whenA has no base-point; we get@) = 9n? - (*TAZ) anda=A-Ks.

Let us prove that-A? is a positive even number. To do this, we take the orthogoasish, E;, ..., Eg of
Pic(S), whereL is the pull-back of a line oP? andEy, ..., Eg are the exceptional divisors associated to the
points blown-up. Writing

A:dL—iia;Ei,
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the equality)-Ks = 0 implies thaty & = 3d. Modulo 2, we have (a)2= 5 & = 3d =d?, soA? =d? -5 (g)?
is even. Applying Cauchy-Schwarz (b, ...,1) and(ay, . ..,aq), we get % ()2 > (zai)z, and equality holds
only when allg; are equal. This latter would imply thatis a multiple ofKs, and thus thadAp acts trivially on
Pic(S). Hence we have 9(a)2 > (3 a)? = (3d)2, which implies that-A? = ¥ (a)2 — d? > 0.

The fact that-A? is a positive even number implies the(tp) = 9n? - <*TA2) is a positive integer divisible

by 9. The equalitk (@) = I(Iim %ﬁ”k) is equivalent to the fact that has no base-point, which corresponds
—+o0

to say thatp~1mis a birational morphism, or equivalently that the uniquagieof elliptic curves invariant
by @is an Halphen pencil. O

Corollary 5.2. Let@ < Bir(PP?) be an Halphen twist. The intege(@) is a birational invariant which satisfies
K(@™) = mPk(¢) for any me Z. In particular, the mapg" and @ are not conjugate ifm| # |n|.

Proof. Is a direct consequence of Propositioi. O

Let us give an example wherg®) is not an integer.

Example 5.3. Let A be the pencil of cubic curves & given by (x%y + Z2 4+ y?2) + u(xz+y> +yZ) =0,
(N : W) € PL. The pencil is invariant by the automorphisme Aut(P?) defined by(x:y: 2) ~ (ix: —y: 2).

Denote byrt: S— P? the blow-up of the base-points 6f which are 7 proper points @ and 2 infinitely
near points. More precisely, the 7 proper points are

p1=(1:0:0),
pp=(iv2:1:1, ps=a(p) = (—v2:-1:1),
pa=a(ps) = (-iv2:1:1, ps=0a(pg) = (vV2:-1:1),
pe=(0:i:1), pr=0a(ps) =(0:—i:1).

The last two points are the following: the poipg is infinitely near topg, corresponding to the tangent
direction of the liney = iz, and pg is infinitely near top;, corresponding to the tangent direction of the line
y=—iz

The surface S inherits an elliptic fibration-S P, and the lift ofa yields an automorphisra = morr !
of S. Denote byE; € Pic(S) the divisor of self-intersection-1 corresponding to the poing;. If i # 6, 7,
thenE; corresponds to &-1)-curve of S; andEs, E7 correspond to two reducible curves of S.

For anyA € Pic(S) satisfyingA - Ks = 0, we denote by, € Aut(S) the automorphism which restricts on a
general fibreC to the translation given by the divisdic. If A2 = —2, the action of on PidS) is given by
(seethe proof of Propositio.1)

D D—(D-Ks)-A+ (D (Ks+4))-Ks.
For any automorphisra € Aut(S), one can check thag ) = o1a0~ L. In particular, we have
(@1a)* = (@1a0 (@120 2) (@180 )1a = lg(a) lazw) aea)a = la(a)+a2(0)+@30) +o-
Because of the action of on the pointsp;, we have
a(Es) = E7, 4(E7) = Es, G(E2) = E3, G(E3) = E4, G(E4) = Es, 0(Es) = E».
We now fixA € Pic(S) to be the divisolE, — Eg (that satisfied) - Ks = 0 andA? = —2), and obtain
a(A)+02(A) +03(A) + A= Ep+ Ez+ E4 + Es — 2B — 2F7,
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which has square-8. In particular, the numbex associated t¢dia)* = l6(A)+62()+a3(2)+4 1S

('a(A)+GZ(A)+a3(A)+A)2
-9 5 = 36.

This shows, by Corollarg.2, thatk (@) = 7, where@is the birational map oP? conjugate taX 15 by 1T,
namelyaruar L.

6. APPLICATIONS
6.1. Birational maps having two conjugate iterates.

Lemma 6.1. Let @ denote a birational map dP>. Assume tha@® and ¢™ are conjugate and assume that
Im| # |n|. Then,@is an elliptic and satisfiea(¢) = 1 and (@) = 0.

Proof. The mapg™ is conjugate tag" in Bir(P?) so one geta (@)™ = A(@)I" and|m| - u(@) = |n| - u(@). This
yieldsA(@) = 1 andp(g) = 0.

The fact that\(@) = 1 implies thatg is elliptic, or a Jonquiéres or Halphen twist. The Jonqi&nad
Halphen cases are impossible (Corolladegand5.2). O

Proposition 6.2. Let @ denote a birational map df? of infinite order. Assume thgf' and ¢™ are conjugate
and assume thdtn| # |n|. Then,@is conjugate to an automorphism @ of the form(x,y) ~ (ax,y+1),
wherea € C* such than™™" = 1ora™ "= 1.

In particular, if @is conjugate tap for any positive integer n, thepis conjugate tqx,y) — (x,y—+1).

Proof. Follows from Corollary2.5, Corollary5.2and Lemmab.1 O

6.2. Morphisms of Baumslag-Solitar groups in the Cremona group.For any integersn, n such that
mn<# 0, the Baumslag-Solitar group B8, n) is defined by the following presentation

BS(m,n) = (r,s[rs"r 1 =g").
Recall that if G is a group, the derived groups of G are

GO =g, Gl = [G“‘”,G(i‘”] = (ghgth g, he GI~) foralli > 1,

and that G issolvableif there exists an integéd such that &Y = {id}.

The groups B8n,n) (resp. the subgroups of finite index of B n)) are solvable if and only ifm =1
or |n| = 1 (see[18, Proposition A.6]).

A group G is said to beesidually finiteif for any g in G\ {id} there exist a finite group H and a group
homomorphisn®: G — H such that®(g) belongs to H, {id}. The group B&m,n) is residually finite if
and only ifm| =1 or|n| = 1 or |m| = |n| (see[17]). LetV be an affine algebraic variety; according 19 [
any subgroup of finite index of the automorphisms groul’ @ residually finite. Therefore ifm| # |n| and
Im[, |n| # 1 there is no embedding of B&,n) into the group of polynomial automorphisms of the plane.
There is an other proof using the amalgated structure ofriingpgof polynomial automorphisms of the plane
and the fact that B@n, n) is not solvable ({0, Proposition 2.2]).

Lemma 6.3. Letp be a homomorphism froBS(m,n) = (r, s|rs™r 1 = &) to Bir(IP?). Assume thaim,|n|

and1 are distinct. Ifp(s) has infinite order, the image of the subgroup of finite intles™ | rs™ r—1 = ™) of
BS(m,n) is solvable.
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Proof. By Propositior6.2, one can conjugateso thatp(s): (x,y) --» (ax,y+1) wherea € C* anda™ "= 1
or a™™" = 1. Denoting respectively by the map(x,fly) or (x 1, y) one hasyp(s)™Pp~* = p(s)".
Sop(r) = Yt wheret commutes wittp(s)™: (x,y) — (a™x,y+m).

According to Lemma.8, one then has = (n(x),y+ R(x)) for somen € PGL(2,C),n(a™Mx) = a™(x),
and someR € C(x) satisfyingR(a™x) = R(x). And one getp(r) = (n(X)*, L(y+R(x))).

The group generated kp(s™) andp(r) is thus solvable. O
Corollary 6.4. If [m|, |n| and 1 are distinct, there is no embedding®%(m, n) into the Cremona group.
Proof. Lemma6.3shows that the image of any embedding would be virtuallyadak, impossible whejm|,
In| and 1 are distinct. U

6.3. Embeddings of GL(2,Q) into the Cremona group. To simplify the notation, we will denote in this
last section by(@;(x,Y), @(x,y)) the rational magx,y) -+ (@(X,y), @ (x,y)) from C? to C2.
Let us first give examples of embeddings of @LQ) into the Cremona group.

Example 6.5.Letk be an odd integer and gt Q* — C* be a homomorphism such treat-> gikz‘) is injective.
The morphisnp from GL(2,Q) to the Cremona group given by

a b\ _ (. X(ad—bc) ay+b
P\lc d]|)~ (cy+d)k "cy+d
is an embedding. Note thatGL(2,Q)) is conjugate to a subgroup of automorphisms ofkttle Hirzebruch
surfaceFx. Changingk gives then infinitely many non conjugate embeddings in thear@na group.

Remark 6.6. Takingk = 1 andy the trivial map, Examplé.5yields the embedding: GL(2,Q) — Bir(P?)

given by
ab B X ay+b
P\lc d]|)™ cy+d' cy+d)’

which is obviously conjugate (by extending the action®4pto the classical embedding

([ 3]) e

Theorem 6.7. Letp: GL(2,Q) — Bir(IP?) be an embedding @L (2, Q) into the Cremona group, then up to
conjugationp is one of the embeddings described in Exangde

Proof. Let us set
11 q 'm0
tq—[o 1} & dm,n—[o n}’ g mneQ.

Remark that is conjugate totin GL(2,Q), for anyn € Z ~. {0}; we can then assume, after conjugation,
thatp(t1) = (x,y+1) (Proposition6.2). Asp(ty/,) commutes withp(ty) there exist, in PGL(2,C) andR,
in C(x) such that

P(ty/n) = (An(X),y+ Ra(X))
(seeLemma2.8). Let us prove now thak,(X) = x. Since E/n =1, the elemenh, is of finite order sd\, is con-
jugate to soméx whereg is some root of unity. Hencg(t; /) is conjugate tq€x,y+Q(x)) whereQ € C(x)
satisfiesQ(x) + Q(€x) +--- + Q(&"1x) = 1. The map(¢x,y + Q(x)) is then conjugate tq&x,y+ 1) by
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(x,y— w> Since {/y, is conjugate togf, Proposition2.4implies that¢ = 1, which achieves to show
thatAn(x) = x. This implies, with equality(t;/n)" = p(t1), thatR,(x) = 1/n. We thus have for ang/in Q

p(ty) = (X y+0).
From dn,ntld,;’l,1 = tm/n ONE gets (using again Lemraas) that
m
p(cmn) = (Nma(), =Y+ Rmn(x)) flmn € PGL(2,C), R € C(X).

The map(Q*)? — PGL(2,C) given by(m,n) — nmn is @ homomorphism, which cannot be injective. There
exists thus one element,g with (m,n) # (1,1) such thatp(dmn) = (X, Ty + Rnn(X)) . Note thatm # n

since the centralizers @f(dmnn) andp(ty) are different. Conjugating béx y+ m/n( i) we can assume that
P(dmn) = (X, Ty). From dnndap = dapdmn ONe gets for angy, bin Q
a
p(dan) = (Nab(). 1Y) Nab € PGL(2,C).

The homomorphisnQ* — PGL(2,C) given bya — naa is injective, so up to conjugation by an element
of PGL(2,C) we can assume that for aay: Q . {0, 1} there existXaa € C~ {0,1} such thatja a(X) = Xa.aX-
This implies the existence g, € C* for anya, bin (Q*)2, such thaf)ap(X) = XapX-

0 1
-1 0
X22 € C* is of infinite order, there exisR € C(y) andv € PGL(2,C) such thatp(M) = (xR(y),v(y))
(Lemma2.8). For anya € Q*, equalityMd, 1 = di aM yields

We now compute the image M = . Sincep(M) commutes withp(dz2) = (X2,2X,y) where

(Xaax-R(@).v(@) = (X1 RY) v0))

This implies thaR(y) = ay X andv(y) = for somea, e C* ke Z, ie. p(M) = ( %

‘<|'®

). We use now
equality (Mt;)® = id: the second component ((M)p(t1))2 being

Bly+B+1)
B+1y+23+1’

we find = —1 and computép(M)p(t1))% = (xa3(—=1)K,y) soa® = (—1)K. Sincep(M)? = (xa?(—1)K,y)
has order 2, we havea? = (—1)k, thusa = —1 andk is odd.

Writing X (a) = Xa1 for anya € Q, the mapQ* — C* given bya— x(a) is a homomorphism, and one gets
p(da1) = (Xx(a)x,ay). The group GI2,Q) is generated by the mapg dt, andM, so

o((23])- (i)

for any { } € GL(2,Q). This yields an embedding if and only if the homomorphismmfr@* to C*

given bya — X i is injective.

It remains to observe th&tcan be chosen to be positive. Indeed, otherwise one coam@at()—l(,y) and
replaces( with % to replacek with —k. O
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One can see that Gh, Q) does not embedd into BiP?) as soon as > 3. Indeed, Theorerf.7 implies
that the diagonal matrices are sent onto diagonal elemém&b(3,C) = Aut(PP?), which is impossible, by
considering the involutions. One can also find another lbs#as corollary:

Corollary 6.8. Letp: GL(2,C) — Bir(P?) be an embedding d&L(2,C) into the Cremona group. There
exist a positive odd integer k, a field homomorphisnC — C and a group homomorphisy: C* — C*
such that

a b x(ad—bc) r(a)y+r(b)> [ ab ]
=[x , ) v € GL(2,C).
([ 2 4]) = (v Reyream whi@ c d]=CH0
Remark 6.9. One sees that in the description abgvés an embedding if and only if the group homomor-

phismC* — C* given bya — ’T(Eg;z is injective. This happens for instance by takixn@) = r(a)%l, any

positive odd integek and any field homomorphism C — C.

Proof. The mapp induces an embedding of G2, Q) into the Cremona group. According to Theorériione
has a description @ (2,0)- Up to conjugacy, there exists an odd positive intdgand an homomorphism
X: Q* — C* such that

([25)- (a2 5)eama

ta:[é ‘H & db:{o 1], acC,beC

Let us set

For anya € C*, the matrix d commutes with all diagonal matrices with entrie€jinthis implies, with the
description above, that
P(da) = (X(2)x,T(2)y)
for somex(a), 1(a) in C* (Lemma2.7). This yields two group homomorphisnys t: C* — C*. Observe
thaty is an extension df, i.e. x(a) = X(a) for anya € Q.
The equality dt1d,1 =ty implies that

p(ta) = (X y+1(a)), vae C*.

In particular,t extends to an (injective) field homomorphigth— C. The group GI2,C) being generated
by GL(2,Q) and{da|a € C*}, one has

a bl _ x(ad—bc) t(@)y+1(b) a b
p([ c d D - (X' (T(C)yH(d))k’T(c)y+r(d)> ’ v[ ¢ d ] €GLEZ0).
The mapp is injective if and only ifx(a?) # 1(ak) for anya € C* \ {1}. O
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