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Self-induced flapping dynamics of a flexible
inverted foil in a uniform flow

P. S. Gurugubelli1 and R. K. Jaiman1,†
1Department of Mechanical Engineering, National University of Singapore, 117575, Singapore

We present a numerical study on the self-induced flapping dynamics of an inverted
flexible foil in a uniform flow. A high-order coupled fluid–structure solver based on
fully coupled Navier–Stokes and nonlinear structural dynamic equations has been
employed. Unlike a conventional flexible foil flapping where the leading edge is
clamped, the inverted elastic foil is fixed at the trailing edge and the leading edge
is allowed to oscillate freely. We investigate the evolution of flapping instability of
an inverted foil as a function of the non-dimensional bending rigidity, KB, Reynolds
number, Re, and structure-to-fluid mass ratio, m∗, and identify three distinct stability
regimes, namely (i) fixed-point stable, (ii) deformed steady and (iii) unsteady flapping
state. With the aid of a simplified analytical model, we show that the fixed-point
stable regime loses its stability by static-divergence instability. The transition from
the deformed steady state to the unsteady flapping regime is marked by a flow
separation at the leading edge. We also show that an inverted foil is more vulnerable
to static divergence than a conventional foil. Three distinct unsteady flapping modes
have been observed as a function of decreasing KB: (i) inverted limit-cycle oscillations,
(ii) deformed flapping and (iii) flipped flapping. We characterize the transition to the
deformed-flapping regime through a quasistatic equilibrium analysis between the
structural restoring and the fluid forces. We further examine the effects of m∗ on
the post-critical flapping dynamics at a fixed Re= 1000. Finally, we present the net
work done by the fluid and the bending strain energy developed in a flexible foil
due to the flapping motion. For small m∗, we demonstrate that the flapping of an
inverted flexible foil can generate O(103) times more strain energy in comparison to a
conventional flexible foil flapping, which has a profound impact on energy harvesting
devices.
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1. Introduction

A flexible foil immersed in a fluid flow experiences a self-induced self-sustained
periodical flapping motion at sufficiently high flow speed. The flapping of elastic foil
problem is of interest not only due to its prevalence, but also due to the simplicity
of the problem statement and the richness of the coupled fluid–structure behaviour.
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The fluid-elastic instability with such a configuration can be easily seen by blowing
air over a thin piece of paper or a leaf and in waving of flag-like structures. A
flexible foil clamped at the leading edge and with the trailing edge free to oscillate,
from here on referred to as a conventional foil, is stabilized by the viscous drag
and structural stiffness, while the pressure force tends to produce the opposite effect.
Applications of this phenomenon include the implementation of new surgical methods
(Huang 1995), increasing the speed of paper printing (Watanabe et al. 2002a,b),
nuclear plate assemblies (Guo & Paidoussis 2000), flow control devices (Lucey 1998;
Jaiman, Loth & Dutton 2004) and botanical applications (Huang, Rominger & Nepf
2011). A system of flexible foils has been also proposed as a means of harvesting
energy, which can be utilized to generate electric energy (Allen & Smits 2001; Tang,
Paidoussis & Jiang 2009). In this view, Michelin & Doare (2013) recently proposed
a theoretical framework to study the optimal position of piezoelectric patches on an
elastic foil to maximize the efficiency.

The flapping of a conventional flexible foil has been extensively studied using
various theoretical, experimental and numerical methods. Paidoussis (2000) and
Shelley & Zhang (2011) have provided an extensive literature review on this topic.
Early studies on the flapping instability (Dowell 1966, 1970) were based on linear
instability analysis using the Galerkin decomposition in space to predict the critical
velocity above which the flexible foil exhibits flapping motion. These studies largely
focused on supersonic flow and were motivated by aerospace applications. Kornecki,
Dowell & O’Brien (1976) have theoretically investigated the flapping instability for
subsonic flows by introducing a circulatory fluid loading to satisfy the Kutta condition
at the trailing edge. Extending this theoretical analysis, Argentina & Mahadevan
(2004) included the effects of viscous drag induced tension and finite size in their
theoretical model. To analyse the influence of trailing and leading edge boundary
conditions on the flapping instability, Guo & Paidoussis (2000) performed a linear
stability analysis in Fourier space.

More recently, Shelley, Vandenberghe & Zhang (2005), with the aid of a simplified
analytical model and water-tunnel experiments, have shown that a flexible foil in a
heavy fluid can experience strong added-mass effects, which can stabilize the foil. By
employing a three-dimensional potential flow with two-dimensional foil deflections,
Eloy, Souilliez & Schouveiler (2007) studied the effects of aspect ratio on the stability
and dynamics of a flexible foil. In this study, the authors observed that flexible foils
with small aspect ratios tend to be more stable compared with foils with larger
aspect ratios. Eloy, Kofman & Schouveiler (2012) further analysed the hysteresis
effects observed experimentally and attributed these effects to the surface defects of
the flexible plate. In addition to linear/nonlinear stability analyses, Tang & Paidoussis
(2007) and Michelin, Llewellyn Smith & Glover (2008) have presented reduced-order
models based on lumped vortex and unsteady point vortex models respectively to
predict the post-critical behaviour of the flexible foil.

Since the experimental study by Taneda (1968), the flapping instability of a
conventional foil has been the focus for a large number of experimental studies
(Datta & Gottenberg 1975; Huang 1995; Zhang et al. 2000; Allen & Smits 2001;
Watanabe et al. 2002b; Shelley et al. 2005; Eloy et al. 2008, 2012). Zhang et al.
(2000) utilized a soap-film flow to replicate a two-dimensional Navier–Stokes fluid
and examined the flapping instability of a conventional foil. Two distinct dynamic
regimes called a stretched-straight mode and a regular limit-cycle oscillation were
observed. In this experiment, the authors noted a large region of bi-stability for a
sufficiently large initial perturbation. Watanabe et al. (2002b) studied the influence of
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bending rigidity and aspect ratio on the flapping instability for improving the speed
of paper printing. In this study, the authors reported that the flapping amplitudes
and frequencies increase with the flow velocity, and no boundary layer separation
is observed along the foil. To understand the origin of the difference between the
stability analysis and the experimental observations, Eloy et al. (2008) compared
the stability analysis with the experimental observations. They observed that the
three-dimensional effects become significant with increase in the aspect ratio of foils.

In parallel to the experimental studies, a large number of numerical studies have
been performed on a conventional foil set-up using various methods. In particular,
Zhu & Peskin (2002, 2003) simulated the soap-film experiment of Zhang et al. (2000)
using the immersed boundary method. Although the Reynolds number of the direct
numerical simulations was O(102) times lower than the experiment, the simulations
predicted the dynamic regimes observed experimentally (Zhang et al. 2000). In this
numerical study, it was found that the flexible foil did not experience a flapping
instability when the mass of the flexible foil was neglected. The soap-film experiment
of Zhang et al. (2000) was simulated by Farnell, David & Barton (2004) using a
loosely coupled fluid–structure solver. Alben (2009) reported a numerical method
to simulate the flapping dynamics in the limit of infinite Reynolds number. In this
numerical method, a fluid flow was modelled as an inviscid flow consisting of a thin
vortex sheet, and the viscous effects were captured through a thin vortex sheet. Using
this numerical method, Alben (2009) analysed the transition from regular limit-cycle
flapping to chaotic flapping. Connell & Yue (2007) and Liu, Jaiman & Gurugubelli
(2014) presented a comprehensive numerical analysis on the effects of the mass
ratio, m∗, and Reynolds number, Re, on the flapping dynamics; here, Connell & Yue
(2007) used a strongly coupled finite difference formulation and Liu et al. (2014)
developed a numerical formulation based on the high-order finite-element method
using arbitrary Eulerian–Lagrangian (ALE) coordinates. In both of these studies,
three distinct regimes were identified: (i) a steady fixed-point response for small m∗,
(ii) a periodic limit-cycle flapping for intermediate m∗ and (iii) a chaotic flapping
regime found for large m∗. These results showed a good agreement with the analytical
findings of critical mass ratio.

In the present work, we gain our motivation from the ability of self-sustained
flapping of an elastic foil to extract energy and generate electric power (Tang et al.
2009; Akcabay & Young 2012) from the vast and untapped source of energy available
in the form of ocean currents and tidal flows. A large number of energy harvesting
models (Allen & Smits 2001; Tang et al. 2009; Akcabay & Young 2012; Michelin
& Doare 2013) have been proposed based on the idea of converting fluid kinetic
energy into strain energy through the flapping and bending process of a conventional
foil. This strain energy in turn can be converted to electric potential using capacitive,
conductive or piezoelectric methods. To optimize the piezoelectric energy harvesting,
Michelin & Doare (2013) performed coupled piezoelectric fluid–structure simulations
of a conventional foil. In this study, the authors reported that the efficiency can be
up to 10–12 % for a structure-to-fluid mass ratio of 20, it decreases to less than 1 %
for m∗ ≈ 1 and becomes relatively small for m∗ � 1. This leads to the requirement
to develop new energy harvesting devices with an alternative configuration to extract
the maximum possible kinetic energy from the fluid flow even for m∗ � 1, which
typically represents the case of a flexible foil flapping in flowing water.

All of the aforementioned literature corresponds to a conventional flexible foil,
whose dynamics is comparatively well understood. The objective of this paper is
to study the flapping mechanism of a flexible foil whose trailing edge is clamped
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and whose leading edge is free to oscillate; hereafter this will be referred to as
an inverted foil. An inverted foil induces a remarkably different flapping dynamics
with respect to the conventional flapping. Guo & Paidoussis (2000) employed a
linear stability theory and observed that an inverted flexible foil becomes unstable
for non-zero flow velocities when the viscous damping effects are neglected. This
observation clearly contradicts the physical observations, where an inverted flexible
foil can exhibit stability for non-zero fluid velocity. Buchak, Eloy & Reis (2010)
performed an interesting experimental study by placing a book in a wind tunnel and
analysed the clapping interaction among a stack of papers. This experimental study
closely represented the dynamics of an inverted foil flapping. More recently, Kim
et al. (2013) investigated the dynamics of an inverted foil in both wind and water
tunnels. They reported the existence of three flapping regimes: two quasisteady modes
and a limit-cycle flapping mode. They observed that an inverted foil was more prone
to flapping instability compared with a conventional foil, i.e. the critical velocity of
an inverted foil was lower than that of a conventional foil. However, the physical
phenomenon underlying this observation requires some attention through nonlinear
viscous simulations of fluid–structure interactions.

Here, we perform two-dimensional numerical simulations to assess the flapping
dynamics of an inverted flexible foil configuration. For this purpose, we adopt
a high-order fluid–structure interaction solver based on the combined field with
explicit interface (CFEI) formulation proposed by Liu et al. (2014). This solver
captures the nonlinearities of the problem coming from the Navier–Stokes equation
and the geometrically nonlinear structural dynamics. Through a series of coupled
numerical simulations, we investigate the evolution of flapping instability in an
inverted foil as a function of the non-dimensional bending rigidity KB, m∗ and Re.
We characterize the underlying physical mechanism for the onset of flapping instability
and present stability phase diagrams of KB versus Re and m∗ through direct numerical
simulation (DNS) results and simplified analytical solutions. Furthermore, we conduct
a systematic parametric study to understand the behaviour of the post-critical flapping
dynamics and its dependence on the relevant non-dimensional parameters. As a
function of decreasing KB, we observe three distinct flapping regimes: inverted limit
cycle, deformed flapping and flipped flapping. We visualize the evolution of vortex
patterns as a function of KB for these flapping response regimes. We finally analyse
the ability of inverted foil to convert the available fluid kinetic energy to structural
strain energy during the flapping and bending process.

The content of the paper is structured as follows. Section 2 describes the problem of
a flexible plate in a uniform axial flow and its governing equations. In § 3, we provide
a brief description of the coupled fluid–structure solver used in this study. Section 4
presents a mesh convergence study and numerical verification of the coupled fluid–
structure formulation. Finally, § 5 covers the detailed results and analysis of inverted
foil, namely the onset of flapping instability, the effects of bending rigidity and mass
ratio, the transition mechanism to the unsteady deformed-flapping mode, the regimes
of flapping dynamics, the wake topology and the net energy transfer.

2. Problem statement

We consider a two-dimensional thin flexible foil Ω s interacting with an incom-
pressible uniform axial flow Ω f (t). As shown in figure 1, the trailing edge (TE) of
the flexible foil is clamped and the leading edge (LE) is free to perform flapping
motion. Here, L and h represent the length and thickness of the foil respectively,
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FIGURE 1. Schematic of an inverted flexible foil of length L and thickness h in uniform
axial flow U0 with the leading edge (LE) free to oscillate and the trailing edge (TE)
clamped.

U0 is the magnitude of the uniform axial flow exciting the flapping instability, ρ f and
ρs are the densities of the fluid and structure, µf denotes the fluid dynamic viscosity,
α represents the leading edge angle of attack, E is Young’s modulus and ν is the
Poisson’s ratio of the foil.

The Navier–Stokes equations governing an incompressible flow in an arbitrary
Lagrangian–Eulerian reference frame are

ρ f ∂uf

∂t
+ ρ f

(
uf −w

)
· ∇uf =∇ · σ f + f f in Ω f (t), (2.1)

∇ · uf = 0 in Ω f (t), (2.2)

where uf = uf (x, t) and w=w(x, t) represent the fluid and mesh velocities defined for
each spatial point x∈Ω f (t) respectively, f f is the body force applied on the fluid and
σ f is the Cauchy stress tensor for a Newtonian fluid, written as

σ f =−pI + T , T = 2µf ε f (uf ), ε f (uf )= 1
2 [∇uf + (∇uf )T], (2.3a,b)

where p is the fluid pressure, I denotes the second-order identity tensor and T
represents the fluid viscous stress tensor. The deformation of the flexible foil is
governed by the structural equation

ρs ∂us

∂t
=∇ · σ s + f s in Ω s, (2.4)

where us = us(z, t) is the structural velocity defined for each material point z ∈ Ω s,
f s represents the external forces applied on the solid and σ s denotes the first Piola–
Kirchhoff stress tensor. In this study, the structural stress tensor is modelled using the
Saint Venant–Kirchhoff model (Antman 1995). The coupled system required to satisfy
the velocity and traction continuity conditions along the fluid–structure interface is as
follows: ∫

ϕs(γ ,t)
σ f (ϕs(z, t), t) · nf dΓ +

∫
γ

σ s(z, t) · ns dΓ = 0 ∀γ ⊂ Γ0, (2.5)

uf (ϕs(z, t), t)= us(z, t) ∀z ∈ Γ0, (2.6)

5



where nf and ns are respectively the outward normals to the deformed fluid and the
undeformed solid interface boundaries, Γ0 denotes the fluid–structure interface Γ (t) at
time t= 0 and ϕs is the displacement function that maps each Lagrangian point z∈Ω s

to its deformed position at time t. Here, γ is any part of interface Γ0 and ϕs(γ , t)
represents the corresponding fluid part over the interface Γ (t) at time t.

3. Coupled fluid–structure formulation

We employ a high-order variational method stable for very low mass ratios based
on the CFEI formulation. In Liu et al. (2014), we have proved the numerical stability
of the formulation for low structure-to-fluid mass ratio through energy estimates
and demonstrated the ability of the scheme to simulate flapping dynamics. In this
formulation, the solid positions and arbitrary Lagrangian–Eulerian mesh velocities are
decoupled from the remaining variables (i.e. fluid velocity, pressure and structural
velocity) and are handled explicitly. Consequently, the CFEI formulation only requires
a linear system of equations to be solved for each time step. This step significantly
decreases the size of the matrix that needs to be solved at each time step.

The weak form of the Navier–Stokes equations (2.1) and (2.2) can be written as∫
Ω f (t)

ρ f (∂tuf + (uf −w) · ∇uf ) · φf dΩ +
∫
Ω f (t)

σ f
: ∇φf dΩ

=
∫
Ω f (t)

f f
· φf dΩ +

∫
Γ

f
n (t)

Tf
· φf dΓ +

∫
Γ (t)
(σ f (x, t) · nf ) · φf (x) dΓ , (3.1)∫

Ω f (t)
q∇ · uf dΩ = 0. (3.2)

Here, ∂t denotes the partial time derivative operator ∂(·)/∂t, φf ∈ H1(Ω f (t)) and q ∈
L2(Ω f (t)) are the smooth test functions in the Sobolev space for the fluid velocity
and pressure respectively, Γ f

n (t) represents the fluid Neumann boundary along which
σ f (x, t) · nf = Tf . The weak form of the structural dynamics equation (2.4) can be
written as ∫

Ωs
ρs∂tus

· φs dΩ +
∫
Ωs
σ s
: ∇φs dΩ

=
∫
Ωs

f s
· φs dΩ +

∫
Γ s

n

Ts
· φf dΓ +

∫
Γ0

(σ s(z, t) · ns) · φs(z) dΓ , (3.3)

where φs ∈H1(Ω s) denotes a smooth test function for the structural velocity. Similarly
to the fluid domain, Γ s

n represents the solid Neumann boundary and σ s(z, t) · ns = Ts.
The weak form of the traction continuity condition along the fluid–structure interface
(2.5) is given by∫

Γ (t)
(σ f (x, t) · nf ) · φf (x) dΓ +

∫
Γ0

(σ s(z, t) · ns) · φs(z) dΓ = 0. (3.4)

In the above equation, one may observe that uf and us are defined on different
domains Ω f (t) and Ω s respectively, and the condition

φf (ϕs(z, t))= φs(z) ∀z ∈ Γ0, (3.5)
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can be realized by considering a conforming mesh along the interface Γ0 with ϕs(z, t)
being the position vector of the deformed solid. We next enforce the weak form of
the traction continuity condition in (3.4) to combine (3.1)–(3.3) to construct the
weak form of the coupled fluid–structure. For the weak form (Temam 2001) of
the coupled fluid–structure formulation, let us introduce the finite-dimensional trial
solution function space S along with the corresponding test function space V . The
weak form of the formulation can be written as follows: find (uf , p, us) ∈ S such
that ∀(φf , q, φs) ∈ V∫

Ω f (t)
ρ f (∂tuf (x, t)+ (uf −w) · ∇uf ) · φf (x) dΩ +

∫
Ω f (t)

σ f
: ∇φf dΩ

−
∫
Ω f (t)

q∇ · uf dΩ +
∫
Ωs
ρs∂tus

· φs dΩ +
∫
Ωs
σ s
: ∇φs dΩ

=
∫
Ω f (t)

f f
· φf dΩ +

∫
Γ

f
n (t)

Tf
n · φ

f dΓ +
∫
Ωs

f s
· φs dΩ +

∫
Γ s

n

Ts
· φs dΓ , (3.6)

and the velocity continuity condition is enforced in the function space (Liu et al.
2014). As mentioned earlier, the main feature of the CFEI scheme is to explicitly
determine the solid positions and the ALE-mesh displacements at the start of each
time step. This feature enables us to decouple the ALE-mesh field from the remaining
fluid–structure variables (uf , p and us). The solid position, ϕs,n, for the nth time step
can be determined using the second-order Adam–Bashforth method,

ϕs,n = ϕs,n−1 + 31t
2

us,n−1 − 1t
2

us,n−2. (3.7)

The ALE-mesh nodes on the fluid domain Ω f (t) can be updated using a steady
pseudo-elastic material model (Stein, Tezduyar & Benney 2003) given by

∇ · σm = 0, (3.8)

where σm is the stress experienced by the ALE mesh due to the strain induced by
the interface deformation. Assuming that the ALE mesh behaves as a linearly elastic
material, the stress experienced can be written as

σm = (1+ τm)[(∇ηf + (∇ηf )T)+ (∇ · ηf )I], (3.9)

where ηf denotes the ALE-mesh nodal displacement satisfying the boundary
conditions

ηf =
{
ϕ(z, t)− z ∀z ∈ Γ0,

0 on Γ f (t)\Γ (t). (3.10)

Here, Γ f (t) is the fluid domain boundary and Γ f (t)\Γ (t) denotes the non-interface
fluid boundary; τm is a mesh stiffness variable chosen as a function of the element
size to limit the distortion of the small elements located in the immediate vicinity
of the fluid–structure interface. The mesh stiffness variable τm has been defined as
τm = (maxi |Ti| −mini |Ti|)/|Tj|, where Tj represents the jth element on the mesh T .

The weak variational form in (3.6) is discretized in space using Pn/Pn−1/Pn
isoparametric finite elements for the fluid velocity, pressure and solid velocity
respectively. In this paper, we consider the stable P2/P1/P2 isoparametric finite-
element meshes, which satisfy the inf–sup condition for well-posedness.
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FIGURE 2. Conventional flexible foil system: (a) schematic and computational domain
with details of boundary conditions; (b,c) unstructured high-order P2/P1 finite-element
mesh corresponding to the flow domain with a single flexible foil in its undeformed
configuration.

4. Numerical verification and convergence study
4.1. Numerical verification

To verify the coupled solver, we simulate a conventional flexible foil flapping in a
uniform axial flow and compare our findings with the theoretical model and DNS
results (Connell & Yue 2007). The flapping dynamics of the conventional foil is
strongly influenced by three critical non-dimensional parameters, namely m∗, Re and
KB (Shelley et al. 2005; Connell & Yue 2007), which are defined as

m∗ = ρ
sh
ρ f L

, KB = B
ρ f U2

0L3
, Re= ρ

f U0L
µf

. (4.1a−c)

Here, B represents the flexural rigidity defined as B = Eh3/12(1 − ν2). The reduced
velocity Ur =√m∗/KB can also be used to quantify the dynamic effects of flapping.

We consider a two-dimensional computational domain of size [22L×10L], as shown
in figure 2(a). In this computational domain, a flexible foil of length L and thickness
h is placed along the x-axis with its leading edge clamped and centred at (0, 0).
In figure 2(a), Γ f

in and Γ
f

out represent the inlet and outlet boundaries respectively. A
uniform velocity U0 has been considered at Γ f

in and a traction-free boundary condition
has been implemented along the outlet. Here, Γ f

top and Γ
f

bottom denote the sides of
the computational domain and the slip-wall condition has been implemented along
these boundaries; Hu and Hl denote the spacings between the centreline of the foil
and the domain boundaries Γ f

top and Γ f
bottom respectively. For this study, we consider a

symmetric computational domain about the foil centreline i.e. Hu =Hl = 5L.
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Mesh M1 M2
Nodes 31 657 61 154
Elements 15 699 30 368
δmax/L 1.212× 10−1(0.14 %) 1.213× 10−1

δmin/L −1.235× 10−1(0.87 %) −1.225× 10−1

δrms/L 8.403× 10−2(0.73 %) 8.465× 10−2

TABLE 1. Mesh convergence study of conventional foil: comparison of non-dimensional
tip-displacement statistics over tU0/L ∈ [15, 20] for meshes M1 and M2 at m∗ = 0.1, Re=
1000 and KB = 0.0001. A constant time-step size 1t= 0.001 is employed.

To select a suitable mesh for the simulation of the conventional foil, a mesh
convergence study is performed for two different meshes M1 and M2 consisting of
15 699 and 30 368 P2/P1 high-order triangular elements. The critical non-dimensional
parameters considered for this study are m∗ = 0.1, KB = 0.0001 and Re = 1000. A
constant time-step size of 1t = 0.001 is employed with a characteristic time scale
of L/U0. Figures 2(b) and 2(c) show a typical high-order undeformed fluid mesh
and a closeup view of the boundary layer mesh around the flexible foil respectively.
Table 1 summarizes the trailing edge tip-displacement statistics for the meshes M1
and M2. The values within the brackets represent the percentage difference in the
numerical solutions with respect to the mesh M2. The maximum difference between
the numerical solutions calculated for the meshes M1 and M2 is less than 1 %.
Therefore, the mesh M1 will be used in the numerical verification study.

First, we verify the ability of the coupled fluid–structure solver to predict the
transition boundary from a stable mode to a flapping mode for a conventional flexible
foil. An expression for the critical KB below which an infinitely wide conventional
flexible foil loses its stability can be written as

(KB)cr = a− bRe−1/2, (4.2)

where a = 2m∗/(m∗k3
x + 2k2

x) and b = CT(2 + m∗kx)/(m∗k3
x + 2k2

x). Here, CT denotes
the non-dimensional viscous tension coefficient which can be approximated to 1.328
with the aid of the laminar boundary layer theory (Connell & Yue 2007). The above
expression can be obtained by solving the quadratic dispersion relation

D= (m∗ + 2/kx)ω
2 − 4ω−CTRe−1/2k2

x + 2kx −KBk4
x (4.3)

given by Connell & Yue (2007) for Im(ω) < 0. For low m∗, Connell & Yue (2007)
and Shelley et al. (2005) have shown that a conventional flexible foil loses its stability
when the fundamental mode kx= 2π becomes unstable. As part of this verification, we
compare the critical KB observed from our DNS results with the analytical solutions
of (4.2) for a range of KB and Re at a fixed m∗= 0.1. Figure 3 summarizes our DNS
results for Re = 500, 1000 and 2000 in a stability phase diagram of a conventional
foil. In this figure, the curve (——) represents the neutral curve between the stable
and fundamental flapping modes, which is given by (4.2) for kx = 2π and m∗ = 0.1.
The curve (- - -) represents the transition between the fundamental mode kx= 2π and
the higher mode kx = 3π given by (4.2) for m∗ = 0.1. The stability phase diagram
shows good agreement between our DNS and the analytical solution for Re 6 1000.
To prove the existence of the fundamental mode kx = 2π and the transition from the
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FIGURE 3. Stability phase diagram of a conventional foil at m∗= 0.1 showing the critical
neutral curve for kx = 2π (——) and kx = 3π (- - -) given by (4.2). Here, + and
∗ represent the direct numerical simulation results corresponding to flapping and stable
modes respectively.
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FIGURE 4. Full-body profiles of conventional flexible foil performing flapping motion at
Re= 1000, m∗ = 0.1 for KB = (a) 3.27× 10−4, (b) 1.8× 10−4.

fundamental mode kx= 2π to the higher mode kx= 3π, we plot the full-body profiles
of the flexible foil when the trailing edge is at its extrema and when it is crossing
the mean position in figure 4 for KB = 3.27× 10−4 and 1.8× 10−4. From figure 4(a)
at KB= 3.27× 10−4, it can be inferred that the flapping modes range between kx= 2π

and 5π/2. Since kx = 2π represents the least stable mode of kx ∈ [2π, 5π/2], the use
of kx= 2π seems to be appropriate. For KB= 1.8× 10−4, as shown in figure 4(b), the
flexible foil exhibits flapping modes in the range kx ∈ [3π, 7π/2], and the explanation
given for kx = 2π can be extended to kx = 3π.

Next, we assess the accuracy of the coupled solver in simulating the flapping
dynamics of a conventional foil for m∗ = 0.075, Re = 1000 and KB = 0.0001. In
table 2, the key flapping properties for these cases are compared with the DNS
results of Connell & Yue (2007) for identical non-dimensional simulation parameters.
The values in the brackets indicate the percentage difference between the reference
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Mass ratio m∗ 0.075 0.1
Reference Present Reference Present

Amplitude A/L 0.1924 0.1950 (1.35 %) 0.2540 0.2440 (3.94 %)
Frequency fL/U0 0.9321 0.9524 (2.18 %) 0.9152 0.9495 (3.75 %)

TABLE 2. Numerical comparison against reference results of Connell & Yue (2007) at
Re= 1000 and KB = 0.0001.

solution (Connell & Yue 2007) and the current study. Despite different underlying
structural formulations, fluid–structure coupling techniques and discretization methods,
it can be observed that there is reasonable agreement among the flapping properties
for both the mass ratios.

4.2. Mesh convergence of inverted foil
To examine the instability and post-critical nonlinear dynamics of an inverted flexible
foil, we consider two computational domain configurations. The first computational
domain will be used to study the initial development of instability in the inverted
flexible foil. This computational domain is symmetrical about the foil centreline and
is similar to the one presented earlier for the conventional foil, except that the trailing
edge of the foil is clamped and the leading edge is free to oscillate. The converged
finite-element mesh M1 defined for the conventional foil will be employed to simulate
the evolution of flapping instability.

Figure 5(a) shows a typical schematic of the second computational domain, which
will be used to simulate the post-critical flapping dynamics of the inverted foil. In
contrast to the first computational domain, this domain is asymmetrical about the
foil centreline i.e. Hu 6= Hl. The size of the computational domain is [24L × 10L],
with Hu = 5.25L and Hl = 4.75L. The inverted flexible foil is neutrally stable in its
undeformed state and it can bend on either side of its centreline. In order to have a
numerically repeatable solution, we have considered a non-symmetrical computational
domain. To study the influence of domain size for KB= 0.2, Re= 1000 and m∗= 0.1,
two different domain widths, 10L and 40L, have been selected for assessment of the
flapping response dynamics. The difference in the maximum tip displacement δmax
has been found to be less than 1 %. The maximum blockage ratio, which is defined
as δmax/(Hu +Hl), has been observed to be approximately 8.5 % and 2.125 % for the
two domains respectively.

We next perform a detailed mesh convergence study for the asymmetrical
computational domain using meshes M1, M2 and M3 consisting of 11 643, 23 197 and
46 104 P2/P1 triangular elements. A typical undeformed high-order finite-element fluid
mesh M3 and the corresponding central block consisting of the boundary layer mesh
can be seen in figure 5(b). Figure 5(c) shows a closeup view of the deformed mesh
around the flexible foil for three time instants. For the purpose of mesh convergence
study, we consider a flexible foil with m∗ = 0.1 and KB = 10−4 interacting with fluid
flow at U0= 1 corresponding to Re= 1000. A constant time-step size 1t= 0.001 has
been employed. Table 3 summarizes the results of the mesh independence test for
the inverted foil. The values within the brackets indicate the percentage difference
in the numerical solutions with respect to the mesh M3. The r.m.s. value of the

cross-stream tip displacement is calculated using δrms/L=
√
(1/n)

∑
t=15→25(δ

∗ − δ̄∗)2,
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FIGURE 5. Inverted foil system: (a) representative schematic of the inverted foil
computational set-up cantilevered at the trailing edge in a uniform axial flow; (b,c) typical
representation of the high-order isoparametric finite-element mesh M3, for the complete
fluid domain (b) and closeup view of the central block and boundary layer mesh at the
interface (c); (d–f ) closeup view of the deformed mesh around the foil for tU0/L=7.3, 12
and 17.

where δ∗ is the non-dimensional tip displacement defined as δ/L and δ̄∗ denotes
the non-dimensional mean tip displacement. A similar definition has been used to
calculate Crms

l . Therefore, the mesh M2 will be employed to simulate the post-critical
flapping dynamics of the inverted flexible foil.

5. Flapping dynamics of inverted foil
5.1. Development of flapping instability

After establishing the validity of the numerical simulations, we present an underlying
physical mechanism of the flapping instability for an inverted flexible foil. The
symmetrical computational domain with Hu = Hl = 5L has been considered for
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FIGURE 6. Time history of the leading edge cross-stream tip displacements for small
changes in the non-dimensional bending rigidity KB at fixed m∗ = 0.1 and Re= 1000.

Mesh M1 M2 M3

Nodes 23 505 46 709 92 646
Elements 11 643 23 197 46 104
δrms

y 2.086× 10−1(7.09 %) 1.950× 10−1(0.11 %) 1.948× 10−1

δ̄y/L 2.771× 10−1(8.58 %) 2.563× 10−1(0.43 %) 2.552× 10−1

δrms
x 6.173× 10−1(0.98 %) 6.118× 10−1(0.08 %) 6.113× 10−1

δ̄x/L 11.93× 10−1(0.27 %) 11.98× 10−1(0.19 %) 11.96× 10−1

Crms
l 2.472× 10−1(1.19 %) 2.469× 10−1(1.04 %) 2.660× 10−1

C̄l −3.23× 10−1(1.40 %) −3.32× 10−1(1.39 %) −3.28× 10−1

TABLE 3. Inverted foil mesh convergence study: comparison of leading edge tip
displacement and lift statics over tU0/L ∈ [20, 30] for the meshes M1, M2 and M3 at
m∗ = 0.1, Re= 1000 and KB = 0.01.

this study. We first examine the evolution of the flapping instability as a function of
KB for a fixed m∗ = 0.1 and Re= 1000 by gradually decreasing KB from 0.8 to 0.2.
Figure 6 shows the time history of the cross-stream leading edge displacements for
KB = 0.56, 0.55, 0.5475, 0.545 and 0.5425. From this figure, we can identify three
distinct stability regimes: (i) fixed-point stable, (ii) deformed steady state and (iii)
unsteady flapping regime. In the first regime, for KB > 0.56, the flexible foil remains
steady in its initial configuration with negligibly small leading edge cross-stream
displacements. In the second regime, for 0.56<KB < 0.5425, the flexible foil deforms
slowly to achieve a steady state. This steady state deformation increases with a
decrease in KB. In the unsteady flapping regime, for KB 6 0.5425, the flexible foil
loses its stability, to perform regular sinusoidal oscillations with a constant frequency
and amplitude.
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FIGURE 7. (a) Variation of Cl as function of the leading edge angle of attack α at a fixed
Re= 400 and m∗ = 0.1 corresponding to the deformed steady state regime; (b) effect of
Re on ∂Cl/∂α, where the curve (——) represents the empirical relation aRe2 + bRe+ c.

5.1.1. Static divergence
The transition from the fixed-point stable to the deformed steady state regime

can possibly be attributed to the static-divergence instability (Bisplinghoff, Ashley &
Halfman 1957; Fung 1969). We consider a simplified model of the static divergence
by introducing a small normal impulsive force P at the leading edge. As a result
of this impulsive force, the flexible foil deforms with a leading edge cross-stream
displacement δy and an angle of attack α. The inverted flexible foil will experience the
static-divergence instability when the aerodynamic moment acting on it exceeds the
elastic restoration moment (Fung 1969). The aerodynamic moment can be evaluated
by the lift force acting at the aerodynamic centre of the inverted flexible foil. The
elastic restoration moment of the inverted flexible foil can be idealized as a spring
connected at the leading edge. Therefore, the condition for the static divergence will
be

kδyL< 1
2ρ

f U2
0Cl(α, Re)Lxac, (5.1)

where k is the spring constant of an elastically mounted foil, Cl is the lift coefficient
expressed as function of Re and α, and xac denotes the distance between the
aerodynamic centre and the trailing edge.

From the DNS results corresponding to the deformed steady state regime, we
construct an empirical formulation for Cl as a function of Re and α. Figure 7(a)
shows the relationship between Cl and α obtained from the DNS simulations for a
typical Re = 400. From this figure, it can be noticed that Cl is directly proportional
to α and can be represented as

Cl(Re, α)= ∂Cl

∂α
(Re)α, (5.2)

where (∂Cl/∂α)(Re) denotes the slope of the curve in figure 7(a). Figure 7(b) shows
the variation of ∂Cl/∂α for a range of Re, and the curve (——) represents the best-fit
curve given by the equation

∂Cl

∂α
(Re)= aRe2 + bRe+ c, (5.3)
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FIGURE 8. Stability phase diagram: non-dimensional bending rigidity KB versus Reynolds
number Re for the inverted flexible foil at m∗ = 0.1 (a) and a closeup view of the
phase diagram for KB ∈ [0.4, 0.6] (b). The curves (——) and (- - -) represent the critical
non-dimensional bending rigidity for static-divergence and flapping instability given by
(5.6) and (5.7) respectively; E, ∗ and + denote the simulation results corresponding to
the unstable flapping, steady deformed and fixed-point stable regimes.

where a=−5.524× 10−7, b= 1.139× 10−3 and c= 2.492. Therefore, (5.1) will be

kδyL< 1
2ρ

f U2
0(aRe2 + bRe+ c)αLxac. (5.4)

On substituting xac= 3/4L, k= 3EI/L3, δy=PL3/(3EI) and α=PL2/(2EI) (Crandall,
Dahl & Lardner 1995) in (5.4) and simplifying we obtain

EI
ρ f U2

0L3
<

3
16
(aRe2 + bRe+ c). (5.5)

The expression on the left-hand side represents KB from (4.1), and the critical KB for
transition from the fixed-point stable to the deformed steady state regime will be

(KB)st = 3
16(aRe2 + bRe+ c). (5.6)

5.1.2. Stability regimes
Figure 8 summarizes the stability regimes of an inverted flexible foil for a range of

Reynolds numbers. In this figure, the curve (——) depicts (KB)st from (5.6) and the
curve (- - -) represents the transition from the deformed steady state to the unsteady
flapping regime given by the empirical relation

(KB)f = a′Re2 + b′Re+ c, (5.7)

constructed based on the DNS results for a fixed m∗ = 0.1, where a′ = −1.39 ×
10−7, b′=2.66×10−4 and c′=0.41. From figure 8, we show that the static-divergence
instability given by (5.6) is in good agreement with the DNS results and it
characterizes the transition from the fixed-point stable to the deformed steady state
regime.

As we decrease KB from 0.5450 to 0.5425 for Re=1000 and m∗=0.1, the transition
from the deformed steady state to the unsteady flapping regime is characterized by
a leading edge separation which appears just before the foil attains its maximum
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FIGURE 9. (Colour online) Instantaneous streamline contours at the leading edge
corresponding to the maximum leading edge displacement for KB = (a) 0.545 and (b)
0.5425; m∗ = 0.1 and Re= 1000.

deformation. This flow separation eventually reattaches around the half-location of
the foil. Figure 9(b) shows the flow separation and reattachment along the foil
for KB = 0.5425 at tU0/L = 254, corresponding to the maximum transverse tip
displacement. However, for KB = 0.545 the flow is observed to be fully attached
without any flow reversal, which can be seen in figure 9(a). A flow separation at
the leading edge results in a low-pressure region which increases the lift. Once the
elastic restoring force becomes greater than the fluid force, the recoiling ability of
the flexible foil results in suppression of the leading edge flow separation. At the
instant when the flow is fully attached, the flexible foil once again experiences a
static-divergence instability. Notably, there is still no detachment and convection of
the leading edge vortex at KB= 0.5425. However, on further decreasing the KB value
a distinct leading edge vortex (LEV) develops and convects downstream. A discussion
on the formation of the LEV is presented later in § 5.5.

Furthermore, figure 10 summarizes the stability response regime map as a function
of m∗ for a fixed Re= 1000. Interestingly, we observe that the effect of m∗ on both
(KB)st and (KB)f is relatively small for m∗ ∈ [0.1, 8]. It is observed that (KB)st ≈ 0.56
and (KB)f ≈ 0.545 for Re= 1000 and m∗ ∈ [0.1, 8]. We will further discuss the effects
of mass ratio in § 5.3.

5.1.3. Conventional foil versus inverted foil
To understand why a conventional foil configuration does not experience a static

divergence, we perform two sets of simulations on a fixed rigid flat plate at Re= 1000.
In the first case, we rotate the rigid plate about the trailing edge to provide a small
angle of attack, 5◦ at the leading edge. For the second case, a small angle of attack,
−5◦, is provided at the leading edge by rotating about the leading edge. A symmetrical
computational domain with Hu=Hl=5L has been used for this study. Figure 11 shows
the pressure distribution around the rigid plate for the two angle of attack cases. The
first case with the positive angle of attack typically represents an inverted rigid plate
experiencing a static divergence, whereas the second case represents a conventional
rigid plate in a static divergence. For the first case, figure 11(a) shows that the lower
surface is at a higher pressure than the upper surface. Hence, the aerodynamic lift
acts in the direction of rotation and the rigid plate can undergo a static-divergence
instability when the lift force crosses the critical restoring bending force (Fung 1969).
On the contrary, from figure 11(b) for the negative angle of attack, it can be observed
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FIGURE 11. (Colour online) Fluid pressure contours around a fixed rigid plate with (a)
positive and (b) negative angle of attack for Re=1000. The dashed lines represent negative
pressure contours.

that the nett aerodynamic lift acts in the direction opposite to the angle of rotation and
has a stabilizing effect. Therefore, a cantilever beam clamped at the leading edge is
less prone to a static-divergence instability.

5.2. Effects of bending rigidity
Here, we present the flapping response results for an inverted flexible foil as a function
of the non-dimensional bending rigidity KB ∈ [10−3, 0.56]. We consider the asymmetric
computational domain for this part of the study. The fluid and the structure parameters
are h= 0.01L, m∗ = 0.1 and Re= 1000. From figure 3, it can be seen that the range
of KB values selected for this study typically falls in the fixed-point regime for the
conventional flexible foil.

Three distinct unsteady flapping response regimes have been identified for Re=1000
and m∗ = 0.1: (i) inverted limit-cycle oscillations for 0.545> KB > 0.2, (ii) deformed
flapping for 0.075 < KB 6 0.1 and (iii) flipped flapping for KB 6 0.075. The
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FIGURE 12. Full-body responses of an inverted flexible foil, plotted at 1tU0/L= 0.1 at
Re= 1000 for m∗ = 0.1 and KB = (a) 0.56, (b) 0.5425, (c) 0.4, (d) 0.2, (e) 0.1, (f ) 0.05,
(g) 0.01, (h) 0.005 and (i) 0.001.

above flapping response regimes have been classified based on the tip-displacement
responses and the full-body profiles. Similar response regimes have been observed
experimentally by Kim et al. (2013) for mass ratios of O(1) and O(10−3). In figure 12,
we present the full-body profile results for KB ∈ [10−3, 0.56]. Figure 12(a) shows
the fixed-point stable foil profile in its undeformed state for KB = 0.56. For
KB ∈ [0.5425, 0.2], the flexible foil experiences the onset of flapping instability
which develops into large-amplitude periodic oscillations, and this regime is defined
as the inverted limit-cycle oscillations (LCO). Figure 12(b–d) shows typical full-body
profiles for KB = 0.5425, 0.4 and 0.2 over one oscillation cycle. During the initial
stages of the inverted-LCO regime for KB ∈ [0.50, 5425] the flexible foil does not
perform flapping about the mean position, as shown in figure 12(b). However, for
KB ∈ [0.5, 0.2] the flexible foil performs flapping about its mean position. Moreover,
from these figures, it can be observed that the inverted-LCO mode is predominantly
the first mode and does not exhibit the typical necking phenomenon that is observed
in a conventional foil (Huang 1995; Liu et al. 2014). By decreasing the KB value,
the flexible foil completely deforms to one direction and performs relatively small
peak-to-peak amplitude oscillations as shown in figure 12(e). Due to the small
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KB = (a) 0.001, (b) 0.01 and (c) 0.2 at Re= 1000 and m∗ = 0.1.

peak-to-peak amplitudes, this regime has been described as a deformed mode by
Kim et al. (2013). Since the peak-to-peak amplitudes for this regime are of the same
order as the amplitudes for a conventional foil flapping, we describe this regime as
the deformed-flapping regime. By further decreasing the KB value, due to the low
flexibility, part of the foil curves around the fixed edge to form a semicircular arc
and the remaining part of the foil becomes parallel to the free stream velocity, as
shown in figure 12(i). Figure 12(f –i) shows the full-body profiles for the inverted
flexible foil for a range of KB < 0.1. The full-body profile shown in figure 12(i)
closely resembles the full-body profile of the conventional foil shown in figure 13(a)
for KB= 3.27× 10−4, Re= 1000 and m∗= 0.1. Additionally, the necking phenomenon
that is generally observed in the case of a conventional foil flapping has been observed
in this regime. The maximum Reynolds numbers with respect to the semicircular arc
diameter, Reδ, is approximately 380 for KB = 0.05, which signifies that our current
two-dimensional simulations might not be able to capture the three-dimensional flow
structures.

To further compare the flapping phenomenon in the flipped-flapping regime to
the conventional foil, we plot the phase relation between the streamwise and the
cross-stream tip displacements, as shown in figure 14. The phase plot for the
flipped-flapping regime at KB = 10−3 forms an eight-shaped figure (figure 14a),
which is similar to the phase relationship shown in figure 13(b) for the conventional
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foil with KB = 3.27× 10−4, Re= 1000 and m∗ = 0.1. The phase plot for the inverted
LCO presents a unique parabolic profile, i.e. the leading edge follows the same path
during the upward and downward strokes, which can be seen in figure 14(c) for
KB = 0.2. Moreover, no distinct phase plot has been observed for KB corresponding
to the flipped-flapping regime, as shown in figure 14(a,b) for KB = 0.01 and 0.001
respectively.

Figure 15 shows the time history of streamwise (- - -) and cross-stream (——)
displacements along with the cross-stream amplitude–frequency spectrum. In this
figure,q, represents the time instants for which vorticity contours will be presented
in § 5.6. The leading edge tip displacements for the inverted-LCO regime exhibit a
sudden rise when KB is decreased from 0.545 to 0.4, as shown in figure 15(a,b).
Figure 15(c) shows the leading edge tip-displacement history for the deformed-
flapping regime at KB = 0.1. In this regime, the leading edge remains steady
for a significant time period, which is followed by non-periodic oscillations with
relatively small peak-to-peak amplitudes ranging between 0.2 and 0.4. Figure 15(d–g)
shows the tip-displacement response history of the flipped-flapping regime. The
flapping amplitudes for this regime are significantly smaller than those observed
in the inverted-LCO regime and are approximately equal to those observed in
the conventional foil. However, the flapping frequencies are smaller than those
observed in the conventional foil flapping. The transition from the deformed-flapping
to the flipped-flapping regime is predominantly characterized by two frequency
oscillations, as shown in figure 15(d). The first low harmonic corresponds to the
flapping frequency and the second frequency may be attributed to an additional
higher-harmonic frequency of shear layer roll-up over the semicircular configuration.
According to Strouhal’s law, it may be estimated as fH = St(U0/Dfoil), where Dfoil
is the effective diameter of the semicircular body and St is the Strouhal number.
The higher harmonics 0.6838 and 1.025 appearing in figure 15(d,e) approximately
coincide with the Strouhal frequencies corresponding to the vortex shedding of the
semicircular body. In addition, we also observe a complex vortex–foil interaction
and a reversed flow inside the deformed cavity-like region. A detailed investigation
of these phenomena is beyond the scope of this study. The wake topology will be
further illustrated in § 5.6 with the aid of the vorticity evolution in a flapping period.
The high-harmonic frequency gets further damped as KB is lowered from 0.01 to
0.001, and the flapping response for KB = 0.001 exhibits a single distinct frequency
(figure 15h). Figure 16 summarizes the effect of KB on the maximum leading edge
cross-stream tip displacement. For large KB values, the flexible foil remains stable.
A sharp rise in the maximum tip displacement can be observed for KB ∈ [0.3, 0.5].
The maximum flapping amplitudes stabilize to an approximate value of 0.85, which
is similar to the experimental observation made by Kim et al. (2013).

5.3. Effects of mass ratio
To analyse the effects of mass ratio on the inverted flexible foil, we perform a series
of numerical simulations for m∗ ∈ [0.1, 10]. We first examine the effects of m∗ on
the inverted-LCO regime for a fixed KB = 0.4 and Re = 1000. Figure 17(a) shows
the leading edge cross-stream tip-displacement history for m∗ = 0.5 and 8. From this
figure, it can be seen that the flapping frequency is strongly influenced by the increase
in m∗, while the cross-stream flapping amplitudes are weakly affected. It may be
noted that with increase in m∗, the unsteady flapping instability takes a greater time
to develop due to the inertial effects. Figure 17(b,c) summarizes the effect of m∗ on
the flapping amplitudes and frequencies.
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FIGURE 15. Time history of the cross-stream (——) and streamwise (- - -) leading
edge tip displacement (a,c,e,g,i,k,m) and amplitude–frequency spectrum of the cross-stream
leading edge tip displacement (b,d,f,h,j,l,n) for KB= (a,b) 0.5425, (c,d) 0.4, (e,f ) 0.1, (g,h)
0.05, (i,j) 0.01, (k,l) 0.005 and (m,n) 0.001 at Re= 1000 and m∗= 0.1. Here,q represents
the time instants for which vorticity contours will be presented in § 5.6.
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FIGURE 16. Maximum cross-stream displacement of the inverted foil leading edge centre
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FIGURE 17. Effect of the mass ratio m∗ on (a) the cross-stream leading edge tip
displacements for m∗ = 0.5 (——) and 8 (- - -), (b) the maximum cross-stream leading
edge tip displacements and (c) the frequency, at a fixed KB = 0.4 and Re= 10 000.

To understand the effects of m∗ on the flipped-flapping regime, we consider KB =
0.01 and Re= 1000 for m∗ ∈ [0.1, 2]. Figure 18 shows the leading edge cross-stream
displacement histories for m∗ = 0.1, 0.5, 1 and 2. From figure 18(a,b), we observe
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0.1, (b) 0.5, (c) 1 and (d) 2, at a fixed KB = 0.01 and Re= 1000.
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FIGURE 19. Time history of the leading edge cross-stream displacements for m∗ = (a)
0.1 and (b) 0.5 at a fixed KB = 0.1 and Re= 1000.

regular periodic oscillations for m∗ = 0.1 and 0.5, which transform into non-periodic
oscillations by increasing m∗ to 1. These non-periodic oscillations are characterized by
variable amplitudes and frequencies. Figure 18(c,d) shows the non-periodic oscillations
for m∗ = 1 and 2. A similar observation of transition from regular periodic to non-
periodic oscillations with increase in m∗ was made by Connell & Yue (2007) for
conventional foils.

The mass ratio m∗ can also affect the transition from the inverted-LCO to
the deformed-flapping regime. Figure 19 shows the leading edge cross-stream
displacements for m∗ = 0.1 and 0.5 for a fixed KB = 0.1. With an increase in m∗
from 0.1 to 0.5, a delay in the transition from the inverted LCO to the deformed
flapping can be seen in figure 19.
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FIGURE 20. (a) A typical schematic of the inverted flexible foil in the curvilinear
coordinate system with s = 0 and L at the trailing and leading edges; (b) a comparison
between the simulated (- - -) foil profiles over one complete flapping cycle and the
quasistatic equilibrium predicted (——) foil profile for KB= 0.1, Re= 1000 and m∗= 0.1.

5.4. Transition to deformed-flapping regime
In the deformed-flapping regime, an inverted flexible foil deforms completely to one
side and performs a flapping motion about the deformed position. To understand the
transition from the inverted-LCO regime to the deformed-flapping regime, we perform
a simple quasistatic equilibrium analysis. Figure 20(a) shows a typical schematic of
an inverted flexible foil interacting with a uniform axial flow U0. We consider the
curvilinear coordinates (s, θ), with s = 0 and L at the trailing and leading edges
respectively; θ represents the local angle of incidence between the fluid flow and the
unit tangent vector t. A flexible foil in quasistatic equilibrium should satisfy moment
and force balance, which can be written in the dimensionless form as (Schouveiler,
Eloy & Gal 2005; Buchak et al. 2010)

dθ
ds
= M

KB
, Q= dM

ds
,

dQ
ds
= F+N, (5.8a−c)

where the reference scales for length, time and mass are chosen as L, L/U0 and ρ f L3.
Here, M, Q, F and N denote the internal moment, shear, inviscid and viscous fluid
forces respectively. The non-dimensional fluid loading (Schouveiler et al. 2005) can
be written as

N = 1
2(Cd sin2 θ + 4Re−1/2 sin3/2 θ), (5.9a)

F=−1.189
dθ
ds

cos2 θ, (5.9b)

where Cd denotes the drag coefficient and 1.189ρ f L represents the quasistatic fluid
mass coefficient for a two-dimensional plate per unit width (Lighthill 1960; Newman
1977). The quasistatic equilibrium foil profile can be predicted by solving (5.8) along
with the boundary conditions θ = 0 at s= 0, M= 0 and Q= 0 at s= L. Figure 20(b)
shows the predicted foil profile along with the DNS profiles for KB= 0.1, Re= 1000,
m∗ = 0.1 and Cd = 2.12. From this figure, we can see that the flexible foil performs
flapping about the quasistatic equilibrium state. Figure 21 presents superimposed
quasistatic equilibrium foil profiles as a function of KB for a fixed Re = 1000 and
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FIGURE 21. Superimposed views of the flexible foil profiles in the quasistatic equilibrium
state for KB ∈ [0.066, 0.125], Re= 1000 and Cd = 2.12.

Cd = 2.12. This demonstrates the existence of a critical KB value of 0.125 above
which the flexible foil can no longer be supported by the fluid force. The quasistatic
equilibrium between the restoring structural and fluid forces plays a role in the
transition from the inverted-LCO to the deformed-flapping regime.

5.5. Formation of a leading edge vortex
The static divergence of an inverted flexible foil explains why the inverted foil is more
prone to the flapping instability. However, this does not fully explain the cause of the
large-amplitude oscillations observed in the case of the inverted limit-cycle flapping
regime presented in § 5.2. The peak-to-peak amplitudes observed for this regime as a
function of KB, for fixed Re= 1000 and m∗= 0.1, are approximately six times greater
than the peak-to-peak amplitudes observed for the conventional foil counterpart. Since
vortex structures play a key role in determining the periodic loading on a flexible body,
we analyse the wake topology for KB = 0.4, as shown in figure 22. A leading edge
vortex (LEV) slowly develops behind the flexible foil during the upstroke. This leading
edge vortex remains attached throughout the stroke and grows continuously until the
leading edge reaches the maximum displacement prior to the stroke reversal. At the
stroke reversal, the leading edge vortex pairs up with a counter-rotating vortex from
the lower surface of the foil at the trailing edge and is shed into the wake. Meanwhile,
a rotational starting vortex (RSV) is being formed at the leading edge, as shown in
figure 22(c,d). The fact that the leading edge vortex produces a large low-pressure
region behind the flexible foil results in large-amplitude oscillations. Similar leading
edge vortices have been observed in the cases of insect flight (Wang 2000) and delta
wings (Ol & Gharib 2003). These leading edge vortices are generally attributed to the
effective aerodynamic behaviour observed in the case of insect flight.

5.6. Vortex organization
Vortex organization and formation are key to the understanding of many phenomena
in fluid–structure interactions. Earlier studies have shown that a conventional flexible
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FIGURE 22. (Colour online) Evolution of the leading edge vortex (LEV) for the inverted-
LCO regime at KB= 0.4, Re= 1000 and m∗= 0.1, with (a) tU0/L= 10, (b) tU0/L= 12.5,
(c) tU0/L= 15 and (d) tU0/L= 17.5.

foil generates a regular von Kármán vortex street with two counter-rotating vortices.
However, the flapping inverted foil exhibits a wide range of vortex patterns depending
on the non-dimensional bending rigidity KB. Earlier, Kim et al. (2013) observed that
a pair of leading edge vortices are shed per one oscillation. In our numerical study,
the number of leading edge vortex pairs can be greater than one during the flapping
oscillation, as illustrated in figures 23 and 24.

For the fixed-point stable regime i.e. for KB > 0.545, the flow field typically
represents the boundary layer flow over a flat plate. As the flow travels, a symmetric
boundary layer flow can be observed on either side of the inverted foil, off the
fixed trailing edge, to form a narrow and steady wake. This wake is very similar
to the one observed for the case of the fixed-point regime of conventional flexible
foil. By decreasing KB < 0.545, the inverted flexible foil experiences large-amplitude
oscillations with very low frequency. Figure 23 displays a sequence of plots showing
the vorticity contours in the fluid for the case of KB = 0.4 over one downstroke
cycle corresponding to time tU0/L ∈ [24.7, 29.7]. In this figure, the solid and dashed
lines represent the positively and negatively signed vortices. Figure 23(a) displays the
instantaneous vorticity contour at tU0/L= 24.7, as the foil is about to cross the line
Y/L= 0. In this figure, the leading edge vortex (B) that is shed during the previous
upstroke can be seen forming a vortex pair with the oppositely signed vortex (C) shed
from the lower surface at the trailing edge. The rotation starting vortex (D) formed
during the upstroke reversal is still attached to the foil as it crosses the centreline. In
figure 23(b), the vortex pair (B)+(C) is shed into the wake; meanwhile, the rotation
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FIGURE 23. (Colour online) Time history of a 2P+ S vortex wake over a half-cycle for
KB = 0.4, Re= 1000 and m∗ = 0.1, with (a) tU0/L= 24.7 (0), (b) tU0/L= 25.7 (T0/10),
(c) tU0/L= 26.7 (2T0/10), (d) tU0/L= 27.7 (3T0/10), (e) tU0/L= 28.7 (4T0/10) and (f )
tU0/L= 29.7 (5T0/10). The non-dimensional time period T0 = 10 for full oscillation.

starting vortex (D) travels downstream along the flexible foil. The vortex pairs
(B)+(C) rotate about each other and convect further downstream in the wake. As the
flexible foil bends downwards, the leading edge vortex (G) can be seen developing
in figure 23(c). In the meantime, the rotation starting vortex (D) is shed into the
wake from the trailing edge and draws an oppositely signed vortex (E) from the
lower surface of the flexible foil to form a vortex pair (D)+(E). In figure 23(d), the
flexible foil is at maximum displacement and the leading edge vortex (G) continues
to grow behind the flexible foil on the lower surface and is just about to be shed
into the wake. The boundary layer on the upper surface of the flexible foil consists
of a significant amount of vorticity, and this vorticity is shed into the wake as the
elongated vortex (F), as shown in figure 23(d). As the flexible foil rebounds from
the maximum displacement, the leading edge vortex (G) is shed into the wake, as
shown in figure 23(e). The approach of vortex (G) cuts the supply of vorticity to
the vortex (F) from the boundary layer. Meanwhile, a new rotation starting vortex
(H) can be seen developing behind the leading edge. The leading edge vortex (F)
draws a negatively signed vortex (I) from the upper surface of the flexible foil at the
trailing edge to form a vortex pair, similar to the vortex pair between the leading
edge vortex (B) and (C), in figure 23(f ). Figure 23(f ) at tU0/L= 29.7 corresponds to
the flexible foil crossing the line Y/L= 0 in the opposite direction, which completes
the half-flapping cycle. In addition, we can also observe that the positions of vortices
(F), (I) and (H) around the flexible foil in figure 23(f ) are similar to the positions
of the vortices (B), (C) and (D) in figure 23(a) except that all of the vortices are
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FIGURE 24. (Colour online) Time history of a 3P+ S vortex wake over a half-cycle for
KB = 0.2, Re= 1000 and m∗ = 0.1, with (a) tU0/L= 18.3 (0), (b) tU0/L= 19.4 (T0/18),
(c) tU0/L = 20.5 (2T0/18), (d) tU0/L = 21.6 (3T0/18), (e) tU0/L = 22.7 (4T0/18), (f )
tU0/L= 23.8 (5T0/18), (g) tU0/L= 24.9 (6T0/18), (h) tU0/L= 26.0 (7T0/18), (i) tU0/L=
27.1 (8T0/18) and (j) tU0/L = 28.2 (9T0/18). The non-dimensional time period, T0, for
one full oscillation is 18.6.

reversed. In summary, we therefore see that two vortex pairs (B)+(C) and (D)+(E)
and a single vortex (F) are shed into the wake, i.e. a total of five vortices are shed
in a half-cycle.

The formation of 6P + 2S wake structures observed for KB = 0.2 is shown in
figure 24 over a half flapping cycle tU0/L ∈ [18.3, 28.2]. In this figure, a leading
edge vortex (A) forming a vortex pair with an oppositely signed vortex (B) shed from
the top surface of the flexible foil and a rotation starting vortex (C) at the leading
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FIGURE 25. (Colour online) Time history of the regular von Kármán vortex street for
KB = 0.001, Re = 1000 and m∗ = 0.1 over one oscillation of the flexible foil, with (a)
tU0/L = 19.72 (0), (b) tU0/L = 20.04 (T0/5), (c) tU0/L = 20.36 (2T0/5), (d) tU0/L =
20.68 (3T0/5), (e) tU0/L= 21.00 (4T0/5) and (f ) tU0/L= 21.32 (T0). The time period of
the oscillation, T0, is 1.6.

edge are indicated. In figure 24(b), the vortex pair (A)+(B) is shed into the wake and
the rotation starting vortex (C) travels downstream along the flexible foil. Meanwhile,
a new leading edge vortex (D) can be seen developing in the background. In summary,
we observe that vortex pairs (A)+(B), (D)+(E) and (F)+(G) and a single vortex (C)
are shed into the wake, i.e. seven vortices being shed in a half-cycle. In contrast to
the experimental observations in Kim et al. (2013), in this case we observe that a
pair of leading edge vortices (D) and (H) are shed per half-cycle.

As explained earlier, in the case of the flipped-flapping regime the leading edge
of the flexible foil curves around the trailing edge and performs a flapping motion
behind the fixed trailing edge. In order to avoid any confusion, we refer to the trailing
and leading edges as the fixed and flipped edges respectively. With regard to the
wake patterns, the flipped-flapping regime is very similar to the limit-cycle regime
of a conventional flexible foil. Figure 25 shows the time history of the steady von
Kármán wake of the inverted flexible foil for the flipped-flapping regime with a single
distinct frequency at KB = 10−3. This figure shows the instantaneous vorticity at six
different points over one periodic oscillation. Figure 25(a) represents the instantaneous
vorticity at tU0/L = 19.72, corresponding to the condition when the leading edge is
at its highest position; three vortices (A)–(C) close to the flipped leading edge and in
the immediate downstream are shown. In figure 25(b), the positively signed vortex
(A) and negatively signed vortex (B) convect further downstream. Meanwhile, the
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FIGURE 26. (Colour online) Time history of a periodic wake containing four vortices
over two complete oscillations for KB = 0.05, Re= 1000 and m∗ = 0.1, with (a) tU0/L=
18.98 (0), (b) tU0/L= 19.86 (T0/5), (c) tU0/L= 20.74 (2T0/5), (d) tU0/L= 21.62 (3T0/5),
(e) tU0/L= 22.50 (4T0/5) and (f ) tU0/L= 23.38 (T0). The non-dimensional time period
for two complete oscillations, T0, is 3.4.

counter-rotating vortex (C) shed from the lower rounded surface gets reattached to
the bottom surface of the flipped flexible foil. Two counter-rotating vortices are totally
shed over one cycle.

Figure 26 illustrates the time development of the wake topology consisting of
a 2S + 2S vortex pattern for the case of the flipped-flapping regime with two
distinct frequencies at KB = 0.05. In contrast to the flipped-flapping regime with
a single frequency, the wake topology does not represent the von Kármán vortex
street. However, a periodic vortex shedding repeats after two complete cycles. The
vortex wake in figure 26(f ) corresponding to tU0/L = 23.38 is very similar to the
wake at tU0/L = 18.98, and four vortices (B)–(E) are shed over two cycles. In the
flipped-flapping regime, we observe complicated flow features, namely a rolled-up
shear layer over the semicircular configuration, vortex–foil interaction and a reversed
flow inside the deformed cavity-like region, which are not shown here in detail.

5.7. Net energy transfer

In order to analyse the ability of an inverted flexible foil to extract energy from the
surrounding fluid flow, we provide a comparison between the energy harvesting
estimates for the conventional and inverted flexible foil configurations for low
m∗ = 0.1.
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FIGURE 27. Comparison between the time evolution of (a) the bending strain energy and
(b) the work done by the fluid on the flexible foil for KB = 3.27× 10−4, Re= 1000 and
m∗=0.1. (c–f ) The full-body profiles of the conventional foil at (i)–(iv) in (a) respectively.

5.7.1. Conventional flexible foil
Figure 27 shows the evolution of the non-dimensional bending strain energy (Es)

and the net work done (Ws) on a conventional foil for KB = 3.27× 10−4, Re= 1000
and m∗ = 0.1. Here, Es and Ws are defined as

Es =
1
2

∫ l

0
EIκ2 dl

ρ f U2
0L2

and Ws =

∫ t

0

(∫
Γ

(σ f
· n) · uf dΓ

)
dt

ρ f U2
0L2

, (5.10a,b)

where

κ = |∂2f (x)/∂x2|
[1+ (∂f (x)/∂x)2]3/2 (5.11)

is the curvature of the deformed flexible foil and f (x) is a piecewise polynomial
function of sixth order that has been constructed to define the deformed foil profile
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FIGURE 28. Dependence of the non-dimensional elastic strain energy on the bending
rigidity KB in a conventional flexible foil. Here, (——) and (- - -) denote the maximum
and r.m.s. energy at Re= 1000 and m∗ = 0.1.

at each time instant. The strain energy Es of the flexible foil oscillates about a
non-zero mean with a maximum value of O(10−4). The frequency of Es oscillations
is twice the flapping frequency of the foil. The full-body flapping profiles of the foil
shown in figure 27(c–f ) correspond to the points (i)–(iv) indicated in figure 27(a).
The strain energy Es of the flexible foil attains a local minimum for the maximum
deformation of the trailing edge. In contrast, the flexible foil reaches the maximum
Es as the trailing edge is about to cross the centreline. The strain energy Es increases
from a local minimum to a local maximum due to the work done by the fluid force
on the flexible foil. The flexible foil eventually loses this attained strain energy Es

by performing work on the surrounding fluid. Interestingly, for the conventional foil
flapping, we observe that the work done by the fluid in developing the structural
strain energy is greater than the work done by the structure on the fluid. Therefore,
the work done by the fluid per oscillation is greater than zero i.e. 1Ws > 0, and the
nett work done by the fluid continuously increases with time at a constant rate, as
shown in figure 27(b). This observation reveals that a conventional foil configuration
behaves like a non-conservative system. The reason for 1Ws > 0 per oscillation cycle
can be attributed to the non-conservative (dissipative) nature of the fluid force and
the path followed by the conventional flexible foil. From figures 13 and 27(c–f ), it
can be realized that the conventional flexible foil does not follow an identical path
during its upstroke and downstroke. Since the work done by a non-conservative force
is path-dependent, the work done by the fluid is different from the work performed
by the structure.

Figure 28 summarizes the maximum and r.m.s. non-dimensional strain energies as
a function of KB ∈ [10−5, 10−3] for Re = 1000 and m∗ = 0.1. For sufficiently large
KB corresponding to the steady stable mode, the maximum and r.m.s. bending strain
energies are close to zero. However, for KB corresponding to the unsteady flapping
regime i.e. KB < 7.0 × 10−4, the maximum and r.m.s. strain energy values are of
O(10−4). The sudden drop in the strain energy for KB < 3.27× 10−4 can be attributed
to the transition from the fundamental mode kx= 2π to the higher 3π flapping mode.
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FIGURE 29. Comparison between (——) the bending strain energy (ES) and (- - -) the
work done by the fluid (Ws) over tU0/L∈ [0, 40] at KB= 0.4 and Re= 1000 for m∗= (a)
0.1 and (b) 8.

By comparing local maximum strain energies for KB ∈ [7.5 × 10−5, 3 × 10−4] and
[3× 10−4, 7× 10−4], we can conclude that lower flapping modes can extract greater
bending strain energy compared with the higher bending mode.

In order to determine the effectiveness of the flapping phenomenon in extracting
energy, we define the ratio of the maximum strain energy to the total available fluid
kinetic energy as

R= (1Es)
max

1
2ρ

f U2
0δ

max
y T

, (5.12)

where (1Es)
max is the maximum change in the strain energy per oscillation, δmax

y
represents the maximum tip displacement and T is the time taken to complete one
half-cycle. As a typical case we consider KB= 3.27× 10−4, which exhibits maximum
non-dimensional bending strain energy, to examine the effectiveness of conventional
flexible foils at low m∗. On substituting δmax

y =0.12, 1Emax
s =2.3×10−4, ρ f =1000 and

T = 0.4 observed from the DNS results for KB= 3.27× 10−4, we obtain R=O(10−7),
which is negligibly small. Therefore, we show that even though conventional foil can
be used to harvest the energy from surrounding fluid flows, the effectiveness of a
conventional flexible foil for low m∗ < 1 in extracting energy from the surrounding
fluid flow is very low. A similar observation has been made by Michelin & Doare
(2013) for m∗ < 1.

5.7.2. Inverted flexible foil
Figure 29(a,b) shows the evolution of the non-dimensional bending strain energy

(Es) and the work done by the fluid force (Ws) on the inverted flexible foil for
tU0/L ∈ [0, 40] for KB = 0.4, Re = 1000 and m∗ = 0.1 and 8. Interestingly, we
observe that Ws closely follows Es in both of the cases. However, the contribution
of the structural kinetic energy to the bending strain energy increases with m∗. The
magnitude of the strain energy developed in the inverted foil is typically O(103) times
the value observed for the conventional foil. In contrast to the Es of the conventional
foil, the Es of the inverted foil attains a local maximum for the maximum deformation
of the leading edge and a local minimum as the leading edge crosses the centreline.
Since the inverted-LCO regime of the inverted foil flapping follows an identical
path for both the upstroke and the downstroke (figure 14c), the work performed by
the fluid will be the same as the work done by the structure. Therefore, we can
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FIGURE 30. Maximum strain energy for the inverted flexible foil as a function of the
non-dimensional bending rigidity for tU0/L ∈ [0, 30]. Here, @ denotes the experimental
data reported in Kim et al. (2013).

observe from figure 29(a,b) that 1Ws ≈ 0 per cycle for tU0/L > 30 when m∗ = 0.1
and for tU0/L > 48.6 when m∗ = 8. The inverted-LCO flapping regime represents a
conservative system, i.e. 1Ws ≈ 0 per cycle, and is more effective in extracting the
energy from the surrounding fluid flow in comparison to the conventional foil.

Figure 30 summarizes the maximum strain energy developed in a flexible foil as a
function of KB ∈ [10−3, 1] for Re= 1000 and m∗ = 0.1. The experimental data (Kim
et al. 2013) corresponding to a higher mass ratio of O(1) and Reynolds numbers of
O(104) have also been shown for a qualitative comparison. It can be seen that both
the experimental data and the current numerical simulation show a constant maximum
strain energy for the inverted-LCO regime. However, the qualitative comparison shows
that the current two-dimensional numerical simulations overestimate the maximum
strain energy values. We attribute this difference to three-dimensional effects which
have been neglected in the current numerical study. The aspect ratios of the flexible
foils used in Kim et al. (2013) were in the range of 1–1.3. In addition, we attribute
the discrepancy in the maximum strain energy to the large difference in the mass
ratio and the Reynolds numbers of the experimental study and the current numerical
investigation. Another observation from figure 30 is that the maximum strain energy
developed in the flipped-flapping regime is relatively smaller when compared with
the inverted-LCO regime. However, the maximum strain energy developed in the
flipped-flapping regime is still approximately O(103) times the maximum value
developed in the conventional foil.

Figure 31 shows the ratio R of the maximum bending strain energy to the total
kinetic energy of the incoming fluid flow, as given in (5.12). It should be noted
that (5.12) considers the maximum change in the Es per oscillation, i.e. (1Es)

max,
instead of the total stored Es. Use of the total Es can include a large non-oscillatory
part; however, that would not be useful for energy recovery. The effects of this
consideration can be explained for the case of KB = 0.1, corresponding to the
deformed-flapping regime, where there is a large stored strain energy yet the total
energy available for energy harvesting is much less than that of KB = 0.2 and 0.3. A
comparison with the experimental data of Kim et al. (2013) has also been presented in
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FIGURE 31. Ratio of the maximum change in the strain energy to the total available fluid
energy R for an inverted flexible foil as a function of the non-dimensional bending rigidity
KB at Re = 1000 and m∗ = 0.1. Here, @ denotes the experimental data reported in Kim
et al. (2013) for m∗ =O(1) and Re=O(104).

the figure. The energy efficiency ratio R shows good agreement with the experimental
data for KB ∈ [0.1, 0.2]. We also observe a significant difference in the values for
KB ∈ [0.2, 0.3]. This difference in the value of R is mainly due to the difference in
the maximum bending strain energy. Based on Emax

s and R values, we confirm that
the inverted-LCO regime is the most relevant one for energy harvesting applications
among the three flapping regimes of the inverted foil.

6. Concluding remarks
Through a series of direct numerical simulations, we have studied the flapping

instability of the inverted flexible foil configuration in an unbounded axial flow. In
this configuration, the trailing edge of the foil is clamped and the leading edge
is free to oscillate. We investigated the evolution of the flapping instability as a
function of the critical non-dimensional parameters, the non-dimensional bending
rigidity KB, the Reynolds number Re and the mass ratio m∗, and identified three
distinct stability regimes, namely (i) fixed-point stable, (ii) deformed steady and (iii)
unsteady flapping state. We analysed the underlying physical mechanism of the onset
of flapping instability from the fixed point to the deformed state and the transition
from the deformed to the unsteady periodic state. With the aid of DNS results and an
analytical model, we have shown that unlike a conventional foil an inverted flexible
foil experiences a static-divergence instability much before the onset of flapping.
Under the influence of the static-divergence instability, the inverted flexible foil
eventually undergoes unsteady flapping stability due to the flow separation at the
leading edge. We further examined the effects of Re and m∗ on the stability regimes
of the inverted foil. It was observed that the mass ratio has a small influence on the
stability response regimes for a range of m∗ ∈ [0.1, 8].

Three different unsteady flapping response regimes were qualitatively observed as
a function of decreasing KB: (i) inverted limit-cycle oscillation, (ii) deformed-flapping
and (iii) flipped-flapping regimes. In contrast to a conventional foil, the inverted
flexible foil loses its stability through static divergence for KB 6 0.55 for Re= 1000
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and m∗ = 0.1. We observed that the static deformation gradually increases with
decreasing KB = 0.55 to KB = 0.545. Through a series of numerical simulations
for m∗ = 0.1, we proposed a relation between KB and Re to predict the flapping
instability in the inverted flexible foil. With the help of a theoretical model, we
showed that the transition from the inverted-LCO to the deformed-flapping regime
is due to the existence of a quasistatic equilibrium between the fluid force and the
structural restoring force. For mass ratio m∗ ∈ [0.1, 10], the flapping frequency of the
inverted LCO is strongly influenced by the increase in m∗, while the cross-stream
flapping amplitudes are weakly affected. For the flipped-flapping regime, an increase
in m∗ resulted in a transition from periodic to non-periodic flapping with variable
amplitudes and frequencies. The three response regimes can have a wide variety of
wakes consisting of up to 14 vortices per oscillation cycle. The inverted limit-cycle
flapping regime generates novel 6P + 2S (14 vortices) and 4P + 2S (10 vortices)
wakes. The flipped-flapping response regime, on the other hand, is characterized
by either a regular von Kármán vortex street or a periodic wake consisting of four
vortices.

We have shown that the flapping of inverted flexible foil can generate O(103) times
more strain energy in comparison to conventional flexible foil flapping, which has a
profound impact on energy harvesting devices. Although the current two-dimensional
simulations were performed at significantly lower Reynolds number and mass ratio,
the bending strain energy developed in the inverted foil showed good qualitative
agreement with the experimental data presented in Kim et al. (2013). The difference
in the magnitude of the strain energy can be attributed to the three-dimensional effects
and also to differences in the values simulated. Out of the three response regimes
observed, in the context of exploring an alternative energy harvesting mechanism we
confirmed the inverted-LCO regime as the most useful regime.
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