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Abstract

In this paper, we propose to improve the stabilized POD-ROM introduced in [48]
to deal with the numerical simulation of advection-dominated advection-diffusion-
reaction equations. In particular, we propose a three-stage stabilizing strategy that
will be very useful when considering very low diffusion coefficients, i.e. in the strongly
advection-dominated regime. This approach mainly consists in three ingredients: (1)
the addition of a “streamline diffusion” stabilization term to the governing projected
equations, (2) the modification of the correlation matrix defining the POD modes
associated to the advection stabilization term, and (3) an a-posteriori stabilization
scheme. Numerical studies are performed to discuss the accuracy and performance of
the new method in handling strongly advection-dominated cases.

Keywords: finite element method, filtered advection stabilization, a-posteriori stabiliza-
tion, proper orthogonal decomposition, reduced order models, convection-dominated flows.

1 Introduction

Reduced Order Models (ROMs) applied to numerical design in modern engineering are
a tool that is wide-spreading in the scientific community in the recent years in order to
solve complex realistic multi-parameters, multi-physics and multi-scale problems, where
classical methods such as Finite Difference (FD), Finite Element (FE) or Finite Volume
(FV) methods would require up to billions of unknowns. On the contrary, ROMs are based
on a mathematically rigorous offline/online strategy, and the latter requires a reduced
number of unknowns, which allows to face control, optimization, prediction and data
analysis problems in almost real-time, that is, ultimately, a major goal for industrial
applications. The reduced order modeling offline strategy relies on proper choices for data
sampling and construction of the reduced basis (cf. [34]), which will be used then in
the online phase, where a proper choice of the reduced model describing the dynamics
of the system is needed. The key feature of ROMs is their capability to highly speedup
computations, and thus drastically reduce the computational cost of numerical simulations,
without compromising too much the physical accuracy of the solution from the engineering
point of view.
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Among the most popular ROMs approaches, Proper Orthogonal Decomposition (POD)
strategy provides optimal (from the energetic point of view) basis or modes to represent
the dynamics from a given database (snapshots) obtained by a full-order system. Onto
these reduced bases, a Galerkin projection of the governing equations can be employed
to obtain a low-order dynamical system for the basis coefficients. The resulting low-order
model is named standard POD-ROM, which thus consists in the projection of high-fidelity
(full-order) representations of physical problems onto low-dimensional spaces of solutions,
with a dramatically reduced dimension. These low-dimensional spaces are capable of
capturing the dominant characteristics of the solution, their main advantage being that
the computations in the low-dimensional space can be done at a reduced computational
cost. This has led researchers to apply POD-ROMs to a variety of physical and engineering
problems, including Computational Fluid Dynamics (CFD) problems in order to model
advection-diffusion equations [25, 26], see e.g. [27, 28], and the Navier–Stokes Equations
(NSE), see e.g. [11, 12, 17, 29, 42, 46, 57]. Once applied to the physical problem of interest,
POD-ROMs can be used to solve engineering problems such as shape optimization [5, 32]
and flow control [6, 15, 31, 55].

Although POD-ROMs can be very computationally efficient and relatively accurate in
some flow configurations, they also present several drawbacks. For instance, for model
reduction purposes, one only keeps few modes that are associated to the large eddies of
the flow, which should be sufficient to give a good representation of the kinetic energy of
the flow, due to the energetic optimality of the POD basis functions. However, the main
amount of viscous dissipation takes place in the small eddies represented by basis functions
that are not taken into account, and thus the leading reduced order system is not able to
dissipate enough energy. So, although the disregarded modes do not contain a significant
amount of kinetic energy, they have a significant role in the dynamics of the reduced order
system. It is then necessary to close the POD-ROMs by modeling the interaction between
the computed and the unresolved modes. This problem establishes a parallelism to Large
Eddy Simulations (LES) [50] of turbulent flows, where the effect of the smallest flow
structures on the largest ones is modeled. Since these are also in non-linear interactions,
a proper non-linear efficient and accurate closure model should be proposed also in the
POD context, considering that in this context the concepts of energy cascade and locality
of energy transfer are still valid [23]. To prevent the loss of accuracy of POD-ROMs due
to cutting out the POD modes corresponding to the viscous scales, various approaches
have been proposed, both based on physical insights (cf., e.g., the survey in [57]), and
numerical stabilization techniques (cf. [11, 12, 13, 14, 30, 38]). We emphasize, however,
that reduced order closure modeling and stabilization are two related, yet different issues.
For example, if one considers a linear problem like the advection-diffusion-reaction problem
investigated in the present manuscript, one could choose the solution norm and construct
POD basis functions that are orthogonal in that norm. In that case, there would be
no reduced order closure problem (in the corresponding inner product). Nevertheless, in
the advection-dominated regime, the reduced order numerical stabilization would still be
relevant, especially for low diffusion coefficients. On the other hand, the main goal of
reduced order closure modeling is to increase the accuracy of ROMs, having some effect
on their numerical stability too. Indeed, in order to increase the ROMs accuracy, reduced
order closure models usually add numerical dissipation. This numerical dissipation aims
at increasing the physical accuracy (i.e., matching the Kolmogorov energy cascade), and
also allows to address numerical instabilities due to the truncation in Galerkin models [47].

To address this issue, in [48] a Streamline Derivative projection-based strategy for the nu-

2



merical stabilization of POD-ROMs (SD-POD-ROM) has been introduced. The proposed
model has been numerically analyzed for advection-diffusion-reaction equations, by mainly
deriving the corresponding error estimates. Some preliminary numerical tests have been
performed in [48] for a moderate Péclet number, showing the efficiency of the proposed
method, as well as the increased accuracy over the standard POD-ROM that discovers its
well-known limitations very soon in the numerical settings considered, i.e. for moderately
low diffusion coefficients.

In this paper, we aim to improve this approach by proposing a three-stage stabilizing
strategy that will be very useful when considering very low diffusion coefficients, i.e. in
the strongly advection-dominated regime. This approach mainly consists in three ing-
redients: (1) the addition of a “streamline diffusion” stabilization term to the gover-
ning projected equations, (2) the modification of the correlation matrix defining the POD
modes associated to the advection stabilization term, and (3) an a-posteriori stabilization
scheme. Parallel and independently to the current paper, a SUPG-POD-ROM combined
with isogeometric analysis has been very recently proposed and analyzed in [45] to address,
similarly to the present study, advection-dominated advection-diffusion-reaction problems.
The latter and the present study independently perform a numerical investigation of two
different stabilization POD-ROMs to address advection-dominance in POD solution to
advection-diffusion-reaction equations.

The rest of the paper is organized as follows: in section 2, we briefly describe the POD
methodology and introduce the SD-POD-ROM for advection-diffusion-reaction problems.
In section 3, we describe the process of a-posteriori stabilization in a general framework and
how to apply it to the considered problems. Numerical studies are performed in section
4 to discuss the accuracy and efficiency of our method in handling strongly advection-
dominated cases, and also its robustness for long time integrations on periodic systems.
Finally, section 5 presents the main conclusions of this work and future research directions.

2 Streamline derivative projection-based POD-ROM

In this paper, the proposed stabilization is preliminary analyzed and tested for the POD-
ROM numerical approximation of advection-dominated advection-diffusion-reaction prob-
lems of the form:

(2.1)


∂tu+ b · ∇u− ν∆u+ gu = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(x, 0) = u0(x) in Ω,

where b is the given advective field, ν << 1 the diffusion parameter, g the reaction
coefficient, f the forcing term, Ω the computational domain in Rd, d = 2 or 3, t ∈ [0, T ],
with T the final time, and u0 the initial condition. For the sake of simplicity, we have
imposed homogeneous Dirichlet boundary conditions on the whole boundary Γ = ∂Ω.

To define the weak formulation of problem (2.1), let us consider the space:

X = H1
0 =

{
v ∈ H1(Ω) : v = 0 on Γ

}
,

where H1 is the usual Sobolev space [16].
We shall consider the following variational formulation of (2.1):

Find u : (0, T ) −→X such that

(2.2)
d

dt
(u, v) + (b · ∇u, v) + ν(∇u,∇v) + g(u, v) = (f, v) ∀v ∈ X,
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where (·, ·) stands for the L2-inner product in Ω.

In order to give a FE approximation of (2.2), let {Th}h>0 be a family of affine-equivalent,
conforming (i.e., without hanging nodes) and regular triangulations of Ω, formed by triang-
les or quadrilaterals (d = 2), tetrahedra or hexahedra (d = 3). For any mesh cell K ∈ Th,
its diameter will be denoted by hK and h = maxK∈Th hK . We consider Xh ⊂ X a suitable
FE space. The FE approximation of (2.2) can be written as follows:

Find uh ∈ Xh such that

(2.3)
d

dt
(uh, vh) + (b · ∇uh, vh) + ν(∇uh,∇vh) + g(uh, vh) = (f, vh) ∀vh ∈ Xh.

It is well-known that, in the case of low diffusion coefficient ν << 1, the standard Galerkin
method (2.3) is generally unstable and leads to globally polluted solutions presenting strong
spurious oscillations. In this paper, we thus propose to first consider an offline stabiliza-
tion procedure, which becomes necessary to deal with the numerical instabilities of the
Galerkin method and to generate the snapshots for the online phase with a reasonable
accuracy. In particular, we consider a simplification of the Streamline Derivative-based
(SD-based) approach used by Knobloch and Lube (see [43]) in the FE context, which
only acts on the high frequencies of the advective derivative. This approach consists in
adding a filtered advection stabilization term by basically following the streamlines to
prevent spurious instabilities due to dominant advection, but using a simple interpola-
tion operator on a continuous buffer FE space instead of a local projection operator on
a discontinuous enriched FE space (see [1] for more details). This stabilization term acts
on the high frequency component (main responsible for numerical oscillations) of the ad-
vection/streamline derivative, which seems to be a natural choice when dealing especially
with strongly advection-dominated configurations. This method falls into the class of
Local Projection Stabilization (LPS) methods (cf. [2, 4]).

To briefly recall this approach, assume that the discrete space Xh is formed by piecewise
polynomial functions of degree m ≥ 2, e.g. Xh = Pm ∩X, where Pm denotes the space of
continuous functions whose restriction to each mesh cellK ∈ Th is the Lagrange polynomial
of degree less than or equal to m. We define the scalar product:

(·, ·)τ : L2(Ω)× L2(Ω)→ R, (v, w)τ =
∑
K∈Th

τK(v, w)K ,

and its associated norm:
‖v‖τ = (v, v)1/2

τ ,

where for any K ∈ Th, τK is in general a positive local stabilization parameter. The
working expression for τK used in this context, designed by asymptotic scaling arguments,
is:

τK =

[
c1

ν

h2
K

+ c2
‖b‖∞
hK

+ c3g

]−1

,

where c1, c2 and c3 are positive algorithmic constants (see [48] for more details).

The LPS method by interpolation applied to advection-diffusion-reaction equations is
stated by:

Find uh ∈ Xh such that

(2.4)


d

dt
(uh, vh) + (b · ∇uh, vh) + (π′h(b · ∇uh), π′h(b · ∇vh))τ

+ ν(∇uh,∇vh) + g(uh, vh) = (f, vh) ∀vh ∈ Xh,
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where π′h = Id− πh is the “fluctuation operator”, with Id the identity operator and πh a
locally stable interpolation operator from L2(Ω) onto a projection space Dh defined on the
same mesh Th and formed by continuous FE (e.g., Dh = Pm−1), satisfying optimal error
estimates (cf. [21]). In practical implementations, we choose πh as a Scott–Zhang-like [51]
linear interpolation operator in the space P1 (since we consider P2 as FE solution space),
implemented in the software FreeFem++ [33]. This interpolant may be defined as:

∀x ∈ Ω, πh(v)(x) =
∑
a∈N
Ih(v)(a)ψa(x),

where N is the set of Lagrange interpolation nodes of P1, ψa are the Lagrange basis
functions associated to N , and Ih is the interpolation operator by local averaging of
Scott–Zhang kind, which coincides with the standard nodal Lagrange interpolant when
acting on continuous functions (cf. [21], section 4).

2.1 Proper orthogonal decomposition reduced order model

For the report to be self-contained, this section briefly presents the computation of a basis
for ROMs with POD. For more details, the reader is referred to [22, 35, 52, 53, 56].

We first present the continuous version of POD method. Consider a function u(x, t) :
Ω×[0, T ]→ R, and r ∈ N. Then, the goal of POD consists in finding the set of orthonormal
POD basis {ϕ1, . . . , ϕr} that deliver the best approximation:

(2.5) min

∥∥∥∥∥u(x, t)−
r∑
i=1

(u(x, t), ϕi)H ϕi

∥∥∥∥∥
2

L2(0,T ;H)

,

in a real Hilbert space H. Although H can be any real Hilbert space, in what follows

we consider H = L2(Ω), with induced norm ‖·‖ = (·, ·)1/2 =

(∫
Ω
| · |2

)1/2

. Thus, the

L2(0, T ;L2(Ω)) norm is used, since it is directly related to the kinetic energy of the flow
field.

In the framework of the numerical solution of Partial Differential Equations (PDEs), u
is usually given at a finite number of times t0, . . . , tN , the so-called snapshots. Let us
consider an ensemble of snapshots χ = span {u(·, t0), . . . , u(·, tN )}, which is a collection
of data from either numerical simulation results or experimental observations at time
tn = n∆t, n = 0, 1, . . . , N and ∆t = T/N . Then, usually an approximation of the error
in the square of the L2(0, T ) norm is considered, e.g., by a modification of the composite
trapezoidal rule. Thus, in its discrete version (method of snapshots), the POD method
seeks a low-dimensional basis {ϕ1, . . . , ϕr} that optimally approximates the snapshots in
the following sense, see for instance [44]:

(2.6) min
1

N + 1

N∑
n=0

∥∥∥∥∥u(·, tn)−
r∑
i=1

(u(·, tn), ϕi)ϕi

∥∥∥∥∥
2

,

subject to the condition (ϕj , ϕi) = δij , 1 ≤ i, j ≤ r, where δij is the Kronecker delta. To
solve the optimization problem (2.6), one can consider the eigenvalue problem:

(2.7) Kzi = λizi, for 1, . . . , r,
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where K ∈ R(N+1)×(N+1) is the snapshots correlation matrix with entries:

(2.8) Kmn =
1

N + 1
(u(·, tn), u(·, tm)) , for m,n = 0, . . . , N,

zi is the i-th eigenvector, and λi is the associated eigenvalue. The eigenvalues are positive
and sorted in descending order λ1 ≥ . . . ≥ λr > 0. It can be shown that the solution of
(2.6), i.e. the POD basis, is given by:

(2.9) ϕi(·) =
1√
λi

1√
N + 1

N∑
n=0

(zi)nu(·, tn), 1 ≤ i ≤ r,

where (zi)n is the n-th component of the eigenvector zi. It can also be shown that the
following POD error formula holds [35, 44]:

(2.10)
1

N + 1

N∑
n=0

∥∥∥∥∥u(·, tn)−
r∑
i=1

(u(·, tn), ϕi)ϕi

∥∥∥∥∥
2

=

M∑
i=r+1

λi,

where M is the rank of χ.

We consider the following space for the POD setting:

Xr = span {ϕ1, . . . , ϕr} .

Remark 2.1. Since, as shown in (2.9), the POD modes are linear combinations of the
snapshots, the POD modes satisfy the boundary conditions in (2.1). This is because of
the particular choice we have made at the beginning to work with homogeneous Dirichlet
boundary conditions. In general, one has to manipulate the snapshots set. This is the
case, for instance, of steady-state non-homogeneous Dirichlet boundary conditions, for
which is preferable to consider a proper lift in order to generate POD modes for the lifted
snapshots, satisfying homogeneous Dirichlet boundary conditions. This would lead to work
with centered-trajectory method in the POD-ROMs setting [30]. One can also implement
boundary conditions in ROMs constructed using continuous projection weakly, see [41] for
more details on this issue.

In the form it has been presented so far, POD seems to be a bivariate data compression
or reduction technique, see e.g. [10]. Indeed, equation (2.6) says that the POD basis is
the best possible approximation of order r of the given data set. In order to make POD
a predictive tool, one couples the POD with the Galerkin procedure. This, in turn, yields
a reduced order system, i.e., a dynamical system that represents the evolution in time of
the Galerkin truncation. Thus, the Galerkin POD-ROM uses both Galerkin truncation
and Galerkin projection. The former yields an approximation of the solution by a linear
combination of the truncated POD basis:

(2.11) u(x, t) ≈ ur(x, t) =
r∑
i=1

ai(t)ϕi(x),

where {ai(t)}ri=1 are the sought time-varying coefficients representing the POD-Galerkin
trajectories. Note that r << N dof , where N dof denotes the number of degrees of freedom
(d.o.f.) in a full order simulation (e.g., DNS). Replacing u with ur in (2.1), using the
Galerkin method, and projecting the resulted equations onto the space Xr, one obtains
the standard POD-ROM:

(2.12)
d

dt
(ur, ϕr) + (b · ∇ur, ϕr) + ν(∇ur,∇ϕr) + (gur, ϕr) = (f, ϕr) ∀ϕr ∈ Xr.
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Despite its appealing computational efficiency, the standard POD-ROM (2.12) has ge-
nerally been limited to diffusion-dominated configurations. To overcome this restriction,
we draw inspiration from the FE context, where stabilized formulations, such as (2.4)
for instance, have been developed to deal with the numerical instabilities of the Galerkin
method in advection-dominated configurations.

2.2 Streamline derivative projection-based method

For ease of reading, we recall hereafter the approach leading to the SD-POD-ROM origi-
nally introduced and numerically analyzed in [48]. Let us introduce the POD space:

X̂r = span {ϕ̂1, . . . , ϕ̂r} ,

where ϕ̂i, i = 1, . . . , r, are the POD modes associated to K̂, defined as the snapshots
correlation matrix with entries:

(2.13) K̂mn =
1

N + 1
(b · ∇u(·, tn), b · ∇u(·, tm)) , for m,n = 0, . . . , N.

Note that for classical POD modes associated to the standard correlation matrix Kmn,
there already exists a theory on convergence rates and error bounds for POD expansions
of parameterized solutions of heat equations, see e.g. [7, 8, 9]. With co-authors of the
referred works, following the guidelines given there, we aim to derive a similar analysis for
POD modes associated to the advection correlation matrix K̂mn defined in (2.13).

We consider the L2-orthogonal projection on X̂r, Pr : L2(Ω) −→ X̂r, defined by:

(2.14) (u− Pru, ϕ̂r) = 0, ∀ϕ̂r ∈ X̂r.

Let P ′r = Id − Pr. We propose the Streamline Derivative projection-based POD-ROM
(SD-POD-ROM) for (2.1):

(2.15)


d

dt
(ur, ϕr) + (b · ∇ur, ϕr) + (P ′r(b · ∇ur), P ′r(b · ∇ϕr))τ

+ ν(∇ur,∇ϕr) + (gur, ϕr) = (f, ϕr) ∀ϕr ∈ Xr.

We introduce the bilinear form A(u, v) = (b·∇u, v)+(P ′r(b·∇u), P ′r(b·∇v))τ+ν(∇u,∇v)+
(gu, v). The SD-POD-ROM (2.15) with a backward Euler time discretization reads:

(2.16)
1

∆t
(un+1
r − unr , ϕr) +A(un+1

r , ϕr) = (fn+1, ϕr) ∀ϕr ∈ Xr.

Remark 2.2. In [48], we have proved that the solution of the fully discretized SD-POD-
ROM (2.16) is stable and converges to the solution of the continuous problem (2.2). In
particular, we have proved error estimates that are uniform with respect to the diffusion
coefficient, which is extremely relevant when advection-dominated problems are considered,
like in this work.

Remark 2.3. When τK = 0 for any K ∈ Th, the SD-POD-ROM (2.15) coincides with
the standard POD-ROM (2.12), since no numerical dissipation is introduced. Also, note
that in this paper we directly consider the projection over the same number r of POD
modes retained for the ROMs solution. Indeed, due to the slow convergence of the POD
eigenvalues associated to the advection correlation matrix K̂mn in case of very low diffu-
sion (see section 4) and the fact that error estimates for the SD-POD-ROM are directly
proportional to them (cf. [48], Theorem 2.11), this improves results obtained by projecting
over a number R < r, as initially proposed in [48].
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Remark 2.4. Note that the SD-POD-ROM (2.15) rather differs from the VMS-POD-
ROM introduced in [36]. Indeed, in [36], a gradient-based model for the standard POD-
ROM is considered, which adds artificial viscosity by a term of the form:

α(P
′
R(∇ur), P

′
R(∇ϕr)),

being α a constant eddy viscosity coefficient, and P
′
R = Id−PR, with PR the L2-orthogonal

projection on the POD space defined by span{∇ϕ1, . . . ,∇ϕR}, R < r, making it applicable
just to H1-POD basis (here, L2-POD basis is used), for which the decay of POD eigenvalues
is rather slow in presence of strongly advection-dominated configurations (similar to the
decay of POD eigenvalues associated to the advection correlation matrix (2.13), see, e.g.,
figures 12, 18), and this leads to higher POD errors [37]. On the contrary, in the present
work, we are adding an advection stabilization term, by just following the streamlines,
which seems to be a more natural choice when dealing especially with strongly advection-
dominated regimes. We emphasize that the POD modes for the advection correlation ma-
trix (2.13) are only used to construct the advection stabilization term through (2.14). This
clearly differentiates the present work with respect to [36].

Also, the SD-POD-ROM (2.15) is different from the SUPG-POD-ROM introduced in [30],
since the former does not involve the full residual (only a streamline derivative stabilization
term is introduced), thus presenting a simpler and cheaper structure for practical imple-
mentations such as to perform the numerical analysis, and also uses a projection-stabilized
structure, which allows to act only on the high frequency components of the advective
derivative: this guarantees an extra-control on them that prevents high-frequency oscil-
lations without polluting the large scale components of the approximation for advection-
dominated problems (cf. [48], Lemma 2.7). We emphasize, however, that the SD-POD-
ROM (2.15) is not fully consistent, but verifies optimal error estimates (cf. [48]). In-
stead, the SUPG-POD-ROM introduced in [30] retains numerical consistency, in the sense
that the continuous solution exactly satisfies the discrete equations, whenever it is smooth
enough. In terms of computational cost, the offline phase of the SUPG-POD-ROM is more
expensive than the one of the SD-POD-ROM, since the former is fully residual-based, while
the online phase is almost comparable. In terms of accuracy, both methods give similar
reliable results (see section 4), especially when combined with a-posteriori stabilization
described herein.

3 A-posteriori stabilization

To describe the process of a-posteriori stabilization in a general framework, let us consider
an elliptic variational problem:

(3.1) Find x ∈ X such that b(x,w) = l(w) = 〈f, w〉, ∀w ∈ X,

where X is a Hilbert space. The form b is defined on X × X and l ∈ X ′, being X ′ the
topological dual of X. Consider a family of sub-spaces of finite dimension of X, {Xi}i∈I ,
for some set of indices I. Let us assume that we solve problem (3.1) by the Galerkin
method on Xi:

(3.2) Find xi ∈ Xi such that b(xi, wi) = l(wi), ∀wi ∈ Xi.

Assume that the space Xi is decomposed into Xi = Yi⊕Zi, where Yi and Zi are subspaces
of Xi. Let xi = yi + zi be the unique decomposition that xi admits with yi ∈ Yi and
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zi ∈ Zi. Problem (3.2) may be recast as a variational problem for the only unknown yi, as
follows. Denote by A the operator from X on X ′ defined by the form b; that is for v ∈ X,
Av is the element of X ′ defined by:

〈Av, w〉 = b(v, w), ∀w ∈ X.

Denote by Ri : X ′ 7→ Zi the “static condensation”operator on Zi generated by the form
b, defined for ϕ ∈ X ′ by:

b(Ri(ϕ), wi) = 〈ϕ,wi〉, ∀wi ∈ Zi.

Let us introduce the “condensed” variational formulation to problem (3.2). To do so, we
consider the operators bc and lc as:

bc(y, v) = b(y, v)− b(Ri(A∗v),Ri(Ay)), lc(v) = l(v)− b(Ri(A∗v),Ri(f)), ∀y, v ∈ X,

where A∗ denotes the adjoint of the operator A. The “condensed” variational formulation
to problem (3.2) reads:

(3.3) Find yi ∈ Xi such that bc(yi, vi) = lc(vi), ∀vi ∈ Yi.

We next introduce the following definition:

Definition 3.1. The family of finite-dimensional spaces {(Yi, Zi)}i∈I , where I is a set if
indices, is called to satisfy the saturation property if there exists a constant α > 0 such
that

‖yi‖X + ‖zi‖X ≤ α ‖xi + yi‖X , ∀yi ∈ Yi, zi ∈ Zi, ∀i ∈ I.

The saturation property can be viewed as an inverse triangular inequality. It can be readily
proved that this property is equivalent to the existence of some constant β > 0 such that

(3.4) |(yi, zi)X | ≤ (1− β) ‖yi‖X‖zi‖X , ∀yi ∈ Yi, zi ∈ Zi;

actually we may take β =
2

α2
. Then, we can interpret the saturation property in the sense

that the angle between spaces Yi and Zi, defined by

arccos

(
sup

yi∈Yi\{0}, zi∈Zi\{0}

(yi, zi)X
‖yi‖X‖zi‖X

)
is uniformly bounded from below by a positive angle, with respect to i ∈ I.

Remark 3.2. Note that the argument of saturation property, applied here for the first
time, up to our knowledge, to POD-ROM approximations to propose a cure for instabili-
ties due to advection-dominance in POD solution to advection-diffusion-reaction equations,
gave also a mathematical argument to perform the numerical analysis of recently proposed
stabilization POD-ROMs [24, 49] that take into account the pressure instability for incom-
pressible flows governed by the NSE.

Then, it holds (cf. [20]):

Theorem 3.3. Assume that the spaces Yi and Zi satisfy Yi ∩ Zi = ∅. Then:

1. Let xi = yi + zi be the unique decomposition that xi admits with yi ∈ Yi and zi ∈ Zi.
Then, xi is the solution of the Galerkin method (3.2) if and only if yi is the solution
of the “condensed” variational formulation (3.3), and zi = Ri(l −A(yi)).
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2. Assume, in addition, that the family of pairs of spaces {(Yi, Zi)}i∈I satisfies the
saturation property. Then, there exists a constant C > 0 such that

(3.5) ‖yi‖X + ‖zi‖X ≤ C ‖l‖X′ , ‖ci‖X ≤ C ‖l‖X′ ,

where ci = Ri(A(yi)).

We may take advantage of this result to set up an a-posteriori stabilization procedure for
the Galerkin solution of steady advection-reaction-diffusion equation. In this case, the
framework Hilbert space is X = H1

0 (Ω). Assume that the space Yi contains in some sense
the large scales (or low frequency) component of the space Xi. For instance, if Xi is a
FE space constructed on a grid of a given diameter, Yi could be a FE subspace of Xi

constructed on a grid with a larger diameter, or with polynomials of lower degree. Also,
if Xi is a POD space, then Yi could be a subspace formed by a truncated set of basis
functions of low frequency. In both cases, Zi will be a space containing the small scales
(or high frequency) components of the space Xi.

In this framework, ci is a representation on Zi (by means of the static condensation
operator) of the small-scale components of the advection-diffusion-reaction operator A
acting on the large-scale component yi of the solution xi. Due to the second estimate
in (3.5), ci is uniformly bounded in X norm. We interpret this bound as an a-posteriori
stabilization effect.

The stabilization effect largely depends on the actual choice for spaces Yi and Zi. For
instance, for one-dimensional steady advection-diffusion equations with constant advection
velocity, diffusion and forcing term, this choice may be made optimal when Xi is formed
by piecewise affine finite elements, as follows. Assume that the space Xi is built on a grid
of grid size h, Th. The subspace Yi is formed by piecewise affine finite elements on a grid
with double grid size 2h, T2h. Then, there is a unique subspace Zi such that the solution
yi of the condensed variational formulation (3.3) coincides with the exact solution x of
problem (3.1) at the nodes of the grid T2h. For some other choices of Zi there could be,
however, an over-diffusive effect that yields a large damping of yi (cf. [20]).

Note that to compute yi from xi it is not necessary to build the space Yi. Indeed, it
suffices to construct a projection operator Πi : xi ∈ Xi 7→ yi ∈ Yi. To each actual setting
for Πi there corresponds a space Zi, as Zi = (Id − Πi)(Xi). For Lagrange FE spaces, in
practice the simplest way to compute yi is to retain just the degrees of freedom of xi that
correspond to the coarser grid on which Yi is built. Denote by {a1, a2, · · · , ap} the Lagrange
interpolation nodes of Yi, and by {ϕ1, ϕ2, · · · , ϕp} the associated Lagrange basis functions
of Yi. There exist a complementary set of interpolation nodes {ap+1, ap+2, · · · , ar} and
associated basis functions {ϕp+1, ϕp+2, · · · , ϕr} such that {ϕ1, ϕ2, · · · , ϕr} is a basis of Xi.

Then, the operator Πi is defined, for any xi =

r∑
k=1

αk ϕk ∈ Xi as:

(3.6) Πi

(
r∑

k=1

αk ϕk

)
=

p∑
k=1

αk ϕk ∈ Yi.

The sub scale space Zi for this procedure is generated by the complementary basis functions
{ϕp+1, ϕp+2, · · · , ϕr}. In [20], it is proved that the pairs of spaces {(Yi, Zi)}i∈I constructed
in this way indeed satisfy the saturation property. In this case the index i may be identified,
as usual, with the diameter of the triangulation h.
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For POD approximations, the procedure is quite similar. The space Xi is generated by the
basis functions {ϕ1, ϕ2, · · · , ϕr}, then the operator Πi is defined by truncation of the POD

series xi =
r∑

k=1

αk ϕk ∈ Xi right by (3.6), and again the spaces Yi and Zi are respectively

spanned by {ϕ1, ϕ2, · · · , ϕp} and {ϕp+1, ϕp+2, · · · , ϕr}. In this case, the index i may be
identified with the dimension r of the space Xi.

In this paper we will apply the a-posteriori stabilization procedure in the offline stage,
in which Xi is a FE space, and also in the online stage, in which Xi is a POD space.
Hereafter, we detail the post-processing algorithm for the online stage:

• Post-processing algorithm (online stage).

(i) For n = 0, 1, . . . , N − 1, given unr ∈ Xr, find un+1
r such that (2.16) holds.

(ii) Represent the solution un+1
r using R < r modes.

Although R could be estimated on the fly, minimizing for instance the error in a certain
norm with respect to the snapshot solution (when available) at each ROM time step, for
the considered numerical experiments choosing to truncate at R = r − 10 gave the best
balance between accuracy and suppression of spurious oscillations.

4 Numerical studies

In this section, we present some numerical experiments to mainly assess accuracy and per-
formance of the combination of the Streamline Derivative projection-based stabilization
technique (2.15) with online stabilizing post-processing strategy. We consider the nu-
merical computation of POD-ROM solutions to strongly advection-dominated advection-
diffusion-reaction equations. As mentioned above, while for the Full Order Model (FOM)
this strategy consists in interpolating the FOM solution on a coarser mesh (in practice,
T2h), for the ROM the a-posteriori stabilization consists in truncating the ROM solution
once obtained, as detailed in the algorithm above. This leads to a computationally efficient
and mathematically founded offline/online algorithm (completely separated), implemented
over the standard POD-Galerkin ROM. Actually, two applications (offline and online) of
the stabilized post-processing technique are studied in this paper, where we will show
the good performances of this technique to stabilize highly oscillatory FOMs and ROMs
numerical solutions of strongly advection-dominated problems. From the following nu-
merical results, we can observe that separately the two numerical stabilization strategies
proposed (SD-POD-ROM and a-posteriori stabilization) already provide an improvement
in general over the standard POD-Galerkin ROM. However, a further improvement is
reached when we combine the two stabilization methods, which allows to obtain almost
the same accuracy of more complex fully residual-based stabilization methods, such as
SUPG-POD-ROM.

The first numerical test 4.1 concerns an almost pure transient transport problem with a
rotating cylinder. The second numerical test 4.2 concerns a 2D traveling wave displaying
a sharp internal layer moving in time. In both cases, we employ P2 (piecewise quadratic)
FE on relatively coarse uniform spatial discretizations, and the backward Euler method
for temporal discretization with time step ∆t = 10−3. In particular, FE meshes are
significantly coarser than the width of the internal layers, which is common in practice.
POD modes are represented using P2 shape functions in order to perform the projection
step of the ROM procedure, similar to the elements we use for the FOM discretization
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we compare to. The open-source FE software FreeFem++ [33] has been used to run all
numerical experiments. In terms of computational cost, the CPU time of the tested ROMs
is at least three orders of magnitude lower than the CPU time of the corresponding FOMs.
Also, note that at online level adding the proposed stabilization techniques results in a not
significant increase of the CPU time with respect to the standard POD-Galerkin ROM,
thus proving the computational efficiency of the different ROMs stabilization strategies
employed.

4.1 2D Rotating cylinder

In this section, an almost pure transient transport problem with a rotating body will be
considered. In particular, this problem is given in the unit disc Ω = {(x, y) ∈ R2 : x2+y2 <
1} by the advection-diffusion-reaction equation (2.1) with advection field b = (−y, x)T,
reaction coefficient g = 0, forcing term f = 0, and a very small value for the diffusion
parameter ν = 10−20, as in [3]. The initial condition u0 is given by:

(4.1) u0 = 0.5

[
tanh

(
e−10[(x−0.3)2+(y−0.3)2−0.5]

10−3

)
+ 1

]
,

which consists in a cylinder of height 1 centered at (0.3, 0.3), as shown in figure 1. This
condition is smooth, but has a sharp layer with thickness of order 10−3. The mesh is
uniform with 256 triangles along the boundary of Ω, which leads to mesh size h = 4.26 ·
10−2, thus the layer is under-resolved. The rotation is counter-clockwise and the solution
after complete revolutions should be essentially the same as the initial condition, since the
diffusion parameter ν = 10−20 is very small. A pure transient transport problem with this
data was considered in [18].
This example leads to a strongly advection-dominated problem, and therefore an
offline stabilization procedure becomes necessary to deal with the numerical instabilities
of the Galerkin method. As announced in section 2, in this work we preliminarily consider
the LPS-FE by interpolation Method (LPS-FEM) given by (2.4), to which we further
apply the a-posteriori stabilization described in section 3.

4.1.1 Short time behavior

In first instance, we just compute one complete revolution of the cylinder being transported
around the unit disc, i.e. the computational time interval is [0, T ] = [0, 2π], and test the
SD-POD-ROM in this interval where the snapshots are computed. Thus, we are evaluating
the SD-POD-ROM in the reproductive (in time) regime. Note that the application of the
a-posteriori stabilization described in the previous section further improves the accuracy
provided by the LPS-FEM, as shown in figure 2, where we consider:

varh(t) = max
(x,y)∈Ω

uh(x, y, t)− min
(x,y)∈Ω

uh(x, y, t),

as measure for under- and overshoots, as in [40]. Indeed, we observe that, even if both
methods give similar error levels, LPS-FEM with post-processing is superior to LPS-FEM,
for which the quantity varh(t) shows much larger oscillations. Note that the optimal value
of varh(t) equals to 1 for all t.
As for the online phase, we perform a comparison between the SD-POD-ROM (2.15)
and the SUPG-POD-ROM [30] by considering the application or not of the a-posteriori
stabilization technique mentioned above, adapted to the POD-ROMs framework. The
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Figure 1: Example 4.1: Initial condition.

POD modes are generated in L2 by the method of snapshots by storing every tenth FOM
solution in the computational time interval [0, T ] = [0, 2π], so that 629 snapshots were
used. POD basis were constructed by using LPS-FEM with stabilizing post-processing,
to limit the influence of POD noisy data in the online phase. In figure 3, we show the
decay of POD eigenvalues associated both to the snapshots correlation matrix (2.8) and
the advection correlation matrix (2.13) in this case.

To check the temporal behavior of the online spurious oscillations, we compute:

varr(t) = max
(x,y)∈Ω

ur(x, y, t)− min
(x,y)∈Ω

ur(x, y, t),

for the different ROMs, tested in the same computational time interval [0, T ] = [0, 2π]
where the snapshots were computed. The corresponding results are displayed in figure 4,
where we evaluate the measure varr(t) for under- and overshoots at r = 30, 60, 90 (from
top to bottom) both for SD-POD-ROM (SD-ROM) and SUPG-POD-ROM (SUPG-ROM),
without online stabilizing post-processing (left) and with online stabilized post-processing
(right). To compute varr(t) for SD-ROM and SUPG-ROM with online post-processing,
note that the online stabilized post-process is applied at the end of each time iteration,
although the post-processed solution is not used to continue iterating in time so that
this is computationally very cheap (see the online post-processing algorithm at the end of
section 3). We have also tried propagating the post-processed ROM solution. However,
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Figure 2: Example 4.1.1: Measure varh(t) for under- and overshoots.

we have observed that this leads to an over-diffusive effect, thus we have preferred to
not use the post-processed solution to continue iterating in time. It is interesting to
observe that, although the first r = 30 POD modes already capture more than 99% of
the system’s kinetic energy (see table 1), both ROMs yield poor quality results for which
varr(t) oscillates around 1.3 for all t, reflecting the complexity of the problem. Augmenting
the number of POD modes causes the decrease of varr(t) to values close to 1.1 after one
full turn. In table 1, we have evaluated the deviation e0 for varr(t) from varh(t) in a
normalized discrete L2-norm subject to:

(4.2) e0 =


∫ 2π

0
|varh(t)− varr(t)|2 dt∫ 2π

0
|varh(t)|2 dt


1/2

.

Similarly to the offline phase, we observe that, even if both online methods give similar
error levels, SD-ROM and SUPG-ROM with online post-processing are almost identical
and superior to SD-ROM and SUPG-ROM without online post-processing, for which the
quantity varr(t) shows much larger oscillations. Note that e0 represents a first-order
statistic POD error, for which one expects it to decrease with increasing r, and this is
actually recovered in table 1. Also, to better assess the behavior of the tested ROMs,
figure 5 displays the Root Mean Square Error (RMSE in semi-logarithmic scale, top)
and the Correlation coefficient (Corr, bottom) for quantity var to measure the difference
between the ROMs and the FOM as follows:

RMSE = |σh − σr|, Corr =
σhr
σh σr

,
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Figure 3: Example 4.1.1: POD eigenvalues.

where:

σh =

[
1

N + 1

N∑
n=0

|varh − varh(tn)|2
]1/2

, σr =

[
1

N + 1

N∑
n=0

|varr − varr(tn)|2
]1/2

,

σhr =
1

N + 1

N∑
n=0

varh(tn) varr(tn)− varh varr,

being var the mean value of measure var for the considered method. We observe that,
for r ≤ 40, both ROMs without online post-processing reproduces the FOM solution
somewhat better than with online post-processing, being SUPG-ROM superior to SD-
ROM. Then for r ≥ 50, the trend is inverted, and the RMSE stabilizes around 2 · 10−2

for all ROMs, being slightly lower for SD-ROM with online post-processing. Note that the
RMSE represents a second-order statistic POD error, which is in general a very sensitive
measure difficult to exactly predict and for which, up to our knowledge, there exist no
theoretical results on how it should behave with respect to r. Actually, oscillations for
RMSE in a POD framework can be observed also in [19], where similarly happens that
for certain lower values of r, one obtains lower RMSE than for larger r. The Corr curve
indicates that ROMs and FOM solutions are strongly directly correlated for r ≥ 50 in a
similar way.

To give a qualitative picture, we report in figure 6 the final numerical solutions after one full
turn obtained using the SD-ROM with online a-posteriori stabilization for r = 30, 60, 90
(from top to bottom). To compute them, note that the online stabilized post-process
only applies to the ROMs solutions just at the end, so that this is again computationally
very cheap. We observe that numerical unphysical oscillations are gradually reduced by
increasing the number of POD modes, allowing to compute a rather accurate final solution.
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Figure 4: Example 4.1.1: Measure varr(t) for under- and overshoots for different ROMs at
r = 30, 60, 90 (from top to bottom) without online post-processing (left) and with online
post-processing (right, R = r − 10).

4.1.2 Long time behavior

The aim of this section is to check the long time behavior of the spurious oscillations
measured by var(t) (cf. [3]), and also the performance of the SD-ROM over a larger time
interval with respect to the one used to compute the snapshots and generate the POD
modes (cf. [54]), so that we evaluate the SD-ROM in the predictive (in time) regime. This
would assess the robustness and prediction/extrapolation ability of the SD-ROM for long
time integrations on this almost periodic system.

To do so, we first compute LPS-FEM with and without post-processing till T = 10π, which
corresponds to five complete revolutions. After an initial decreasing phase, the quantity
varh(t) almost stabilizes in the range [1.1, 1.2], see figure 7. Again, it is interesting to
observe that, even if both methods give similar error levels, the quantity varh(t) shows

ν = 10−20 r = 30 r = 60 r = 90

Captured system’s Ekin(%) 99.35 99.99 > 99.99

ν = 10−20 e0

Online methods r = 30 r = 60 r = 90

SUPG-ROM 0.0883 0.0405 0.0278

SUPG-ROM post-processing 0.0878 0.0344 0.0224

SD-ROM 0.0878 0.0535 0.0251

SD-ROM post-processing 0.0861 0.0315 0.0218

Table 1: Example 4.1.1: Captured system’s kinetic energy and L2-norm of the deviation
of varr(t) from varh(t) for different ROMs at r = 30, 60, 90.
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Figure 5: Example 4.1.1: RMSE (top) and Corr (bottom) for measure var.

much larger oscillations for LPS-FEM without post-processing.

As for the online phase, in this case only the last simulated revolution [8π, 10π] is used to
collect the snapshots for the POD basis generation, since we are interested in the correct
behavior of the SD-ROM during the almost stable response regime. Within this time
range, the POD basis is generated in L2 by the method of snapshots by storing every
tenth solution, so that 629 snapshots were used. POD basis were constructed by using
LPS-FEM with stabilizing post-processing, to limit the influence of POD noisy data in
the online phase. In figure 8, we show the decay of POD eigenvalues associated both
to the snapshots correlation matrix (2.8) and the advection correlation matrix (2.13) in
this case. Figure 10 displays the dominant (i.e., most energetic) first five POD modes for
the snapshots correlation matrix (2.8) (left) and the advection correlation matrix (2.13)
(right). We observe that the dominant POD modes for the advection correlation matrix
(2.13) appear more oscillatory than the ones for the correlation matrix (2.8). Actually,
they correspond to a slower decay of the corresponding POD eigenvalues.

To check the long time behavior of the online spurious oscillations measured by varr(t),
a comparison between SD-ROM with and without online stabilized post-processing is
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performed in the time range [8π, 16π], which is four times wider with respect to the
time window used for the generation of the POD basis. The corresponding results are
displayed in figure 9, where we evaluate the measure varr(t) for under- and overshoots
at r = 30 both for SD-ROM and SD-ROM post-processing in [8π, 16π], and compare it
with the FOM one in the snapshots time range [8π, 10π]. Note that for r = 30 more
than 99.99% of the system’s kinetic energy is captured in this case. Both SD-ROM gives
here almost similar and reliable results for long time integration, being SD-ROM post-
processing slightly superior to SD-ROM, and seems to rightly follow the trend initially
given by the FOM by approaching values close to 1.1.

4.2 2D Traveling wave

The mathematical model used for the numerical studies in this section is the advection-
diffusion-reaction equation (2.1) with the following parameter choices: computational
spatial domain Ω = (0, 1)2, computational time interval [0, T ] = [0, 1], advection field

b =
(

cos
π

3
, sin

π

3

)T
, reaction coefficient g = 1, and two low values for the diffusion pa-

rameter: ν ∈
{

10−6, 10−8
}

. The forcing term f and initial condition u0 are chosen to
satisfy the exact solution:

(4.3) u(x, y, t) = 0.5 sin(πx) sin(πy)

[
tanh

(
x+ y − t− 0.5

4
√
ν

)
+ 1

]
,

which simulates a 2D traveling wave displaying a sharp internal layer of width O(
√
ν)

moving in time. This example has been also used, for instance, in [30, 36, 45]. Here,
the SD-ROM is tested in the same time interval ([0, T ] = [0, 1]) where the snapshots are
computed, and thus we are evaluating the SD-ROM in the reproductive (in time) regime.

This example leads again to a strongly advection-dominated problem, and therefore
an offline stabilization procedure becomes necessary to deal with the numerical instabilities
of the Galerkin method. As in the previous section, we preliminarily consider the LPS-
FE by interpolation Method (LPS-FEM) given by (2.4), to which we further apply the
a-posteriori stabilization described in section 3. First, we consider the intermediate case
ν = 10−6, for which the application or not of the a-posteriori stabilization technique
described in the previous section almost gives a similar accuracy to compute the snapshots.
Then, we consider the limit case ν = 10−8, for which instead the application of the a-
posteriori stabilization further improves the accuracy provided by the LPS-FEM, as we
will see in the next sections.

As for the online phase, we perform a comparison between the standard POD-ROM (2.12)
and the SD-POD-ROM (2.15), by considering in both cases the application or not of the a-
posteriori stabilization technique mentioned above, adapted to the POD-ROMs framework.
The POD modes are generated in L2 by the method of snapshots by storing every tenth
solution, so that 101 snapshots were used. Since the forcing term f is time-dependent, the
global load vectors are stored for later use in the tested POD-ROMs.

Besides plots of the computed final ROMs solutions with higher accuracy, we also per-
formed a comparison between the different types of studied ROMs by evaluating the de-
viation e0 for the final solution profile along the mean diagonal (connecting vertices (0, 0)
and (1, 1)) of the computational domain from the corresponding exact solution profile in
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a normalized discrete L2-norm subject to:

(4.4) eROM0 =


∫ √2

0

∣∣∣ufinex − ufinROM ∣∣∣2∫ √2

0

∣∣∣ufinex ∣∣∣2


1/2

,

with obvious notation. An analogue for the different types of studied FOMs has also been
computed, by considering:

(4.5) eFOM0 =


∫ √2

0

∣∣∣ufinex − ufinFOM ∣∣∣2∫ √2

0

∣∣∣ufinex ∣∣∣2


1/2

.

4.2.1 Case ν = 10−6

In this case, we consider a uniform triangular mesh with mesh size h = 1.41 · 10−2, which
is relatively coarse with respect to the width of the internal layer. First, we tested diffe-
rent FOM: the Direct Numerical Simulation (2.3) (DNS-FEM), where no stabilization
is introduced, a DNS with stabilized post-processing (DNS-FEM post-processing), the
LPS (by interpolation)-FEM (2.4) (LPS-FEM), and the LPS-FEM with stabilized post-
processing (LPS-FEM post-processing). In figure 11, we show for the different methods
the final solution profiles along the mean diagonal of the computational domain compared
with the corresponding exact solution profile.

Offline methods eFOM0 , ν = 10−6

DNS-FEM 0.1828

DNS-FEM post-processing 0.1257

LPS-FEM 0.0576

LPS-FEM post-processing 0.0618

Table 2: Example 4.2.1: L2-norm of the deviation from the final exact solution profile
along the mean diagonal for different FOMs.

From this figure, it is evident that a DNS (i.e., no stabilization) gives oscillatory results,
which are only in part corrected by applying the a-posteriori stabilization. Thus, since
the problem is advection-dominated and the solution has already a steep internal layer,
the use of a stabilized discretization is necessary when using relatively coarse meshes. For
this purpose, we considered LPS by interpolation method, for which oscillations are rather
reduced, and application or not of the a-posteriori stabilization almost gives similar results.
A quantitative comparison between the different FOMs is given in table 2, where the
deviation eFOM0 from the final exact solution profile along the mean diagonal in a norma-
lized discrete L2-norm subject to (4.5) is displayed. We may observe that, while for DNS
methods errors are greater than 10%, for LPS-FEM methods are comparable and below
10%, being slightly better for the LPS-FEM method without a-posteriori stabilization.

So, for this case, POD basis were constructed by using LPS-FEM method (2.4), and the
studied ROMs thus used just slightly noisy POD data, which is unavoidable for strongly
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advection-dominated problems on realistic grids. In figure 12, we show the decay of POD
eigenvalues associated both to the snapshots correlation matrix (2.8) and the advection
correlation matrix (2.13). One can observe that the decay of the POD eigenvalues asso-
ciated to the advection correlation matrix is rather slow, due to the low diffusion. Figure
13 displays the dominant (i.e., most energetic) first five POD modes for the snapshots
correlation matrix (2.8) (left) and the advection correlation matrix (2.13) (right). One can
observe that the dominant POD modes for the advection correlation matrix (2.13) appear
more oscillatory than the ones for the snapshots correlation matrix (2.8). However, adding
the corresponding stabilization term in the online phase greatly improves the results over
the standard POD-ROM, since allows to control the high frequency components of the
advective derivative, main responsible for numerical oscillations.

ν = 10−6 r = 30 r = 60 r = 90

Captured system’s Ekin(%) 99.76 99.98 > 99.99

ν = 10−6 eROM0

Online methods r = 30 r = 60 r = 90

G-ROM 0.3743 0.1567 0.1067

G-ROM post-processing 0.3180 0.1389 0.0605

SD-ROM 0.3465 0.1435 0.0637

SD-ROM post-processing 0.2671 0.1383 0.0579

Table 3: Example 4.2.1: Captured system’s kinetic energy and L2-norm of the deviation
from the final exact solution profile along the mean diagonal for different ROMs at r =
30, 60, 90.

Figure 14 presents results for all considered ROMs: the standard POD-Galerkin ROM
(2.12) (G-ROM), the G-ROM with online stabilized post-processing (G-ROM post-proces-
sing), the SD-POD-ROM (2.15) (SD-ROM), and the SD-ROM with online stabilized post-
processing (SD-ROM post-processing). In particular, we show for the different methods
the final solution profiles along the mean diagonal of the computational domain compared
with the corresponding exact solution profile, at r = 30, 60, 90 (from top to bottom). One
can observe that applying the online a-posteriori stabilization greatly improves results for
the standard Galerkin-ROM (totally oscillatory), making it comparable with the stabi-
lized SD-ROM, for which applying or not the online a-posteriori stabilization almost gives
similar results. This is reflected by results depicted in table 3, where the deviation eROM0

from the final exact solution profile along the mean diagonal in a normalized discrete L2-
norm subject to (4.4) is displayed. One can see that, for r = 90, SD-ROM post-processing
method almost reaches the same accuracy of the offline phase by almost suppressing the
influence of noisy modes. Also, note that although the first r = 30 POD modes already
capture more than 99% of the system’s kinetic energy, all ROMs yield poor quality results
for which the peak of the front is not reached, and they display visible numerical oscilla-
tions, reflecting the complexity of the problem. Augmenting the number of POD modes
allows to reach the peak of the front for all methods. However, whereas the solution of
the G-ROM remains globally polluted with spurious oscillations, the application to it of
the online a-posteriori stabilization already reduces to few oscillations and localizes them
mainly near the steep layer, allowing to compute a rather accurate solution in this case,
comparable with the one of the stabilized SD-ROM and of the offline phase. In figure
15, we show the numerical solution at T = 1 for the best performing SD-ROM with on-
line a-posteriori stabilization for r = 30, 60, 90 (from top to bottom). With this method,
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numerical unphysical oscillations are practically eliminated by gradually increasing the
number of POD modes.

4.2.2 Case ν = 10−8

In this case, we consider a uniform triangular mesh with mesh size h = 9.43 · 10−3. Thus,
a finer grid with respect to the previous case is used, which is necessary to maintain
numerical diffusion within reasonable limits. Nevertheless, it remains relatively coarse
with respect to the width of the internal layer. Again, we tested different FOMs: DNS-
FEM, DNS-FEM post-processing, LPS-FEM, and LPS-FEM post-processing. In figure
16, we show for the different methods the final solution profiles along the mean diagonal
of the computational domain compared with the corresponding exact solution profile.

Offline methods eFOM0 , ν = 10−8

DNS-FEM 0.1816

DNS-FEM post-processing 0.1345

LPS-FEM 0.1247

LPS-FEM post-processing 0.0393

Table 4: Example 4.2.2: L2-norm of the deviation from the final exact solution profile
along the mean diagonal for different FOMs.

Offline results proved again the necessity to consider LPS method to avoid globally spurious
oscillations, but also that the application of the a-posteriori stabilization greatly improves
the results of the LPS-FEM in this case. Indeed, error levels decrease from 12% to 4%
when applying stabilizing post-processing to LPS-FEM, as shown in table 4. Also, if we
proceed by constructing POD basis from LPS-FEM (without stabilizing post-processing),
being more influenced by spurious oscillations, it leads to online numerical solutions that
are globally polluted with high spurious oscillations even for r = 90, whatever it is the
applied reduced order system, as shown in figure 17.

Thus, we decided to proceed by constructing POD basis by using LPS-FEM with stabilizing
post-processing, to limit the influence of POD noisy data in the online phase. In figure 18,
we show the decay of POD eigenvalues associated both to the snapshots correlation matrix
(2.8) and the advection correlation matrix (2.13) in this case. Again, one can observe that
the decay of the POD eigenvalues associated to the advection correlation matrix is rather
slow, due to the very low diffusion. However, adding the corresponding stabilization term
in the online phase greatly improves the results over the standard POD-ROM also in this
case.

Figure 19 presents results for all considered ROMs: G-ROM, G-ROM post-processing,
SD-ROM, and SD-ROM post-processing. One can observe that results for G-ROM (with
and without online a-posteriori stabilization) are globally quite oscillatory, even at r = 90.
However, applying SD-ROM already localizes oscillations just near the moving steep layer,
and also SD-ROM with online stabilizing post-processing allows to further improve results,
maintaining the amplitude of oscillations in a reasonable low range. This is reflected by
results depicted in table 5. One can see that, for r = 90, SD-ROM post-processing method
approaches the accuracy of the offline phase by considerably suppressing the influence of
noisy modes. Comparing also to table 3 (Case ν = 10−6), the SD-ROM performs well for
the different values of ν tested and displays a low sensitivity with respect to changes in
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the diffusion coefficient. This also provide a numerical support for the theoretical error
estimate derived in [48], which is uniform with respect to ν (see Remark 2.2). Again, note
that although the first r = 30 POD modes already capture more than 99% of the system’s
kinetic energy, all ROMs yield poor quality results for which the peak of the front is not
reached, and they display globally spread numerical oscillations, reflecting the extreme
complexity of the problem. Augmenting the number of POD modes allows to reach the
peak of the front for all methods. However, whereas the solution of the G-ROM (with
and without online a-posteriori stabilization in this case) remains globally polluted with
spurious oscillations, the SD-ROM notably reduces the amplitude of oscillations, and its
combination with online stabilizing post-processing allows to compute a rather accurate
solution in this case, comparable with the one of the offline phase. In figure 20, we show
the numerical solution at T = 1 for the best performing SD-ROM with online a-posteriori
stabilization for r = 30, 60, 90 (from top to bottom). Again, with this method, numerical
unphysical oscillations are practically eliminated by gradually increasing the number of
POD modes.

ν = 10−8 r = 30 r = 60 r = 90

Captured system’s Ekin(%) 99.71 99.96 > 99.99

ν = 10−8 eROM0

Online methods r = 30 r = 60 r = 90

G-ROM 0.3733 0.1676 0.1224

G-ROM post-processing 0.3086 0.1493 0.0884

SD-ROM 0.3417 0.1463 0.0675

SD-ROM post-processing 0.2596 0.1449 0.0589

Table 5: Example 4.2.2: Captured system’s kinetic energy and L2-norm of the deviation
from the final exact solution profile along the mean diagonal for different ROMs at r =
30, 60, 90.

5 Summary and conclusions

In this work, we have proposed to improve the stabilized POD-ROM introduced in [48]
to deal with the numerical simulation of advection-dominated advection-diffusion-reaction
equations. In particular, we have proposed a three-stage stabilizing strategy that has
proved to be very useful when considering very low diffusion coefficients, i.e. in the strongly
advection-dominated regime. This approach mainly consists in three ingredients: (1) the
addition of a “streamline diffusion” stabilization term to the governing projected equations,
(2) the modification of the correlation matrix defining the POD modes associated to the
advection stabilization term, and (3) an a-posteriori stabilization scheme.

The performed numerical studies have shown the potential of the new ROM in handling
strongly advection-dominated cases, also tested for long time integrations on periodic
systems, by extremely limiting spurious oscillations and thus obtaining rather accurate
results in this framework. To remove the few remaining oscillations, one could think to
apply more complex shock or discontinuity capturing methods (see [39] for a detailed
review) and try to adapt them to the POD-ROM framework as future interesting research
topic. Also, one could carry out a similar numerical investigation of the significantly
more challenging Navier–Stokes equations in view of computing more complex convection-
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dominated and turbulent flows. Another interesting research direction could be to test
the proposed method in the predictive regime for test cases not resembling a periodic
behavior, such as the test case in section 4.2. In this case, one should endow the SD-ROM
with a basis updating mechanism in order to get acceptable errors in this regime, using
for instance a-posteriori error indicators. This study is in progress, following some hints
given by the hybrid DNS/POD approach introduced in [14]. Apart from prediction in time
considered in the present work, we are interested in extending the proposed method in
order to make predictions across geometrical and/or physical parameters (see, e.g., [54]),
of interest to solve engineering problems such as shape optimization and flow control.
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M. Morzyński. Reduced-order models for closed-loop wake control. Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 369(1940):1513–1524, 2011.

[56] S. Volkwein. Model reduction using proper orthogonal decomposition. Tech-
nical report, University of Konstanz, Available at: http://www.math.uni-
konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf, 2011.

[57] Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu. Proper orthogonal decomposition
closure models for turbulent flows: a numerical comparison. Comput. Methods Appl.
Mech. Engrg., 237/240:10–26, 2012.

27



Figure 6: Example 4.1.1: Numerical solution for SD-ROM with online stabilizing post-
processing at T = 2π for r = 30, 60, 90 (from top to bottom).
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Figure 7: Example 4.1.2: Measure varh(t) for under- and overshoots.
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Figure 8: Example 4.1.2: POD eigenvalues.
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for different ROMs at r = 30.
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Figure 10: Example 4.1.2: Dominant POD modes for the correlation matrix (2.8) (left)
and the advection correlation matrix (2.13) (right).
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Figure 11: Example 4.2.1: Final solution profiles along the mean diagonal for different
FOMs.
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Figure 12: Example 4.2.1: POD eigenvalues.
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Figure 13: Example 4.2.1: Dominant POD modes for the correlation matrix (2.8) (left)
and the advection correlation matrix (2.13) (right).
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Figure 14: Example 4.2.1: Final solution profiles along the mean diagonal for different
ROMs at r = 30, 60, 90 (from top to bottom).
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Figure 15: Example 4.2.1: Numerical solution for SD-ROM with online stabilizing post-
processing at T = 1 for r = 30, 60, 90 (from top to bottom).
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Figure 16: Example 4.2.2: Final solution profiles along the mean diagonal for different
FOMs.
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Figure 17: Example 4.2.2: Final solution profiles along the mean diagonal for different
ROMs at r = 90 using noisy POD data from LPS-FEM.
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Figure 18: Example 4.2.2: POD eigenvalues.
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Figure 19: Example 4.2.2: Final solution profiles along the mean diagonal for different
ROMs at r = 30, 60, 90 (from top to bottom).
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Figure 20: Example 4.2.2: Numerical solution for SD-ROM with online stabilizing post-
processing at T = 1 for r = 30, 60, 90 (from top to bottom).
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