
HAL Id: hal-03000265
https://hal.science/hal-03000265v1

Submitted on 12 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Vortex-induced vibration and galloping of prisms with
triangular cross-sections

Banafsheh Seyed-Aghazadeh, Daniel W Carlson, Yahya Modarres-Sadeghi

To cite this version:
Banafsheh Seyed-Aghazadeh, Daniel W Carlson, Yahya Modarres-Sadeghi. Vortex-induced vibration
and galloping of prisms with triangular cross-sections. Journal of Fluid Mechanics, 2017, 817, pp.590-
618. �10.1017/jfm.2017.119�. �hal-03000265�

https://hal.science/hal-03000265v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Vortex-induced vibration and galloping of prisms
with triangular cross-sections

Banafsheh Seyed-Aghazadeh1,‡, Daniel W. Carlson1 and
Yahya Modarres-Sadeghi1,†

1Department of Mechanical and Industrial Engineering, University of Massachusetts,
Amherst, MA 01003, USA

Flow-induced oscillations of a flexibly mounted triangular prism allowed to oscillate
in the cross-flow direction are studied experimentally, covering the entire range
of possible angles of attack. For angles of attack smaller than α = 25◦ (where 0◦

corresponds to the case where one of the vertices is facing the incoming flow), no
oscillation is observed in the entire reduced velocity range tested. At larger angles of
attack of α = 30◦ and α = 35◦, there exists a limited range of reduced velocities where
the prism experiences vortex-induced vibration (VIV). In this range, the frequency
of oscillations locks into the natural frequency twice: once approaching from the
Strouhal frequencies and once from half the Strouhal frequencies. Once the lock-in
is lost, there is a range with almost-zero-amplitude oscillations, followed by another
range of non-zero-amplitude response. The oscillations in this range are triggered
when the Strouhal frequency reaches a value three times the natural frequency of
the system. Large-amplitude low-frequency galloping-type oscillations are observed in
this range. At angles of attack larger than α = 35◦, once the oscillations start, their
amplitude increases continuously with increasing reduced velocity. At these angles of
attack, the initial VIV-type response gives way to a galloping-type response at higher
reduced velocities. High-frequency vortex shedding is observed in the wake of the
prism for the ranges with a galloping-type response, suggesting that the structure’s
oscillations are at a lower frequency compared with the shedding frequency and
its amplitude is larger than the typical VIV-type amplitudes, when galloping-type
response is observed.

Key words: flow-structure interactions, separated flows, vortex shedding

1. Introduction

Flow past a flexibly mounted circular cylinder has been studied extensively (e.g.
Bearman 1984; Blevins 1990; Sarpkaya 2004; Williamson & Govardhan 2004;
Vandiver 2012). Typically, a flexibly mounted rigid circular cylinder is placed in water
or air flow and when the frequency of vortex shedding locks in with the system’s
natural frequency as a result of increasing flow velocity, a region of relatively

† Email address for correspondence: modarres@engin.umass.edu
‡ Present address: Miami University, Middletown, OH 45042, USA.
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large-amplitude oscillations, called the lock-in region, is observed. This is called
vortex-induced vibration (VIV). A circular cylinder allowed to oscillate perpendicular
to the flow direction constitutes a geometrically symmetric system. Several studies
exist on flow-induced oscillations of bluff bodies where the structure’s symmetry is
broken. Once the structure is asymmetric, the angle of attack plays a major role
in the response of the system and besides the VIV-type responses, galloping-type
responses can be observed. Galloping is the term normally used for oscillations
with a large amplitude and a low frequency (Parkinson & Smith 1964; Païdoussis,
Price & De Langre 2010). Prisms with square, rectangular, triangular or D-shaped
cross-sections are among the asymmetric structures prone to galloping instability. A
complete review of the previous studies on galloping can be found in a book by
Païdoussis et al. (2010).

Prisms with square cross-sections have fixed separation points and the geometry of
the afterbody makes the prism susceptible to both VIV and galloping. Interactions
between the flow forces and solid body of the prism with square cross-section have
been widely studied using both experimental results and numerical simulations (e.g.
Parkinson & Wawzonek 1981; Obasaju, Ermshaus & Naudascher 1990; Naudascher &
Wang 1993; Deniz & Staubli 1997; Su et al. 2007; Nemes et al. 2012; Zhao, Cheng
& Zhou 2013). Early studies by Parkinson & Smith (1964) showed the existence
of galloping instability in a square cross-section at zero angle of attack (α = 0◦,
which corresponds to the case where the flat face of the square cross-section is
placed perpendicular to the flow). Later on, in an experimental study, Bokaian &
Geoola (1984) discussed the existence of mixed modes of VIV and galloping in such
structures. Recently, in a comprehensive experimental study by Nemes et al. (2012)
on a flexibly mounted square prism, it has been shown that, depending on the angle
of attack, the prism can undergo either VIV or galloping. They showed that for
angles of attack smaller than α = 7.5◦, the square prism experiences galloping. Also,
it was observed that the transition from VIV to galloping occurs in a narrow range of
angles of attack, α = 7.5◦–10◦, mainly due to a jump in the location of the separation
point. In continuation of this work, Zhao et al. (2014) studied the three different
flow-induced vibration (FIV) mechanisms observed in a square prism to shed light on
the synchronization between the body oscillation and the flow forces. They showed
that at angle of attack α = 0◦, where galloping occurs, there were regions where the
vortex shedding frequency was synchronized to integer multiples of the oscillation
frequency. They also discussed that only odd-integer multiple synchronization should
occur for such a system, with symmetric orientation with respect to the incoming
flow. Distinct regimes with multiple synchronization and different wake modes were
also identified for α = 45◦, where the response was dominated by VIV.

In studies on a rectangular prism, in addition to the effect of the angle of attack, the
aspect ratio of the cross-section also plays an important role in galloping instability of
the structure. In a recent work, Cui et al. (2015) studied the response of a rectangular
prism with an aspect ratio of 0.5 through two-dimensional numerical simulations. The
response of the rectangular prism was found to be generally dominated by galloping
at angles of attack of α = 0◦ and α = 90◦ (where 0◦ corresponds to the case where
the long side is perpendicular to the incoming flow). A combination of galloping and
VIV was observed for α = 0◦ in the range of reduced velocity of U∗ = 7–11, where
the reduced velocity is defined as U∗ = U/fnwD, with U, fnw and D being the fluid
velocity, the natural frequency of the system in otherwise still fluid and the width
of the prism in the direction perpendicular to the flow, respectively. At α = 90◦, the
galloping response of the rectangular prism did not occur until the reduced velocity
exceeded U∗ = 22.5.
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In the present study, we consider the flow-induced response of a triangular prism.
Most studies on flow past a triangular prism have focused on a fixed cylinder. Mainly
the effects of flow direction as well as the cross-sectional shape have been studied
(Kumar, De & Dalal 2006; De & Dalal 2007; Bao, Zhou & Zhao 2010). In a recent
study by Tu et al. (2014), two-dimensional flow past a stationary cylinder was studied
numerically for the range of angles of attack of α = 0◦–60◦ and Reynolds-number
range of Re = 50–160. It was concluded that, depending on the angle of attack,
the location of the separation point changes: for angles of α < 30◦, the location of
the separation point changes with the Reynolds number, while at higher angles, the
separation point is located at the rear corner, independent of the Reynolds number. A
topological map of flow patterns was also summarized in their work for the observed
patterns in the wake of a stationary triangular prism.

Srigrarom & Koh (2008) experimentally studied the self-excited rotations of a
triangular prism in water flow at a constant incoming flow velocity. Dye flow
visualizations as well as particle image velocimetry (PIV) measurements were
conducted to discuss the observed rotating oscillations. In a numerical study, Tu
et al. (2014) observed both 2S (two single vortices shed during one period of
oscillations) and P + S (one pair of vortices and a single vortex shed during one
period of oscillations) flow patterns in the wake of a triangular prism forced to rotate
about its centre, at Re = 50, 100 and 150. Wang et al. (2011) studied the interaction
of two freely rotating triangular prisms placed in tandem at a Reynolds number of
Re = 200. They conducted a series of numerical simulations to study the effect of
the spacing between the two prisms and found that, depending on the spacing ratio
d/D (where d is the distance between the circumcentres of the two prisms and D
is the diameter of the circumcircle of the triangular prism), different responses were
observed: periodic rotations at d/D = 2.0, quasi-periodic autorotations at d/D = 3.0,
and more complicated irregular autorotations at d/D = 4.0 and 5.0.

Studies conducted on the transverse oscillations of a triangular prism are based
on either wind tunnel experiments for low-aspect-ratio prisms, or two-dimensional
numerical simulations of laminar flow past a prism forced to oscillate in the
transverse direction (Alonso, Meseguer & Pérez-Grande 2005; Alawadhi 2013). In
an experimental study conducted by Alonso et al. (2005), transverse oscillations of a
triangular prism with a low aspect ratio of L/h = 1.45 (where L is the spanwise length
of the prism and h is the height of the triangular cross-section) placed in a wind
tunnel were studied at different angles of attack varying from 0◦ to 180◦, at wind
velocities of 7–26 m s−1. The set-up was designed such that the triangular prism was
attached to a beam that was hinged at its end and the rotation of the beam allowed
a pendulum-like motion of the prism. Galloping instability zones were identified
with respect to the angles of attack for six different triangular cross-sections with
varying main vertex angles. They showed that the galloping instability is dependent
on both the angle of attack and the main vertex angle of the prism. Alonso &
Meseguer (2006) also conducted a parametric study on a similar triangular prism and
investigated the effects of varying angles of attack and main vertex angles through
static wind tunnel experiments at a constant flow velocity of 20 m s−1. The transition
to galloping instability was studied based on the Glauert–Den Harton criterion in
which the galloping instability is assumed to be closely related to the sign of the
slope of the lift coefficient versus the angle of attack (Parkinson & Smith 1964). A
map of potential instability zones was provided showing the regions in which the body
could experience instability based on the variation of the two influencing parameters
studied. Also, Alonso, Sanz-Lobera & Meseguer (2012) showed that hysteresis exists
at angles of attack where there are inflection points in the lift coefficient curve.
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FIGURE 1. (Colour online) (a) The definition of the angle of attack with respect to the
incoming flow direction, as well as (b) a schematic of the experimental set-up.

In a numerical simulation of laminar flow (Re = 100) past a triangular prism
forced to oscillate in the transverse direction, the influence of different frequencies
and amplitudes of oscillations on the lift and drag forces acting on a triangular
prism were studied (Alawadhi 2013). It was concluded that when the frequency of
oscillations is close to the Strouhal number of a stationary triangular prism, the lift
coefficient reaches its maximum value.

In the present work, we experimentally investigate the influence of different angles
of attack and varying flow velocities on the pure translational oscillations of a
triangular prism placed in water flow. We use a prism with a relatively large aspect
ratio, equipped with an endplate to minimize the end effects. The goal of this study
is to obtain an overall view of how a triangular prism placed at different angles
of attack responds to flow forces, and to investigate the existence and the possible
interactions of the VIV-type and galloping-type responses in this system.

2. Experimental set-up and method

2.1. The set-up

An equilateral triangular prism with sides of D = 16 mm and a length of L = 292 mm
(L/D = 18.25) was tested for angles of attack of α = 0◦–60◦ with increments of 5◦

(figure 1a). The prism was made of aluminium and each side was ground, yielding a
smooth surface. Attached to the bottom of the prism was a 115 mm diameter circular
endplate with a thickness of approximately 2 mm and tapered edges to reduce end
effects. The prism was attached to an air bearing set-up, allowed to oscillate in the
transverse (cross-flow) direction. The air bearing set-up had two air bearings to reduce
the damping and to constrain the oscillations of the prism to one degree of freedom in
the cross-flow (CF) direction (figure 1b). Springs were attached from the air bearing
set-up to a fixed housing. This set-up was used previously by Seyed-Aghazadeh,
Carlson & Modarres-Sadeghi (2015b) to study VIV of tapered cylinders where the
response of a uniform circular cylinder was shown to be in agreement with the results
of Khalak & Williamson (1999).
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For comparison, a circular cylinder made of aluminium with diameter D = 16 mm,
and the same length, L = 292 mm, was considered as well. A 200 g dummy mass was
used to adjust the mass ratio of the circular cylinder to that of the triangular prism,
m∗ = 9.24 (m∗ = m/ρAL, where m is the total moving mass, ρ the fluid density, A the
cross-sectional area and L the length). All moving parts were accounted for in this
calculation, including the dummy mass, air bearings, mounting bracket, force sensor
and various cabling.

2.2. Flow quality

The recirculating water tunnel used featured a test section with the dimensions
1.27 m × 0.5 m × 0.38 m. The flow profiles were measured using bubble image
velocimetry (BIV). The cathode to generate hydrogen bubbles was a platinum wire
50 µm in diameter, held taut in pure cross-flow via streamlined mounting plates
affixed to the test section walls. At 35 mm downstream of the cathode, a carbon
plate was submerged at the midpoint of the test section, oriented parallel to flow, and
served as the anode. By completing the anode–cathode circuit with a 50 V, 0.25 A
DC power source, the voltage passing from the cathode separated hydrogen from
the water. Hydrogen bubbles accumulated on the trailing face of the wire until they
surpass the wire diameter, at which point they were shed downstream. Thus, a uniform
bubble sheet was generated across the width of the test section with a bubble size
of approximately 50 µm. For viewing purposes, light-emitting diode (LED) lighting
banks were mounted at a 45◦ angle to the bubble plane to ensure uniform lighting
conditions. A high-speed camera facing perpendicular to the cross-flow–streamwise
plane captured frames at 120 frames per second. The entire platinum array was
traversed vertically to several different horizontal planes to capture the vertical nature
of the flow profile.

Velocimetry analysis was done via open-source PIV software, PIVlab (Thielicke &
Stamhuis 2014). The field was interrogated with two passes: 64 × 64 pixel down
to 32 × 32 pixel areas with 50 % overlap. The resultant vector field was restricted
to values less than three standard deviations above the mean to mitigate numerical
error. The flow velocity was measured using the time-averaged values for the vector
space directly near the platinum wire. For calculating flow uniformity of the cross-
section, 30 mm was cropped from either end where the wire was connected to the
wall to exclude the boundary layer effects from this calculation. Measurements were
conducted at 30, 76, 120 and 170 mm s−1, and at each flow velocity at four different
heights. Figure 2 shows a sample case of the measurements at a flow velocity of
76 mm s−1, based on these measurements, the flow uniformity across the test section
was calculated and it was found to be within 2–8 % for the range of flow velocities
used in the current experiments.

2.3. Data collection method

Data were recorded for this experiment via two different sensors. A Micro-
Epsilon ILD 1402-600 non-contacting displacement sensor recorded the transverse
displacements. This sensor ran in tandem with an ATI-Nano17/IP68 six-axis force
sensor that was attached to the upper end of the oscillating prism and measured the
total flow forces acting on the prism in three perpendicular directions. This set-up
enabled a complete measurement of the lift and drag forces acting on the prism. Decay
tests were conducted in both air and water, by giving the prism an initial displacement
and then recording the amplitude of oscillations for over 15 cycles of oscillations.
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FIGURE 2. The flow profile measured along the width of the test section (the w-direction)
at different heights (the z-direction) for a sample flow velocity of U0 = 76 mm s−1.

Decay tests in water yielded a natural frequency of fnw,T = 0.466 ± 0.007 Hz and
fnw,C = 0.383 Hz for the triangular prism and circular cylinder, respectively. Decay
tests in air resulted in a natural frequency of fna,T = 0.503 Hz and fna,C = 0.397 Hz,
and a structural damping ratio of ζ = 0.0057. The structural damping ratio was
measured for different initial displacements of the prism, and resulted in the same
value with a standard deviation of order 5 × 10−4.

During these experiments, the water level was held constant and the flow velocity
was increased from zero in small steps up to a Reynolds number of Re = 2700. At
each step, the amplitude and frequency of oscillations as well as the flow forces acting
on the prism were measured. Experimental runs were recorded over a 60 s duration
at each flow velocity and angle of attack. This duration covered over 100 periods of
oscillation of the prism.

2.4. Flow force measurements

The force sensor attached to the upper end of the prism measured the total flow forces
acting on the prism in both the cross-flow and inline directions. The measured force in
the cross-flow direction comprised both the hydrodynamic flow forces and the inertia
force due to the motion of the force sensor. Therefore, the inertia force was removed
from the total measured transverse force by post-processing the experimental data.

An alternative method was also used here to obtain the flow forces. Given the time
series of the prism’s cross-flow displacement, the cross-flow force can be calculated
as

F/m = ÿ + 2ζωnẏ + ω2
ny, (2.1)

where F is the cross-flow force, m the system’s mass (only the structure, with no
added mass contribution), ωn the natural frequency in air, ζ the damping coefficient
measured in air (0.0057 for the present experiments) and y the displacement data
recorded using the non-contacting laser sensor. This force reconstruction method was
previously used by Seyed-Aghazadeh et al. (2015b) to measure the flow forces acting
on a tapered cylinder. In that work, the results were shown to match very well the
results of the direct measurements using a force sensor and also those of Khalak &
Williamson (1999) for a uniform cylinder with a similar mass-damping coefficient.

Here sample cases are given to show how this method works for measurements from
a triangular prism. Figure 3 shows a comparison between the flow forces measured
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FIGURE 3. Flow forces and their corresponding frequency contents measured directly
using the force sensors (solid line) and reconstructed using the method discussed in
the text (dotted line) for (a,b) α = 55◦ and U∗ = 10.7 (moderate-amplitude response),
(c,d) α = 35◦ and U∗ = 16.7 (low-amplitude response), and (e, f ) α = 55◦ and U∗ = 20.7
(large-amplitude response). In the plots, Cy = 2F/ρDU2L and t∗ = tfnw.

directly by the force sensor and those reconstructed using (2.1), for three sample cases
with low, moderate and large amplitudes of oscillations. It is observed that the force
reconstruction method is capable of reproducing very fine details of the flow forces,
as shown both in the time history and in fast Fourier transform (FFT) plots of all
three cases. The flow forces reported in this work are the reconstructed values.

3. A fixed triangular prism in flow

Before considering the flow-induced oscillations of triangular prisms, we conducted
a brief series of experiments on a fixed triangular prism in flow placed at different
angles of attack, varying from 0◦ to 60◦ with increments of 5◦. For these tests, the
prism was clamped at its upper end and attached to the six-axis force sensor discussed
in § 2. This set-up has been used previously by Benitz et al. (2016) to study the flow
past free-surface piercing, finite-length cylinders. In the current tests, the lift and drag
forces were measured in the Reynolds-number range of Re = 490–2700.

In an experimental study, Iungo & Buresti (2009) investigated the aerodynamic
loads on a low-aspect-ratio (L/D = 1–3) fixed triangular prism placed in wind at
different angles of attack. Flow visualizations were also conducted to characterize
the flow patterns in the wake of the triangular prism. It was concluded that the
cross-flow forces fluctuate significantly by varying the angle of attack, which was
found to correspond mainly to the changes in the wake flow features. Also, their
results from varying-aspect-ratio prisms showed an increase in the vortex shedding
frequency with decreasing aspect ratio.

Figure 4(a,b) shows the variation of mean drag and lift coefficients acting on
the prism at Re = 2000 in the experiments conducted here, and calculated as
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FIGURE 4. (a) Lift and (b) drag coefficients, as well as (c) the Strouhal number for a
fixed triangular prism placed at different angles of attack.

CL = 2FL/ρDU2L at different angles of attack. Also, results from previous studies on
aerodynamic loads acting on low-aspect-ratio triangular prisms with L/D = 3 (Iungo
& Buresti 2009) and L/D = 1.45 (Alonso et al. 2005) are plotted for comparison.
The mean lift coefficients from the current experiments match very well with the
results of the low-aspect-ratio prisms. The mean drag coefficients, however, take
larger values in the current experiments, but still qualitatively follow the same trend
as those observed for the low-aspect-ratio prisms. As also suggested by Iungo &
Buresti (2009), the decrease in magnitude of flow forces at lower aspect ratios of the
prism can be associated with the flow three-dimensionality generated by the models
with small aspect ratios used in those two studies (L/D = 3 and L/D = 1.45).

Figure 5 shows how the frequency of fluctuating lift varies with flow velocity.
The frequencies of the flow forces in the cross-flow (lift) direction were obtained
using the FFTs of flow forces. Linear regression was used to fit a line to those
shedding frequencies obtained experimentally to find the Strouhal number, which
is a dimensionless frequency of shedding off a fixed triangular prism, defined as
St = fvsD/U, in which fvs is the shedding frequency, D is the triangle’s side and U is
the incoming flow velocity.

Figure 4(c) summarizes the Strouhal numbers that are calculated based on the
measurements of figure 5 as they vary with the angle of attack. For smaller angles
of attack, the Strouhal number stays around a value of 0.23. At an angle of attack of
25◦, there is a decrease in the Strouhal number, followed by a sudden drop to values
close to 0.15 for 30◦, and then around 0.13 for angles of attack larger than 40◦. It is
noted that the drop in the Strouhal number occurs at the same angle of attack where
the magnitude of the fluctuating lift force reaches its maximum.
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FIGURE 5. Frequency of the fluctuating lift versus flow velocity for a fixed triangular
prism placed at different angles of attack.

4. The overall view of the response

In this section, an overall view of the response is given for the main experimental
campaign discussed in the present work, where the structure is allowed to oscillate in
the transverse degree of freedom. Figure 6 shows the amplitudes of oscillations versus
reduced velocity for a triangular prism at varying angles of attack. The amplitudes
of oscillations for a uniform circular cylinder, allowed to oscillate in the cross-flow
direction with the same mass ratio as the triangular prism, are plotted in figure 6 as
well for comparison. The lock-in region observed for the circular cylinder is within a
reduced velocity range of 4 < U∗ < 9.2 and with a maximum amplitude of A∗ ∼ 0.5.
The reduced velocity range and the amplitudes of oscillations observed here
are comparable to those reported in previous VIV studies on circular cylinders
(Seyed-Aghazadeh & Modarres-Sadeghi 2015).

Three distinct trends of response are observed for the triangular prism placed at
different angles of attack: the first trend with zero amplitude for all reduced velocities;
the second trend with two regions of non-zero amplitudes; and the third trend with
only one wider region of non-zero amplitudes.

For angles of attack smaller than α = 25◦, no oscillation is observed in the entire
reduced velocity range tested. At an angle of attack of α = 25◦, oscillations with
very small amplitudes (A∗ < 0.1) are observed for a reduced velocity range of
8.7 < U∗ < 10.7.

At slightly larger angles of attack, α = 30◦ and α = 35◦, there exists a range of
reduced velocities, 7 < U∗ < 14.5, where the prism oscillates with amplitudes that
reach a maximum value of A∗ ∼ 0.6. These oscillations within a range of reduced
velocities resemble the lock-in region observed in the VIV response of a circular
cylinder. In the reduced velocity range of 14.5 < U∗ < 19.5, oscillations with very
small amplitudes, close to zero, are observed. At higher reduced velocities, in the
range of 19.5 < U∗ < 22, the prism starts to oscillate again and the amplitude of
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FIGURE 6. (a) Three-dimensional and (b) projected plots of the dimensionless amplitude
of the cross-flow oscillations, A∗ = A/D, versus the reduced velocity, U∗, and the angle
of attack, α.

oscillations increases with increasing reduced velocity. This branch resembles the
galloping-type response where the amplitude of oscillations increases unboundedly
with U∗. We call this trend a ‘distinct VIV–galloping’ trend for future reference.

At angles of attack larger than α = 35◦, once the oscillations start, their amplitude
increases continuously with increasing reduced velocity up to the maximum values
tested, without any sign of the lock-in region. This continuous increase of amplitudes
resembles that seen during a galloping response of asymmetric structures. The
maximum amplitude of these oscillations reaches a value of A∗ ∼ 3.7 for the case
where the base plane of the cross-section is completely perpendicular to the incoming
flow direction (α = 60◦). We call this trend a ‘combined VIV–galloping’ trend. Similar
large-amplitude oscillations have been observed in a prism with a square cross-section
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FIGURE 7. The dimensionless amplitude of the cross-flow oscillations, A∗ = A/D, together
with their corresponding error bars versus the reduced velocity, U∗, for angles of attack
of α = 35◦ and α = 60◦.

when placed in flow at square orientation, i.e. when the face of the cross-section is
completely perpendicular to the incoming flow direction (Nemes et al. 2012). In
that case, the amplitude of oscillations increases continuously with increasing flow
velocity, reaching values of around A∗ = 1.6 for a mass ratio close to m∗ = 2.2 and a
structural damping ratio of ζ = 2.95 × 10−3. Cui et al. (2015) also observed a similar
behaviour for a square prism placed in flow, in which the oscillation amplitude
increased monotonically with increasing reduced velocities when the side of the
square prism was facing the flow.

Tests were repeated several times to quantify the repeatability of the results. The
α = 35◦ and α = 60◦ cases were chosen as archetypes of the distinct VIV–galloping
type response and combined VIV–galloping type response, respectively. First, the
natural frequency of the system was found via decay tests in still fluid with large
(approximately 5 cm) initial displacements, and it was found that the values of
the natural frequencies stayed within the same error-bar range as observed before
(§ 2.3). The displacements were recorded at each flow velocity for the entire reduced
velocity range. The tests were repeated five times, and each time the flow velocity
was increased from a value close to zero to the maximum value considered here.
At each velocity, the oscillations were recorded after reaching steady state. The
error bars of figure 7 were calculated using the standard deviation about the mean
amplitude of oscillations at each reduced velocity. It is observed in figure 7 that,
overall, the error bars stay small (less than D/4), except for a small region around
reduced velocities corresponding to the onset of the second non-zero-amplitude range
at α = 35◦. These large error bars are due to the fact that the onset of the second
non-zero-amplitude range fluctuated between the values of U∗ = 19 and U∗ = 20. The
error bars are relatively small for all the other reduced velocities and for both angles
of attack, especially at lower reduced velocities, where the error bars are smaller than
the symbol size used to plot the experimental data points. At an angle of attack of
α = 60◦, the error bars grow as the reduced velocity and the amplitude of oscillations
increase; however, the largest error stays below D/4.
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The dominant frequency of oscillations, fosc, stays below the natural frequency of
the system in air, fna,T , for all angles of attack and for both VIV and galloping-type
oscillations (figure 8). This behaviour is different from the VIV response of a circular
cylinder (also shown in figure 8) in which the frequency of oscillations exceeds the
natural frequency within the lock-in region (Khalak & Williamson 1999). The fact
that fosc/fna,T stays at values smaller than one means that the jump from 0◦ to 180◦

in phasing between flow forces and the structure’s displacement that is observed for
a circular cylinder does not occur for triangular prisms. This will be discussed with
some details later in § 6.3

At each angle of attack, the prism’s mean displacement increases with increasing
reduced velocity (figure 9). The maximum value of these mean displacements is
y∗

mean,max = 1.7 and occurs at an angle of attack for which the prism does not oscillate,
i.e. α ∼ 25◦. The mean value at 30◦ is still large, y∗

mean = 1.2, but it is accompanied
by oscillations with a comparable amplitude, A∗ ∼ 0.9 (figure 6). At higher angles of
attack, while the maximum mean displacement decreases, the amplitude of oscillations
increases and becomes much larger than the mean value.

5. Sample cases of the response

To shed light on the three different types of response observed in figure 6, we have
selected six representative points at three reduced velocities of U∗ = 10.7, 16.7 and
20.7 for two angles of attack, α = 35◦ and 55◦ (shown with circles around the symbols
in figure 6).

5.1. Angle of attack α = 35◦

Figure 10 shows the dimensionless displacement time histories (y/D, where D is the
side of the triangular cross-section), the cross-flow force coefficients, Cy, and their
corresponding frequency contents (FFT plots) for these sample points. The FFT plots
exhibit distinct frequency contents: while the main peak in all of these FFT plots
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FIGURE 9. Dimensionless mean amplitude of the cross-flow oscillations, y∗
mean = ymean/D,

versus the reduced velocity, U∗ = U/fnw,TD, at different angles of attack, α.

corresponds to a frequency close to the natural frequency of the system in water, small
contributions of the second and third harmonics, i.e. with twice and three times the
frequency of oscillations, are observed in some cases.

At a reduced velocity of U∗ = 10.7 (figure 10a–d), the cross-flow force consists of
the main harmonic (at a frequency close to the natural frequency of the system) as
well as the second harmonic (twice the natural frequency of the system). This is a
sample point in which the amplitude and frequency of oscillations correspond to a
VIV response. The first peak in the FFT plot corresponds to the main frequency of
oscillations, and the second peak at the second harmonic is due to the asymmetry of
the system. Du, Jing & Sun (2014) showed that, even for a circular cylinder, with a
symmetric cross-section, undergoing VIV, two peaks can be observed in the FFT plot
of the cross-flow forces, due to the asymmetry in the shedding. For a triangular prism,
due to the added geometrical asymmetry with respect to the incoming flow at α = 35◦,
the second peak at a frequency twice the main frequency of oscillations has an even
larger contribution, comparable with the first harmonic frequency. This is in fact due
to the contribution of the fluctuating drag force at a frequency twice the fundamental
frequency.

For the reduced velocity of U∗ = 16.7, the cross-flow force has a very small value
(figure 10e–h). The amplitude of oscillations is also very small at this reduced velocity.
Two small peaks are observed in the FFT plot of this reduced velocity: the first peak
corresponds to the main frequency of oscillations and the second peak corresponds
to the Strouhal frequency. The synchronization between the two frequencies is lost in
this region, and therefore no large-amplitude oscillations are observed.

For a larger reduced velocity of U∗ = 20.7, the cross-flow force consists of the main
harmonic as well as contributions from higher harmonics, i.e. the second, third and
fourth harmonics (figure 10i–l). This sample point falls within the reduced velocity
range in which the amplitude of oscillations resembles a galloping-type response.

5.2. Angle of attack α = 55◦

For an angle of attack of α = 55◦, at a reduced velocity of U∗ = 10.7, the cross-flow
force mainly consists of the first and the second harmonics, and a slight contribution
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FIGURE 10. Sample time histories and FFT plots of the prism’s dimensionless
displacement in the cross-flow direction as well as the cross-flow force coefficient together
with their corresponding frequency contents for α = 35◦ at three reduced velocities:
(a–d) U∗ = 10.7, (e–h) U∗ = 16.7, and (i–l) U∗ = 20.7.

of the third harmonic is also observed (figure 11a–d). These peaks correspond to the
T + P vortex shedding pattern observed at this point, as discussed later in § 7.2. At
higher reduced velocities of U∗ = 16.7 (figure 11e–h) and U∗ = 20.7 (figure 11i–l),
large higher harmonic contributions (up to the fifth) in the cross-flow force are
observed, which correspond to the high-frequency wake modes observed at these
reduced velocities: 2T and 5S + 4S, respectively, again as discussed later in § 7.2.
This suggests that the shedding of vortices is independent of the oscillation frequency
at these reduced velocities. Both of these reduced velocities correspond to the range
of large-amplitude galloping-type response of the system.

6. The response at different reduced velocities for α = 35◦ and α = 55◦

To study how the frequency content of the response changes with reduced velocity,
for the ‘distinct VIV–galloping’ trend versus the ‘combined VIV–galloping’ trend, we
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FIGURE 11. Sample time histories and FFT plots of the prism’s dimensionless
displacement in the cross-flow direction as well as the cross-flow force coefficient together
with their corresponding frequency contents for α = 55◦ at three reduced velocities:
(a–d) U∗ = 10.7, (e–h) U∗ = 16.7, and (i–l) U∗ = 20.7.

consider two representative angles of attack of α = 35◦ and 55◦ for each trend. The
plots in the first two rows of figures 12 and 13 show the dimensionless amplitudes of
oscillations and the frequency contents of the response, respectively. In the frequency
plots, a line with a slope of St is plotted, corresponding to the vortex shedding
frequencies for a fixed triangular prism, fvs, at the same angle of attack based on
the results of § 3. A second line with a slope half of the St line is also plotted
for comparison. The plots in the third row of figures 12 and 13 are contour plots
of frequency contents for the cross-flow oscillations as a function of frequency
normalized by the natural frequency of the system in water and the reduced velocity,
U∗. These contours are formed by taking the FFTs of displacement time series at
every given value of U∗, normalizing them by their maximum value, and placing
them next to each other. This method of presenting the frequency content of the
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FIGURE 12. (a) The dimensionless amplitude of the cross-flow oscillations, A∗, and
(b) the dimensionless frequency (circles, f1; squares, f2; triangles, f3) of the cross-flow
oscillations, f ∗ = fosc/fna,T , versus the reduced velocity, U∗ = U/fnw,TD. Contour plots of
the dimensionless frequency of (c) the cross-flow oscillations, (d) the total transverse force,
and (e) the transverse vortex force. All are measured at an angle of attack of α = 35◦.
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response over a range of reduced velocities has been employed extensively in the
past (e.g. by Zhao et al. 2014). The plots in the fourth and the fifth rows of figures
12 and 13 show similar contours for the total transverse force and a component
of the total transverse force, i.e. the ‘transverse vortex force’, respectively. This
component is found after subtracting the potential flow added mass contribution from
the total transverse force, following the method used originally by Lighthill (1986),
and employed afterwards extensively, e.g. by Zhao et al. (2014).

6.1. Angle of attack α = 35◦

At α = 35◦ (figure 12), representative of a ‘distinct VIV–galloping’ trend, all three
types of response, i.e. VIV type, galloping type and no oscillation, have been
observed. Besides the dominant frequencies of oscillations, f1, the higher frequencies
at twice and three times the dominant frequency, f2 and f3, are also observed. For
this angle, the frequency of oscillations (figure 12b) follows the Strouhal line (St

line in figure 12) for the lower reduced velocities (U∗ ∼ 4.0–4.7), and then locks
into the natural frequency of the system at U∗ ∼ 4.7 and stays close to the natural
frequency up to U∗ = 7.4. In this range of reduced velocities, the response is very
similar to a classic VIV response when a 1 : 1 ratio between the shedding frequency
and the oscillation frequency triggers VIV. At U∗ = 7.4, there is a slight decrease
in the amplitude of oscillations, which is accompanied by a drop in the frequency
of oscillations from f ∗ = 0.93 to f ∗ = 0.63. Then for the reduced velocity range of
U∗ = 7.4–14.2, the frequency of oscillations initially follows the line corresponding to
half the Strouhal frequency (St/2 line in figure 12) for U∗ ∼ 7.4–10.1 until it reaches a
value close to the natural frequency of the system again at U∗ ∼10.1. In this range, the
synchronization occurs between the system’s natural frequency and half the shedding
frequency calculated based on St. At this point, the frequency once again locks
into the natural frequency of the system. The dimensionless frequency stays around
unity up to a reduced velocity of U∗ ∼ 14.2, beyond which the prism can no longer
stay locked into the natural frequency of the system and the amplitude of oscillations
decreases suddenly. Higher harmonics at twice and three times the dominant frequency
of oscillations are also observed in this range of reduced velocities (U∗ = 7.4–14.2).

Overall, the response of the system in the frequency domain in the reduced velocity
range of U∗ = 4.0–14.2 resembles that observed in the lock-in response of a VIV
case, in the sense that non-zero-amplitude responses are observed over a range of
reduced velocities, being preceded and followed by zero-amplitude responses. In the
case of a triangular prism, however, the frequency of oscillations locks into the natural
frequency twice: once approaching from the Strouhal frequencies and once from half
the Strouhal frequencies. Another difference compared with the classic VIV response
is that the dimensionless frequency never crosses one (figure 8), thus resulting in no
jump in the phase difference between the structure’s displacement and flow forces.

In the reduced velocity range of U∗ = 14.7–19.4, where the dimensionless
amplitudes of oscillations stay at small values of less than A∗ = 0.1, the frequency
content has a contribution from the natural frequency of the system and a contribution
from the shedding frequency at a value following the Strouhal frequency of a fixed
prism at the same angle of attack (St line in figure 12). The shedding frequency
increases linearly with reduced velocity, as expected, but the contribution from the
natural frequency of the system stays constant. A range of broad-band, low-power
frequencies, following the Strouhal line, is also observed in the transverse vortex
forces of figure 12(e).
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At a reduced velocity of U∗ = 19.6, where the frequency component from the
Strouhal line gets close to three times the natural frequency of the system, the
prism starts to oscillate again. It seems that the matching of the shedding frequency
and three times the natural frequency acts as a trigger for the system to restart its
oscillations at this reduced velocity. The dominant frequency of oscillations is close
to the natural frequency of the system. Higher harmonic components at twice and
three times the dominant frequency also exist in this range. The second harmonic
does exist due to the asymmetry in shedding as discussed before in § 5.1. The third
harmonic component is mainly due to the relative angle of the lift and drag force
with respect to the direction of the prism’s oscillation. Owing to this relative angle,
the flow force in the direction of oscillation comprises components of lift and drag
forces, at the first and second harmonics, which give rise to forces at three times the
fundamental frequency. Seyed-Aghazadeh, Budz & Modarres-Sadeghi (2015a) discuss
more details of the third harmonic’s contribution. In the frequency contents of the
transverse vortex force of figure 12(e), peaks at the first, second and third harmonic
components are observed, but the second harmonic is the dominant frequency.

6.2. Angle of attack α = 55◦

Figure 13 shows the same plots as figure 12, but for an angle of attack α = 55◦.
The oscillations start at a frequency close to the Strouhal frequency at a reduced
velocity of U∗ = 5.4. The frequency of oscillations follows the Strouhal line (the
continuous line in figure 13b) and, as the shedding frequency gets closer to the
natural frequency of the system, it locks into the natural frequency. The frequency of
transverse vortex force (figure 13e) stays close to the frequency of oscillations for a
range of reduced velocities, resulting in a 1 : 1 synchronization in this range, similar
to what was observed for the VIV range of the response for α = 35◦. The reduced
velocity of U∗ = 5.4, therefore, can be considered as the onset of the VIV response
for the α = 55◦ case, for which the frequency of vortex shedding gets locked into the
frequency of oscillations.

The ‘lock-in’ region seems to be extending up to around U∗ ∼ 10, where a sudden
change in the slope of the amplitude plot is observed. This ‘kink’ corresponds to
the reduced velocity at which the dominant frequency of the transverse vortex force
shifts from a value equal to that of the oscillation frequency to twice the oscillation
frequency. This jump in the dominant frequency implies that the vortex shedding
frequency is no longer ‘locked into’ the oscillation frequency of the prism, and
therefore the reduced velocity at which this jump occurs (i.e. U∗ ∼ 10) can be
considered as the end of the lock-in range and therefore the end of the VIV response.
At reduced velocities following this range, the vortex shedding is synchronized to
twice the oscillation frequency, resulting in a 1 : 2 synchronization.

For U∗ ∼ 10–15, the dominant dimensionless frequency of oscillations stays around
unity, while the transverse vortex force is dominated by a frequency twice the
oscillation frequency. The higher harmonic components of the oscillation frequency
also exist at twice, three times and four times the dominant frequency. The amplitude
of oscillations increases monotonically by increasing the reduced velocity in this
range. At U∗ ∼ 15, another sudden change in the slope of the amplitude plot is
observed (a ‘kink’). This change occurs at a reduced velocity for which the first
harmonic of the transverse vortex force becomes large again and its values become
comparable to its higher harmonics.

For U∗ ∼ 15–20, the amplitude of oscillations increases monotonically with
increasing reduced velocity and the second harmonic of the transverse vortex force
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remains the dominant frequency. At U∗ ∼ 20, where the third harmonic frequency
matches the vortex shedding frequency of a fixed prism, the third ‘kink’ in the
amplitude of oscillations is observed. Beyond this reduced velocity, the second and
the third harmonic transverse vortex forces become broad-band and the amplitude of
oscillations increases with increasing U∗. The values of the third harmonic vortex lift
force become comparable with the dominant second harmonic frequency, resulting in
a combined 1 : 2 and 1 : 3 synchronization.

Zhao et al. (2014) observed similar behaviour for a low-mass-ratio square prism
at an angle of attack of α = 0◦, where the flat face of the square was placed
perpendicular to the flow. Different synchronization regimes have been reported in
their work, where vortex shedding was being locked into multiple integers of the
body oscillation frequencies. The observed synchronization at α = 0◦ was only at odd
multiple integers of the vortex shedding cycles, referred to as ‘odd’ synchronization.
No ‘even’ synchronization was observed for the square prism at α = 0◦. It was
concluded by the authors that for a square prism placed in flow in a symmetric
orientation, such as α = 0◦, even vortex shedding produces a mean lift force of
zero, which cannot lead to a significant transverse galloping response. Based on the
findings of the present study, however, it seems that we do not necessarily observe
an odd synchronization if the body is not placed symmetrically in the flow. The
body’s asymmetric orientation can cause asymmetric vortex shedding (in terms of
the size and strength of the vortices) from each side of the prism, thus resulting in
a non-zero mean lift. Since the number of shed vortices from each side is the same,
this results in an ‘even’ synchronization, but because the vortices are not necessarily
of the same size and strength, they could produce non-zero mean lift. This matches
the behaviour that was observed in the two angles of attack considered here, where
for both α = 35◦ and α = 55◦ the prism was oriented asymmetrically with respect to
the incoming flow, and therefore both odd and even synchronizations were observed
in these two cases.

To investigate if we observe only ‘odd’ synchronization in a symmetrically oriented
triangular prism, the angle of attack of α = 60◦ was considered. Figure 14 shows
the contour plots of dimensionless frequency of oscillations, total transverse force
and vortex transverse force frequencies for the angle of attack of α = 60◦, where
the triangular prism is placed symmetrically with respect to the incoming flow. In
this case, the dimensionless frequency of oscillations stays around unity for the
entire range of reduced velocities tested. However, in addition to the main harmonic
frequency, there is a large contribution from the third harmonic in the total transverse
force contour. Considering only the vortex shedding component of the transverse force,
the third harmonic is the dominant frequency, and the contribution from the second
harmonic is minimal, implying a 1 : 3 synchronization. This ‘odd’ synchronization,
as a consequence of symmetric vortex shedding in the wake of a triangular prism
placed symmetrically with respect to the flow, agrees with the results observed by
Zhao et al. (2014), where they did not observe any contribution from even harmonics
in the flow-induced oscillations of a square prism placed symmetrically in flow.

6.3. Phase differences

Figure 15 shows how the phase difference between the first harmonic displacement
and the first harmonic cross-flow force, φ, changes with the reduced velocity for two
angles of attack α = 35◦ and 55◦. The phase difference for both cases stays around 10◦

for all reduced velocities, except for a small range of higher reduced velocities for α =

20



5 10 15 20 25

5

0

1

2

3

4

5

0

1

2

3

4

 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0(a)

(b)

(c)

FIGURE 14. Contour plots of the dimensionless frequency of (a) the cross-flow
oscillations, (b) the total transverse force, and (c) the transverse vortex force. All are
measured at an angle of attack of α = 60◦.

35◦, where the phase difference increases to values close to 30◦. In all these cases, the
phase difference never increases to values larger than 90◦. This behaviour is different
from what is observed in the VIV response of a circular cylinder, for which there is
a jump from 0◦ to 180◦ in phasing between flow forces and the cylinder displacement
(Khalak & Williamson 1999). This phase jump is also observed in the present results
for the uniform circular cylinder at a reduced velocity of U∗ ∼ 7 (circles in figure 15).
The maximum value of the phase difference at larger reduced velocities in the current
experiment is approximately 130◦, instead of 180◦. This is due to the fact that, with a
non-zero structural damping, the phase jump to 180◦ occurs only if the frequency ratio
( fosc/fna,C) gets far from unity. In the current experiments, however, the frequency ratio
stayed close to unity, resulting in a phase difference of less than 180◦. At any rate,
there is a phase change from small values to values larger than 90◦ for the circular
cylinder tested here, which means that the flow forces start opposing the displacement
at a certain reduced velocity. This phase jump does not occur for the triangular prism.
The fact that fosc/fna,T stays at values smaller than one in figure 8 also confirms the
monotonic phase change observed here for the triangular prism, whereas the frequency
ratio passed unity for the circular cylinder at a reduced velocity of U∗ ∼ 7 in figure 8.
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7. The wake

We conducted dye flow visualizations to investigate how the shedding pattern of the
triangular prism changes at different angles of attack and different reduced velocities,
and also to measure the shedding frequency and compare that with the oscillation
frequency in the hope of understanding the differences of the VIV-type and galloping-
type responses. The fluorescent dye, injected upstream of the prism through a tiny
dye tube, was exposed to ultraviolet (UV) light, giving rise to the distinct colour of
the dye. The wake of the prism was studied at eight different reduced velocities of
U∗ = 6.7, 8.7, 10.7, 12.7, 14.7, 16.7, 18.7 and 20.7 for all angles of attack tested here
to cover a full map of all possible wake patterns in all three types of response: no
oscillation, VIV type and galloping type. In the following, the wake of the prism is
discussed at the same sample points for which the time histories and their frequency
contents were studied earlier in § 5.

7.1. The wake at sample points for α = 35◦

Figure 16 shows the vortex shedding patterns in the wake of the prism at the maxima
of one oscillation cycle at sample reduced velocities of U∗ = 10.7, 16.7 and 20.7.
The snapshots on the left are directly from the dye flow visualization images and the
schematics on the right specify the observed patterns (also seen inside the boxes drawn
around the shed vortices). At the reduced velocity of U∗ = 10.7 (figure 16a), two
single vortices are shed in each cycle of oscillations (2S pattern). The vortex shedding
frequency at this point is equal to the frequency of oscillations ( fvs ∼ fos = 0.35 Hz at
U∗ = 10.7), which is a feature of a VIV response.

At U∗ = 16.7, the 2S vortex shedding persists (figure 16b) but the shedding
frequency ( fvs ∼ 1.25 Hz) no longer follows the natural frequency of the system
( fnw,T = 0.466 Hz), but is equal to the Strouhal frequency for a stationary triangular
prism ( fst = 1.28 Hz) based on the results of figure 5. This was expected, since the
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FIGURE 16. Vortex shedding patterns in the wake of the triangular prism at an angle of
attack of α =35◦ at reduced velocities of (a) U∗ =10.7, (b) U∗ =16.7 and (c–d) U∗ =20.7.

amplitude of oscillations in this range is very small (close to zero) and the triangular
prism is practically stationary.

At U∗ = 20.7, the response is of a galloping type as we discussed in § 4. As shown
in figure 16(c,d), at this point five vortices are shed from one side when the prism
is moving up and three vortices are shed from the other side of the prism when
it is moving down. We call this pattern a 5S + 3S pattern, for five single vortices
shed in one half-cycle and three single vortices shed in the other half-cycle. Clearly
the shedding is asymmetric and its frequency is much higher than the oscillation
frequency. The fact that the shedding frequency is much higher than the oscillation
frequency suggests that the oscillations are low-frequency and the shedding is a
consequence of the presence of the bluff body in the flow and not the forcing that
causes the oscillations.

In summary, for this angle of attack, a branch of VIV-type response is followed
by a range of almost-zero-amplitude response, and then a branch of galloping-type
response at higher reduced velocities. In the VIV-type range of the response, 2S
shedding, typical of a VIV response, is observed, while in the galloping-type range

(a)
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of the response, the shedding is asymmetric with a higher frequency compared with
the oscillation frequency.

7.2. The wake at sample points for α = 55◦

The second series of wake visualizations discussed here were conducted at the same
three reduced velocities of U∗ = 10.7, 16.7 and 20.7, but at a larger angle of attack
of α = 55◦ (figure 17). At U∗ = 10.7, a T + P pattern is observed in which a triplet
of vortices is shed when the prism moves up and a pair of vortices is shed when the
prism moves down (figure 17a,b). At U∗ = 16.7, a 2T pattern (two triplets of vortices
shed in each cycle of oscillations) is observed (figure 17c). The T + P and 2T modes
have been observed in the VIV response of a circular cylinder as well (Williamson &
Govardhan 2004), and, since they have been observed previously, we use symbols T
and P for them. With the nomenclature used in this paper, we could call the T + P
pattern a 3S + 2S pattern, and the 2T pattern a 3S + 3S pattern, as well. At U∗ = 20.7,
a 5S + 4S pattern is observed (figure 17d,e) in which five vortices are shed from one
side when the prism is moving up and four vortices are shed from the other side of
the prism when it is moving down. The 5S + 4S could also be called a 2P, S + P,
and so on for all the high-frequency multiple shedding patterns. However, to keep the
nomenclature simpler, we use nS + mS in referring to these shedding patterns, with
the understanding that in fact all we do is to count the number of vortices shed from
each side of the prism in each cycle of oscillations.

It can be argued that, for this angle of attack, at some reduced velocity, the
shedding frequency is so much larger than the oscillation frequency that the response
can be considered to be a galloping type as opposed to a VIV type. That would
be a galloping-type response as a low-frequency response, where ‘low’ is in
comparison with the shedding frequency, which implies that the shedding is the
result of the presence of the bluff body in flow and not the cause of its oscillations.
The low-frequency oscillations combined with the large-amplitude oscillations (much
larger than the typical one-diameter amplitude observed in the VIV response of
bluff bodies) indicates a galloping-type response at higher reduced velocities. Overall,
for this angle of attack, the initial VIV-type response gives way to a galloping-type
response at higher reduced velocities, without any intermediate, almost-zero-amplitude
response, which we observed for the angle of attack of α = 35◦.

7.3. An overall view of the wake

A summary of the shedding patterns observed in the wake of the triangular prism
is given in figure 18. The predominant shedding patterns at lower reduced velocities
are 2S, P + S, 2P, T + S, T + P and 2T, which have been observed previously for
the VIV response of a circular cylinder with various mass-damping parameters. For
the cases with a ‘combined VIV–galloping’ trend, at reduced velocities of higher than
U∗ = 15 the shedding frequency becomes much larger than the oscillation frequency,
a sign of the onset of galloping. These high-frequency shedding patterns (shown as
nS + mS in figure 18) are asymmetric (n 6= m) for all angles of attack, except for
α = 60◦. This suggests that the asymmetry in the number of shed vortices from each
side is only due to the geometric asymmetry of the structure in these angles of attack.
In figure 18, the shedding patterns are identified for each angle of attack, and based
on the flow visualizations conducted at selected reduced velocities only. Therefore the
vertical lines in the plot should not be interpreted as a sudden change of the shedding
pattern.
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FIGURE 17. Vortex shedding patterns in the wake of the triangular prism at an angle
of attack of α = 55◦ and at reduced velocities of (a–b) U∗ = 10.7, (c) U∗ = 16.7 and
(d–e) U∗ = 20.7.

8. Conclusions

Flow-induced oscillations of a prism with a triangular cross-section placed in water
flow and at different angles of attack are studied experimentally. The prism had
one degree of freedom and was allowed to oscillate in the cross-flow direction. The
experiments were conducted at varying angles of attack in the range of α = 0◦–60◦
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FIGURE 18. (a) A map of the vortex patterns in the wake of the triangular prism at
varying angles of attack and at different reduced velocities, together with (b) schematics
of the shedding patterns.

for every 5◦, and for a reduced velocity range of U∗ = 4–22, corresponding to a
Reynolds-number range of Re = 490–2700.

Depending on the angle of attack and the reduced velocity, the triangular prism
experiences both VIV and galloping-type response. For small angles of attack of
α < 30◦, the prism does not oscillate for the range of reduced velocities tested.
For larger angles of attack, two patterns in the response are observed. For α = 30◦

and 35◦, two independent regions of non-zero-amplitude response are observed: one
corresponding to the VIV-type response and the other to the galloping-type response.
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For α > 35◦, only one region of non-zero-amplitude response, spread over a wide
range of reduced velocities, is observed covering both the VIV-type and galloping-type
responses.

For angles of attack of α = 30◦ and 35◦, the prism undergoes large-amplitude
oscillations in a limited range of reduced velocities, U∗ = 7–14.5. The frequency
response of the system in this range of reduced velocities resembles those observed
in the lock-in region of a circular cylinder underdoing VIV. However, for a triangular
prism, the frequency of oscillations locks into the natural frequency twice: once
approaching from the Strouhal line and once from the half-Strouhal line. The
conducted dye flow visualization as well as the measured flow forces confirmed
that the lock-in occurs in this range of reduced velocities and the triangular prism
undergoes VIV. At the same angles of attack and for a range of larger reduced
velocities, U∗ = 14.5–19.5, no oscillation is observed. This is then followed by
large-amplitude oscillations again at higher reduced velocities, U∗ = 19.5–22. In this
reduced velocity range, the amplitude of oscillations increases with increasing reduced
velocity. These large-amplitude oscillations are accompanied by high-frequency
asymmetric shedding, which suggests a galloping-type response (oscillations with
large amplitude compared with VIV and low frequency compared with the shedding
frequency) in this region. Therefore, for these angles of attack, the prism experiences
VIV at smaller reduced velocities and galloping at higher values with a distinct gap
of almost-zero-amplitude response in between.

For larger angles of attack of α > 35◦, when the oscillations start at a reduced
velocity, their amplitude increases monotonically with increasing reduced velocity,
until it reaches a maximum dimensionless value of A∗ ∼ 3.7 at high reduced velocities
for α = 60◦. For this range of angles of attack, the response is initially a VIV type, but
later on it becomes a galloping-type response. There is a range of reduced velocities
for which the shedding frequency is synchronized with the oscillation frequency. This
range is where a VIV-type response is observed for these angles of attack. At higher
values of reduced velocities, the 1 : 1 synchronization is replaced by a combined
1 : 2 and 1 : 3 synchronization in asymmetric orientations, and a 1 : 3 synchronization
in the symmetric case of α = 60◦. This range of large-amplitude oscillations where
the oscillation frequency is smaller than the shedding frequency corresponds to the
galloping-type response of the system.
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