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Abstract

We introduce four tasks designed to deter-
mine which sentence encoders best capture dis-
course properties of sentences from scientific
abstracts, namely coherence between clauses
of a sentence, and discourse relations within
sentences. We show that even if contextual en-
coders such as BERT or SciBERT encodes the
coherence in discourse units, they do not help
to predict three discourse relations commonly
used in scientific abstracts. We discuss what
these results underline, namely that these dis-
course relations are based on particular phras-
ing that allow non-contextual encoders to per-
form well.

1 Introduction

This paper compares the ability of different sen-
tence encoders at representing coherence of sen-
tences from scientific abstracts, and more specifi-
cally discourse relations between clauses.

Our first hypothesis is that BERT (Devlin et al.,
2019) and SciBERT (Beltagy et al., 2019) mod-
els enable to produce sentence representations that
take coherence into account thanks to their training
done on Next Sentence Prediction. Our second hy-
pothesis is that this training should also enable to
capture discourse relations between clauses.

Discourse relations (DRs) represent the seman-
tic and pragmatic links between discourse units
(DUs), that are either clauses, sentences or groups
thereof, within a hierarchical structure that repre-
sents the whole text. In this work, we focus on
sentences that are defined as textual sequences sep-
arated by a period. Sentences may comprise one or
more DUs, and when they have at least two DUs,
the coherence links between them is represented
through DRs. These DRs are either explicitly sig-
naled, or left implicit. For example, the sentence

“By wearing a mask, we can protect the others.” con-
veys an enablement relation between the action

“wearing a mask” and the event “protecting the oth-
ers”, which is here lexicalized by the connective
“by”. DRs can be used to extract new knowledge,
especially in scientific abstracts which are highly
structured (Liddy, 1991).

Sentence embeddings (SE) represent the mean-
ing of a sentence in a fixed-size vector space, and
recent contextual approaches such as BERT have
shown promising results for downstream tasks such
as Semantic Textual Similarity (STS) or Natural
Language Inference (NLI) (Reimers and Gurevych,
2019). When further trained on downstream tasks,
these models have shown promising results. How-
ever, their performance also rely on linguistic
knowledge acquired at pre-training. For example,
BERT and SciBERT are trained on both Masked
Language Model and Next Sentence Prediction
tasks, in order to capture general linguistic proper-
ties that are then transferred to learn more specific
representations.

In this work, we want to understand if discourse
properties are embedded in sentence representa-
tions that are built before further training on down-
stream tasks.

We design probing tasks, that are classification
tasks whose goals are to predict discourse proper-
ties of the sentences from their embedding. Our
goal is to highlight if discourse properties of sen-
tences are captured by those vectors without fine-
tuning. We rely on the corpus SciDTB (Yang and
Li, 2018) to build four datasets used to probe if
embeddings capture some discourse properties of
the sentences. The two first datasets probe the
coherence of sentences, and the two others probe
the presence of DRs. We use four different sen-
tence encoders to produce sentence embeddings,
that we then use as input vectors for two classifi-
cation models. If the classifier succeeds, it means
that the vectors stores the discourse property that
is probed. We evaluate the classifiers, thus high-



lighting encoders that best encode the properties
we probe.

This paper is organized as follows. We first pro-
vide background to our work. Second, we detail
the tasks that we design to detect discourse prop-
erties. Third, we present our experimental setup,
including the different SE that we evaluate and the
choices that are specific to the corpus on which we
rely. Finally, we present our results and discuss
some issues.

2 Background

Coherence and cohesion are two key notions in the
perception of a text as a unified whole.

Coherence refers to logical and semantic re-
lations between clauses and sentences in a text,
while cohesion refers to grammatical or lexical de-
vices such as pronouns, verb tense or connectives,
that form external relations of a text (Halliday and
Hasan, 1976). While the former may stand without
the latter and vice versa, the connectivity model
of Renkema (2009) mixes coherence and cohesion
cues. In this work we follow this approach, and
will refer to as coherence the properties of both
coherence and cohesion.

DRs may either explicitly signal coherence rela-
tions by discourse connectives, or left them implicit.
In this latter case, the reader infers the relations
based on coherence links between clauses. For ex-
ample, the marker “to” is frequently used to links
an action X and a way Y to realize X, signaling that
Y is the manner-means to do X. However, even
if some relations are explicitly signaled with dis-
course connectives such as “to” or “by”, others are
less salient. For example in “We propose a novel
extension of this work using target context informa-
tion.”, the ellipsis of “by” make it harder to infer
the relation. Some of them (e.g enablement,
manner-means or attribution) express a
logical link between the content of the clauses
they relate, while others (e.g elaboration or
progression) only express a continuation or
additive relation. In scientific abstracts especially,
DRs that convey a logical link are often lexically
marked.

Several theories such as Rhetorical Structure
Theory (RST) (Taboada and Mann, 2006) or Seg-
mented Discourse Representation Theory (SDRT)
(Lascarides and Asher, 2007) help to build text dis-
course structures, by providing both sets of DRs
that are defined based on the content of the DUs

and a framework for attaching the DUs by means
of DRs. The RST defines a set of relations1 that
are either mononuclear (if for two DUs, one is
more salient than the other) or multinuclear (if two
or more DUs have the same importance). They
serve to build the hierarchical discourse structure
of the text, either as a constituency tree, or, more re-
cently, with dependency trees (Morey et al., 2018),
which are used to annotate scientific abstracts from
SciDTB (Yang and Li, 2018).

SE have shown promising results for a wide va-
riety of NLP tasks (Conneau and Kiela, 2018), but
are not interpretable independently of the others,
making it unclear what linguistic information they
contain and what is the meaning that they repre-
sent exactly. Previous works (Shi et al., 2016; Adi
et al., 2016; Conneau et al., 2018) intended to clar-
ify what linguistic information are contained in SE
by designing auxiliary tasks that take a single sen-
tence vector as input and tries to predict a simple
linguistic property of the sentence. They showed
that some syntactic properties (e.g word order or
syntactic tree depth) and some properties that they
defined as semantic2 (e.g the tense of the main verb
or the number of the subject) are well captured by
SE. We then hypothesize that the latter may also
capture discourse coherence and DRs in sentences
from scientific abstracts, thus being the first step
to extracting information at a semantic-pragmatic
level.

3 Probing tasks

In this section, for each probing task, we explain
how we build a dataset of sentences tagged with
discourse properties. They are then encoded by
various methods and used to train and evaluate
classifiers. We introduce two tasks designed to
check if coherence between clauses of a sentence
is encoded (3.1, 3.2), and two tasks to check if DRs
in sentences are encoded (3.3, 3.4).

3.1 Swapped units detection

Ordering of clauses fully participates to sentences
coherence. We evaluate if coherence is captured by
SE by evaluating the ability of a classifier to distin-
guish between coherent sentences and incoherent
ones. We produce incoherent sentences by swap-

1https://www.sfu.ca/rst/01intro/
definitions.html

2They admit however that the boundary they propose be-
tween syntactic and semantic tasks is somewhat arbitrary.

https://www.sfu.ca/rst/01intro/definitions.html
https://www.sfu.ca/rst/01intro/definitions.html


ping two adjacent discourse units from sentences
originally correct.

The dataset for this probing task thus consists of
original multi-clausal sentences and of their inco-
herent equivalent obtained by swapping two ran-
dom adjacent DUs. By doing so, we however
do not ensure that new sentences are always in-
coherent. For example, swapping units 0 and 1
in the sentence “[Word alignment] [using recency-
vector based approach] [has recently become popu-
lar.]” produces the new coherent sentence “[Using
recency-vector based approach] [word alignment]
[has recently become popular.]”.

The resulting task is a binary classification task
into {yes, no}, where yes corresponds to swapped
sentences, and no to the original sentences.

3.2 Scrambled sentence detection
Topic incoherence may emerge when a topic T1 is
involved in the context of another topic T2, lead-
ing to incoherence because of the incompatibility
between T1 and T2.

The dataset used to probe this property is built
as follows. Starting from original multi-clausal
sentences splitted in DUs, we replace a randomly
chosen DU by another randomly chosen DU from
a different document, thus changing the context
of a DU. Here again, the new sentence might be
still coherent. For example, replacing the second
DU in the sentence “[But these methods cannot be
used][to obtain the estimates of causal effects-the
quantity of interest for applied researchers.]” pro-
duces a new coherent sentence “[But these methods
cannot be used] [using a two-phase approach.]”.

The resulting task is a binary classification task
into {yes, no}, where yes corresponds to scram-
bled sentences, and no to the original sentences.

3.3 Relation detection
A sentence may either be composed of a single
DU, or of multiple DUs. In the last case, the DUs
may be links through additive or continuation DRs
(in bold in Table 1), or through logical relations
(in italics in Table 1). We distinguish them and
evaluate if SE can be used to predict whether a
sentence contains a logical DR.

We rely on the discourse annotations provided
in SciDTB, from which we extract the subtrees
corresponding to the discourse structures of the
sentences. Sentences that contain only one DU and
sentences made of multiple DUs whose subtree
contains no logical DRs are classified as norel.

Attribution Background Cause-effect
Comparison Condition Contrast
Elaboration Enablement Evaluation

Explain Joint Manner-means
Progression Same-unit Summary

Temporal

Table 1: Discourse relations in SciDTB corpus

Others are classified as rel regardless of the type
of the logical DR they contain.

The resulting task is a binary classification task
into {rel, norel}.

3.4 Relation semantics detection

Being able to precisely identify which logical dis-
course relation is involved in a sentence may be
useful as a first step toward knowledge extraction
from texts. This task thus evaluates if the semantics
of the DRs involved in sentences are represented in
their embedding.

We rely again on the annotations to classify sen-
tences based on the DR they contain. Sentences
that contain only one DU and sentences made of
multiple DU whose subtree contains no logical
DRs are classified as norel. Others are classified
based on the relation r they contain, if and only
if they contain only one of these relations. The
sentences that contain two or more logical relations
are not tackled in our approach, and are thus not
considered in the dataset.

The resulting task is a K-classes classification
task where K is the number of relations that are
considered.

4 Experiments

4.1 Data

SciDTB3 is a corpus of 798 scientific abstracts from
ACL Anthology4. Abstracts are segmented into
DUs in a semi-automatic way, following the guide-
lines of (Carlson et al., 2003), and annotated by
discourse structure in dependency with DRs from
the RST relations set, which was slightly modified
and extended to be adapted to scientific abstracts5.

The majority of documents contain between 5
and 7 sentences (minimum 2, maximum 14, mean

3https://github.com/PKU-TANGENT/SciDTB
4https://www.aclweb.org/anthology/
5We refer the reader to the paper (Yang and Li, 2018) to

get explanations on the adaptations and annotation procedure.
The relations set is recalled in Table 1.

https://github.com/PKU-TANGENT/SciDTB
https://www.aclweb.org/anthology/


Figure 1: Example of dependency annotation from
SciDTB.

6), resulting in a set of 4196 sentences in total.
Among them, 787 are made of a single DU, thus
containing no relation, and 3409 contain more than
one DU, and thus at least one DR. We use the seg-
mentation into DUs to produce the datasets for
coherence detection tasks (swapped and scram-
bled). We use the inter-clausal DRs to produce
the datasets for DR detection tasks (binRel and
semRel)6.

For swapped and scrambled, each sentence that
has more than one DU is classified as no, and is
used to produce a new sentence that is classified
as yes, resulting in a dataset of 6818 sentences.
For each sentence (original and modified), we en-
sure that punctuation and case do not bias the ex-
periment by removing capitalization, periods and
commas.

For binRel and semRel, we need to form classes
that are broad enough to train the classifiers. It
leads us to make choices because of the lim-
ited size of the corpus. Fig. 2 shows the num-
ber of sentences having one of the given DRs.
Most of the DRs are involved in less than 200
sentences, which is not enough for training a
classifier. Among the others, three relations are
additive relations: Same-Unit links two seg-
ments of a DU broken into two parts, Joint,
links two DUs which are in conjunction, and for
Elaboration-addition one DU gives ad-
ditional information to another DU7. Moreover,
the latter are involved in most of sentences made
of more than 3 DUs, and are thus often used
together with logical DRs. We decide to ig-
nore them, which allows us to build a sufficiently

6We make the resulting datasets available at
https://gitlab.com/laurinehu/scidtb_
expe/-/tree/master/probing_datasets.

7We admit however that saying that
Elaboration-addition does not contain an inter-
esting semantics is somehow arbitrary, but can be understood
by comparison with the semantics of other DRs.

large dataset of sentences, tagged with the three
relations: enablement, manner-means or
attribution. We assume that the classifier will
therefore learn to predict one of these relations.

Figure 2: Distribution of relations in sentences.

For binRel, each sentence which has
no DR or only DRs from {joint,
elaboration-addition, same-unit}
is classified as norel, and the others as rel.
For semRel, the norel classification is done in
the same way, and sentences that involve one
and only one relation from {attribution,
enablement, manner-means} are classified
according to the relation they contain. Table 2
summarizes the datasets used for each probing
task, where the classes for each task are balanced.

classes # sent # sent / class
binRel rel 2894 1447

norel

semRel attribution 1432 358
enablement

manner −means
norel

swapped yes 6818 3409
no

scrambled yes 6818 3409
no

Table 2: Datasets description.

4.2 Sentence embeddings
In this section, we present the different SE that we
study, most of them being obtained by using pre-
trained models available on HuggingFace’s (Wolf
et al., 2019) website8. We compare SE obtained

8https://huggingface.co/

https://gitlab.com/laurinehu/scidtb_expe/-/tree/master/probing_datasets
https://gitlab.com/laurinehu/scidtb_expe/-/tree/master/probing_datasets


by averaging non-contextual word vectors (bag-of-
vectors), and SE obtained by using more recent
language contextual models based on transformers
that have shown promising results for various tasks.
Comparing the last to bag-of-vectors enables us
to determine whether coherence or DRs are only
captured because of linguistic cues, or because of
implicit links between clauses.

Global word Vectors (Pennington et al., 2014)
are word representations obtained from aggregated
global word-word co-occurrence statistics from a
large crawled corpus. Training objective is to learn
word vectors such that their dot product is the log of
the word’s probability of co-occurrences. We use
the largest pre-trained model available, constituted
of a vocabulary of 2.2M words, and containing vec-
tors of dimension 300. We build sentence vectors
by computing the mean of the word vectors, thus
producing bag-of-vectors (BoV) of dimension 300.

Google USE (Cer et al., 2018) uses a Deep Av-
eraging Network that is first trained in an unsu-
pervised way as in Skip-Thoughts (Kiros et al.,
2015), and whose output is transferred to be further
trained on a supervised way on Natural Language
Inference task. This encoder was the state-of-the-
art before more recent contextual approaches with
which we compare it. We use the largest model,
which encodes sentences into vectors of dimension
512.

BERT (Devlin et al., 2019) is the current state-
of-the-art for most NLP tasks. It produces con-
textual word representations, from training a bi-
directional encoder on two tasks: the first called
Masked LM (MLM) predicts a masked word from
its left and right context, and the second called Next
Sentence Prediction (NSP) predicts whether from
two sentences A and B, B is the actual sentence
that follows A. BERT thus represents the mean-
ing of a word according to its immediate context,
but also on the basis of relationships between sen-
tences. We use BERT-base model, from which we
recover the last hidden state after having processed
the sentence in the model, thus producing vectors
of dimension 768.

SciBERT (Beltagy et al., 2019) is a BERT model
specifically trained on full papers from the corpus
of Semantic Scholar, thus seeking to provide a bet-
ter representation of scientific vocabulary. We use
SciBERT-base and proceed in the same way as for
BERT, obtaining vectors of the same dimension.

For GloVe, BERT and SciBERT, we calculate

the embedding e(S) of the sentence S by calculating
the mean of each word vector as defined in 1.

e(S) =
1

|S|
∑
w∈S

e(w) (1)

4.3 Classification

Because we deal with datasets of different size and
vectors made of latent variables, we train and eval-
uate two different classifiers for each task, namely
a Logistic Regression (LR) and a Multi-Layer-
Perceptron (MLP) with one hidden layer and three
hidden units. On the one hand, the datasets are
small in size, which can make the training of the
MLP hard and a good LR performance possible.
On the other hand, the properties that we probe may
not be linearly separable, which would make them
hard to tackle with a LR classifier. The compari-
son of two classifiers thus gives us a fine-grained
analysis of both the results obtained and the way in
which the properties are encoded.

Experimental set-up We use the evaluation
toolkit Senteval9 (Conneau and Kiela, 2018), and
keep the parameters as defined in it, namely the op-
timizer is RmsProp (Tijmen and Geoffrey, 2012),
the batch size is 164 and the loss function is cross-
entropy. Because the number of sentences that we
have is quite small, we proceed with 5-fold cross
validation. We compute the mean of accuracies at
each fold. To compute the test accuracy, we keep
the best model and test it on the testing set (10%)
of the data. We compare both results to ensure that
the model is not overfitting.

5 Results

In this section, we comment the results obtained for
each probing tasks. Table 3 shows the test accuracy
and the mean accuracy of 5-fold cross validation.
We only comment the latter, as it is more relevant
due to the small datasets we have.

The LR classifier obtains better results than the
MLP for all tasks. Although losses in accuracy
when using MLP can be explained by the lack of
data, LR gives good results with BERT and SciB-
ERT for binRel, swapped and scrambled, suggest-
ing that those properties may be encoded linearly
in the vectors.

Relation detection DR are almost as well en-
coded by BoV than by BERT and SciBERT, which

9https://github.com/facebookresearch/SentEval



binRel semRel swapped scrambled
Model Encoder Test Mean 5-fold Test Mean 5-fold Test Mean 5-fold Test Mean 5-fold
LR

BoV-Glove 73.45 73.83 67.36 61.3 50 51 52.2 51.9
Google USE 71.22 71.03 47.92 50.07 58.8 63.3 50.4 59.8

Bert-base uncased 70.69 74.97 61.81 59.8 75.22 76.49 78.59 77.53
cased 71.38 74.84 61.11 55.65 73.31 77.33 78.3 76.30

SciBert uncased 76.55 77.98 50.69 60.16 77.71 77.74 80.06 79.77
cased 78.28 76.76 63.19 59.22 77.71 79.64 81.09 79.53

MLP
BoV-Glove 72.76 71.53 60.42 51.82 49.85 50.87 52.49 52.06

Google USE 67.59 66.64 48.61 45.67 60.26 60.82 56.01 57.31
Bert-base uncased 69.31 68.47 36.81 28.16 77.57 67.71 75.22 64.27

cased 50 52.62 25 25.85 78.15 67.85 75.66 54.39
SciBert uncased 73.45 74.13 38.89 37.23 75.81 68.49 79.91 65.76

cased 71.38 68.72 43.75 33.83 78.01 70.09 78.01 64.59

Table 3: Test and 5-fold mean accuracies of LR and MLP classifiers on each task for each sentence representation.

can be explained by the fact that they are most
of the time lexicalized. Contextual embeddings
slightly improve the results for binRel (from ≈
73% for BoV to 76.4 ± 1.5), but not for semRel
(61.3% for BoV to 57.9± 2.2).

By comparing two by two the results of BoV,
BERT, and SciBERT encoders for binRel, we high-
light that those models nearly give the same predic-
tions (see Table. 4). Among the 290 sentences used
as test, 94 are predicted differently by BERT and
BoV, 85 by SciBERT and BoV, and 67 by SciBERT
and BERT. Among the sentences that are similarly
predicted, less than 20% correspond to common
mistakes, and the others to common good predic-
tions. For BERT and SciBERT, around 70% of the
predictions are similar, showing that the models
capture similar information for this task. For BERT
and SciBERT with BoV respectively, more than
50% are common, but still they make a lot of differ-
ent predictions, showing that they do not capture
same aspects of the sentence.

For semRel however, the models make very dif-
ferent predictions. Among the 144 examples used
as test, 47 are predicted differently by BERT and
BoV, 78 by SciBERT and BoV, and 71 by SciBERT
and BERT. The results of Table 5 are consonant
with this variation, showing that all encoders have
in fact different abilities for the prediction.

We show both precision and recall obtained
for SemRel in Table 5. For attribution de-
tection, BoV, BERT-uncased and SciBERT-cased
gives the best recall (81%), for enablement it is
BERT-uncased (67%), for manner-means it is
BoV (78%), and for norel it is SciBERT-uncased

(75%). These good recalls obviously result in lower
precisions. However, as we want to find as many
instances of a relation R, rather than maximizing
the number of instances that are correctly found,
we are still satisfied.

Coherence detection Representations build
from BoV fail at predicting if units have been
swapped (51%10), and perform badly for pre-
dicting if units have been scrambled (≈ 51.9%).
Google Universal Sentence Encoder improves
swapped only by 10% and scrambled by 4%.
Representations built from contextual embeddings
improve accuracy for swapped by almost 26% for
BERT and 27.5% for SciBERT and for scrambled
by almost 25% for BERT and 27.8% for SciBERT.
This shows that training on STS, on which Google
USE is trained, is not enough to capture coherence
links between clauses, and that the “Next Sentence
Prediction” (NSP) task on which both BERT and
SciBERT are trained seems indeed to help a lot.
This task enables somehow to account for the order
of the units in the sentence. Even if BERT and
SciBERT are not trained at clause level, the corpus
on which they are trained is large and therefore
contains a large number of sentences that are made
of a single clause. This enables the model to learn
clause level contingency relations, which are in
fact the task that we probe here.

10We consider that an accuracy close or less than 50% cor-
responds to random prediction, because a classifier predicting
each class with a probability of 0.5 would have an accuracy of
50%.



binRel semRel
BERT-BoV SciBERT-BoV SciBERT-BoV BERT-BoV SciBERT-BoV SciBERT-BoV

# common predictions 196 205 223 97 66 73
# different predictions 94 85 67 47 78 71
# common errors 162 175 180 64 54 73

Table 4: Two-by-two comparison of the predictions obtained by different encoders for binRel and semRel.

6 Discussion

In this section, we discuss potential biases in the
probing tasks that we designed, how we control
them, and the possible improvements that could be
further done.

Relation prediction A bias that could affect DR
detection is the length of the sentence. In particu-
lar, Conneau et al. (2018) showed that BoV obtain
66.6% accuracy for predicting the length of the
sentence, and get up to 99% with other more elab-
orated encoders such as BiLSTM or gated convo-
lutional networks. We took that into account when
selecting the different sentence sets. By including
sentences that have more than one DU (sentences
that only have relations with weak semantics) in
the norel class , we somehow control the size of
the sentences and ensure that the distributions of
words per sentence are not specific to each class.
The distributions are given in Fig. 3 , and are close
enough to guarantee that the Sentence Length does
not bias our predictions for binRel.

Figure 3: Distribution of the number of words per sen-
tences for binRel.

Similarly, we ensured that the length of the sen-
tence does not affect the detection of the relation
semantics. The distributions which are given in Fig.
4 are close and, so, cannot be the only parameter
involved in the good quality of the prediction.

However, good performances of BoV for this
task are influenced by the fact that most of them are
linguistically signalled. Even if this bias is in fact

Figure 4: Distribution of the number words per sen-
tences for semRel.

related to the specific genre of the corpus that we
study, we discuss here the linguistic properties that
play a role in the various encodings and predictions.

Verbs such as “we show” or “we demonstrate”
typically occur in sentences which contain an
attribution relation. Conjunctions such as
“to” or “in order to” express enablement re-
lations. Finally, manner-means are often sig-
nalled by verb forms such as “(by) +ing”. We
think that these signals play an important role
in the good performances of BoV especially for
attribution and manner-means.

Manner-means The sentence “Most sentence
embedding models typically represent each sen-
tence only using word surface, which makes these
models indiscriminate for ubiquitous homonymy
and polysemy” is a typical example of the sen-
tences whose relation is predicted well with BoV
encoders but neither by BERT, which predicts an
attribution, nor by SciBERT, which predicts
noRel. The verb “using” seem to be responsible
for this good prediction. This underlies the good
recall that BoV gets for the prediction of this DR,
which gets a very bad recall for BERT and SciB-
ERT.

Attribution The sentence “[Most studies on sta-
tistical Korean word spacing do not utilize the in-
formation] 1 [provided by the input sentence] 2
[and assume] 3 [that it was completely concate-



BoV Google USE BERT uncased BERT cased SciBERT uncased SciBERT cased
Precision Attribution 66 62 78 85 96 74

Enablement 70 44 48 46 100 71
Manner-Means 65 36 73 55 43 58
NoRel 70 69 55 70 38 53

Recall Attribution 81 78 81 78 61 81
Enablement 58 19 67 58 14 47
Manner-Means 78 69 53 64 53 58
NoRel 53 25 47 44 75 67

Table 5: Precision and Recall for SemRel.

nated ] 4.” is well predicted by all encoders, ex-
cept SciBERT. Here, the captured relationship is a
manner-means between units 3 and 4, which is
in fact the deepest DR in the full structure of the
sentence, and thus the less important. The second
part (3+4) of the sentence is in conjunction with the
first (1+2) and refers to it. The manner-means
between 3 and 4 is thus not the more salient in the
RST, but is however well predicted. This suggests
that the choices that we did to ignore non-logical
DRs work well and that the training made on suf-
ficient data suffice to make the classifier focus on
the relations that we consider.

Enablement With BERT, most of the sentences
that contain the connective “to” are well detected
as an enablement relation. Among those that
are not well classified, most of them are classi-
fied as attribution or norel. One common
characteristic to the sentences that are classified
as norel, is that they are often long and contain
more than 2 DUs and several discourse connectives,
including “to” or “for”. It is thus harder for the
model to understand and distinguish the role of the
connectives, as they are drowned in a lot of lexical
information, leading to errors because of the diffi-
culty of the task. For sentences that are wrongly
classified as attribution, we observe a similar
behaviour. The sentence “[Recent work has shown
success] [in using continuous word embeddings]
[to improve supervised NLP systems.]” contains an
enablement between segments 1 and 2, but is
classified as an attribution. This errors seems
to be due to the verb “shown” that appears a lot in
sentences that contain an attribution. This shows
that even if BERT improves a sort of coherence
detection, it in fact relies a lot on lexical cues for
detecting the semantics of relations.

Swapped and scrambled We admit that the
tasks designed for probing coherence are some-
how arbitrary, and produces different biases that

could be better controlled. We present two major
issues, and propose solutions for future work.

The first issue concerns the swapped task, where
modifications of sentences may produce other co-
herent sentences, which are thus tagged as inco-
herent in the training set and used as it by the
classifier. Those cases specifically correspond to
sentences that are formed by two DUs and linked
by a particle (such as “by”, “for” or “to”), which
are thus swapped and still coherent. For example,
the sentence “[By incorporating textual informa-
tion,][RCM can effectively deal with data sparse-
ness problem.]” becomes “[RCM can effectively
deal with data sparseness problem][by incorporat-
ing textual information.]”. We expect such sen-
tences to be poorly predicted, but it is not the case,
showing that BERT and SciBERT probably rely on
other indices.

Conneau et al. (2018) also created acceptable
sentences for three of their probing tasks, and fil-
tered them by crowd-sourcing, asking people to
rate sentences according to their acceptability. This
method would be the best suited to solve this issue,
as it may be hard to control coherence automati-
cally with syntactic parsers.

Secondly, we did not ensure that the property
captured does not rely on syntax, because sentence
modifications may also produce sentences that are
syntactically incorrect and that we did not filter
out. Here the problematic cases mostly come from
two clauses sentences containing a conjunction
such as “that” or “and”. For example the sen-
tence “[We present a human judgments dataset]
[and an adapted metric for evaluation of Arabic
machine translation.]” becomes “[And an adapted
metric for evaluation of Arabic machine transla-
tion] [we present a human judgments dataset.]”,
thus being obviously syntactically incorrect, and
possibly captured as incoherent based on this syn-
tactic property. A possible solution to that issue
could be to forbid the swap of the first and last DU,



thus inducing another different bias and in our case
reducing the size of the corpus. Another possibil-
ity is to introduce rules based on the syntactic tree
of new sentences in order to filter those cases. In
this preliminary work, we introduced the second
coherence detection task (scrambled) with the aim
of reducing those biases.

7 Conclusion

We introduced four tasks for probing the discourse
properties involved in sentences from scientific ab-
stracts. We evaluated the ability of a classifier to
predict a discourse property of a sentence from its
embedding. The performance of the classifier high-
lights the extent to which discourse properties are
encoded in those representations.

We showed that coherence links are captured by
vectors made from contextual models, as well as
DRs, but that those models in fact do not encode
the semantics of those DRs. We highlighted that
BoV embeddings perform nearly as good as con-
textual embeddings for both DRs detection tasks,
highlighting the fact that these relations are most of
the time explicitly signalled in scientific abstracts.

This confirms our hypothesis that BERT and
SciBERT training suffice to encode coherence to
some extent. We think that the Next Sentence Pre-
diction task is the reason for this performance, as it
allows the model to learn adjacency properties of
sentences, and thus of clauses. The second hypoth-
esis however is not confirmed, as we concluded
from the experiments that semantics of DRs are as
well captured by BoV, as BERT or SciBERT.

The present work opens various possibilities, for
improving the tasks as well as the analysis of the re-
sults. We decided here to focus on the detection of
three specific relations that occur within sentences.
We adopted strategies to make this possible, for
example by ignoring DRs that are of continuation
or additive and not logical. We could however go
further by considering all relations involved in the
sentences. A multi-label classification could be a
solution to the problem of predicting all DRs of
a sentence from its embedding. A Sequence-to-
Sequence model could be a solution to the problem
of predicting the discourse structure (or sequence
of relations) from its embedding. For coherence
prediction, we also plan to determine to what extent
the tasks we introduced (swapped and scrambled)
depend on syntactic properties. A statistical analy-
sis of the syntactic structures involved could help to

clarify the possible biases coming from the syntax.
We also plan to further check the datasets that we
introduce for those tasks, as we have raised that
our method created coherent sentences, labeled as
incoherent in our training dataset.

Other corpora such as RST-DT (Carlson and
Okurowski, 2002) or PDTB (Webber et al., 2005),
which could be combined, could be used to produce
other datasets for probing DRs, enabling to evaluate
how other DRs (such as contrast or reason)
are encoded in sentence embeddings.
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