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Abstract
To have more control over Text-to-Speech (TTS) synthesis and
to improve expressivity, it is necessary to disentangle prosodic
information carried by the speaker’s voice identity from the
one belonging to linguistic properties. In this paper, we pro-
pose to analyze how information related to speaker voice iden-
tity affects a Deep Neural Network (DNN) based multi-speaker
speech synthesis model. To do so, we feed the network with a
vector encoding speaker information in addition to a set of basic
linguistic features. We then compare three main speaker coding
configurations: a) simple one-hot vector describing the speaker
gender and identifier ; b) an embedding vector extracted from
a speaker recognition pre-trained model ; c) a prosodic vector
which summarizes information such as melody, intensity, and
duration. To measure the impact of the input feature vector, we
investigate the representation of the latent space at the output of
the first layer of the network. The aim is to have an overview
of our data representation and model behavior. Furthermore, we
conducted a subjective assessment to validate the result. Results
show that the prosodic identity of the speaker is captured by the
model and therefore allows the user to control more precisely
synthesis.
Index Terms: Multi-speaker TTS, Speaker control, Expressive
TTS, Deep Learning

1. Introduction
The quality of speech synthesis systems has drastically in-
creased during the last years. Thanks to the deep learning
paradigm, it is now possible to generate speech, which sounds
almost like human speech. However, the control over models
remains challenging because of their complexity.

Expressive speech synthesis relies on adequate control on
the prosodic parameters. These parameters depend on the lin-
guistic features of the text to read as well as information related
to the voice used for synthesizing the speech.

Therefore, disentangling the speaker characteristics from
the linguistic content is a key feature to control the rendering
of the synthesis.

Disentangling the speaker characteristics from the linguis-
tic content is even more crucial to have proper control in multi-
speaker Statistical Parametric Speech Synthesis (SPSS) as, by
definition, the model should produce a speech signal corre-
sponding to one consistent speaker. Counting on the robustness
of multi-speaker modelling, studies show that expressive speech
synthesis systems can benefit from such an environment [1],
although it raises other challenges related to recording condi-
tions [2], speaker coding [3] and controllability [4, 5, 6, 7].

Therefore, in this paper, we propose to investigate if using
a naive but fully controllable representation of the prosody, the
model can separate the speaker characteristics from the linguis-
tic features in a standard DNN TTS multi-speaker environment.

This article is structured as follows. The different speaker
coding configurations are presented in Section 2. Section 3
gives an overview of the methodology and Section 4 details the
experiments we conducted to analyze the influence of these con-
figurations on the model. Finally, in Section 5, we go through
the results of the experiments using complementary objective
analysis methodologies and subjective assessment.

2. Speaker Coding
To encode the speaker voice characteristics, we are using three
different configurations from the most opaque (OneHot-Vector)
to the most controllable one (P-Vector). The intermediate rep-
resentation (X-Vector) has been added as it is a state of the art
representation for the speaker identification domain.

2.1. OneHot-Vector (OHV)

This configuration to encode the speaker information for DNN
based speech synthesis has been explored in [3]. As a first and
intuitive choice for speaker encoding, we propose a simple one-
hot vector of two parts: (1) gender (female/male) as this is the
highest level distinction we can do, (2) identifier of the speaker
to distinguish speakers intra-gender. This approach is the one
making the control of the synthesis the most complicated as we
just have a discrete choice. Thus it does not take into account
the acoustic proximity between speakers.

2.2. X-Vector

X-Vectors [8] are the state of the art represention used in the
speaker identification field. To get the X-Vectors, we extract
embedded vectors independently on the text using a pre-trained
model1. As stated before, this model was initially trained for a
speaker verification task [8, 9, 10] using NIST SRE recipe sup-
ported in the Kaldi toolkit. The details about the recipe and the
pretained model are available in author’s github2. This configu-
ration is more detailed than the OneHot-Vector but still remains
difficult to control as the dimensions of the X-Vectors are diffi-
cult to interpret.

2.3. P-Vector

The last configuration is the one we are proposing: the P-Vector.
To characterize the speaker style and specificity of an expressive

1https://kaldi-asr.org/models/m3
2https://david-ryan-snyder.github.io/2017/10/04/model sre16 v2.html
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voice, we propose to use the breath group as the functional unit
to build a vector able to cover high-level prosodic information
which are difficult to predict from the text. A P-Vector is defined
by the following features:

• F0-range: for each vowel of the breath group, we are
computing the median values. Then, considering F0min

and F0max, respectively, the minimum and the maxi-
mum median values, we computed the scaled fundamen-
tal frequency (F0) range the following way:




F0min = min(V 0
F0median

, . . . , V M
F0median

)
F0max = max(V 0

F0median
, . . . , V M

F0median
)

F0range = 12× log2(
F0min
F0max

)

where M represents the number of vowels within the
breath group and V i

F0median
stands for the median F0

value of the ith vowel within the breath group;

• Melodic pattern: for each vowel contained in a given
breath group, the VF0median has been extracted. The
resulting sequence of values has been interpolated us-
ing a cubic spline. Then, a set of five equidistant values
(at each 20% of the breath group duration starting from
10%) has been selected.

• Energy pattern: the same computation as the previous
one is done on VlogEnergy .

• Articulation Rate: it is the number of syllables per sec-
onds computed at the breath group level ignoring si-
lences;

• Duration of breath group in second;

• Duration of pauses around the breath group in second.

This way, we obtain a fully controllable feature vector
whose dimensions can be adequately interpreted.

3. Analysis Methodology
The experiments and analyses presented in this work were car-
ried out within the Merlin [11] framework. We used the default
configuration proposed in the toolkit, then we integrated the
speaker coding vectors to achieve a multi-speaker TTS model.
3.1. Input and Output features

The input feature vector can be viewed as two concatenated vec-
tors corresponding to two parts: a linguistic part and a speaker
coding part. The first 319 coefficients correspond to the lin-
guistic description of the utterance. This part is based on the
standard feature set for English described in [12] that we have
adapted for French. The main differences with the English
feature set concerns the accentuation. Indeed, as the accentu-
ation information in French is strongly correlated to the Part
of Speech (POS) information, we therefore consider that the
POS information, already present in the vector, is enough to en-
code the accentuation information. The coefficients from di-
mension 320 and beyond are the speaker code. The size of
this part varies according to the configurations under study (e.g.
OneHot-Vector, X-Vector or P-Vector).

The output feature vector contains the standard coeffi-
cient vector composed by the Voiced/Unvoiced (VUV) flag, the
logF0, the mel-generalized cepstrum (MGC), the Band Aperi-
odicity Parameter (BAP), and their dynamic counterparts. This
leads to a vector of 265 coefficients.

Finally, the input and output vectors are normalized using,
respectively, Min-Max Normalization (MMN) and Mean Vari-
ance Normalization (MVN) methods.

3.2. Method

The main goal of the paper is to see if and how the content of
the input vector influences the ability to separate speaker-related
information in a DNN-based TTS system. To do so, we train
several systems differing by the structure of the input vectors
provided. Once the different systems are learned, to analyze
if the various configurations are guiding the models to capture
speaker specificities, we propose to measure differences at the
output of the first hidden layer as well as at the output of the
model. Two types of analyses are then done:

• Standard objective measures: mel-cepstral distortion
(MCD), BAP distortion, F0 Root Mean Square Error
(RMSE), F0 correlation, VUV error rate, RMSE on the
duration and duration correlation;

• A visual analysis protocol: a Principal Component Anal-
ysis (PCA) on the first hidden layer output is computed.
Then, we visualize the main dimensions and analyze
the results in function of the speakers to see if speaker-
dependent information is captured by the model. We per-
form PCA at the end of each epoch on the validation
dataset. We choose to do the analysis at this stage of the
network because it is easier to interpret and quantify the
variation brought by the input.

We also compare different epochs to see how the models
are evolving. This monitoring is interesting since it enables to
check quickly if the structure of the input vectors has an impact
on speaker separability.

4. Experimental setup
4.1. Dataset

A corpus of multiple speakers was collected from two different
libraries: LitteratureAudio3 and LibriVox4.

This database contains fictional french audiobooks pub-
lished between the 18th and the 20th century. All the transcrip-
tions of the corpus are freely available in wikisource5. The text
is split into paragraphs and then force-aligned to corresponding
speech using JTrans[13]. The speech signals are sampled at 48
kHz. All the meta-data information related to describe the book
(speaker identifier, library name, . . . ) was removed. From the
designed corpus, two groups of data were defined:

• parallel data: this group contains 5 audiobooks; each
transcription was read by at least 2 speakers. In total,
the data for 9 speakers has been collected including 4 fe-
males. Voices were selected by an informal listening test
considering their recording conditions (non-audible dif-
ference), and the fact that the voice quality of the speak-
ers are quite different.

• non-parallel data: for each speaker in the parallel data,
1h of extra speech has been collected with no overlap in
the transcription. This set of data is used to evaluate ro-
bustness and performance of the speaker encoder input.

The procedure used to achieve the annotation process and to
extract the linguistic features is described in [14].

4.2. Models configuration

To achieve training and synthesis, we used the Merlin
toolkit [11]. The architecture of the model is a Feed-Forward

3http://www.litteratureaudio.com/
4https://librivox.org/
5https://fr.wikisource.org/wiki/Wikisource:Accueil
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Table 1: Objective results for multi-speaker modeling, considering five speaker code configurations. mel-cepstral distortion (MCD),
Band Aperiodicity Parameter (BAP), Root Mean Square Error (RMSE), Voiced/Unvoiced (VUV) and Correlation (CORR) between the
predicted and the original coefficients. For the F0, RMSE and CORR are computed exclusively on voiced frames.

O
H

V

X
-V

ec
to

r

P-
V

ec
to

r

MCD (dB) BAP (dB)
F0

VUV
Duration

RMSE (Hz) CORR RMSE (ms) CORR

X 5.833 0.301 32.597 0.807 8.950 9.232 0.558
X 5.935 0.303 33.018 0.801 8.971 8.889 0.601

X 5.748 0.296 32.203 0.811 8.851 8.883 0.604
X X 5.756 0.297 32.169 0.810 8.944 8.860 0.607

X X 5.755 0.297 32.043 0.812 8.915 8.836 0.609

DNN (FF-DNN) with 4 hidden layers. During the experiments,
we changed first layer size to be 128, 256 or 512 neurons with-
out any significant change. The last three layers have a fixed
number of 512 neurons. The hidden layers use the tanh activa-
tion function and the output layer uses a linear activation func-
tion. We applied batch-training paradigm with a batch size of
256. The maximum number of epochs is set to 25 including 10
warm-up epochs. The learning rate is initially set to 0.002 for
warm-up epochs and after that reduced by 50% for each epoch.
Similarly, the momentum is set to 0.3 for warm-up epochs and
to 0.9 otherwise. Finally, we used L2-regularization with a
weight set to 10−5. Models are trained considering speaker
coding schemes with the following dimensions: 2 for OHV, 32
for X-Vector and 9 for P-Vector.

5. Results
5.1. Standard measurements

In order to evaluate DNN-based TTS synthesis, the proposed
method was applied to train models on the parallel training set
and then on the non-parallel training set.

All the models were evaluated using MCD, BAP distortion,
RMSE on F0 and duration, VUV rate and Correlation (CORR)
on F0 and duration, between the predicted and the original co-
efficients. In this paper, only the objective results concerning
the non-parallel training dataset are reported as similar results
have been observed on the parallel training dataset.

As shown in Table 1, the systems involving the P-Vector
beat the baseline system in all kinds of objective measures.

5.2. Visualizing the first hidden-layer output

Figure 1: PCA projection for the parallel data during the vali-
dation phase, the speaker identity is encoded as following (F/M:
Female/Male, FR: French, ID:XXXX).

PCA6 has been applied on the output of the first hidden
layer to reduce the number of dimensions down to the two main
ones.

6We choose PCA to find out the independent variables that hold the
speaker’s identity.

Figure 2: PCA projection for the non parallel data during the
validation phase.

Figure 1 and Figure 2 illustrate respectively the parallel
data and non-parallel data projections for the different config-
urations. With non-parallel data, both X-Vector and P-Vector
do not show a clear separation between speakers compared to
OneHot-Vector. However, using parallel data, P-Vector and X-
Vector manage to discriminate the speakers.

The first explanation for this behavior is that with non-
parallel data, the linguistic, prosodic and phonetic context vari-
ability are dominant and most of the variation is hold by those
components. As the data are non parallel, the neural network
has more difficulty to distinguish the speakers. The second pos-
sible explanation is that the size and complexity of X-Vector and
P-Vector bring more sparsity in the latent space, which is not
the case with OneHot-Vector. Finally, it seems that X-Vector
and P-Vector can be used equally to bring speaker control to the
system but due to the lower complexity of P-Vector, this repre-
sentation might be preferable.

The visualization of the evolution of the latent space pro-
jection at different epochs is illustrated on Figure 3. It enables
to monitor the learning process and check quickly the impact of
the vector structure on the speaker separation. Here, we can no-
tice that from epoch 10, the projected latent space is quite stable
and the speakers well separated.

5.3. Subjective Evaluation

5.3.1. Evaluation protocol

In order to validate our proposition, we conducted a subjective
evaluation based on the MUSHRA protocol [15]. The reference
is the re-synthesis using the world vocoder. We use a speaker
dependent baseline (spkdep) as well as a speaker independent
model (spkadapt)7. Then, we evaluated the isolated configura-
tions (OneHot-Vector, X-Vector and P-Vector).

The duration of each of the 54 samples presented to the
listeners varied in a from 4s to 6s. The ratio of speech breaks

7https://github.com/AghilasSini/merlin/tree/master/egs/speaker adaptation

937



Figure 3: Visualization of the latent representation in case of P-Vector using parallel data. We can notice the separation of the speakers
representation from epoch 5 to epoch 25.

present in the selected samples does not exceed the quarter of
the total duration of the sample.

One evaluation instance is composed by 9 steps including
all the models presented before. 30 listeners completed the eval-
uation. They were French native speakers aged between 24 and
45. The majority of them have experience with listening tests
but are not necessarily experts in the annotation of audio files.
All materials are available in the dedicated repository8.

5.3.2. Discussion and results

The results of the evaluation are presented in Figure 4. From
them, we can see that the reference is correctly identified, which
guarantees the validity of the evaluation. It seems that some an-
notators estimate that even the reference was not good enough
for some samples which explains the fact that the reference did
not achieve a score of 100. Then, considering the models eval-
uated, no system is outperforming the other ones. This leads us
to conclude that listeners do not distinguish major differences.

To verify that the listeners didn’t perceive minor differences,

Figure 4: Results of the MUSHRA listening test.

we also computed the rank of each system for each step based
on its score. Figure 5 presents the results of two speakers, but
the results for the other speakers of the corpus are following the
same patterns. Results of two speakers are presented in Fig-
ure 5. In all the cases, the best configuration is the reference.
When we compare the results of the synthetic systems, we can
see that their proportions are globally similar. Finally, the sec-
ond rank is also predominant for each system, expressing that
listeners have graded multiple systems as equivalent.

Based on all these results, we can conclude that the quality
produced by all the synthesis systems are equivalent.

8https://github.com/AghilasSini/SpeechProsody2020

Figure 5: Ranking score of a female speaker (ffr001) and a male
speaker (mfr0008).

6. Conclusion
In this paper, we have evaluated different speaker coding
schemes both objectively and subjectively in a DNN-based
framework. All the evaluations conducted show no difference in
the quality of the modeling of the three different speaker coding
schemes. These results are valid in both studied cases, paral-
lel or non-parallel data for multi-speaker modeling. Moreover,
the speaker coding scheme we proposed, the P-Vector, provides
better control of the modeling. This investigation confirms the
relevance of the prosodic parameters that we choose to build
the prosodic identity of speakers. However, a close look at this
representation shows that the intra-speaker prosodic variation
related to discourse changes (narration, dialog) is excluded.

These results are encouraging and suggest further research
work. Furthermore, we plan the evaluation of the robustness
of the proposed speaker coding on a dataset that contains more
speakers and investigating other factors such as language, liter-
ary genre, discourse typography, and structure.
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“SynPaFlex-corpus: An expressive French audiobooks corpus
dedicated to expressive speech synthesis.” in Proceedings of the
11th Language Resources and Evaluation Conference. Miyazaki,
Japan: European Language Resource Association, May 2018.
[Online]. Available: https://www.aclweb.org/anthology/L18-1677

[15] B. Series, “Method for the subjective assessment of intermediate
quality level of audio systems,” International Telecommunication
Union Radiocommunication Assembly, 2014.

939


