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Abstract The aim of this work consists to estimate and model the viscoelastic

behavior at small strain of KetaSpire® KT-880 PEEK fiber composites rein-

forced with short glass fibers. The viscoelastic behaviour of the PEEK matrix is

identified from a series of DMA tests at different temperatures. The principle of

time-temperature superposition is used to build a master curve in order to identify

the parameters of a generalized thirteen-branches Maxwell model. The composite’s

master curves are constructed by using virtual DMA experiments. These master

curves are used to identify a generalized, transversely isotropic Maxwell spectral

law. The modulus of each branch of the model are linked to the characteristic

time of the branch by a normal distribution function (spectral law), which allows

to drastically reduce the number of material parameters. Finally, a meta-model is
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built to estimate the behavior of the composite as a function of the microstructural

parameters: fiber volume fraction and fiber orientation distribution function.

Keywords Composites · Short fibers · Viscoelasticity · Full field homogenization ·

Dynamic Mechanical Analysis · Time-temperature equivalence · PEEK matrix

1 Introduction

Mass reduction has become one of the main goals of mechanical conceptions. Short

fiber thermoplastics composites is an interesting solution since they present a

good compromise between relatively easy process and mechanical properties. These

characteristics explain why industries involving large volumes (like the automo-

tive manufacturers) are increasingly interested in this kind of material. Addition

of short fibers in thermoplastic resin are also used to improve the stiffness and

strength of moulded parts. The materials studied in this paper are KetaSpire®

KT-880 GF15 and KetaSpire® KT-880 GF30 manufactured by Solvay [1] and

used in the design of the latest generation of cars. These materials are made of

a polyetheretherketone (PEEK) matrix reinforced by short glass fiber (approxi-

mately 0.1 mm long and 0.01 mm in diameter) with a fiber mass ratio of 15%

and 30% respectively. The PEEK matrix is a semi-crystalline thermostable ther-

moplastic which can be used at medium temperatures (close to its glass transition

temperature, about 140 ◦C). To use these composite materials in mechanical parts,

designers need constitutive laws to be integrated into FEA code to compute the

stiffness or strength of these structures.

The objective of this work is to estimate the effective macroscopic behavior

laws of such materials within the framework of linear viscoelasticity, taking into
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account the matrix behavior at different temperatures and the microstructure of

the composite resulting from the processing (volume fraction and fiber orientation

distribution).

During the past twenty years, a lot of work have been done to model the macro-

scopic behavior of such composite materials. All these works can be separated in

two classes:

In the first one, the authors build a so-called phenomenological model by identify-

ing the macroscopic behavior to fit some ”well chosen” experiments (see [2]). In the

case of short fibers, the specimens are often obtained by injection molding and the

topography of their microstructure can be obtained through micro-tomography, as

can be seen in [3], [4], [5] and [6]. These micro-tomographies exhibit the complex-

ity of the microstructure. Accounting for such complexity, information obtained

from micro-tomography can be used to inform fiber orientation in macroscopic

constitutive behaviors.

In the second one, the macroscopic behavior is given by homogenization methods

(see for instance [7]). These methods integrate directly the effects of the microstruc-

ture parameters and the constitutive law of each constituent in the homogenized

model of the composite. This can be achieved in an analytical way in the case of

mean field methods (see among others [8, 9]) or given as a result of numerical sim-

ulations in the case of full field methods (see for instance [10, 11, 12]). In the case

of linear viscoelasticity, by using the correspondence principle, several authors like

[13] or [14] among others, find some estimates in closed form for the macroscopic

laws of isotropic composites with microstructures following the Hashin Shtrikman

lower bound. For more complex microstructures, the estimate given by this prin-

ciple are no longer given in closed form and need numerical calculations to be
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approximated (see [15] and [16] in the case of polycrystals). Another limitation of

mean field methods is in the complexity of the constituents laws like the nonlinear

behavior exhibited by polymer matrices (see in for the case of elastoplastic matrix

[17, 18]). Full field methods can handle all this complexity but they only give the

response of the composite for a particular loading path.

Following [19], we use in this work full field calculations to identify a phenomeno-

logical law presented as a meta model able to predict the composite viscoelastic

macroscopic behavior depending of the volume fraction and the fiber orientation

distribution.

The paper is organized as follows. The first section concerns the identification

of the viscoelastic behaviour of the PEEK matrix from a series of DMA tests

performed for different frequencies and temperatures. Then we use the principle

of time-temperature equivalence to build a master curve. This curve is then used

to identify the parameters of a generalized thirteen branches Maxwell model, the

temperature dependence being taken into account by a WLF law, (see [20]). The

second section concerns the identification of the macroscopic behaviour of a com-

posite consisting of the PEEK matrix, identified in the first section, reinforced with

short glass fibers with a given volume fraction and orientation distribution. Vir-

tual DMA tests are performed using CraFT, a full-field micromechanical software.

These virtual tests are used to identify a generalized, transversely isotropic spectral

Maxwell law. The elastic and viscous moduli of each branch of the model are linked

to the characteristic time of the branch by a normal distribution function (spectral

law), which allows to drastically reduce the number of material parameters. The

third and final section presents the development of a meta model. Such model

allows the evolution of each of the coefficients of the spectral macroscopic law to
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be described as a function of the microstructural parameters (volume fraction and

fiber orientation distribution function).
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2 PEEK matrix characterization and modeling

In order to estimate the effective behavior of composites using homogenization

techniques, one needs to know the behavior of each of its constituents. In this

study, the composite is a PEEK matrix reinforced with short glass fiber (10 µm

of diameter and 100 µm length). The elastic properties of the glass fibers are well

known (Ef = 70 GPa, ν = 0.3). PEEK matrix is a semi-crystalline thermoplastic

polymer. Its viscoelasticity results from the same molecular and microstructural

origins as any other thermoplastic polymers. The magnitude of this latter depends

on the temperature and the stress rate with a transition zone associated to the

glass transition of the polymer. Thus the viscoelastic effects are less sensitive, but

existing, below and above the alpha transition. The particularity of PEEK, if any,

is its high glass transition temperature linked to a rigid polymer chain. In this

section, the viscoelastic behavior of the PEEK matrix will be identified by using

dynamic mechanical analysis experiments with temperature and frequency scans.

2.1 PEEK matrix characterization

2.1.1 Dynamic Mechanical Analysis

To characterize polymers, a common way is to use dynamic mechanical analy-

sis. This method consists in applying sinusoidal tensile displacement to material

samples, and measuring the corresponding force to compute the instantaneous

modulus and the lag between strain and stress. By scanning though frequencies

and/or temperature, it is possible to characterize the viscoelastic behavior of the

material. For isotropic material at each temperature (or frequency), a DMA ten-
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sile test will give two independent quantities: the storage modulus which is often

noted E
′

which can be linked to the stored elastic energy, the loss modulus E
′′

used to quantity the energy dissipated by viscosity. These moduli are measured

as follow. We applied the following tensile strain in assuming that the strain is

homogeneous in the sample:

ε11(t) = ε0sin(2πft), (1)

where ε0 is the amplitude of the strain load, and f is the frequency of that load.

In all the following, the frequency was transformed into an angular frequency with

the usual relation f = ω
2π . As a consequence of this imposed strain, comes a lagged

sinusoidal stress which can be expressed through:

σ11(t) = σ0sin(2πft+ φ), (2)

where the stress amplitude σ0 and the phase lag φ are measured. For each fre-

quency, E′ and E′′ respectively, are defined by:

E′ =
σ0
ε0
cosφ, E′′ =

σ0
ε0
sinφ and tan(δ) =

E′′

E′
. (3)

With the expression of the global complex modulus E∗∗ defined by:

E∗∗(2πf) = E′(2πf) + iE′′(2πf) (4)

2.1.2 Test protocol

Previously performed DSC investigations was used to determine that the glass

transition temperature (Tα) was around 160oC and the melting temperature was

around 341.5oC. DMA tensile tests were performed between 25oC and 200oC to

observe the evolution of the behavior around the glass transition and to avoid

melting of the sample in the DMA device.
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2.1.3 Temperature scans

The resin was submitted to temperature scans ranging from 25oC to 200oC at

two different frequencies, 1 Hz and 10 Hz. Fig 1 shows the evolution (filtered

curves) of E
′

and tan(φ) as a function of the temperature for 1 Hz and 10 Hz. The

Fig. 1 Temperature scans performed on the pure PEEK matrix. The left axis is the storage

modulus (MPa) and the right axis is tan δ .

curves exhibit a glass transition temperature, located at 160oC. We observed that

this transition (Tg) obtained from the DMA measurement was similar to the one

obtained from DSC analysis. We can also notice that the transition temperatures

are shifting with the loading frequency, as higher frequencies will constrain chain

motion thus increasing the glass transition temperature.

2.1.4 Frequency scans and TTS principle

Unfortunately, obtaining a large range of frequencies is impossible with our ex-

perimental devices. Then, we use the Time Temperature Superposition (TTS)
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Fig. 2 Raw data of frequency scan performed from 1 to 10Hz, and for temperatures ranging

from 100oC to 200oC.

method (see [21, 22]) to reconstruct a large frequency scan. The TTS method uses

the equation (5) (see [23]) to build the master curve of the material that account

for both the effect of time and temperature on the mechanical behaviour. There-

fore, we can express the storage and loss moduli as a function of an equivalent

frequency f∗ calculated with the so called WLF equation:

f∗ = aT × f = 10

(
−C1(T−Tref )

C2+(T−Tref )

)
× f (5)

where C1 and C2 are two constants to be identified and Tref the reference tem-

perature which is generally chosen close to Tα value. The matrix master curve is

obtained through several DMA frequency scans (ranging from 100 to 200oC and

from 0.1 Hz to 10 Hz). The results of all these experiments are displayed in Fig.21.

The data of these frequency scans were then shifted using the aT variables. It is

possible to shift the curves and reconstruct the full master curve, as shown in Fig.3.

1 In all the following the matrix master curve are plotted for the shear modulus assuming

that the Poisson’s ration is fully real constant ν = 0.37 with the classical formula 2µ∗∗ = E∗∗

(1+ν)
.



10 Burgarella Boris1 et al.

The PEEK matrix master curve is then shifted at the reference temperature
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Fig. 3 TTS method illustrated, on the left are displayed the result of a temperature scan

DMA, on the right are the aT shifted results which then constitutes the master curve

Tref = 160◦C. Fig.4 and Fig.5 displays respectively the experimental PEEK ma-

trix master curve and the aT values identified at each temperature. The master

Fig. 4 Master curve built from raw data related in Fig.2. .
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curve shows a decrease in the storage modulus starting at 109 Hz characterizing the

beginning of the glass transition regime. At a frequency below 10−4 Hz, we start

to observe the beginning of the rubbery plateau.The loss modulus curve starts to

increase at the beginning of the transition regime and stabilizes back near zero.

Fig.5 displays the comparison between the experimental shift and aT obtained

from the WLF equation using equation 5. The TTS principle seems to be a good

approximation for the behavior of the resin using values C1 = 35, C2 = 180oC

and Tref = 160oC.

Best fit: C1 = 35, C2 = 180°C

Experimentaly measured aT

Fig. 5 Comparison between the best fit of equation 5 and the experimentally measured shift

factor aT .
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2.2 PEEK matrix modeling

Therefore, the matrix will be modeled as a generalized Maxwell model (see for

instance [24]) containing R viscoelastic, Maxwell-type branches for the deviatoric

part of the stress and one branch characterizing the spherical part which is assumed

to be perfectly elastic. The behavior law for this (R+ 1)th branch can be written

as:

tr(σσσR+1) = tr(σσσ) = 3k tr(εεε) (6)

in which tr(aaa) is the trace of a 2nd order tensor a, and k the bulk modulus of the

material. The R first branches characterize the deviatoric behavior and for each

branch j, the stress-strain relation can be given by:

ε̇d =
σ̇d,j

2µj
+
σd,j

2ηj
, (7)

in which µj and ηj denote the shear and viscous moduli, respectively. All these

material parameters are identified to fit the master curve obtained previously and

related to Fig.4. To find the complex moduli, a common way is to transform

equation (7) using the laplace-Carson transform given by:

f̂(p) =

∫ +∞

0

e−ptf(t)dt, for a time dependent function f(t) (8)

with
ˆ̇
f(p) = pf̂(p).

Then equation (7) becomes:

pε̂d(p) =
pσ̂d,j(p)

µj
+
σ̂d,j(p)

2ηj
=
pηj + µj

2ηjµj
σ̂d,j(p) (9)

Then in Laplace domain, previous equation can be given as a visco-elastic shear

modulus µ̂jve and takes the form:

σ̂d,j = 2µ̂jve(p)ε̂
d (10)
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with

µ̂jve(p) =
µjp

p+ µj

ηj

(11)

By combining (11) and (6) and expressing the combination with linear combi-

nations of KKK and JJJ2, one can obtain the expression of the constitutive law as:

σ̂ = L̂LLve(p) : ε̂

with L̂LLve(p) = 2 µ̂ve(p)KKK + 3kJJJ and µ̂ve(p) =
∑R
j=1 µ̂

j
ve(p)

(12)

The determination of R (number of parallel branches to model the matrix) relies

on an equilibrium between calculation time and accuracy. Different configurations

were tested, and it was finally found that manually fitting R = 12 parallel branches

to model the PEEK behavior is a good compromise. The complex tensor moduli

of the master curve is given by:

LLL∗∗ve(2πf
∗) = L̂LLve(i2πf

∗), (13)

which give the storage and loss moduli which are respectively the real and imagi-

nary part of the complex shear modulus µ∗∗ve(2πf
∗) defined by:

µ∗∗ve(2πf
∗) = µ

′

ve(2πf
∗) + iµ

′′

ve(2πf
∗) (14)

Both shear moduli µ
′

ve and µ
′′

ve allowed to build the master curves of the general-

ized Maxwell model identified. The parameters of the proposed Maxwell model are

reported in A. Fig. 6 shows the thirteen-branches model superposed to the PEEK

master curve obtained experimentally. The model seems to capture the PEEK

behavior quite well, except for the high frequencies, where the stored modulus

continues to grow while the loss modulus gets down to zero. As described by the

2 KKK and JJJ are the projectors on the deviatoric and purely spheric, respectively, second order

tensors spaces (i.e. σσσd = KKK : σσσ and 1
3

tr(σ)IdIdId = JJJ : σσσ)
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model, when f∗ →∞,
dµ
′
ve

df∗ → 0 . Therefore, it is not possible to capture correctly

these experiments at high frequencies.

Fig. 6 Thirteen-branches Maxwell model fitted over the experimental PEEK master curve.

This behavior law is then implemented in CraFT, an homogenization software

based on fast fourier transforms developped at the LMA (see [11] and [10]). Con-

trary to the mean field homogenization methods, this code solves exactly (up to the

numerical errors) the boundary value problem. From this, we get the estimation

of the RVE response when subjected to a given loading path (either a macroscopic

stress or strain). The implementation was performed as follows:

For a given strain history ε(t), the stress σ(t) is the sum of the stress σj(t) in each

of the individual branch :

σ(t) =
R∑
j=0

σj(t) (15)

The whole loading time is split in N time steps, For each time step tn+1, the stress

in each of the R first branches is calculated by using an Euler scheme which gives:
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σ̇d,jn+1 =
2ηjµj∆t

ηj + µj∆t

ε̇d,jn+1 − ε̇
d,j
n

∆t
+

ηj

ηj + µj∆t
σ̇d,jn , (16)

with ε̇d,jn+1 given and ε̇d,jn and σ̇d,jn stored from the previous time step. This new

implementation has then been tested to make sure that no errors were made in

the implementation process. To do so, virtual DMA were computed following the

methodology described in our previous paper (see [19]) and described in section

3.3. The CraFT (FFT) modeling of a pure matrix sample DMA superimposed to

the model results is displayed in Fig. 7.

Fig. 7 Validation in CraFT of the generalized Maxwell model implementation.

3 Composite effective behavior

The final objective of the paper is to find a meta-model which gives a good estimate

for the effective viscoelastic behavior of the composite, taking into account the
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fibers volume fraction and the fibers orientation distribution. This means that the

material parameters of the composite law will be function of these fibers properties

(ratio and orientation distribution).

As can be seen in the previous section, the behavior of this composite’s PEEK

matrix can be modeled by a generalized Maxwell model involving 26 parameters

(containing 12 different relaxation times). It is now well known that the viscoelas-

tic behavior of such a composite (reinforced matrix type) must include at least

as much relaxation time as the one of its matrix. In [14] it is shown that the

viscoelastic behavior of an isotropic composite, constituted of an isotropic vis-

coelastic Maxwell matrix with one relaxation time, involve 3 different relaxation

times. Assuming that the fibers distribution induces a transversely isotropic overall

behavior, the composite constitutive equation should include at least 77 material

parameters (6 for the elastic branch and 5 for each of the viscoelastic one as will be

seen in section 3.2). An attempt to fit the evolution of each of these variables with

respect to the microstructural properties has been done, but none of the known

global optimization algorithm gave satisfactory solutions. This can be explained

by the very large number of parameters to be identified and because the underly-

ing mathematical problem is known to be ill-posed, as can be seen in [25]. So the

methodology that we proposed in [19] is not an option anymore, and to reduce the

number of parameters in the composite law, a spectral generalized Maxwell model

has been developed, inspired by previous works available in the literature [26, 27].
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3.1 Spectral Maxwell model: scalar expression

The first step, in the adaptation of [26, 27] for the present case is to find the scalar

expression of such a model applied for Maxwell branches. We recall the expression

in the Laplace space of the generalized Maxwell model for the single modulus

µ̂ve(p) as given in equation (12) :

µ̂ve(p) =
∑R+1
j=1

µjp
p+2πfj

with 2πf j = ωj = 1
τj = µj

ηj

(17)

with f j , ωj , τ j , respectively the characteristic frequency, the characteristic angular

frequency, and the characteristic relaxation time of the jth branch. In this spectral

model, each moduli µj is linked to the characteristic frequency f j thanks to a

distribution function. It is therefore possible to have any number of relaxation

times, depending on the refinement needed to fit the master curve. With these

methodology different distribution functions can be used as in Courtois et al. [28].

We propose in this paper, as in Vieille et al. [26] and Albouy et al. [27], to use a

Gaussian distribution, which give the following expression for µj :

mj = g(log(f j)|Γ,M) = 1
Γ
√
2π
e

−(log f j −M)2

2Γ 2 ,

m̄j =
mj∑R+1
j=1 m

j
,

µj(Γ,M, f j) = µve,0 × m̄j ,

(18)

where M and Γ are respectively the mean and standard deviation of the normal

distribution of log(f). Usually, generalized Maxwell models are defined with a

set of R branches (defined by their stiffness µj and their viscosity ηj). Here, we

defined an odd number of R+1 branches with R = 2n. The stiffness modulus µve,0

characterizes the short time response of the material. Finally, we have R+1 pairs of



18 Burgarella Boris1 et al.

Fig. 8 Scheme of the procedure to determine the modulus of the jth branch µj .

(µj ,f j), and these pairs are regularly distributed (on a logarithmic scale) around

M . The contributions of each branch can be symmetrically distributed around

this characteristic angular frequency noted M and the µj are directly obtained as

related in Fig.8. The frequencies f j are chosen around M between 10M−6Γ and

10M+6Γ and can be expressed with:

f j(M,Γ ) = 10M+6Γ (
2(j−1)

R
−1) (19)

Similarly to what is presented in the matrix modelling section, to simplify the

identification procedure, the spectral model is expressed in the Laplace-Carson

space as expressed in equations (12). Taking into account equations (17), (19) and

(18), the scalar spectral generalized maxwell model depends on 4 variables µve,0,

M , Γ and R as:

µ̂ve(p) =

R+1∑
j=1

µj(Γ,M, f j(Γ,M)) p

p+ 2πf j(Γ,M)
=

R+1∑
j=1

m̄j(Γ,M, f j(Γ,M))µve,0 p

p+ 2πf j(Γ,M)
, (20)

Different cases were tested to see the effect of distribution parameters M and

Γ on generalized Maxwell model master curves for µ
′

ve and µ
′′

ve . These effects



Title Suppressed Due to Excessive Length 19

ID Γ (log(Hz)) M log(Hz)

1 20 log(100)

2 10 log(100)

3 5 log(100)

4 20 log(107)

Table 1 Definition of the different distributions displayed in Fig.9 and Fig.10.

can be seen in Fig.9 and in Fig.10. The values of Γ and M used for the four

distributions are reported in table 1. Diminishing Γ widens the distribution, and

therefore makes the µ
′

ve transition less progressive. It also increases the maximum

value of the µ
′′

ve dissipation peak. The M parameter centers the µ
′

ve transition and

the µ
′′

ve dissipation peak.

Fig. 9 Effect of M and Γ on the distribution. The parameters of each distribution are defined

in Table 1.
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Fig. 10 Effect of M and Γ on generalized spectral Maxwell model master curves for µ
′
ve and

µ
′′
ve.
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3.2 3D Expression

So far, the spectral model has only been expressed in one dimension. Yet, this

study is devoted to the behavior of transversely isotropic composite materials.

In the Laplace Carson space, the viscoelastic behavior of the composite can be

defined by L̂LLve(p) which is the tensor of viscoelastic moduli:

σ̂ = L̂LLve(p) : ε̂ (21)

Assuming that this behavior can be modeled by a generalized Maxwell model

containing one elastic branch and R+1 viscoelastic branches, L̂LLve(p) can be written

as

L̂LLve(p) = L̂LL
V
ve(p) + L̂LL

E
ve(p) (22)

where L̂LL
E
ve(p) describes the elastic part of the behaviour and L̂LL

V
ve(p) describes the

viscoelastic part.

3.2.1 Elastic part

As can be seen in B, assuming that the overall behavior of the composite is trans-

versely isotropic, the tensor L̂LL
E
ve(p) can be written with the five independent pa-

rameters α0, β0, λ0, δ0, and γ0 as :

L̂LL
E
ve(p) = α0EEEL + β0JJJT + λ0(FFF +FFFT ) + δ0KKKT + γ0KKKL, (23)

3.2.2 Visco-elastic part

In addition of being transversely isotropic, we assume that the dissipation in the

composite can only occur for macroscopic loading involving shear. This is true for

the matrix behavior, as shown by the constitutive law expressed in equation (12).
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However, it might not be the case for the composite behavior because a purely

spherical loading (i.e ε / tr(ε) 6= 0) involves local shear strain within the matrix

which implies dissipation. Yet, this hypothesis simplifies the proposed macroscopic

model. As it will be shown in the results of section 4.2, the dissipation remains

relatively low in the case of pure spherical loading for the studied composite. As

can be seen in B, L̂LL
V
ve(p) can be written:

L̂LL
V
ve(p) =

3

2
α̂ve(p)KKKE + δ̂ve(p)KKKT + γ̂ve(p)KKKL (24)

In expression (24), αve, δve, and γve denote the 3 moduli in the 3 orthogonal

directions. Each of them are given by the spectral law equation (20) as:

α̂ve(p) =

R+1∑
j=1

m̄j
α αve,0 p

p+ 2πf jα
, with m̄j

α = m̄j(Γα,Mα, f
j
α), f jα = 10Mα+6Γα(

2(j−1)

R
−1)

δ̂ve(p) =

R+1∑
j=1

m̄j
δ δve,0 p

p+ 2πf jδ
, with m̄j

δ = m̄j(Γδ,Mδ, f
j
δ ), f jδ = 10Mδ+6Γδ(

2(j−1)

R
−1),

γ̂ve(p) =

R+1∑
j=1

m̄j
γ γve,0 p

p+ 2πf jγ
, with m̄j

γ = m̄j(Γγ ,Mγ , f
j
γ), f jγ = 10Mγ+6Γγ(

2(j−1)

R
−1)

(25)

Note that we choose to take the same number of branches in each direction.

3.2.3 Global 3D spectral model expression of the composite

In the Laplace domain, the effective behavior of the composite is defined by3:

Σ̂ΣΣ =
(
L̂LL
E
ve(p) + L̂LL

V
ve(p)

)
: ÊEE = L̂LLve(p) : ÊEE (26)

3 we choose, in order to avoid to be confused with the matrix behavior law formalism in

equation (12), to note stress and strain with capital letters (respectively ΣΣΣ and EEE) which are

the average stress and strain of the composite RVE.
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with

L̂LLve(p) = (α0+α̂ve)EEEL+(β0+
α̂ve
2

)JJJT+(λ0−
√

2

2
α̂ve)(FFF+FFFT )+(δ0+δ̂ve)KKKT+(γ0+γ̂ve)KKKL

(27)

As what we did for the matrix law in equation (13), we define the complex tensor

moduli by:

LLLV ∗∗ve (2πf∗) = L̂LL
V
ve(i2πf

∗) (28)

which give for each direction the storage and loss moduli which are respectively

the real and imaginary part of each complex moduli α∗∗ve(2πf
∗), δ∗∗ve(2πf∗) and

γ∗∗ve (2πf∗) defined by:

α∗∗ve(2πf
∗) = α

′

ve(2πf
∗) + iα

′′

ve(2πf
∗) =

R+1∑
j=1

m̄j
α αve,0 if

∗

if∗ + f jα

δ∗∗ve(2πf∗) = δ
′

ve(2πf
∗) + iδ

′′

ve(2πf
∗) =

R+1∑
j=1

m̄j
δ δve,0 if

∗

if∗ + f jδ

γ∗∗ve (2πf∗) = γ
′

ve(2πf
∗) + iγ

′′

ve(2πf
∗) =

R+1∑
j=1

m̄j
γ γve,0 if

∗

if∗ + f jγ

(29)

with f∗ the equivalent frequency given by the WLF relation related in equation

(5).

3.3 Virtual DMA experiments: full field micromechanical computation

The 14 parameters required to make the full 3D model, (α0, β0, λ0, δ0, γ0, αve,0,

δve,0, γve,0, Mα, Mδ, Mγ , Γα, Γδ and finally Γγ) given in equations (25) and

(27), are found to fit virtual DMA experiments. This virtual experiments are done

with CraFT which is used to solve the homogenization problem thanks to the

FFT method [29][30] on RVE (Representative Volume Element) as can be see in

previous works [19].
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3.3.1 LLL∗∗ve projections

As observed in equation (27), five different transversely isotropic fourth order

tensors can be expressed in a basis containing five different tensors. Five different

measurements have to be done on the RVE. There is no uniqueness for these set

of experiments. The only constrain is that all experiments have to be linearly

independent. Thus, we choose to apply the following strain on the RVE of the

composite: 

VE = −1
2 (e3 ⊗ e3 + e2 ⊗ e2) + e1 ⊗ e1

VT = 1
2 (e3 ⊗ e3 − e2 ⊗ e2) + e3 ⊗ e2 + e2 ⊗ e3

VL = e1 ⊗ (e3 + e2) + (e3 + e2)⊗ e1

VS = e1 ⊗ e1 + e3 ⊗ e3 + e2 ⊗ e2

VS1 = e1 ⊗ e1

VS2 = VS − e1 ⊗ e1

. (30)

The five projections of the complex tensor moduli LLL∗∗ve, related in equation (27),

for each chosen directions are given in the following expression :

PVE =
(LLL∗∗ve:VE):VE

VE :VE
= 3

2α
∗∗
ve(2πf

∗) + 2
3α0 + 1

3β0 −
2
√
2

3 λ0

PVT =
(LLL∗∗ve:VT ):VT

VT :VT
= δ∗∗ve(2πf∗) + δ0

PVL =
(LLL∗∗ve:VL):VL

VL:VL
= γ∗∗ve (2πf∗) + γ0

PVS1
=

(LLL∗∗ve:VS):VS1

VS1:VS1
= β0 +

√
2

2 λ0

PVS2
=

(LLL∗∗ve:VS):VS2

VS2:VS2
= α0 +

√
2λ0

. (31)

3.3.2 Virtual DMA computation

The easier way to do these virtual DMA experiment should be to solve the set of

equation given by the homogenization problem directly in the complex domain.
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Unfortunately our code (CraFT) can not achieve that. We choose to follow work

from [19, 31] to compute DMA experiments in temporal space. For instance, the

numerical values of the storage and loss part of the projection4 PVE (LLL∗∗ve)
ne related

in the equation (27), for a given characteristic frequency f , is computed in the

following way:

1. The applied strain is:

E(t) = ε0VE ∗ sin(2πft), (32)

with ε0 chosen as 0.05.

2. The macroscopic stress projection Σ : VE is then calculated.

Σ(t) : VE
VE : VE

= σ0sin(2πft+ φ(f)) = PVE (LLL∗∗ve)
ne = PneVE (33)

3. Following (3), we find the storage and loss moduli of the projection PVE (LLL∗∗ve)
ne

by:
P
′ne
VE = Re(PneVE ) = 3

2α
′

ve(2πf) + 2
3α0 + 1

2β0 −
2
√
2

3 λ0 = 3
2
σ0

ε0
cos(φ(f))

P
′′ne
VE = Im(PneVE ) = 3

2α
′′

ve(2πf) = 3
2
σ0

ε0
sin(φ(f))

.

(34)

For other loading directions, computations are done in the exact same way by

replacing VE by VT , VL, VS1 and VS2 respectively.

3.3.3 Virtual master curves

Then, to build the whole virtual master curves of the composite for each direction,

we need to run frequency scans from very low to very high frequencies (10−5Hz

4 ne stands for Numerical Experiments
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to 1010 Hz in the present case). This induces at high frequencies and at low fre-

quencies a significant increase of the calculation time. To solve this problem, we

choose to use the time-temperature equivalence to describe the behaviour of the

composite PEEK matrix. Therefore, an emulation of the real experimental proto-

col has been conducted thanks to the TTS principle described in equation (5). To

follow this experimental protocol, virtual DMAs were run from 100oC to 200oC,

each time through 8 frequencies from 0.1 to 10 Hz. For each branch, the PEEK

matrix Maxwell model implemented in CraFT with the temperature dependence

is expressed as in [24]:

ε̇(T ) =
12∑
j=1

(
σ̇j

2µj
+

2πf∗j(T )σj

2µj

)
, (35)

with T the temperature, µj the shear modulus, and f∗j(T ) the equivalent charac-

teristic frequency of each branch at the reference temperature expressed with the

WLF law identified with experimental results and described in equation (5).

3.4 Identification methodology

With the virtual DMA experiments, in each direction x ∈ (E, T , L, S1, S2), we find

the storage and loss moduli of the projection as described in Equation (34). This

parameters as shown in Fig.11 are related for each master curve obtained in each

direction respectively to : i) the central characteristic frequency Mx = log(fpeakx );

ii) the wideness of the loss modulus peak approximately Γx; iii) the limits of the

storage modulus when frequency tends to zero V nex and finally; iv) the storage

modulus when frequency tends to infinity V nex,ve. For instance, in the case of the

projection PneVE , the parameters will be Mα, Γα, V neVE and V neVE,ve. In the 3D spectral

model, when the frequency tends to zero, the viscoelastic tensor LLLV ∗∗ve also tends
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Fig. 11 Schematic layout of the identification methodology based on Pnex projection of nu-

merical DMA results.

to zero as its behavior becomes more and more fluid like. Therefore, the only

remaining stiffness contribution at very low frequency is LLLE∗∗ve . In the same way,

when f∗ tends to the infinity LLLV ∗∗ve tends to a finite value as the spring contributes

more and more to the stiffness. The numerical values identified on virtual DMA

master curves V nex and V nex,ve can be used to identify the model parameters with

the relation detailed in the equations (36), (37) and (38).

These nice relations allow to determine directly α0, β0 and λ0 by calculating

the limit of the PVS1
, PVS2

) and PVE projections when f∗ tends to zero, and so
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that, in solving the following system:

lim
f∗→0

PVS1
=

1

2
(2β0 +

√
2λ0) = V neVS1

lim
f∗→0

PVS2
= α0 +

√
2λ0 = V neVS2

lim
f∗→0

PVE =
2

3
α0 +

1

2
β0 −

2
√

2

3
λ0 = V neVE

, (36)

Similarly, δ0 and γ0 comes directly from the limit when f∗ tends to zero of the

PVT and PVL projections: 
lim
f∗→0

PVT = δ0 = V neVT

lim
f∗→0

PVL = γ0 = V neVL

. (37)

Therefore αve,0, δve,0 and γve,0 are determined through the limit to the infinity of

the PVE (L∗∗ve), PVT (L∗∗ve) and PVL(L∗∗ve) projections:

lim
f∗→∞

PVE =
3

2
αve,0 +

2

3
α0 +

1

2
β0 −

2
√

2

3
λ0 = V neVE,ve

lim
f∗→∞

PVT = δve,0 + δ0 = V neVT ,ve

lim
f∗→∞

PVL = γve,0 + γ0 = V neVL,ve

. (38)

The parameters Γx seem to be mostly matrix dependent. The parameter Γx defin-

ing the speed of the transition as related in Fig.9. Indeed, the identified values

(fitted by trial and error) does not vary with either the fiber volume ratio, or the

orientation distribution. Hence, for the rest of this work, we have chosen:

Γα = Γδ = Γγ = 6.1 log(Hz). (39)

The three remaining variables (Mα, Mδ and finally Mγ) are determined with the

”Non-Linear Model Fit” function of Mathematica in using the virtual DMA curves

and the PVx projections.
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Thanks to this methodology, it is possible to accurately fit a 3D spectral model

over experimental or virtual data. Fig.12 shows an example of fitted curves, for

the PVE projection case, at different fiber volume fractions (5%, 15% and 25%).

Fig. 12 3D spectral model fitted for the PVE projection CraFT generated DMAs, for 5%,

15% and 25% fiber volume ratio.

Using a spectral model is a good way to capture the glass fiber reinforced PEEK

behavior. It shows a very good matching with CraFT data and also has the nice

property of being defined by less material parameters than a generalized Maxwell

model. This is encouraging in order to build a meta model, since the variable
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evolution will be easier to understand, and, in this case, we have uniqueness of the

solution.

3.5 Fiber orientation characterization

Fig. 13 Representation of the orientation vector of a single fiber [5].

When short fiber composite materials are processed through injection, the

fibers in the matrix are mixed and disoriented. This results in variations in the

orientation distributions depending on the position in the injected part. As a

consequence, we need to measure and characterize this disorientation. Authors

usually use orientation tensors to describe the microstructure [4, 5, 32]. Orientation

tensors are defined at every even order by equations (40) and (41) in which a2 and

a4 are respectively the second and fourth order definition of orientation tensors.

a2 =

∮
(Ov ⊗Ov)ψ(θ, Φ)dP, (40)
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a4 =

∮
(Ov ⊗Ov ⊗Ov ⊗Ov)ψ(θ, Φ)dP, (41)

and Ov is the orientation vector of a single fiber, defined in the laboratory frame

(−→e1 , −→e2 , −→e3) as (see as well Fig.13):

Ov =


sin θ cosΦ

sin θ sinΦ

cos θ


(−→e1,−→e2,−→e3)

(42)

We need to use an accurate function ψ(θ, Φ) to have a good representation of the

reality. In the case of an orthotropic material such a distribution function can be

written in the form [4]:

ψ(θ, Φ,N,Z) =
sin θZ cosΦN∮
sin θZ cosΦN

(43)

Varying N or Z will change the orientation distribution. The bigger N is, the

more aligned along Φ = 0 rad the fibers are. Similarly, the bigger Z is, the more

aligned along θ = 0 the fiber are. For this work, the material is assumed transverse

isotropic. This assumptions allows a simplification of the density of probability

function by taking Z = N as:

ψ(θ, Φ,N) =
sin θN cosΦN∮
sin θN cosΦN

(44)

N = 2 implies that 60% of the fibers are aligned in the main axis (which is −→e1), the

40% remaining being distributed on the two other axes. N = 60 is considered as a

quasi perfectly aligned fiber network, considering that 96.8% are perfectly aligned

with the main axis. Fig.14 shows the probability density plotted for N = 2, N = 8

and N = 60, their associated second order orientation tensors and their Random

RVEs (Representative Volume Elements) generated. These RVEs, while being more

or less dispersed in terms of fiber orientation remains transversely isotropic.
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Fig. 14 Probability density plot, for N = 0, N = 2 and N = 60, along with the second order

orientation tensors.
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4 Meta-model

4.1 Definition

A meta model is a model that focuses on observing and predicting the evolution

of the different variables of an initial model. In the present case, the objective

is to observe the evolution of α0, β0, λ0, δ0, γ0, αve,0, δve,0, γve,0, Mα, Mδ and

finally Mγ . These 11 variables constitutes the whole 3D spectral model defined

in section 3.2. The evolution of this group of variables is studied by varying the

fiber volume ratio cf , and the distribution of orientations characterized by N. Γ

remains constant in every direction and for every case. It is therefore not taken

into account in the meta-modeling and remains constant as Γ = 6.1 log(Hz). Each

parameter needs to be fitted with a function, over the different variations. These

variations were fitted in two steps: first, a mathematical function is used to fit

the moduli changes over N. Figure 15 describes this step for the α0 fit. While N

grows, it follows an horizontal asymptotic trend (The exact limit depending on

the fiber volume ratio). Indeed, the modulus for N = 8 is really close to the one

for N = 60. The function used for this case takes the form:

α0(N, cf ) = a(cf )
[
1− e−b(cf )N+c(cf )

]
, (45)

in which a was directly chosen to be equal to the data point for N = 60, b and c

were fitted with the ”non linear model fit” function of Mathematica. Then, one

needs to study the evolution as a function of the volume ratio of the variables

used to fit the data. In the α0 case, the chosen function parameters are a, b, and

c. These three variables showed quasi-linear variations. So, linear functions were

used to fit these points. Fig.16 shows, from left to right the fits of a, b, and c.
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Fig. 15 Mathematical fit of the α0 variation over N changes for three different volume ratios.

Fig. 16 Linear fit of the evolution of a, b, and c in the α0 case.
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Using this method, all the different variables were fitted as a function of N and

cf . The corresponding plot of the fit of all the other parameters can be found in

the C.

4.2 Validation

The validation of the meta-model is done through a series of validation cases. To

make sure that it matches the reality, a set of yet unused N and cf values were

taken: N = 6 and cf = 0.1 or 0.2. For these, the meta-model-predicted storage and

loss moduli are compared and for each loading case described in equation (30).

4.2.1 Check in the fiber direction: PVE

The P
′

VE and P
′′

VE moduli is one of the most important parameters in the case of

composite materials, because it is in the fiber axis. As N grows up, it is supposed

to grow too since the bigger N is, the more fibers are aligned in this direction.

The meta model gives a very good estimate for the P
′

VE and P
′′

VE moduli and their

evolution with frequency change, as shown in Fig. 17. It remains very close to the

numerical experiment data and thus is very satisfying. The relaxation time, while

not far from the matrix one, is also well captured.

4.2.2 Check in the first shear direction: PVT

The P
′

VT and P
′′

VT moduli corresponds to the shear modulus in the plan perpen-

dicular to the fibers (given by a VT parallel DMA). On the contrary to the PVE

complex moduli, the more N grows, the softer it becomes. Indeed, for a low N

the fibers are more dispersed. This implies that more glass will have an active
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Fig. 17 Validation of the predicted P
′
VE

and P
′′
VE

moduli for N = 6 and for cf = 10% and

cf = 20%.

role in the case of a shear loading, thus stiffening the modulus. Fig. 18 shows

the meta-model estimation compared to the numerical experiment values. For this

case, the meta model gives a very good estimation of the complex moduli, and

their evolution with the frequency.

4.2.3 Check in the second shear direction: PVL

This second shear direction is the one given by VL which corresponds to the two

other shear directions. Fig. 19 shows the results. As PVT complex moduli, PVL

complex moduli grow when N decreases. Except for the limit to infinity, where
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Fig. 18 Validation of the predicted P
′
VT

and P
′′
VT

moduli for N = 6 and for cf = 10% and

cf = 20%.

the moduli are very slightly overestimated, the two curves are nearly perfectly

superposed with their numerical experiment equivalent, which is very satisfying.

4.2.4 Check in the case of a perfectly spherical loading

While every moduli has been checked, the compressibility of the material made the

model a bit more complex, this is why the parameters α0, β0, λ0, δ0 and γ0 were

introduced in equation (27). δ0 and γ0 are already validated by the low frequency

fit in Figs. 19, and 18 (see equation (37)). But α0, β0, and λ0 needs to be checked

according to equation (36). For this, the RVEs are submitted to a DMA along VS
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Fig. 19 Validation of the predicted P
′
VL

and P
′′
VL

moduli for N = 6 and for cf = 10% and

cf = 20%.

(purely spheric loading), and the resulting stress and strains are then projected

on the fiber axis PVS1
and the transverse axis PVS2

(see equations (30) and (31)).

PVS1
projection

The model has been built on the hypothesis that there is no dissipation on its

spherical part. This was because the pure matrix behaves that way. Fig.20 shows

the results of the PVS1
projection. The introduction of the fibers in the matrix

seems to induce a dissipation phenomenon on pure spherical loadings. This phe-

nomenon is unpredictable with the current form of the model. It thus creates an
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Fig. 20 Validation of the predicted PVS1
projection for N = 6 and for cf = 10% and cf =

20%.

error between the real behavior and the model. The error is maximum at low fre-

quencies and for cf = 20% (and N = 6). But, at any point in the two test cases,

it remains under 15% which seems to be acceptable.

PVS2
projection

The second projection is on the fiber axis. Dissipation phenomenon is also present,

but at a much smaller scale. Fig. 21 displays the results of the PVS2
projection.

The maximum error for this case is again for a 20% fiber volume ratio. As stated

earlier, this error is much less than for the PVS1
projection. Indeed, it remains
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Fig. 21 Validation of the predicted PVS2
projection for N = 6 and for cf = 10% and cf =

20%.

under 5.7% at any point. The predicted value seems to be a bit overestimated, but

remains accurate.

4.3 Error between theoretical perfect fit and meta-model values

In order to make a last check on the meta-model validity, one can check the

relative error between the meta model and the perfect fit values that would have

been used should N = 6 and cf = 0.1 or 0.2 be part of the model building cases.

These values are gathered in Table 2. Thanks to those, one can say that the model

gives an accurate prediction of the different material parameters. Indeed, the mean
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Material Relative Error (%) for N = 6

Parameter cf = 10% cf = 20%

α0 4.79 0.73

β0 0.46 0.72

λ0 0.51 1.48

δ0 2.93 3.28

γ0 1.42 5.54

αve,0 2.00 3.77

δve,0 1.20 0.99

γve,0 0.49 2.39

Mean error 1.73 2.36

Table 2 Table of all the relative errors obtained when comparing the best fit theoretical values

with the ones given by the meta model (in %)

relative error in percent is of 1.73 % for the cf = 0.1 validation case, and 2.36%

when cf = 0.2.

5 Conclusion

In this paper, we proposed a model for transversely isotropic and linear viscoelas-

tic composite made of a PEEK matrix reinforced by short glass fibers. This model

can take into account different fiber volume fraction and fiber orientation distri-

bution which is characterized in this case by a single integer parameter. For each

couple of microstructural parameters, viscoelastic law is found to fit some virtual

DMA experiments obtained with full field calculations involving a Representative

Volume Element characterized by the fiber volume fraction and the orientation

distribution parameter and the fibers and matrix constitutive laws (linear elastic

for the fibers and linear viscoelastic for the matrix). The macroscopic law is given
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by a spectral representation of a generalized Maxwell model. It is shown here that

this representation allows to reduce drastically the number of material parameters

which improve the identification procedure. Finally a meta-model is built by in-

terpolating the material parameters of the macroscopic model for the studied set

of fiber volume fraction and distribution orientation.

Comparisons with reference calculations show that this meta-model give very

accurate estimate for the macroscopic linear viscoelastic behavior of such compos-

ites for all the microstructural parameters.

Future work improvements could be focused on the possible use of a more

complex fiber orientation distribution to capture higher anisotropy degrees, for

example,in the case of orthotropic materials, one could use the function given by

equation (43) with different values of Z and N parameters.

The whole process of modeling was implemented with Python, C, CraFT and

Mathematica following the framework displayed in Fig.22. All these steps could

easily be wrapped up in a single software, for example for industrial applications.
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Fig. 22 Framework of the whole modeling process used in this PhD
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A Maxwell model constants of the PEEK raw matrix

Parameters Values

k 724.5

µ1 206.2

η1 1018

µ2 25.5

η2 36000

µ3 31.0219

η3 1280

µ4 50

η4 130

µ5 82.8

η5 18

µ6 90.9

η6 2

µ7 130.3

η7 0.3

µ8 123

η8 0.032

µ9 111.3

η9 2.5 10−3

µ10 85.8

η10 1.2 10−4

µ11 54.7

η11 10−5

µ12 8.4

η12 10−7

Table 3 Maxwell model constants (MPa for µi and k, and in MPa.s for ηi).
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B transversely isotropic 4th order tensor

In this appendix we give the expression of 4th order tensors which are transversely isotropic

with respect of one axis oriented by the vector n. It can be seen in [33] that every 4th order

tensor AAA transversely isotropic with major symetry can be written:

AAA = αEEEL + βJJJT + λ(FFF +FFFT ) + δKKKT + γKKKL. (46)

with :

EEEL = n⊗ n⊗ n⊗ n,

iiiT = iii− n⊗ n,

JJJT = 1
2
iiiT ⊗ iiiT ,

JJJ = 1
3
iii⊗ iii,

FFF =
√
2
2

(iiiT ⊗ n⊗ n),

KKK = III − JJJ,

KKKT = IIIT − JJJT ,

KKKE = 1
6

(2n⊗ n− iiiT )⊗ (2n⊗ n− iiiT ),

KKKL = KKK −KKKT −KKKE

(47)

In the case for which AAA project on the incompressible 2nd order (i.e ∀a tr(AAA : a) = 0). Then

the expression 46 can be simplify by:

AAA =
3

2
αKKKE + δKKKT + δ′KKKL. (48)

with:

KKKE =
2

3
EEEL −

√
2

3
(FFF +FFFT ) +

1

3
JJJT (49)
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when n is parallel to e1 which the case studied in this paper, all the previous 4th order tensor

take the following expression:

EEEL = e1 ⊗ e1 ⊗ e1 ⊗ e1,

JJJT = 1
2

(e2 ⊗ e2 ⊗ e2 ⊗ e2 + e2 ⊗ e2 ⊗ e3 ⊗ e3

+e3 ⊗ e3 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e3 ⊗ e3),

(FFF +FFFT ) = 1√
2

(e1 ⊗ e1 ⊗ e2 ⊗ e2 + e1 ⊗ e1 ⊗ e3 ⊗ e3

+e2 ⊗ e2 ⊗ e1 ⊗ e1 + e3 ⊗ e3 ⊗ e1 ⊗ e1),

KKKT = 1
2

(e2 ⊗ e2 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e3 ⊗ e3)− 1
2

(e3 ⊗ e3 ⊗ e2 ⊗ e2 + e2 ⊗ e2 ⊗ e3 ⊗ e3)

+(e2 ⊗ e3 +⊗e3 ⊗ e2)⊗ (e2 ⊗ e3 +⊗e3 ⊗ e2),

KKKL = (e3 ⊗ e1 +⊗e1 ⊗ e3)⊗ (e3 ⊗ e1 +⊗e1 ⊗ e3) + (e1 ⊗ e2 +⊗e2 ⊗ e1)⊗ (e1 ⊗ e2 +⊗e3 ⊗ e1)

(50)
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C Meta-model values

The values that we got from the best fit for the meta model are reported in the two tables

bellow. Table 4 gathers the functions used for the first step (evolution over N) and Table 5

gathers the functions used for the second step and the value of their parameters

Parameters Mathematical function

α0 a1(1− eb1x+c1 )

β0 a2(1 + eb2x+c2 )

λ0 a3x+ b3

δ0 a4(1 + e−b4x+c4 )

γ0 a5(1 + e−b5x+c5 )

α0,ve a6(1− e−b6x+c6 )

δ0,ve a7(1 + e−b7x+c7 )

γ0,ve a8x+ b8

Mα a9(1 + e−b9x+c9 )

Mδ a10(1− e−b10x+c10 )

Mγ a11(1− e−b11x+c11 )

Table 4 Type of function used to interpolate the values of the different parameters of the

meta-model
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Parameter Mathematical function

a1 2466.84 + 299.381x

b1 0.0132217 + 0.0168113x

c1 −2.74547 + 0.0104865x

a2 6589.54 + 49.4054x+ 1.09223x2

b2 0.214646− 0.00753747x+ 0.000539186x2

c2 −3.94708 + 0.125997x+ 0.000865784x2

a3 4384.68 + 83.0828x+

b3 0.678292− 0.102462x

a4 212.171 + 11.9236x

b4 0.301577− 0.0223137x

c4 −2.4499 + 0.0833838x

a5 243.226 + 11.5072x

b5 0.0192968 + 0.00382448x

c5 −2.45768 + 0.104188x

a6 1517.22 + 160.403x+ 0.0426096x2

b6 0.129201− 0.000507827x+ 0.0000844632x2

c6 −1.86704 + 0.0823769− 0.00147715x2

a7 1491.61 + 42.1352x

b7 0.226345 + 0.00419678x

c7 −3.12641 + 0.0613746x

a8 1556.35 + 48.3409x

b8 −0.48657− 0.19709x

a9 793.598− 61.2738x+ 1.13504x2

b9 0.246085− 0.00542953 + 0.000597388x2

c9 −0.881393 + 0.173926x− 0.00286226x2

a10 1142.3− 16.5853x

b10 0.297326− 0.00210555x

c10 −2.47111 + 0.0553319x

a11 1154.98− 15.4951x

b11 6.6146e3.1025−513412x

c11 21.2737− 1.01799x

Table 5 Table of the functions used to interpolate the second layer of parameters of the

meta-model. These functions are used to determine the parameters of the functions displayed

in Table 4
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