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Abstract 5<&

1. Leaf litter decomposition is a major ecosystem process that can link aquatic to 5=&

terrestrial ecosystems by flows of nutrients. Biodiversity and ecosystem 6>&

functioning research hypothesizes that the global loss of species leads to 65&

impaired decomposition rates and thus to slower recycling of nutrients. 66&

Especially in aquatic systems an understanding of diversity effects on litter 67&

decomposition is still incomplete.  68&

2. Here we conducted an experiment to test two main factors associated with 69&

global species loss that might influence leaf litter decomposition. Firstly, we 6:&

tested whether mixing different leaf species alters litter decomposition rates 6;&

compared to decomposition of these species in monoculture. Secondly, we 6<&

tested the effect of the size structure of a lotic decomposer community on 6=&

decomposition rates.  7>&

3. Overall, leaf litter identity strongly affected decomposition rates, and the 75&

observed decomposition rates matched measures of metabolic activity and 76&

microbial abundances. While we found some evidence of a positive leaf litter 77&

diversity effect on decomposition, this effect was not coherent across all litter 78&

combinations and the effect was generally additive and not synergistic.  79&

4. Microbial communities, with a reduced functional and trophic complexity, 7:&

showed a small but significant overall reduction in decomposition rates 7;&

compared to communities with the naturally complete functional and trophic 7<&

complexity, highlighting the importance of a complete microbial community on 7=&

ecosystem functioning.  8>&
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5. Our results suggest that top-down diversity effects of the decomposer 85&

community on litter decomposition in aquatic systems are of comparable 86&

importance as bottom-up diversity effects of primary producers.  87&

Key words: Alnus glutinosa, Biodiversity ecosystem functioning, Fagus sylvatica, 88&

microcosm experiment, Populus nigra, protists, Quercus robur. 89&

 8:&

Introduction 8;&

Litter decomposition is a major process in nutrient recycling and plays an 8<&

important role in the functioning of ecosystems (Hättenschwiler, Tiunov & Scheu 8=&

2005; Findlay 2012; Handa et al. 2014; García-Palacios et al. 2016; Bista et al. 2017). 9>&

Plant detritus not only forms the vast majority of the dead organic matter pool in 95&

terrestrial systems, but is also an important source of energy in aquatic systems 96&

(Anderson & Sedell 1979). In aquatic systems, dead organic matter from plants can be 97&

generated in situ by aquatic vascular plants (i.e., autochthonous litter). However, ex situ 98&

(allochthonous) litter from tree leaves is often the more important source of organic 99&

matter (Fisher & Likens 1973; Gessner, Chauvet & Dobson 1999). Thereby, the 9:&

surrounding terrestrial vegetation strongly affects both the composition and quantity of 9;&

leaf litter input into aquatic systems (e.g., Hladyz et al. 2010; Hladyz et al. 2011), and 9<&

such flows can even generate non-trivial linkages between ecosystems (Loreau, 9=&

Mouquet & Holt 2003; Gravel et al. 2010; Harvey et al. 2016, 2017, Gounand et al., :>&

2017). :5&

Recent work demonstrated that the decomposition of litter in lotic aquatic :6&

systems can be modulated by various factors related to litter type, decomposer and :7&

detritivore community type and general abiotic conditions (e.g., Lecerf et al. 2007; :8&

Woodward et al. 2012; Bruder et al. 2014; Frainer et al. 2015; Collins et al. 2016; :9&
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Stocker et al. 2017). As all of these main drivers of litter decomposition are affected by ::&

various environmental changes (e.g., Boyero et al. 2011; Frossard et al. 2013; Hines et :;&

al. 2014), understanding their independent and interactive effects on leaf litter :<&

decomposition and nutrient turnover is of high interest in order to predict the :=&

consequences of changes on ecosystem functioning (Handa et al. 2014).  ;>&

The study of how litter diversity affects decomposition has especially attracted ;5&

interest in terrestrial systems, with some studies showing an accelerated decomposition ;6&

rate when increasing litter diversity (Wardle, Bonner & Nicholson 1997; Cardinale et ;7&

al. 2011), while others finding no or even a negative relationships (for meta-analyses, ;8&

see Gartner & Cardon 2004; Srivastava et al. 2009). As mentioned, however, a ;9&

significant portion of terrestrial litter decomposition is occurring in aquatic systems ;:&

(Ball et al. 2010). Surprisingly, in aquatic ecosystems the focus has often been on ;;&

effects of leaf litter quality, climate or the structure of the decomposer community (e.g., ;<&

Frossard et al. 2013; Frainer et al. 2015; García-Palacios et al. 2016; Hines, Reyes & ;=&

Gessner 2016) on decomposition rates, rather than on effects of litter diversity per se <>&

(but see e.g., Gessner et al. 2004; Giller et al. 2004; Handa et al. 2014). Consequently, <5&

the specific effects of leaf litter diversity and identity and the decomposer community <6&

in aquatic systems are still not completely resolved and have been proposed to be to <7&

some degree system dependent (Hättenschwiler, Tiunov & Scheu 2005; Cardinale et al. <8&

2011; Lecerf et al. 2011). Furthermore, in aquatic ecosystems, leaf litter decomposition <9&

can be controlled both by bottom-up (litter diversity, see Gessner et al. 2004; Giller et <:&

al. 2004; Handa et al. 2014; García-Palacios et al. 2016) and top-down (Srivastava & <;&

Bell 2009; Srivastava et al. 2009) processes, and a synthesis of their relative role has <<&

not yet emerged (Giller et al. 2004).  <=&
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 Here, we studied how the diversity and identity of allochthonous leaf litter from =>&

common tree species and the size structure of a natural aquatic microbial decomposer =5&

community extracted from a lotic system (small, dammed forest stream; see Fig. S1 in =6&

Supporting information) affect litter decomposition in aquatic ecosystems. To achieve =7&

this goal, we used four leaf litter species (alder, beech, poplar and oak; Fig. 1) in =8&

experimental mono-, bi- and poly-cultures, and exposed them to decomposition by a =9&

natural aquatic microbial community and a microbial community of which we =:&

manipulated the size structure by excluding larger, potentially predatory, eukaryotic =;&

microbial organisms. We followed decomposition of leaves and tracked microbial =<&

activity (oxygen concentration) and community dynamics of free-living microbes ==&

(density and size structure of bacteria and protists) to functionally link the structure of 5>>&

the microbial decomposer community and leaf litter diversity to the process of litter 5>5&

decomposition. Our approach explicitly allowed us to address both bottom-up diversity 5>6&

effects of leaf litter as well as top-down diversity effects of decomposer organisms on 5>7&

decomposition.  5>8&

 5>9&

Methods 5>:&

General experimental set-up 5>;&

We tested the effects of leaf litter quality and diversity and the structural complexity of 5><&

the decomposer community on litter decomposition in a microcosm laboratory 5>=&

experiment. We used leaf litter from four tree species common and native to Central 55>&

Europe that display a range of litter quality: black alder (Alnus glutinosa), European 555&

beech (Fagus sylvatica), black poplar (Populus nigra) and pedunculate oak (Quercus 556&

robur); in the following we refer to these four species using their genus name. We 557&

selected these species as Alnus and Populus are considered to be good quality 558&
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resources, while Quercus and Fagus are known to be generally of lower quality (see for 559&

example Hladyz et al. 2009; Frainer et al. 2015). We used naturally senesced, air-dried 55:&

leaves. Previous to the experiment, the leaves from all four species were mixed together 55;&

and leached in river water for 24 hours so that water-soluble and possibly inhibitory 55<&

compounds in the leaves (e.g., tannins) could leach out. We then cut leaf discs (ø = 2.5 55=&

cm) from all leaf species and dried them for 60 hours in a drying oven. The leaf discs 56>&

were then individually weighed. We used a subset of leaves from the same batch as 565&

used in the experiment and analysed them for carbon, nitrogen, and phosphorus content 566&

using established protocols (phosphorus: San++ automated wet chemistry analyzer, 567&

Skalar Analytical B.V., Breda, Netherlands; nitrogen and carbon: Flash 2000 Elemental 568&

Analyzer coupled with Delta V Advantage IRMS, both manufactured by ThermoFisher 569&

Scientific, Bremen, Germany). The values reported from these measurements in table 1 56:&

are the same as also reported in Little & Altermatt (in review). 56;&

 In each microcosm we placed a total of four leaf discs of different species 56<&

combinations: microcosms contained either a single leaf litter species (i.e., four leaf 56=&

discs of either Alnus, Fagus, Populus or Quercus respectively), mixtures of two leaf 57>&

litter species (i.e., two leaf discs of two leaf species, in all possible pairwise 575&

combinations) or leaf discs of all four species (i.e., one leaf disc from each species), 576&

resulting in 11 different leaf litter treatments (Fig. 1).  577&

 We used natural aquatic microbial decomposer communities of two different 578&

structural complexities to test for possible interactive effects of the decomposer 579&

community trophic structure with litter diversity. Natural microbial communities 57:&

originated from a small, dammed stream surrounded by deciduous forest near Pfäffikon 57;&

ZH, Switzerland (location: 47° 22’ 27.1” North, 8° 48’ 08.3” East) (see also Mächler & 57<&

Altermatt 2012). We sampled the water including the microbial communities near the 57=&
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inflow (Fig. S1 in Supporting Information), such that our study looks at water and 58>&

microbial decomposers that are characteristic of a lotic system. Twenty liters of water 585&

was sampled in October 2015 and filtered on site to remove large aquatic organisms 586&

such as macroinvertebrates or vertebrate larvae (mesh size 250 µm). The filtered water 587&

contained the natural microbial decomposer community consisting of bacteria, fungi 588&

and protists, and henceforth is referred to as the “complete decomposer community” 589&

(“CDC”). To obtain a size-fractionated community (“SFC”) with a reduced functional 58:&

and trophic complexity (i.e., exclusion of large organisms such as predatory rotifers or 58;&

ciliates), we filtered half of the water through a much finer filter (mesh size 11 µm). 58<&

Many of these microbial organisms are rather flexible in their body structure (e.g., 58=&

amoeba which can change their shape very plastically and have substantial intraspecific 59>&

variability in size, see Giometto et al., 2013), and thus the 11 µm filter is not a clear-cut 595&

threshold: some organisms may pass when small, but grow bigger thereafter, or some 596&

organisms are much longer than 11 µm, but very slender, and can thus still pass. 597&

Overall, however, the filtering significantly reduced the abundance and occurrence of 598&

organisms larger than 10 µm (linear mixed effect model, p < 0.001), thus proving the 599&

effectiveness of the filtering. 59:&

 While focusing here on bacteria and protists, we recognize the important role of 59;&

fungi for decomposition processes in lotic systems (e.g., Gessner & Chauvet 1994; 59<&

Hieber & Gessner 2002; Dang, Chauvet & Gessner 2005; Gessner et al. 2007). To 59=&

ensure that microbial (i.e. also fungal) colonization of leaves could occur, all leaves 5:>&

were conditioned in one vessel filled with stream water for 24 h. Furthermore, 5:5&

microbial communities, including fungal spores, came in through the water sampled 5:6&

from the dammed forest stream and used for the experiment. We could, however, not 5:7&

measure fungal components in the leaf biomass for logistic and technical reasons. 5:8&
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Importantly, however, our goal was to study the effect of leaf litter identity and 5:9&

decomposer community size structure, but not community identity of the latter.  5::&

 All microcosms were filled with 100 mL of the corresponding decomposer 5:;&

community (CDC versus SFC), with five replicates per treatment combination, 5:<&

resulting in a total of 110 microcosms (Fig. 1). Microcosms were filled with the 5:=&

different resource types (leaves) and the corresponding decomposer community on 27th 5;>&

October 2015 and leaf litter was subsequently incubated in these aquatic microcosms 5;5&

for a decomposition period of 72 days. The experiment took place in a climate room 5;6&

with a constant temperature of 18±1 °C and a day/night-cycle of 12 h light and 12 h 5;7&

darkness. All handling and work was conducted using standard microbiology 5;8&

procedures, including sterile handling procedures and autoclaving all material (such as 5;9&

pipettes, glassware etc.) previous to its use. Cultures were regularly screened visually 5;:&

with a stereomicroscope (Leica M205 C, Leica Microsystems, Heerbrugg, Switzerland) 5;;&

at a 10 to 160-fold magnification, using dark-field illumination. Further general 5;<&

handling and laboratory procedures for such aquatic microcosms are described in detail 5;=&

in Altermatt et al. (2015). 5<>&

 5<5&

Response variables 5<6&

Our primary response variable was leaf biomass loss (as a proxy for 5<7&

decomposition rates). Oxygen concentration and the composition and structure of 5<8&

bacteria and protist communities were used as complementary response variables 5<9&

underlying drivers of decomposition/decomposer activity. 5<:&

 To measure leaf biomass loss, we removed the leaf discs after 72 days of 5<;&

incubation and carefully cleaned them from the biofilm under running tap water. We 5<<&
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then dried the leaf discs at 60 °C for 60 hours and measured the final dry mass of all 5<=&

individual leaf discs.  5=>&

 We measured dissolved oxygen concentrations in the microcosms every two 5=5&

days during the first four weeks of the experiment and thereafter for organizational 5=6&

reasons twice a week for the remaining six weeks with an optical oxygen meter 5=7&

(PreSens Fibox 4 Optical Oxygen Meter). Oxygen concentration is often negatively 5=8&

correlated with microbial activity, and can in parts be used as a proxy of it (Briand et 5=9&

al. 2004). Importantly however, in our case there were also likely photosynthetic 5=:&

organisms present, such that microbial activity could to some degree also increase O2 5=;&

levels. While we did not see a pronounced development of a photosynthetic biofilm, the 5=<&

longer term dynamics in O2 concentrations likely included a combination and 5==&

equilibrium between O2 consumption during decomposition and O2 production by 6>>&

phototrophic organisms. We thus see the O2 measurements reflecting microbial 6>5&

activities in a broader sense. 6>6&

 We measured density and cell size distributions of free-living protists and other 6>7&

microorganisms (e.g., rotifers) with a diameter >5 µm in the decomposer communities 6>8&

with a Cell Counter and Analyzer System (CASY) model TTC (Roche Diagnostics 6>9&

GmbH) at weekly intervals during the experiment (Mächler & Altermatt 2012; 6>:&

Altermatt et al. 2015). We took 0.5 mL samples and diluted them 1:20 with the isotonic 6>;&

buffer solution CASYTon®. Cell counts were performed with a 150 µm capillary, and 6><&

individual cell counts and cell size measurements were used to estimate the total 6>=&

biomass of decomposers in the microcosms (Giometto et al. 2013; Altermatt et al. 65>&

2015).  655&

 Finally, we measured abundance of bacteria with a BD Accuri  C6 flow 656&

cytometer (Becton-Dickinson) during the experiment at roughly one-week intervals. 657&
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Samples were diluted with filtered Evian® according to expected densities within the 658&

microcosms, stained with 20 µl of the fluorescent dye SYBR® Green and incubated for 659&

13 minutes at 37 °C. The measurements were made from 50 µL samples and a 65:&

threshold value of 800 on FL1-H (green fluorescence level). We used well-established 65;&

gating settings to distinguish between background noise and bacterial counts (Altermatt 65<&

et al. 2015).  65=&

 66>&

Data Analysis 665&

We used the R software version 3.3.2 (R Development Core Team 2016) for all 666&

statistical analyses. We calculated the proportion of the final leaf litter dry weight 667&

compared to the initial leaf litter dry weight as the decomposition rate (odds ratio). We 668&

used generalized linear models (GLMs) with quasi-binomial link functions to examine 669&

the influence of our predictor variables, resource type and decomposer community 66:&

type, on leaf mass loss. To disentangle the effects of the different resource types we 66;&

conducted post-hoc multiple linear pairwise Tukey-test comparisons using the R-66<&

package ‘multcomp’ (Hothorn et al. 2016).  66=&

For the proximate response variables, we used linear mixed effect models in the 67>&

R-package ‘lmerTest’ (Kuznetsova, Brockhoff & Christencesn 2015) to test the effects 675&

of leaf litter diversity and consumer community on oxygen concentrations, total cell 676&

counts, living biomass, median organism size and bacterial densities in the community. 677&

The resource type and the decomposer community were used as fixed effects whereas 678&

time was used as a random effect.  679&

 67:&

Results 67;&
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Leaf litter decomposition differed significantly between litter types and combinations 67<&

thereof, and between the two decomposer community types (Fig. 2 and table 2). There 67=&

was no interaction between leaf litter treatment and decomposer community structure. 68>&

In all treatments, Populus and Alnus leaves were more strongly decomposed than 685&

Fagus and Quercus leaves, and most of these differences were significant or marginally 686&

significant (decomposition Populus > Fagus, p < 0.001; decomposition Populus > 687&

Quercus, P < 0.001; decomposition Populus > Alnus, p = 0.03; decomposition Alnus > 688&

Fagus, p= 0.08; decomposition Alnus > Quercus, p = 0.07; decomposition Fagus ~ 689&

Quercus, p = 0.97; Figs. 2 & 3, complete statistical details are given in table S1 in 68:&

Supporting Information). Size-fractionated communities showed a small but significant 68;&

reduction in decomposition rates compared to complete communities, which included 68<&

higher trophic levels and larger organisms (Fig. 2, table 2). Overall, the most common 68=&

effect of mixing different leaf types on decomposition rates was additive, but we also 69>&

found some synergistic effects (the expected value is the mean of the two species’ 695&

values in monoculture and denoted by the red line in Fig. 2; the observed value, 696&

indicated by the bar, is in some cases higher than the expected value; see tables A2 & 697&

A4 for full overview of statistical results). When looking at decomposition rates of each 698&

leaf litter species individually, we found no differences in decomposition for leaves of 699&

Fagus, Populus or Quercus when decomposed alone compared to in mixture with other 69:&

species (all p > 0.05; Fig. 3b–d & 3f–h; tables S2, S3 & S4 in Supporting Information). 69;&

In stark contrast, Alnus leaves decomposed at significantly higher rates when mixed 69<&

with other leaf species (p < 0.0002; Fig. 3a & 3e, table S5 in Supporting Information).  69=&

 Oxygen concentrations showed pronounced temporal dynamics with a drastic 6:>&

decrease in the first five days, and a subsequent increase to a stable value after about 30 6:5&

days. We found highly significant effects of leaf litter type on O2 concentration and 6:6&
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significantly lower O2 concentrations in the complete vs. size-fractionated communities 6:7&

(Fig. 4 and table 3). The mixing of leaf litter generally resulted in intermediate O2 6:8&

concentrations compared to single leaf litter treatments (i.e., additive effects on O2 6:9&

concentration, Fig. S3 to S8 in Supporting Information).  6::&

 Leaf litter type also significantly influenced microbial cell counts (eukaryotic 6:;&

and prokaryotic) and total microbial biomass (Fig. 5 and table 3). As expected, filtering 6:<&

communities initially with a 11 µm filter removed and significantly reduced organisms 6:=&

>10 µm in SFC compared to CDC (p < 0.01). The removal of the larger organisms 6;>&

resulted in a marginally significantly lower median organism size in the size-6;5&

fractionated community compared to the whole microbial community (table 3). Median 6;6&

size increased in all treatments consistently over time. Surprisingly, decreasing 6;7&

structural (i.e., size) complexity of the communities did not significantly affect 6;8&

proximate microbial community structures over time (Fig. 5), even though the ultimate 6;9&

effects on decomposition were detectable and significant (see above). Initially, 6;:&

microbial abundance increased in microcosms containing leaves of Populus or Alnus 6;;&

(in both microbial community types) and of Quercus (only in the SFC; Fig. 5a/b). After 6;<&

this initial peak, abundances decreased and stabilized to a constant value after 30 days. 6;=&

The abundance of microbes in microcosms containing Fagus was low during the whole 6<>&

decomposition process. Mixing leaf litter mostly resulted in intermediate values of cell 6<5&

counts (additive effects of leaf mixture, data not shown). Biomass of the microbial 6<6&

community at the end of the experiment was highest in microcosms containing 6<7&

Quercus, followed by Alnus, Populus and Fagus. Similarly, the median of organisms’ 6<8&

cell size distribution steadily and significantly increased over time in the decomposer 6<9&

communities (Fig. 5e/f), although without a significant difference between the leaf litter 6<:&

treatments (table 3).  6<;&
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 In contrast to these overall microbial community shifts, bacterial densities 6<<&

significantly declined over time in all treatment combinations (Fig. S2 Supporting 6<=&

Information), with significant differences between leaf litter treatments but no 6=>&

significant effect of initial community structure (table 3). There was no consistent 6=5&

influence of mixing leaf litter on bacterial abundances, but often they were intermediate 6=6&

compared to the single leaf-litter treatments (additive effects of leaf mixture, data not 6=7&

shown). 6=8&

 6=9&

Discussion 6=:&

We found that leaf litter identity strongly influenced litter decomposition rates, but that 6=;&

rates were also modulated by the structural composition of the free-living decomposer 6=<&

community. Consistent with previous work in stream systems, mixing leaf litter 6==&

generally exhibited an additive rather than a synergistic effect on decomposition (e.g., 7>>&

Kominoski et al. 2007). Additionally, we found that manipulating the size structure of 7>5&

the decomposer community has a direct influence on decomposition rates and on 7>6&

biological processes (microbial activity as measured by O2 concentration), while some 7>7&

of the proximate measures of community structure were not significantly affected. 7>8&

Specifically, a complete decomposer community showed faster decomposition 7>9&

compared to the sized-fractionated decomposer community. The size-fractionated 7>:&

communities were not only lacking larger organisms due to the filtering (size threshold 7>;&

of the filtration was about 10–15 µm), but the whole community overall consisted of 7><&

marginally significantly smaller organisms. The removal of larger organisms likely 7>=&

resulted also in a removal of trophically higher microbes, such as predatory rotifers or 75>&

ciliates, or other specific functional types of organisms. The predominant absence of 755&

synergistic litter diversity effect on free-living aquatic decomposition rates may render 756&
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interpretations and extrapolations of decomposition rates more predictable, as the 757&

majority of effects was additive.  758&

 759&

Leaf Litter Decomposition 75:&

Leaf litter identity and associated traits are a crucial factor affecting rates of litter 75;&

decomposition in aquatic systems (Webster & Benfield 1986; Lecerf et al. 2007; 75<&

Gessner et al. 2010; Bruder et al. 2014). Thereby, both the content and ratio of C, N 75=&

and P as well as lignin are important determinants of leaf litter decomposition. 76>&

Generally, the higher the N-content (or the N content relative to the C content), the 765&

better leaves can be decomposed. Our observed decomposition rates are in good 766&

accordance to the measured C:N ratios (table 1), and the P- and N-content of the leaves: 767&

C:N ratio was Quercus ~ Fagus > Populus > Alnus, which matched (expect for Populus 768&

and Alnus reversed in most cases) the decomposition rates. In analogy, the more lignin 769&

a leaf contains, the slower its decomposition (Hladyz et al. 2009; Schindler & Gessner 76:&

2009; Frainer et al. 2015). Our findings of decomposition rates are consistent when 76;&

comparing them to lignin contents of our leaf species derived from literature data: 76<&

Fagus and Quercus, which are generally having highest lignin contents (e.g., Hladyz et 76=&

al. 2009; Frainer et al. 2015), were decomposed the slowest. In contrast, Populus with a 77>&

generally low lignin content (e.g., Frainer et al. 2015) was decomposed the fastest. 775&

Alnus has intermediate, but rather variable lignin contents (e.g., Hladyz et al. 2009; 776&

Frainer et al. 2015) and—depending on the decomposer community structure—were 777&

decomposed either as well as Populus or as slowly as Fagus and Quercus.  778&

So far, various effects of leaf litter diversity on decomposition rates were found, 779&

including additive (Srivastava et al. 2009; Frainer et al. 2015) and synergistic effects 77:&

(Lecerf et al. 2011; Handa et al. 2014). Importantly, these studies cover different 77;&
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ecosystems, from lentic to lotic ecosystems, and also different leaf types/leaf species 77<&

and conditioning. Overall, recent studies in lotic systems, where decomposition by 77=&

fungi is found important (e.g., Gessner & Chauvet 1994; Hieber & Gessner 2002; 78>&

Dang, Chauvet & Gessner 2005; Gessner et al. 2007), fairly consistently report a lack 785&

of a synergism (Ferreira, Encalada & Graça 2012; Bruder et al. 2014), suggesting that 786&

leaf identity might be a more important factor than litter diversity in determining 787&

decomposition rates. While we could not measure fungi themselves, but focused on the 788&

free-living decomposer community present in the supernatant, our results are in high 789&

concordance with these findings, and the observed additive effects of mixing leaf litter 78:&

could arise from two different mechanisms. Either the component species get degraded 78;&

at the same rate in mixtures as in monocultures, or mixing leaf litter affected the 78<&

decomposition of the two component leaf litter species in opposing directions, with the 78=&

sum of overall decomposition resulting in an overall additive effect. While Alnus leaves 79>&

decomposed differently depending on the co-occurring leaves (Fig. 3a,e), we found that 795&

leaves of Fagus, Populus and Quercus did not decompose differently when mixed with 796&

other species (Figs. 3b–d & 4f–h; tables A2 & S4 Supporting Information). Thus, we 797&

found differences in decomposition of leaves in some combinations, while not in other 798&

combinations. Constant decomposition rates of a focal species when mixed with other 799&

species had also been previously observed (Ferreira, Encalada & Graça 2012; Bruder et 79:&

al. 2014). This would provide some support for the first mechanism, that leaf litter gets 79;&

degraded with a constant rate regardless of the presence of other species. Importantly, 79<&

however, these past studies focused on the effect of fungi on decomposing leaves, 79=&

while we could not measure fungi themselves. Thus, our results need to be interpreted 7:>&

with some care when being compared to these other studies. 7:5&
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As mentioned above, we also found strong exceptions to this overall additive 7:6&

effect of mixing leaf litter species (Fig. 4). When mixing Fagus or Quercus with Alnus 7:7&

leaves, we observed higher overall decomposition than the expected average of the two 7:8&

component species (Fig. 2, AF AQ and AFPQ treatments; tables A1 & A3 Supporting 7:9&

Information). In our experiment we observed these non-additive effects only when 7::&

mixing a low quality leaf litter (i.e., Fagus and Quercus with a low nitrogen content; 7:;&

table 1) with a high quality leaf litter (especially Alnus with a high nitrogen content; 7:<&

table 1) (see also Vos et al. 2013). In addition, Fagus also had the lowest phosphorus 7:=&

content (table 1) and is generally reported to have a high lignin content (Frainer et al. 7;>&

2015), making it the most dissimilar leaf quality type relative to Alnus. As a possible 7;5&

consequence, the diversity effect was most pronounced when mixing Alnus with Fagus, 7;6&

indicating that dissimilarities in leaf litter qualities are clearly a prerequisite for 7;7&

accelerated decomposition rates. While not explicitly studied (and not addressable with 7;8&

our study design), this could indicate some support of a functional diversity effect. 7;9&

 7;:&

Proximate effects on microbial and bacterial communities 7;;&

Leaf litter identity strongly influenced O2 concentrations in the microcosms (Fig. 5) and 7;<&

the observed O2 concentrations during the early phase of the experiment closely 7;=&

matched the inverse of overall decomposition rates. The strong temporal fluctuations 7<>&

with an initial decrease in O2 concentrations, and a subsequent increase and then steady 7<5&

state could be explained by a combination of depletion of nutrients (Dilly & Munch 7<6&

1996) resulting in lower decomposer activities during the latter half of the experiment 7<7&

(and O2 diffusing into the medium), the potential formation of a photosynthetically 7<8&

active biofilm, in which microbial activity was not only consuming but also producing 7<9&

O2, or the presence of leachates and inhibitory compounds during the initial phase and 7<:&
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an associated community turn-over during the experiment from fungi to bacteria 7<;&

dominance. Initial colonization and decomposition of the leaves results in a rapid 7<<&

decomposition of the more labile compounds, while more recalcitrant compounds can 7<=&

only be accessed later on.  7=>&

 Microbial cell counts, representing the number of free-living eukaryotic 7=5&

organisms such as protists, showed as expected the inverse pattern to oxygen 7=6&

concentrations (Fig. 5): an initial increase of organisms could be detected, but then the 7=7&

number of organisms decreased. Bacterial densities also declined over time (Fig. S2 7=8&

Supporting Information). This is consistent with an initial high availability of nutrients 7=9&

but subsequent depletion. Surprisingly, however, the total biomass increased steadily 7=:&

over time (Fig. 5), paralleled by an increase in the median cell size of the community 7=;&

over time (Fig. 5). This suggests a shift in the community structure towards fewer 7=<&

larger organisms.  7==&

 In the complete decomposer community, larger, possibly bacterivorous, protists 8>>&

were likely present, which are expected to substantially reduce bacteria abundances. As 8>5&

a consequence, we expected lower decomposition rates. However, we found the 8>6&

opposite result. This counterintuitive increase in decomposition rates in the presence of 8>7&

larger bacterivorous/predatory protists has also been seen in other studies (Barsdate & 8>8&

Prenski 1974, Ribblett et al. 2005), and has been explained by a high turnover of 8>9&

bacteria leading to a better physical state of the bacterial community consequently 8>:&

enhancing decomposition. We see three mutually non-exclusive explanations. First, it 8>;&

could be a top-down effect of the larger microorganisms (“meiofauna”) on the smaller 8><&

decomposers. However, in our case bacterial densities did not vary with the structure of 8>=&

the decomposer community (CDC vs. SFC), arguing against this positive effect of 85>&

grazing. Second, the meiofauna itself may not only consist of predators, but also 855&
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include some decomposers. Thus, the meiofauna would to some level increase 856&

predation but also increase decomposition. In that case, the complete decomposer 857&

community would actually also include a potentially higher diversity of leaf consumers. 858&

Finally, it could also indicate a distinct enzymatic capacity towards more recalcitrant 859&

compounds. A meta-analysis indeed provided evidence for a per se positive 85:&

relationship between consumer diversity (decomposer community) and decomposition 85;&

rates (Srivastava et al. 2009). Such a diversity effect at the decomposer level can result 85<&

from several mechanisms. First, facilitation among microorganisms can occur during 85=&

the process of litter decomposition (De Boer et al. 2005). Additionally, complementary 86>&

resource use can ensue (Gessner et al. 2010), resulting in the break-down of a wider 865&

range of leaf litter components. The latter mechanism though can only occur if species 866&

are functionally diverse. Our experiment showed a pronounced positive effect of 867&

trophic complexity in microbial communities on leaf litter decomposition rates (see 868&

also Handa et al. 2014). Whether this is a consequence of species richness or functional 869&

diversity is challenging to unravel, because by reducing the functional diversity via 86:&

size-fractioning the community, we simultaneously reduced species richness. Overall, 86;&

our results underpin that the trophic complexity of a decomposer community (e.g., see 86<&

also Stocker et al. 2017), also at the microbial level, is crucial for the functioning of the 86=&

litter decomposition process. 87>&

 875&

Conclusion 876&

We found that leaf litter identity and quality significantly and strongly influence 877&

decomposition rates. Only in the case of Alnus and Fagus, mixing leaf litter species 878&

resulted in synergistic effects in decomposition rates. For the other species 879&

combinations, the effects were additive. This suggests that the diversity of primary 87:&
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producers is not as important in the process of litter decomposition as in other 87;&

ecosystem functions, such as primary production. Importantly, decomposition rates 87<&

were higher in microbial decomposer communities that were not size-fractionated 87=&

compared to microbial decomposer communities in which medium to large-sized 88>&

microbes were initially removed, even though many of our metrics characterizing these 885&

communities (e.g., size structure, abundance etc.) were surprisingly similar throughout 886&

the experiment. This finding implies that trophic diversity and functional traits of the 887&

decomposer community are important for litter decomposition and subsequent nutrient 888&

cycling. Overall, top-down effects due to loss of species or functional groups in the 889&

decomposer community may be as important as bottom-up effects via leaf litter (i.e., 88:&

resource) diversity highlighting the sensitivity of decomposition processes to future 88;&

environmental changes. 88<&
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Tables :87&

Table 1: Leaf litter composition (Nitrogen N, Phosphorus P, Carbon to Nitrogen C:N, :88&

Carbon to Phosphorus C:P and Nitrogen to Phosphorus N:P ratios) of the leaf litter :89&

species used in the experiments.  :8:&

Leaf type  

N content 
(mg N/g dry 
weight, 
mean±sd) 

P content (mg 
P/g dry 
weight, 
mean±sd) 

C:N atomic 
ratio 
(mean±sd) 

C:P atomic ratio 
(mean±sd) 

N:P atomic 
ratio 
(mean±sd) 

Alnus 23.94±4.63 0.799±0.156 20.90±4.68 1386.19±326.53 66.59±7.71 

Fagus 7.24±2.37 0.373±0.023 69.22±16.63 2798.77±196.72 43.09±14.63 

Populus 10.99±4.34 0.725±0.091 43.98±12.37 1363.56±160.31 34.22±14.97 

Quercus 6.58±0.89 0.467±0.113 73.85±11.30 2380.66±608.91 32.08±5.68 

 :8;&

  :8<&
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Table 2: GLM on the effect of the decomposer community and the type of resource :8=&

(leaf litter type/combination) on litter decomposition. :9>&

Source Df Deviance Resid. Df Resid. Dev F-value P-value 

Community 1 4.89 98 75.06 5.98 0.016 

Resource Type 10 91.93 99 79.95 11.25 < 0.0001 

Interaction 10 4.37 88 70.70 0.53 0.86 

NULL   109 171.89   

 :95&

  :96&
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Table 3: Summary of linear mixed models used to test for effects of the decomposer :97&

community, the resource type and their interaction on several response variables. :98&

Dissolved oxygen concentration, density of protists, microbial biomass, median cell :99&

size and bacterial density were used as response variables. Fixed effects were tested :9:&

with F-tests, which test for differences in means, whereas random effects were tested :9;&

with Chi2-tests, which test for independency.  :9<&

  :9=&

Response Variable Source Df Den Df F-/ 2-value P-value 

Oxygen Concentration Community 1 84 6.29 0.014  

 Resource Type 10 84 17.61 < 0.0001 

 Interaction 10 84 0.51 0.88 

 Day - - 2079.3 < 0.0001 

Density Community 1 84 0.004 0.95 

 Resource Type 10 84 6.05 < 0.0001 

 Interaction 10 84 0.27 0.99 

 Day - - 134.25 < 0.0001 

Biomass Community 1 84 0.07 0.79 

 Resource Type 10 84 6.95 < 0.0001 

 Interaction 10 84 0.67 0.75 

 Day - - 29.4 < 0.0001 

Median size  Community 1 84 2.99 0.09 

 Resource Type 10 84 1.32 0.23 

 Interaction 10 84 0.55 0.85 

 Day - - 434.22 < 0.0001 

Bacterial Density Community 1 84 2.63 0.11 

 Resource Type 10 84 3.80 0.0003  

 Interaction 10 84 0.57 0.84 

 Day - - 548.3 < 0.0001 
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Figure legends ::>&

Fig. 1. Experimental setup. We had 11 communities of different leaf litter diversities ::5&

(Alnus, Fagus, Populus and Quercus leaves as single species, all possible 2-species and ::6&

the 4-species combinations) that were exposed to complete and size-fractionated ::7&

decomposer communities, each combination replicated five times.  ::8&

 ::9&

Fig. 2: Decomposed leaf litter (mean±se percentage of initial total litter dry biomass) of :::&

different litter types and their combinations at the end of the experiment (day 72). ::;&

Colors indicate single species leaf litter treatments (green = Alnus, blue = Fagus, pink = ::<&

Populus, orange = Quercus), light grey is used for all possible pairwise combinations of ::=&

the leaf litter species, and dark grey indicates the four-species leaf litter combination; :;>&

all treatments are also labelled by the species name first-letter abbreviation. The :;5&

horizontal red lines give expected additive values (mean across the respective single :;6&

species treatments). Two different decomposer communities were used: (a) a natural, :;7&

complete decomposer community (filled bars) and (b) a size-fractionated decomposer :;8&

community (dashed bars). :;9&

 :;:&

Fig. 3: Decomposed leaf litter (mean±se percentage of initial litter dry biomass) of :;;&

different litter types at the end of the experiment (day 72). For each of the four leaf :;<&

litter species (Alnus, Fagus, Populus, and Quercus), their biomass loss is given either :;=&

when they were in single-species microcosms, in two-species combinations or in the :<>&

four-species combination. The decomposer community was either a complete :<5&

decomposer community (solid bars; a–d) or a size-fractionated decomposer community :<6&

(dashed bars; e–h). :<7&

 :<8&
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Fig. 4: Average concentrations of dissolved oxygen (mean±se) across the whole :<9&

experiment. Each line represents oxygen concentrations from microcosms with the :<:&

single leaf litter species treatments as resource types (green = Alnus, blue = Fagus, pink :<;&

= Populus, orange = Quercus). Solid lines indicate complete microbial decomposer :<<&

communities (a) and dashed lines represent size-fractionated decomposer communities :<=&

(b). :=>&

 :=5&

Fig. 5: Temporal variation of decomposer community metrics (CASY cell counter data :=6&

of mostly eukaryotic microbial communities; mean±se) across the whole experiment. :=7&

Panels show densities (cell counts ml–1; a, b), living biomass (µg ml–1; c, d) and median :=8&

cell size distribution (µm; e, f). Each line represents values from microcosms with the :=9&

different single leaf litter species treatments (green = Alnus, blue = Fagus, pink = :=:&

Populus, orange = Quercus). Solid lines indicate complete decomposer communities (a, :=;&

c, e) and dashed lines represent size-fractionated communities (b, d, f). :=<&

  :==&
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Figure 1 ;>5&
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Figure 2  ;>8&
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Figure 3  ;>:&
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Figure 4  ;><&
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Figure 5 ;5>&
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