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High-dimensional entangled states of light provide novel possibilities for quantum information,
from fundamental tests of quantum mechanics to enhanced computation and communication pro-
tocols. In this context, the frequency degree of freedom combines the assets of robustness to propa-
gation and easy handling with standard telecommunication components. Here we use an integrated
semiconductor chip to engineer the wavefunction and exchange statistics of frequency-entangled
photon pairs directly at the generation stage, without post-manipulation. Tailoring the spatial
properties of the pump beam allows to generate frequency-anticorrelated, correlated and separa-
ble states, and to control the symmetry of the spectral wavefunction to induce either bosonic or
fermionic behaviors. These results, obtained at room temperature and telecom wavelength, open
promising perspectives for the quantum simulation of fermionic problems with photons on an inte-
grated platform, as well as for communication and computation protocols exploiting antisymmetric
high-dimensional quantum states.

INTRODUCTION

Nonclassical states of light are key resources for quan-
tum information technologies thanks to their easy trans-
mission, robustness to decoherence and variety of de-
grees of freedom to encode information [1]. In recent
years, great efforts have been directed towards entangle-
ment in high-dimensional degrees of freedom of photons
as a means to strengthen the violation of Bell inequali-
ties [2, 3], increase the density and security of quantum
communication [4, 5] and enhance flexibility in quantum
computing [6]. In addition, high-dimensional degrees of
freedom of photons display a perfect analogy with the
continuous variable (CV) of a multiphoton mode of the
electromagnetic field [7], which make them a promising
platform to realize CV quantum information protocols in
the few-photon regime [8, 9]. Photonic high-dimensional
entanglement has been recently demonstrated into or-
bital angular momentum [3, 10], transverse spatial [11]
and path [12, 13] modes, and frequency (or frequency-
time) [14, 15] degrees of freedom.

Among these different degrees of freedom, frequency is
particularly attractive thanks to its robustness to propa-
gation in optical fibers and its capability to convey large-
scale quantum information into a single spatial mode.
This provides a strong incentive for the development of
efficient and scalable methods for the generation and the
manipulation of frequency-encoded quantum states [16–
18]. Nonlinear parametric processes such as paramet-
ric down-conversion (PDC) and four-wave mixing offer a
high versatility for the generation of frequency-entangled
photon pairs [19, 20]. However, under CW pumping
energy conservation naturally leads to the emission of
frequency-anticorrelated states, whereas other types of
correlations are needed for certain applications: for in-

stance non-correlated states are required for heralded
single photon sources [21, 22] and correlated states are
key resources for clock synchronization [23] or disper-
sion cancellation in long-distance communication [24].
At a deeper level, it is desirable to gain a higher con-
trol over the frequency degree of freedom by manipu-
lating the biphoton joint spectrum both in amplitude
and phase. Such shaping can be performed by post-
manipulation using time lenses [25], spatial light mod-
ulators (SLM) [26, 27], dispersive elements [28] or pro-
grammable phase filters [14], but this inevitably reduces
the brightness of the source and its integrability into
chip-based photonic circuits. Direct shaping of quan-
tum frequency states at the generation stage is therefore
preferable. Using parametric processes in solid-state sys-
tems, this has been recently realized by engineering the
spectral [15, 21, 29, 30] and spatial [31] properties of the
pump beam, by temperature tuning [32] or by tailor-
ing the material nonlinearity in domain-engineered crys-
tals [33]. Among these different approaches, the spatial
tuning of the pump combines the advantages of recon-
figurability and extended possibilities of frequency state
engineering [34]. However, to our knowledge no previous
work has demonstrated a complete toolbox for frequency
state engineering through pump spatial tuning, includ-
ing a control over the symmetry of the joint spectrum
and thus the exchange statistics of the photon pairs – an
important feature of quantum state engineering though,
in particular in view of quantum simulation [35–37].

In this work, we exploit the high flexibility offered by
PDC in a semiconductor AlGaAs microcavity under a
transverse pump geometry [38–40] to engineer the spec-
tral wavefunction and exchange statistics of photon pairs
without post-manipulation. Tuning the pump spatial in-
tensity allows to produce frequency-anticorrelated, cor-
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related and separable states, while tuning the spatial
phase enables to switch between symmetric and anti-
symmetric spectral wavefunctions, leading respectively
to bosonic and fermionic behaviors in a quantum inter-
ference experiment [11, 41]. We also demonstrate the
generation of non-Gaussian entanglement [42, 43] in the
continuous variables formed by the frequency and time
degrees of freedom of the photon pairs. We thus demon-
strate a general method providing a complete toolbox
for frequency state engineering, at the generation stage
and using a chip-based source: these characteristics are
crucial in the perspective of the real-world deployment of
photonic quantum technologies based on the frequency
degree of freedom. Our results, obtained at room tem-
perature and telecom wavelength, open promising per-
spectives for quantum simulation with particles of var-
ious statistics on a monolithic platform without requir-
ing external sources of quantum light [35–37], and to
serve as a compact and flexible source for communica-
tion and computation protocols based on antisymmetric
high-dimensional quantum states [44, 45].

THEORETICAL FRAMEWORK

The working principle of our semiconductor integrated
source is sketched in Fig. 1a. It is a Bragg ridge micro-
cavity made of a stack of AlGaAs layers with alternating
aluminum contents [39, 40, 46]. The device is based on a
transverse pump geometry, in which a pulsed pump laser
beam impinging on top of the ridge (with an incidence
angle θ) generates pairs of counterpropagating, orthogo-
nally polarized telecom-band photons (signal and idler)
through PDC [40, 47]. The Bragg mirrors provide both
a vertical microcavity to enhance the pump field and a
cladding for the twin-photon modes. Of the two pos-
sible nonlinear interactions occurring in the device, in
the following we consider the one that generates a TM-
polarized signal photon (propagating along z > 0, see
Fig. 1a) and a TE-polarized idler photon (propagating
along z < 0). The corresponding biphoton state reads

|ψ〉 =
∫∫

dωsdωiJSA(ωs, ωi)â
†
s(ωs)â

†
i (ωi) |0, 0〉s,i, where

the operator â†s(i)(ω) creates a signal (idler) photon of

frequency ω. The joint spectral amplitude JSA gives the
probability amplitude of measuring a signal photon at
frequency ωs and an idler photon at frequency ωi. Ne-
glecting group velocity dispersion (which is justified by
the narrow spectral range of the generated photon pairs),
and in the limit of narrow pump bandwidth, the JSA can
be expressed as [34, 48]:

JSA(ωs, ωi) = φspectral(ωs + ωi)φPM(ωs − ωi) (1)

Here φspectral, reflecting the condition of energy conser-
vation, corresponds to the spectrum of the pump beam
and φPM, reflecting the phase-matching condition, is

governed by the spatial properties of the pump beam:

φPM(ωs−ωi) =

∫ L/2

−L/2
dzAp(z)e−i(kdeg+(ωs−ωi)/vg)z (2)

where Ap(z) is the pump amplitude profile along the
waveguide direction, L is the waveguide length, vg is
the harmonic mean of the group velocities of the twin
photon modes and kdeg = ωpsin(θdeg)/c. In the latter
expression, ωp is the pump central frequency, c the light
velocity and θdeg is the pump incidence angle needed
to produce frequency-degenerate twin photons. Due to
the small modal birefringence of our device (∆n/n ∼
10−3), this degeneracy angle is slightly different from
zero (θdeg ∼ 0.5◦). When departing from this angle,
the JSA gets translated in frequency space but its shape
remains identical up to an excellent approximation [34].
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FIG. 1. (a) Sketch of the AlGaAs ridge microcavity emit-
ting photon pairs by PDC in a transverse pump geome-
try. (b)-(e) Sketch of the experiment, showing the pump
shaping stage (b), stimulated emission tomography (c), fiber
spectrograph (d) and Hong-Ou-Mandel (e) setups. Abbre-
viations: SLM=spatial light modulator, WFA=wavefront
analyzer, PBS=polarizing beam splitter, FPC=fibered po-
larization controller, P=polarizer, HWP=half-wave plate,
F=filter, DCF=dispersion compensating fiber, OSA=optical
spectrum analyzer, SPAD=single-photon avalanche photodi-
ode, TDC=time-to-digital converter.

Equation (1) indicates that the shape of the JSA along
the diagonal direction of the biphoton frequency space
(ω+ = ωs + ωi) and that along the antidiagonal di-
rection (ω− = ωs − ωi) can be tuned independently,
by varying respectively the spectral or spatial proper-
ties of the pump beam, providing a simple and versatile
means to engineer the frequency-time correlations of the
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FIG. 2. Measured joint spectral intensities (JSI) for increas-
ing values of the pump beam waist: (a) 0.25 mm, (b) 0.4 mm,
(c) 0.6 mm and (d) 1 mm. (e)-(h) Numerically simulated JSI
for the above parameters. λs and λi denote the wavelength
of the signal and idler photons, respectively.

photon pairs [34]. In addition, in contrast to the co-
propopagative regime of guided-wave PDC [15, 49] the
signal and idler photons are here produced in two dis-
tinct spatial modes, facilitating their further utilization
in protocols. Here, we will exploit the spatial control of
the pump beam in intensity and phase by using a spatial
light modulator (SLM).

EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1b. The
AlGaAs source (ridge length L = 2 mm, width 6 µm,
height 7 µm) is pumped with a pulsed Ti:Sa laser with
wavelength λp ' 773 nm, pulse duration ' 6 ps, rep-
etition rate 76 MHz and average pump power 50 mW
incident on the sample. The pump beam is shaped in
intensity and phase using a reflective phase-only SLM
(Holoeye Leto) in a 4f configuration, and analyzed with a
Wavefront Analyser (WFA) to verify the obtained mod-
ulation. Finally a cylindrical lens focuses the beam on
the top of the waveguide, and the PDC photons are
collected with two microscope objectives and collimated
into telecom optical fibers. To characterize the emitted
quantum states we measure the Joint Spectral Intensity
(JSI), which is the modulus squared of the JSA, by us-
ing a Stimulated Emission Tomography (SET) technique
[50] as sketched in Fig. 1c. In this technique, in addition
to the transverse pump beam, a TM polarized CW tele-
com laser (seed beam), injected through one facet of the
waveguide, stimulates the generation of the (TE polar-
ized) idler field by difference frequency generation, and
its spectrum is recorded with an Optical Spectrum An-
alyzer (OSA). The wavelength of the seed laser is swept
so as to iteratively reconstruct the whole JSI.

CONTROL OF FREQUENCY CORRELATIONS

We first demonstrate the control over frequency cor-
relations by varying the spatial extension of the pump
beam. We pump the device with Gaussian pump pro-
files, Ap(z) = e−z

2/w2

eikz, where w is the beam waist
on the waveguide and k = ωp sin(θ)/c is the projec-
tion of the pump wavevector along the z direction. In
this situation, the phase-matching term φPM(ωs − ωi) is
real and corresponds, in the biphoton frequency space
(ωs, ωi), to a stripe aligned along the diagonal, with
a width inversely proportional to the pump waist (in
the limit where L � w). The other term of the JSA,
φspectral(ωs + ωi), is given by the spectral distribution
of the pump beam: since we use unchirped (Fourier-
transform limited) pulses, it is also a real function and
corresponds to a stripe aligned along the antidiagonal,
with a width inversely proportional to the duration of
the pump pulses. The JSA is the product of these two
functions: it thus has the shape of an ellipse whose size
and orientation is determined by the pump waist and
pulse duration.

Fig. 2a reports the JSI measured by the SET tech-
nique for a pump waist w = 0.25 mm and a pulse du-
ration of 6 ps; the pump angle θ is slightly offset from
degeneracy as required for the SET measurement [50].
The spectrum is aligned along the antidiagonal, corre-
sponding to a frequency-anticorrelated state. We note
the presence of a grid-like pattern, which is related to the
reflectivity of the waveguide facets: this creates a Fabry-
Perot cavity along the z direction, whose transmission
resonances modulate the joint spectrum [50]. This ef-
fect could be exploited to facilitate the manipulation of
the frequency degree of freedom by discretizing it, as
is the case for quantum frequency combs [20, 51, 52];
on the other hand, it could be removed if needed by
depositing an anti-reflection coating e.g. in silicon ni-
tride [53]. Starting from the anticorrelated spectrum of
Fig. 2a, 2b-d shows the JSI measured for increasing val-
ues of the pump waist. We observe that the extension
of the JSI along the antidiagonal direction progressively
shrinks, transforming the initial state into a frequency-
correlated state when w = 1 mm (Fig. 2d). For the in-
termediate value w = 0.6 mm (Fig. 2c), the width of the
phase-matching and spectral terms of the JSA are nearly
equal, yielding a circular joint spectrum corresponding
to a frequency-separable state. The numerical simula-
tions in Fig. 2e-h, which take into account modal bire-
fringence, chromatic dispersion and cavity effects in the
sample are in excellent agreement with the experiment.
We show also on each panel the calculated Schmidt num-
ber K (obtained from the JSA), which quantifies the ef-
fective number of orthogonal frequency modes spanned
by the biphoton wavefunction [21]. For the experimen-
tal data (Fig. 2a-d) the Schmidt number is determined
by assuming a flat-phase JSA, a reasonable approxima-
tion here since we use unchirped pulses with flat spa-
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FIG. 3. (a) Sketch of the pumping geometry to control the symmetry of the biphoton quantum frequency state. (b)-(f)
Measured JSI for increasing values of the phase step ∆ϕ between the two halves of the pump beam. (g)-(k) Corresponding
simulated JSI.

tial phase profiles. The Schmidt number initially de-
creases, reaches K ' 1 (corresponding to a separable
state) when the JSI is circular, before increasing again
when the state becomes frequency-correlated. Note that
quantum states with higher Schmidt numbers (i.e. in-
volving more time-frequency modes) could be obtained
with the same source by tuning the pumping parame-
ters (see Supplementary Information for a quantitative
discussion).

Overall, the results presented in Fig. 2 demonstrate
a flexible frequency engineering of biphoton quantum
states, which can be exploited to adapt the AlGaAs inte-
grated source to different quantum information applica-
tions requiring either anticorrelated [14], separable [21]
or correlated frequency states [23, 24]. In contrast to fil-
tering approaches that decrease the source brightness by
removing unwanted parts of the spectrum [20, 54], here
the full biphoton spectral intensity is entirely directed
into the desired shape at the generation stage. The pair
production rate is here ' 10 MHz at the chip output,
corresponding to a brightness of ' 200 kHz/mW.

CONTROL OF WAVEFUNCTION SYMMETRY
AND EXCHANGE STATISTICS

We now investigate further control of the quantum
frequency state by engineering the phase profile of the
pump beam. A first natural way is to impose a phase
step ∆ϕ between the two halves of the pump spot, as
sketched in Fig. 3a. Placing the pump spot at the cen-
ter z = 0 of the waveguide, the pump amplitude profile
reads Ap(z) = F (z)e−z

2/w2

eikz, with F (z) = 1 for z < 0
and F (z) = ei∆ϕ for z > 0. When pumping at the degen-
eracy angle θdeg, one can show that the phase-matching
term (Eq. 2) takes the form (see Supplementary Infor-

mation):

φPM(ωs, ωi) = f(ωs, ωi) + ei∆ϕf(ωi, ωs) (3)

with f(ωs, ωi) =
∫ L/2

0
dz e−z

2/w2

ei(ωs−ωi)z/vg . As can
be directly read from Eq. (3), for ∆ϕ = 0 (which
corresponds to a standard Gaussian beam as stud-
ied previously) the phase-matching function is symmet-
ric with respect to particle exchange (φPM(ωs, ωi) =
φPM(ωi, ωs)), while for ∆ϕ = π it becomes antisymmet-
ric (φPM(ωs, ωi) = −φPM(ωi, ωs)). Since the spectral
function φspectral is always symmetric (it depends only
on the frequency sum ωs+ωi), the parity of φPM directly
translates to the JSA. This analysis thus predicts that a
simple phase engineering of the pump beam should allow
to control the symmetry of the spectral wavefunction of
the photon pairs.

We experimentally implement this concept and show
in Fig. 3b-f the measured JSI for increasing values of the
phase step ∆ϕ, at fixed pump waist (1 mm, as in Fig.
2d) and pulse duration (4 ps). Starting from a frequency-
correlated state at ∆ϕ = 0 we observe the progressive
appearance of a second lobe in the joint spectrum as ∆ϕ
increases. These results are in good agreement with the
numerical simulations (Fig. 3g-k), where we show also
the calculated Schmidt numbers (here the non-flat phase
structure of the JSA does not allow to determine K ex-
perimentally). When ∆ϕ = π (Fig. 3f,k) the spectrum
is split into two lobes of equal intensity, and vanishes
along the diagonal axis between the two lobes. Accord-
ing to the previous theoretical analysis, there is a π offset
between the spectral phase of points which are mirror-
symmetric with respect to this diagonal axis. However
the JSI measurement is not sensitive to such phase in-
formation: to retrieve this information and probe the
biphoton spectral wavefunction parity we will exploit
two-photon interference in a Hong-Ou-Mandel (HOM)
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experiment.

The experimental HOM setup is shown in Fig. 1e. The
polarization of the signal photon is rotated and aligned
with that of the idler, then the signal photon enters a
fibered delay line, before recombining with the idler on
a fibered 50/50 beamsplitter. Coincidence counts at the
outputs (after a long-wave pass filter to remove lumines-
cence noise) are monitored while scanning the delay τ of
the interferometer. This HOM experiment has in prin-
ciple 4 possible outcomes: the two photons can either
leave the beamsplitter through the same output port
(bunching) or through different ports (antibunching) –
with 2 possibilities in each case. When the entangled
state is symmetric, antibunching probability amplitudes
cancel each other, leaving only bunching events; when
the biphoton state is antisymmetric, the reverse scenario
occurs, leaving only antibunching events as would be the
case for (independent) fermions [11, 41, 55, 56].

We first consider the quantum frequency state ob-
tained when pumping the waveguide with a Gaussian
of flat phase profile (∆ϕ = 0). Fig. 4a shows the corre-
sponding JSI measured at degeneracy with a fiber spec-
trograph [50] (see Fig. 1d): each photon of the pairs is
sent into a spool of highly dispersive fiber so as to convert
the frequency information into a time-of-arrival infor-
mation, which is recorded with single-photon avalanche
photodiodes (SPAD, of detection efficiency 25%) con-
nected to a time-to-digital converter (TDC). This tech-
nique has here a lower resolution (∆λ ∼ 200 pm) than
the SET technique but contrary to the latter, it can be
implemented at frequency degeneracy. The result of the
HOM experiment performed with this quantum state is
shown in Fig. 4b, with the corresponding simulation in
Fig. 4c. We observe a coincidence dip (i.e. two-photon
bunching), confirming the symmetric nature of the fre-
quency state. The experimental dip visibility, defined as
V = (N∞ − N0)/N∞, with N∞ (N0) the mean coinci-
dence counts at long (zero) time delay, is 88 % (using
raw coincidence counts); our simulations indicate that
this value is mainly limited by slight imperfections of
the pump spatial profile and incidence angle (see Sup-
plementary Information).

We next consider the biphoton state obtained when
imposing a phase step ∆ϕ = π at the center of the pump
spot, resulting in a split JSI as seen in the spectrum of
Fig. 4e, measured at frequency degeneracy. Here, the
HOM interferogram (Fig. 4f-g) shows a coincidence peak
(antibunching), demonstrating the antisymmetric nature
of the frequency state and the effectively fermionic be-
havior of the photons. The raw experimental visibility
is here of 77 %, again mainly limited by pump imper-
fections; the side dips at ±12 ps delay are due to the
specific shape of the joint spectrum.

Interestingly, the anti-bunching behavior evidenced for
the antisymmetric frequency state (Fig. 4f) is a direct
proof of entanglement [41, 57], and more precisely, of en-
tanglement with non-Gaussian statistics [42, 43] in the

continuous variables formed by the time-frequency de-
grees of freedom of the biphotons. This non-Gaussian en-
tanglement is associated to the negativity of the chrono-
cyclic Wigner function (CWF) [58], W (ωs, ωi, ts, ti),
which gives the quasi-probability amplitude of measur-
ing a signal photon at frequency ωs and time ts and
an idler photon at frequency ωi and time ti. Similarly
to the JSA ((1)), in our case the CWF can be factor-
ized into a spectral and a phase-matching contributions,
W = W+(ω+, t+)W−(ω−, t−), with ω± = ωs ± ωi and
t± = (ts±ti)/2. The coincidence probability P (τ) in the
HOM experiment is determined by the cut of the W−
function along ω− = 0 (see dotted lines in Fig. 4d,h),
P (τ) = 1

2 (1−W−(0, τ)) [32, 43]. Fig. 4d-h shows the
W− function calculated for our symmetric and antisym-
metric frequency states, respectively. In the latter case
the CWF takes negative values (reaching the theoretical
minimum of −1) at ω− = 0 (i.e. λs − λi = 0), evidenc-
ing non-Gaussian entanglement. Note that in Fig. 4d,
a small negativity (∼ −0.05) also appears at non-zero
values of ω− due to the finite length of the device. A full
experimental determination of the CWF could be per-
formed by using a generalized HOM experiment, where a
frequency shift is added between the two photons (using
eg. an electro-optic modulator) in addition to the usual
temporal delay. Measuring the HOM trace for various
frequency shifts would then allow to move along the ver-
tical axis of the CWF shown in Fig. 4d-h and reconstruct
the W− function slice by slice [32, 43]: this provides an
alternative and promising route to the characterization
of a quantum frequency state that does not require a di-
rect measurement of the phase of the JSA. Interestingly,
in the particular case of our counter-propagative source
it has been shown that instead of using an electro-optic
modulator, a simple change of the pump incidence an-
gle can be used to scan the Wigner function along the
frequency difference axis [34].

DISCUSSION

In summary, we have demonstrated a flexible control
over the spectral wavefunction and particle statistics of
photon pairs, with a chip-integrated source and directly
at the generation stage. The symmetry control of high-
dimensional entangled states has been demonstrated pre-
viously in the spatial degree of freedom [11, 56], but us-
ing bulk sources only. In the frequency degree of free-
dom, displaying strong potential for applications thanks
to its robustness to propagation and capability to con-
vey large-scale quantum information into a single spa-
tial mode, a recent work demonstrated the integrated
and post-manipulation-free control of the spectrum of
biphotons by engineering the spectrum of the pump field,
leading in particular to the production of time-frequency
Bell states and the implementation of high-dimensional
operations in the time-frequency domain [15]. Another
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FIG. 4. (a) Measured JSI for a Gaussian pump beam, leading to a symmetric frequency-entangled state. (b) Corresponding
measured and (c) calculated coincidences in a Hong-Ou-Mandel experiment, and (d) calculated chronocyclic Wigner function
W− (normalized so that ±1 corresponds to a HOM dip (peak) of full visibility). (e-h) Same as (a-d) but when applying a
π phase step at the center of the pump beam, leading to an antisymmetric frequency-entangled state. Experimental data
correspond to raw (uncorrected) coincidence counts.

work developed a method to control two-color entangle-
ment and gain control over the biphoton spectrum [28],
but this approach requires two passages in a bulk source
and post-manipulation with a dispersive element, and is
limited to the production of two-color entangled states.
By contrast, here we experimentally demonstrate a gen-
eral method providing a complete toolbox to engineer
quantum frequency states, at the generation stage and
using a chip-based source: these features are essential in
view of practical and scalable applications for quantum
information technologies. The demonstrated device op-
erates at room temperature and telecom wavelength, is
amenable to electrical pumping [59] thanks to the direct
bandgap of AlGaAs, and has a high potential of inte-
gration within photonic circuits [60]: the monolithical
integration with on-chip beamsplitters has been demon-
strated [22], and the integration of electro-optic phase
shifters [60, 61] for further manipulation of the state and
superconducting nanowires to achieve on-chip detection
[62] can be envisaged. The used transverse pump con-
figuration circumvents the usual issue of pump filtering
and allows a direct spatial separation of the photons of
each pair, facilitating their use in protocols. In partic-
ular, these results could be harnessed to study the ef-
fect of exchange statistics in various quantum simulation
problems [35–37] with a chip-integrated platform, and
for communication and computation protocols making
use of antisymmetric high-dimensional quantum states
[44, 45]. Other non-Gaussian high-dimensional photonic
states such as time-frequency Schrödinger cat or com-
pass states could also be realized in the used device by a
further engineering of the pump beam [34]. In addition,
direct generation of polarization entanglement has al-
ready been demonstrated with this source design [40] and
similar chip-integrated structures [63], opening the per-

spective to combine such discrete-variable entanglement
with the continuous-variable-like entanglement demon-
strated here in the time-frequency degrees of freedom of
the photon pairs.
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Supplemental Material – Engineering two-photon wavefunction
and exchange statistics in a semiconductor chip

METHODS

Sample The sample was grown by molecular beam epitaxy on a (100) GaAs substrate. The epitax-
ial structure consists in a 36-period asymmetrical Al0.35Ga0.65As/Al0.90Ga0.10As distributed Bragg reflector,
a 4.5-period Al0.80Ga0.20As/Al0.25Ga0.75As quasi-phasematching waveguide core and 14-period asymmetrical
Al0.35Ga0.65As/Al0.90Ga0.10As distributed Bragg reflector. The planar structure is then chemically etched to ob-
tain a ridge of width 6 µm and height 7 µm. The ridge is then cleaved (leading to the formation of facets) to obtain
a device length of 2 mm.

The refractive index contrast between the AlGaAs compound and the air induces a finite reflectivity of the facets
of the waveguide. Finite-Difference Frequency-Domain (FDFD) numerical simulations allow to estimate the modal
reflectivities RTE = 26.7% and RTM = 24.7% for the TE and TM fundamental modes, respectively, at a wavelength
of 1550 nm.

Source brightness The measured coincidence count rate is 50 Hz in the HOM experiment (see Fig. 4b) and the
corresponding single count rate is 35 kHz. From this we deduce the internal pair production rate ' 12 MHz. Taking
into account losses in the sample (α ' 0.5 cm−1 for the down-converted modes) and facet transmission, the pair
production rate at the chip output is ' 10 MHz, for a time-averaged pump power on the sample of ' 50 mW. The
source brightness is thus ' 200 kHz/mW, which is for comparison about one order of magnitude higher than for the
FWM glass microrings used in Ref. [14].

(°)

FIG. S1. Angular tuning curve of the signal/idler photons generated by PDC for the source used in the experiments and a
pump wavelength λp = 773 nm.

Spectral tuning of the source We show in Fig. S1 the simulation for our source, of the wavelength of signal (red
lines) and idler (blue lines) photons as a function of the pump beam incidence angle θ, for the pump wavelength
λp = 773 nm used in the experiments. Plain and dotted lines correspond to both possible type-II PDC interactions
occurring in the device. In the experiment we consider the one (dotted lines) that generates a TM-polarized signal
photon (propagating along z > 0, see Fig. 1a) and a TE-polarized idler photon (propagating along z < 0); the black
circle indicates the degeneracy condition obtained by pumping the source with an incidence angle θdeg.

Simulation of the JSA The JSA simulations in Fig. 2 and 3 are done numerically using a Matlab script. We
consider the epitaxial structure of the source to calculate the effective indices of the modes in a 1D model adapted
from Ref. [64], using the AlGaAs material indices parametrization of Gehrsitz et al. [65]. We then calculate the
phase-matching and energy conservation terms of the joint spectral amplitude (JSA) of the photon pairs using the
formulas recalled in article. The JSA is later used to calculate the HOM probability and the Wigner function shown
in Fig. 4. In the simulations the following approximations are made: we consider a low pump regime, so that we
consider an undepleted pump and neglect any multi-photon component of the emitted state. We take into account
frequency dispersion of the refractive indices but we neglect the group velocity dispersion (which is justified by the
narrow spectral range of the generated photon pairs) [34].
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THEORY

Control of the biphoton exchange statistics

We here provide additional theoretical details showing how the manipulation of the biphoton spectral wavefunction
can be used to simulate particles with different quantum statistics.

We start by describing the algebra for creation and annihilation operators. The creation (resp. annihilation)
operator for a particle in the frequency mode ω is defined as:

â†(ω) |0〉 = |ω〉 , â(ω) |ω′〉 = δ(ω − ω′) |0〉 , (S1)

where |0〉 denotes the vacuum. Their action is to increase (resp. decrease) the number of particles in mode ω. These
operators satisfy commutation relations that depend on the statistics of the quantum particles (controlled by the
parameter ∆ϕ):

â†(ω)â†(ω′)− ei∆ϕâ†(ω′)â†(ω) = 0, (S2)

â(ω)â(ω′)− ei∆ϕâ(ω′)â(ω) = 0, (S3)

â(ω)â†(ω′)− e−i∆ϕâ†(ω′)â(ω) = δ(ω − ω′)I. (S4)

where I is the identity operator. The case ∆ϕ = 0 corresponds to bosons, ∆ϕ = π to fermions, and intermediate
values of ∆ϕ correspond to anyons [36].

The wavefunction describing two quantum particles in continuous frequency modes is:

|ψ〉 =

∫∫
dωsdωi JSA(ωs, ωi)â

†
s(ωs)â

†
i (ωi) |0, 0〉s,i (S5)

where JSA is the joint spectral amplitude, and the creation operators obey the above defined commutation relations.
Depending on the symmetry properties of the JSA, we can simulate different quantum statistics as will be shown in
Section 1.B.

As described in the main text, in the experiment we can control the symmetry of the biphoton states by pumping
the semiconductor structure with a pump beam profile of the form Ap(z) = F (z)e−z

2/w2

eikz, where F (z) = 1 for
z < 0 and F (z) = ei∆ϕ for z > 0 (see Fig. 3a). The phase-matching function (see Eq. (2) of the main text) then
reads:

φPM(ωs, ωi) =

∫ 0

−L/2
dz e−z

2/w2

e−i(ωs−ωi)z/vgei(k−kdeg)z + ei∆ϕ
∫ L/2

0

dz e−z
2/w2

e−i(ωs−ωi)z/vgei(k−kdeg)z (S6)

When pumping at the degeneracy angle, k = kdeg, and a change of variable (z → −z) in the first integral leads to
Eq. (3) of the main text:

φPM(ωs, ωi) = f(ωs, ωi) + ei∆ϕf(ωi, ωs) (S7)

with f(ωs, ωi) =
∫ L/2

0
dz e−z

2/w2

ei(ωs−ωi)z/vg . For ∆ϕ = 0 (π) the phase-matching function, and thus the JSA is
symmetric (antisymmetric) under particle exchange, leading to a bosonic (fermionic) quantum statistics (see Section
1.B. below).

Note that a more explicit expression of the phase-matching function can be obtained in the limit L� w:

φPM(ωs, ωi) = w

[
ei∆ϕfadf

(
ω−w

vg

)
− fadf

(
ω−w

vg

)
+ 2e−(ω−w/vg)2/4

]
, (S8)

where fadf is the Faddeeva function, fadf(x) = e−x
2

erfc(−ix), and erfc is the complex error function.

Anyonic statistics, corresponding to intermerdiate values of ∆ϕ in the commutation relations (S2)-(S4), cannot
be obtained with the simple phase-step profile considered above but could be obtained in the following way. We
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need the phase-matching function to obey the relationship φPM(ωs, ωi) = ei∆ϕφPM(ωi, ωs), i.e., since for our SPDC
process this function only depends on the frequency difference ω− = ωs − ωi:

φPM(ω−) = ei∆ϕφPM(−ω−) (S9)

A suitable function would be φPM(ω−) = ωα−exp(−ω2
−/β), with α and β real; in practice we can choose α ∈ [0, 2].

Since the phase-matching function reads φPM(ω−) =
∫ L/2
−L/2A(z)e−iω−z/vgdz, with A(z) = Ap(z)e−ikdegz, the needed

pump profile can be obtained by inverse Fourier transform:

Ap(z) ∝ eikdegz
∫

dω−e
iω−z/vgφPM(ω−) (S10)

which is valid if the pump profile if narrower than the length of the chip. The integral can be performed numerically
to find the pump phase profile that will produce biphotons with anyonic statistics of phase ∆ϕ. This pump profile
can then be implemented with the SLM.

Hong-Ou-Mandel coincidence probability and Chronocyclic Wigner function

We here provide a brief demonstration that the HOM experiment allows to read the symmetry of the biphoton
spectral wavefunction, leading to bunching when the JSA is symmetric and antibunching when the JSA is antisym-
metric. We then relate the HOM coincidence probability to the chronocyclic Wigner function of the biphoton state,
which is discussed at the end of the main text.

Starting from the biphoton state of Eq. (S5), a time delay τ is introduced in the HOM interferometer; after the
beamsplitter, and considering only the part of the wavefunction that will give rise to coincidence events, the state
can be written as:

|ψ〉 =
1

2

∫∫
dωsdωi

(
JSA(ωs, ωi)e

iωsτ − JSA(ωi, ωs)e
iωiτ

)
â†(ωs)b̂

†(ωi) |0, 0〉 (S11)

where we called a (b) the upper (lower) spatial port. Considering that the detectors have a flat frequency response,

the coincidence probability is P (τ) =
∫∫

dωsdωi|〈ωs, ωi|ψ〉|2, leading to:

P (τ) =
1

2

(
1− Re

∫∫
dωsdωiJSA(ωs, ωi)JSA∗(ωi, ωs)e

iω−τ

)
(S12)

where Re denotes the real part.
If the JSA is symmetric under the exchange of the photons, then P (τ) = 1

2

(
1− Re

∫∫
dωsdωiJSI(ωs, ωi)e

iω−τ
)
. At

zero delay we obtain P (τ = 0) = 0 since the wavefunction is normalized: the photons bunch, which is the signature of
bosonic statistics. If the JSA is antisymmetric under particle exchange, P (τ) = 1

2

(
1 + Re

∫∫
dωsdωiJSI(ωs, ωi)e

iω−τ
)
,

and P (τ = 0) = 1: the photons antibunch, corresponding to fermionic statistics.

An equivalent way of deriving this result is to re-write the wavefunction (S11) in the case of fermions, for which

â†(ωs)b̂
†(ωi) = −b̂†(ωi)â†(ωs); the state |ψ〉 then reads:

|ψ〉 =
1

2

∫∫
dωsdωi

(
JSA(ωs, ωi)e

iωsτ + JSA(ωi, ωs)e
iωiτ

)
â†(ωs)b̂

†(ωi) |0, 0〉 (S13)

and the coincidence probability becomes:

P (τ) =
1

2

(
1 + Re

∫∫
dωsdωiJSA(ωs, ωi)JSA∗(ωi, ωs)e

iω−τ

)
(S14)

Hence, in the case of fermions with a symmetric joint spectrum, we recover the behavior of bosons with an antisym-
metric joint spectrum, i.e. P (τ = 0) = 1.

In a previous work [43], it was shown that the HOM coincidence probability can be related to the chronocyclic
Wigner function of the biphoton state. Following the definition given in the main text, the phase-matching part
of the Wigner function reads W−(ω−, t−) =

∫
dω′− φPM(ω− + ω′−)φ∗PM(ω− − ω′−) ei2ω

′
−t− , where ω− = ωs − ωi and

t− = (ts − ti)/2. The coincidence probability in the HOM experiment is thus determined by the cut of the W−
function along ω− = 0:

P (τ) =
1

2
(1−W−(0, τ)) . (S15)
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VISIBILITY OF THE HONG-OU-MANDEL EXPERIMENTS

We performed numerical simulations to understand the factors limiting the visibility of the HOM experiments
reported in Fig. 4b and 4f of the article, obtained when pumping the source with a flat and π-phase step profile,
respectively.

A first factor is the pump incidence angle θ (see Fig. 1a), which determines the wavelength of signal and idler
photons. Spectral degeneracy occurs when pumping with the angle θdeg ; in the experiment, the spectral degeneracy
is checked using the fiber spectrograph technique (see Fig. 1c), and we estimate a typical error of 50 pm (wavelength
difference between signal and idler) for this procedure, corresponding to ∼ 10% of the joint spectrum FWHM. Taking
into account this factor in the simulation, we estimate a visibility decrease of 7%, for both pumping conditions (flat
and π-step phase profile). In addition, even when the signal and idler central frequencies are equal, their spectral
overlap is not perfect due to the modal birefringence of the source, which leads to a slight displacement (15 pm in
wavelength) between the Fabry-Perot resonances of the idler and signal photons. This leads to an additional visibility
decrease of 1.5%.

A second series of factors is related to the spatial properties of the pump beam. To evaluate the effect of the
imperfections of the pump spot, we simulated the result of the HOM experiment by inputting the pump intensity
and phase profile experimentally measured using a wavefront analyzer, as shown in Fig. S2. These experimental
imperfections lead to a 8 % (0.5 %) visibility drop in the case of the π-step (flat) pump phase profile. Finally, the
imprecision in the longitudinal centering of the pump spot on top of the waveguide, which is about 200 µm in our
setup, leads to an additional 2 % visibility drop for both phase pumping conditions.

a) b)

FIG. S2. Measured phase (red) and intensity (blue) profiles of the pump beam used to produce the (a) symmetric and (b)
antisymmetric biphoton frequency states.

By taking into account simultaneously all above sources of experimental imperfections, we simulate HOM visibilities
of 82% in the case of the π-step profile, and 90% in the case of the flat phase profile, which are close to the experimental
results (77% and 88% respectively). The remaining 2 − 5% of visibility drop could be due to a slight polarization
distinguishability between the two photons, which was not taken into account in the simulations.

This analysis shows that, in future experiments, a higher spectral resolution to adjust the degeneracy condition
(which could be achieved, in the fiber spectrograph technique, using e.g. longer spools of DCF or superconducting
detectors that have a shorter jitter) could allow up to a 7 % visibility gain, while implementing a feedback loop
on the SLM to correct for pump imperfections could allow an additional 8 % visibility gain in the π-step pumping
condition.

PRODUCTION OF MORE MULTIMODE STATES

Quantum states with higher Schmidt numbers (i.e. more time-frequency modes) could be obtained with the same
source, along different pathways.

Let us first consider the situation of a flat phase spatial profile as discussed in Fig. 2. A JSA with stronger
anticorrelation could be obtained by pumping with a smaller pump waist (e.g. 0.1 mm could be easily achieved) and
by using longer pump pulses (e.g. 10 ps using the same laser, or 1 ns using a nanosecond-pulsed laser). In these two
cases the estimated Schmidt numbers are:

Waist 0.1 mm Pulse duration 10 ps K = 4.5

Waist 0.1 mm Pulse duration 1 ns K = 440
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All intermediate values of K can be achieved by choosing a pulse duration between these two limits.
On the contrary, a JSA with stronger positive correlation could be obtained by pumping with a bigger pump waist

(e.g. 2 mm could be easily achieved) and by using shorter pump pulses. In the latter case, the finesse of the vertical
cavity (that confines the pump beam) currently limits the minimum intracavity pulse time to about 2 ps. However,
fabricating a sample with a lower finesse for the vertical cavity (with less periods for the Bragg reflectors) would
allow to use e.g. a pulse duration of 0.5 ps. In these two cases the estimated Schmidt numbers are:

Waist 2 mm Pulse duration 2 ps K = 3.0

Waist 2 mm Pulse duration 0.5 ps K = 11

Another possibility is to play with the spatial phase of the pump beam. Fig. 3k of the article already shows e.g.
that K can be increased from 1.4 to 2.2 by imposing a π phase step at the center of the pump beam. On the other
hand, applying a quadratic spatial phase (either using the SLM, or simply by focusing the pump beam on the sample
surface) can efficiently increase the Schmidt number. For instance, starting from the uncorrelated JSA of Fig. 2c
(waist 0.6 mm, pulse duration 6 ps), using a pump spot with an (experimentally feasible) curvature radius of 10 cm
would yield K ' 7.
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