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ARTICLE

Cross-ecosystem carbon flows connecting
ecosystems worldwide
Isabelle Gounand 1,2, Chelsea J. Little 1,2, Eric Harvey 1,2,3 & Florian Altermatt 1,2

Ecosystems are widely interconnected by spatial flows of material, but the overall importance of

these flows relative to local ecosystem functioning remains unclear. Here we provide a quan-

titative synthesis on spatial flows of carbon connecting ecosystems worldwide. Cross-

ecosystem flows range over eight orders of magnitude, bringing between 10−3 and 105 gCm−2

year−1 to recipient ecosystems. Magnitudes are similar to local fluxes in freshwater and benthic

ecosystems, but two to three orders of magnitude lower in terrestrial systems, demonstrating

different dependencies on spatial flows among ecosystem types. The strong spatial couplings

also indicate that ecosystems are vulnerable to alterations of cross-ecosystem flows. Thus, a

reconsideration of ecosystem functioning, including a spatial perspective, is urgently needed.
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Ecosystems and the services that they provide are essential for
material and cultural human welfare1–3, but paradoxically,
human activities threaten ecosystem integrity4,5. Maintain-

ing functional ecosystems, or restoring degraded ones, requires
the identification of dominant mechanisms driving their
dynamics. At the local scale, ecologists have accumulated exten-
sive data on individual ecosystems’ functioning6. But ecosystems
are not isolated. They are connected by spatial flows of organisms
and material. The role of dispersing organisms on large-scale
species coexistence and community dynamics is well studied7,8.
However, it remains unclear to which extent local ecosystem
functioning also depends on cross-ecosystem flows of material,
such as detritus or nutrients9–11. According to the recently
developed meta-ecosystem theory8,12, such cross-ecosystem flows
can induce strong interdependencies between ecosystems and
drive ecosystem functioning13–16. Emblematic cases of resource
subsidies moving between ecosystems include passive transports,
such as of leaves windblown from forests to streams17,18, or active
transports, such as aquatic insects emerging onto land19,20. Some
effects of these spatial flows, for example on specific trophic
levels21–23, have been synthesized by comparing effect sizes across
different study systems. However, when it comes to quantifying
spatial flows at the ecosystem level, the dispersion of data over
many research areas and inconsistencies in the measurement
units have hitherto precluded a more general and synthetic
overview of spatial flows.

Here, we conduct a quantitative synthetic assessment of cross-
ecosystem flows of carbon connecting the major ecosystem types
across the globe (Fig. 1). Specifically, we compare the magnitudes
of cross-ecosystem flows to within-ecosystem fluxes in order to
infer their potential contribution to ecosystem functioning. This
also provides the basis to identify ecosystems’ vulnerability to
increasing alterations of spatial flows in the context of ongoing
global changes24. We based our analysis on generally convertible
estimates in units of carbon (gC m−2 year−1; see Methods sec-
tion) and systematically searched for quantifications of spatial
flows connecting terrestrial (forest, grassland, agro-ecosystem,
desert), freshwater (stream, lake), and marine (pelagic and
benthic) ecosystems. To put these spatial flows in a relevant
context, we also assembled comprehensive quantifications of local
biological fluxes of carbon (i.e., gross primary production, eco-
system respiration, and decomposition) within the different
ecosystem types, again all converted into gCm−2 year−1. This
allowed us to directly compare the magnitude of local ecosystem
fluxes to cross-ecosystem flows. We additionally compiled

measurements of net ecosystem production to relate the impor-
tance of spatial flows to the degree of ecosystem heterotrophy.
Overall, we assembled 518 measurements of spatial flows and
2516 of local fluxes, totaling 3034 data points extracted from
557 studies. Analyzing this data set with its internally-consistent
measurements in carbon units reveals the wide range of magni-
tude of spatial material flows and their widespread importance to
local ecosystem functioning. Specifically, we characterize com-
mon ecosystem couplings in which the production of freshwater
and some benthic ecosystems depends on carbon exported from
terrestrial and pelagic ecosystems, respectively, and thus might be
sensitive to alterations of these flows. By contrast, terrestrial and
pelagic ecosystems seem more independent from spatial carbon
flows. However, we also identify some gaps in flow quantification
such as with spatial flows driven by animal movements, which
could refine our view of ecosystem couplings.

Results
Origins and magnitudes of cross-ecosystem flows. Cross-
ecosystem flows of carbon range over eight orders of magnitude
in the mass of carbon annually transported to ecosystems (gCm−2

year−1), from a few milligrams (aquatic insects deposited in forests)
to more than ten tons per meter squared and year (wrack on
shores) (Fig. 2). The materials transported among ecosystems are as
various as living animals, dead plants and animals, and dissolved
carbon. Ecosystems occupying the lowest elevations in landscapes
and seascapes receive downward flows of dead material or small
organisms from ecosystems above them, while terrestrial ecosys-
tems receive more lateral flows, for instance of material transported
by wind, ocean tides, or animal movements. Not surprisingly,
ecosystems dominated by primary producer biomass (e.g., forests,
grasslands, submarine meadows, kelp forests), export the largest
flows of primary production-derived material (median/interquartile
range [IQR] of 148.7/[47.1–246.6] and 164/[93.2–1659.3] gC m−2

year−1 for terrestrial plants and macro-algae, respectively). By
comparison, invertebrate subsidies are substantially lower (median:
1.51 gC m−2 year−1/IQR: [0.44–5.41]), but might reach similar
values in specific ecosystems (e.g., 124 gC m−2 year−1 of aquatic
insects flowing from lakes to tundras in Iceland). Lastly, few studies
document spatial flows of vertebrate origin (3.1%), and those which
do report highly contrasting values: feces of foraging deer or fishery
discards represent small flows of around 0.1–1 gCm−2 year−1,
while the net inputs to freshwater ecosystems of hippopotamus
defecating into rivers, or of drowned migrating wildebeests, range
between 100 and 1000 gC year−1 per meter squared of river.
Overall, cataloging the types of spatial flows documented so far, and
their drivers (Fig. 2), also reveals that a large portion of the quan-
tified spatial flows concerns the terrestrial-freshwater (66.9%) or
pelagic-benthic (18.0%) interfaces, and are driven by passive pro-
cesses (70.5%) rather than active transports by animals.

Comparison of cross-ecosystem flow to local flux magnitudes.
To assess the potential importance of these spatial flows to eco-
system functioning, we compared their magnitude to those of
local biological fluxes within each receiving ecosystem. This
comparison is conservative regarding the importance of spatial
flows: local and spatial fluxes may not be independent, because
spatial flows likely enhance local fluxes in recipient ecosystems.
Magnitudes of spatial flows versus local fluxes are similar in
freshwater and in some benthic systems, whereas spatial flows are
generally two to three orders of magnitude smaller than local
fluxes in terrestrial ecosystems (Fig. 3). These patterns result from
freshwater and benthic ecosystems displaying low gross primary
production (GPP) while receiving abundant cross-ecosystem
inflows, which contrasts with terrestrial ecosystems receiving little

Ecosystem
types

Terrestrial−Terrestrial Freshwater−Freshwater Marine−Marine
Freshwater−Terrestrial Marine−TerrestrialMarine−Freshwater

Fig. 1 Global distribution of quantifications of cross-ecosystem flows of
carbon. Colors and shapes indicate the type of ecosystems coupled by
cross-ecosystem flows of carbon: terrestrial (i.e., forest, grassland, agro-
ecosystem, desert), marine (i.e., ocean pelagic, ocean benthic) and
freshwater (i.e., stream, lake, wetland). The map is made with Natural
Earth. Free vector and raster map data @ naturalearthdata.com
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inflows but producing abundant biomass (e.g., median GPP of
55.2 vs. 611.5 gCm−2 year−1 and median spatial inflows of 59.9
vs. 1.3 gCm−2 year−1 for streams and grasslands, respectively). In
addition, ecosystem respiration in freshwater and benthic systems
often exceeds local primary production, as indicated by average
negative net ecosystem productions (NEP) (Fig. 4; for instance:
median/[IQR] for streams: −114.1 gCm−2 year−1 / [−400.5 to
−20.9], and marine benthic ecosystems: −4.1 gCm−2 year−1/
[−103.7–39.5]), despite noticeable variability. This could be due,
for example, to differences in light availability in shallow tropical
sea grass meadows (more positive NEP values) vs. deep or turbid
waters (more negative NEP values) promoting or constraining
photosynthesis respectively. By contrast, terrestrial and pelagic
ecosystems have on average a statistically significant net auto-
trophic functioning, with confidence intervals of mean NEP all
lying above zero (see Fig. 4 and Supplementary Table 1; median/
[IQR] for pooled terrestrial ecosystems: 129.0 gC m−2 year−1

[20.0–293.0], and pelagic ecosystems: 40.0 gC m−2 year−1/
[17.5–86.9]; overall, they have an 80% probability of being
autotrophic based on our dataset), and receive negligible spatial
flows compared to their local production (e.g., IQR of spatial
inflows versus GPP in forests is [0.16–6.70] vs. [1064–1786] in gC
m−2 year−1), except in deserts (see Fig. 3).

Discussion
Overall, our extensive carbon-based synthesis of cross-ecosystem
flows characterizes strong, and relatively unidirectional, spatial
couplings in which freshwater and unproductive benthic eco-
systems receive quantitatively important material exported from
terrestrial and pelagic ecosystems, respectively (Fig. 5). We thus
provide a quantitative confirmation of the long-held belief that
things flow down hills25,26 and therefore have the potential to
propagate changes from higher to lower elevation- commu-
nities27. While the existence of strong spatial flows reported here

does not necessarily imply that these potential resources are
integrated into recipient food webs—recalcitrant material could
merely accumulate—it is indeed common that more carbon is
respired than could be locally produced in freshwater and benthic
systems (Fig. 4, and values in previous section), indicating that
ecosystem function must rely on these allochthonous resources.
Naturally, this dependency might vary with individual ecosys-
tems’ degree of heterotrophy. Most of streams and lakes are net
heterotrophic (around 75% probability based on our dataset; see
Fig. 4), but some can be net autotrophic when conditions allow
greater primary production (e.g., lower riparian cover). Similarly,
benthic marine systems include some of the most productive
ecosystems, such as sea grass beds or coral reefs in shallow tro-
pical lagoons, for which the contribution of spatial flows to total
production might be negligible. However, the decrease of pho-
tosynthesis with depth or water turbidity shifts benthic ecosys-
tems toward a detritivore-based functioning relying essentially on
spatial exports from more autotrophic systems28. In addition, an
increasing number of isotopic studies and studies manipulating
the magnitude of flows demonstrate the role of spatial flows in
subsidizing and structuring recipient communities22,23. For
instance, terrestrial litter exclusion can alter entire stream food
webs through cascading effects from detritivores to predators29.
Furthermore, the degree of integration into recipient food webs
can depend on the characteristics of the carbon introduced there,
with, for instance, terrestrial dissolved vs. particulate organic
carbon, respectively, subsidizing pelagic bacteria versus benthic
invertebrates and zooplankton in lakes30. Such dependency on
spatial resources implies that unproductive freshwater and
benthic systems are especially sensitive to alterations of spatial
carbon flows and, thus, to changes in donor ecosystem dynam-
ics31–33.

In other ecosystems—such as most terrestrial ones—spatial
carbon flows seem quantitatively negligible compared to local
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fluxes (Fig. 3; note: only few studies are reporting flows between
terrestrial ecosystems, indicating a potentially important knowl-
edge gap). However, the low magnitude of these average flows to
terrestrial systems does not exclude high local impacts when they
are constricted to small areas. For example, material deposition
from freshwater or marine ecosystems is locally high on shor-
elines but rapidly decreases with distance from source34. More-
over, even some terrestrial ecosystems can be net heterotrophic
(around 20%), for instance due to perturbations like fires, har-
vesting, or drought, which could disrupt production capacity. In
deserts, where local production is very limited (IQR of GPP:
[76.6–138.5] in gC m−2 year−1, compared to in average 1379.5
gC m−2 year−1 in forests), materials provided by other less
limited ecosystems (e.g., oceans) can be substantial (IQR of
spatial flows to deserts: [4.95–1575.3] in gC m−2 year−1), and
represent essential subsidies for detritivore-based communities35.
Overall, in terrestrial and pelagic ecosystems, carbon is generally
not a limiting element and whole-ecosystem production should
be mostly driven by local primary production rather than by
allochthonous carbon flows.

However, carbon is intimately linked to nutrients within bio-
logical molecules. Though quantitatively small in terms of carbon,
spatial flows to terrestrial systems often have higher nitrogen
content than the vegetation-based subsidies these systems export
(e.g., insects or salmon vs. leaves in terrestrial-freshwater
couplings22,34,36,37), and this has been shown to structure ter-
restrial communities20,22. Some cross-ecosystem flows, not con-
sidered here due to our focus on carbon units, are even
predominantly of nitrogen or phosphorus, enriching terrestrial
(e.g., the well-studied salmon-to-forest subsidy38, or guano from
foraging sea birds39) or pelagic systems (e.g., excretion of marine
mammals40). Carbon and nutrients in cross-ecosystem material

flows may relax different limitations in recipient ecosystems, thus
enhancing regional production13,22. Such interdependencies
linking the productions of different ecosystems might affect
carbon fixation at larger, meta-ecosystem scales, which we should
account for in our general effort to regulate the global carbon
cycle via land use management.

Our synthesis also shows important gaps in the quantification
of spatial couplings. Passive flows of detritus or of small organ-
isms are relatively well documented, as can be easily measured by
various traps. By contrast, it is more challenging to quantify active
spatial flows resulting from animal movement. This requires
indirect estimations, for instance combining animal tracking and
measurements of ingestion and excretion rates41,42. Such quan-
tifications are rare (Fig. 2), but the few existing studies suggest
that widespread animal movements, such as foraging or migra-
tion, could act as important ecosystem connectors43,44. In parti-
cular, mobile species using multiple ecosystems45, or those whose
behavior leads to massive aggregations of individuals, likely move
important amounts of material among ecosystems. At the
moment, the lack of data hinders an assessment of the global
importance of these actively-driven cross-ecosystem subsidies46.
However, such linkages could render common ecosystem cou-
plings more bi-directional than previously thought, as proposed
for the aquatic-terrestrial interface34,47. Detailed evaluation of
flow bi-directionality is essential to better understand spatial
feedbacks between connected ecosystems. Resource exchanges
between ecosystems underlie both optimization in resource use at
the landscape scale, and potentials for spatial amplification of
local perturbations. An examination of the ultimate fate of spatial
flows in recipient ecosystems was beyond the scope of our dataset,
but next challenges for spatial ecology must include such
assessments, notably considering quantity versus quality effects of
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spatial flows, as well as relating animal activities at different scales
to fluxes of resources linking ecosystems46.

Overall, our global analysis highlights the ubiquity of cross-
ecosystem spatial flows of carbon, and the variety in their mag-
nitude. The importance of such flows for ecosystem functioning is
variable among ecosystem types, but general knowledge of an
ecosystem’s limiting elements and internal metabolism (net het-
erotroph vs. autotroph) enables some reliable predictions: nota-
bly, freshwater and benthic ecosystems might be especially
vulnerable to alterations of spatial carbon flows, and by extension
to perturbations in the autotrophic ecosystems from which these
flows arise. However, gaps in flow quantification leave some
uncertainty as to whether different ecosystems might act as buf-
fers or amplifiers of spatial dynamics within landscapes. Doc-
umenting these ecological blind spots is necessary to improve our
ability to predict ecosystem responses to global changes across
landscapes.

Methods
Principle of the study. We conducted an extensive literature review of empirical
values of cross-ecosystem spatial flows of carbon over the globe (distribution in
Fig. 1), and compared their magnitude to local fluxes within ecosystems receiving
these flows. We chose carbon as the focal material unit to profit from widely
available carbon data for local fluxes. To enable the spatial flow to local flux
comparison, we only considered measurements of spatial flows that were either
provided in or could be converted into gC m−2 year−1.

Data collection. Our systematic search covered four broad categories of terrestrial
ecosystems (forest, grassland, agro-ecosystem, and desert) and four of aquatic
ecosystems (stream, lake, pelagic ocean, and benthic ocean). We considered all
ecosystems (if available) in five major global climatic zones (arctic/alpine, boreal,
temperate, tropical, and arid). Supplementary Table 2 provides the definitions of
ecosystem categories and climatic zones. For marine ecosystems, we grouped arctic,
boreal, temperate vs. arid and tropical climates into Cold and Warm respectively,
to account for a lesser influence of climate on oceanic systems due to the buffering
effect of large water volumes. For each relevant ecosystem x climatic zone com-
bination (see Supplementary Fig. 1), we collected local carbon flux and spatial
carbon flow data. We used all possible combinations of these categories and terms
with similar meanings (see Supplementary Table 2) in our systematic search (see
details in the next paragraphs).

We collected available values of spatial flows linking the above-mentioned
different ecosystems, and which could be converted into gC m−2 year−1 in order to
homogenize data and make comparisons possible. The latter constraint excluded
cross-ecosystem flows of nutrients for which no carbon equivalent was possible,
and flows expressed without information of the area of influence in the ecosystem
receiving the flow. For the first case, this primarily excluded studies based purely on
isotopic methods, for example those reporting the proportion of marine-derived
nutrients in riparian plants, and those reporting transport of nutrients without
information on nutrient to carbon ratios. Thus, several well-studied spatial flows
such as those triggered by salmon moving from marine to freshwater ecosystems,
terrestrial fertilization by seabird guano, and nutrient excretions by fish or marine

N
et

 e
co

sy
st

em
 p

ro
du

ct
io

n 
(g

C
 m

−
2  

yr
−

1 )

F
or

es
t

G
ra

ss
la

nd

A
gr

o-
ec

os
ys

te
m

D
es

er
t

S
tr

ea
m

La
ke

O
ce

an
 b

en
th

ic

O
ce

an
 p

el
ag

ic

n

−1500

−1000

−500

0

500

1000

1500

2000

2500

p+

87 70 21 15 129 89 50 71

0.87 0.62 0.89 0.82 0.22 0.29 0.56 0.77

Fig. 4 Net ecosystem production for different ecosystem types. Net
ecosystem production (NEP) corresponds to the balance between gross
primary production and ecosystem respiration. Negative values denote net
heterotrophic functioning. Circles give individual values in gC m−2 year−1.
Note that these are production fluxes and not productivity rates (biomass
turnover), for which we would have higher values in aquatic compared to
terrestrial ecosystems. Boxplots give median (white line), 25 and 75%
percentiles (box), and range (whiskers). Top numbers (p+) give the
probability of NEP being positive within each ecosystem type, assuming
normal distributions of the data (quantile corresponding to 0). Bottom
numbers (n) indicate the number of data points. The 95% confidence
intervals for mean NEP within each ecosystem types are in gC m−2 year−1:
Forest [204; 301], Grassland [28; 224], Agro-ecosystem [197; 438],
Desert [18; 70], Stream [−307; −193], Lake [−32; −14], Ocean benthic
[−60; 201], and Ocean pelagic [47; 90] (see full results of two-sided t-test
in Supplementary Table 1). A conservative non-parametric Kruskal-Wallis’
test indicates significant differences among ecosystems (
χ27;532 ¼ 275:04; P<0:001). The post-hoc multiple comparisons test using
rank sums gives the following groups: a, bc, a, abcd, e, d, bd, ac (lower case
letters for grouping from left to right in the figure; see Methods)

Ocean pelagic Ocean benthic
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fish, amphibian
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insects, amphibians

Terrestrial - freshwater coupling
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b

Fig. 5 Well-documented natural meta-ecosystems. a Terrestrial–freshwater
and b pelagic–benthic ecosystem spatial couplings. Round and horizontal
arrows represent gross primary production (GPP) and cross-ecosystem
flows, respectively. Numbers are median values for GPP and sum of median
values of cross-ecosystem flows of each different origin (primary producer,
invertebrate, vertebrate, and particulate and dissolved organic carbon),
both expressed in gC m−2 year−1. Width of arrows is proportional to these
values based on double squared root transformation. Inter-quartile ranges
[IQR] for GPP: terrestrial [589–1497], freshwater [15.3–160.5], ocean
pelagic [66–243], ocean benthic [83–745]; cross ecosystem flows (sum of
IQR of flows of different origins): to terrestrial [0.38–15.09], to freshwater
[52–272], to ocean benthic [6.9–79.9]

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07238-2 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4825 | DOI: 10.1038/s41467-018-07238-2 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mammals, are not well represented in our dataset. For the second case,
measurements of amount of dissolved organic carbon or sediments flowing from
streams into estuaries48 where excluded because the area of the recipient ecosystem
was undefined. Terms primarily used for the search of spatial flows were “(subsid*
OR spatial flow*) AND ecosystem”, with “ecosystem” also being replaced by
specific ecosystems or pairwise combinations of ecosystem and climate types of
interest. For example, to search for spatial flows from streams to grasslands, we
used the search strings “(subsid* OR spatial flow*) AND (stream OR river OR
aquatic) AND (grassland OR prairie OR meadow)”, replacing the last term by
“(tundra OR grassland OR meadow) AND (arctic OR alpine)” when we looked
more precisely at stream subsidies to grasslands in cold climates.

In addition, for each ecosystem x climatic zone combination, we systematically
searched published literature for values of the following within-ecosystem carbon
fluxes: gross primary production (GPP), secondary production (in aquatic
ecosystems only), ecosystem respiration (Re), net ecosystem production (NEP), and
decomposition fluxes. We chose GPP rather than NPP (net primary production) to
allow a more straightforward comparison with the spatial flows entering a system,
which are also gross fluxes. Since decomposition fluxes were rarely directly
provided, we derived them from detritus stocks and decomposition rates (see next
section for calculations). A first systematic search was conducted by using all
possible combinations of the names of each ecosystem type, climatic zone and flux
of interest, with small variation when relevant (e.g., “decomposition OR decay” for
decomposition flux and rates). The different terminologies used across various
research fields to describe the same processes, and the fact that the data of interest
were often located in different sections of the studies (Methods vs. Results) limited
the efficiency of standardized keyword search across the data types. We therefore
complemented the dataset with multiple customized searches until we compiled a
minimum number of ten independent values of each variable of interest (i.e.,
different fluxes, detritus stock, and decomposition rate) for each ecosystem x
climatic zone combination. At the end, data were pooled by ecosystem type.

In total, we collected 3034 values from 557 published studies, including 518
values of cross-ecosystem subsidies. A summary of all values and the respective
references are provided in Supplementary Table 3 (cross-ecosystem flows) and
Supplementary Table 4 (local fluxes).

Calculations used for data extraction. When only two of three major fluxes
(gross primary production, ecosystem respiration, and net ecosystem production
(GPP, Re, and NEP, respectively) were reported, we estimated the unreported flux:

NEP ¼ GPP� Re ð1Þ

NEP ¼ NPP� Rh ð2Þ

NPP ¼ GPP� Ra ð3Þ

NPP is the net primary production, Rh the heterotrophic respiration and Ra the
autotrophic respiration.

We derived decomposition fluxes DF from detritus stocks DM and
decomposition rates k, with the classical exponential decay model:

DF ¼ DM 1� e�kt
� � ð4Þ

To calculate individual decomposition flux values, we parameterized detritus
stock DM with the median values of all detritus stocks in a given ecosystem x
climatic zone combination and used the decomposition rate values collected from
the literature to produce flux values. The rates were values of k, the first order
constant in the classical exponential decay model. When not directly provided, we
derived k with one of the equations proposed by Cebrian and Lartigue6 depending
on the data available in the study:

Dt ¼ Dt0
e�k t�t0ð Þ ð5Þ

DF ¼ DP � Eð Þ 1� e�kt
� � ð6Þ

In Eq. 5, Dt is the detrital mass at time t and Dt0
the initial detrital mass. This

equation was used when decomposition was estimated as the proportion of detrital
mass loss 1� Dt=Dt0

� �
via a litter-bag experiment, a classical method in

freshwater and terrestrial ecology. In Eq. 6, DF is the (absolute) decomposition flux
during the study period t, that is the flux from detritus stock to bacteria and other
detritivores, DP is the detritus production, and E the detritus export (e.g.,
sedimentation). In few cases of ocean pelagic data, we used the microbial loop of
primary production vs. bacterial production to parameterize DP and DF,
respectively. If not available, the export rate was set to 0, leading to k
underestimation, which is conservative in our cross-ecosystem comparison given
that k is already at the higher end of the range in these pelagic systems.

Unit conversions. Once collected, we standardized values by converting them all
into areal carbon units, that is, gC m–2 for detritus stocks and gC m–2 year–1 for
local fluxes and cross-ecosystem subsidies. Decomposition rates were expressed in
year–1.

Carbon conversion: We used data in carbon units (gC) when it was directly
provided in the study, or we calculated the values using carbon content when
reported in the study (50% of data points). Alternatively, we applied the most
specific factor to convert the data into carbon units depending on the level of detail
available on the material of interest (see Supplementary Table 5 for conversion
factors). For decomposition rates, we did not transform units into carbon. We
made the most parsimonious assumption that carbon loss rate is identical to loss
rate in the unit provided (generally dry weight or ash-free dry weight). While this is
a simplification, we concluded that this best allowed us to keep measurements
consistent across data sources, in the absence of more detailed information.

Time extrapolation: 55% of local fluxes or rates were already provided in yearly
units. For the others, we extrapolated to the year by using the number of days in
the growing season as reported in the study, or the ice-free period in cold climates.
When growing season length (GSL) was not specified in the study we used
averaged estimates detailed by Garonna et al.49 for the different climatic zones in
Europe50: 181 days for temperate climate (mean of atlantic and continental),
155 days for boreal, 116 days for arctic, and 163 days for arid systems (mean of
Mediterranean and steppic). We assumed no strong seasonality in tropical climates
(365 days of GSL). We did not apply any conversion if the value was measured on a
study period longer than the above GSL for the corresponding climate.

Volume to area conversions and depth integration: Some data were given per
unit of volume. For freshwater systems, we converted the data into area units by
integrating them over the water column, using the mean depth of the river or lake.
When not directly available in the study we calculated depth by dividing the
volume per the area in lakes, or by estimating depth from discharge in rivers with
the formula depth = c ×Qf, with c= 0.2, f= 0.4 and Q the discharge in m3 s–1 (see
ref. 51). For small catchment areas, that is <1 km2, we estimated the depth to be
5 cm based on known river scaling-properties51. For marine data, notably
production in the pelagic zone, studies generally provide a meaningful depth,
which defines the euphotic zone such as the Secchi depth or the 1% light inflow
depth. We integrated values in volume units over this depth, and to 100 m depth
when only sampling depths were provided.

Areal units for cross-ecosystem flows: Since we were interested in comparing
the magnitude of spatial flows to that of the recipient ecosystem’s own local fluxes,
we needed cross-ecosystem flows measured in areal units of the recipient
ecosystem. Depending on the method of quantification, cross-ecosystem flow can
be directly expressed in this way (e.g. litter traps in the recipient ecosystem). In
other cases, for example with vertical fluxes between pelagic and benthic
ecosystems, the equivalence of donor and recipient ecosystem areas affected by the
flow is obvious. However, in the case of lateral flows occurring from aquatic to
terrestrial ecosystems (e.g., emergent insects, carcasses of salmon caught by bears),
flows were often provided per m2 of donor area (21% of spatial flows). We could
not use such measurements directly because the magnitude of the flow in the
recipient ecosystem depends on both the total surface of production and the
boundary length. For instance, lakes with the same area but having circular vs.
complex-shorelines will lead, for the same total emergent insect flux, to higher
versus lower magnitudes of flows, respectively, distributed per areal unit of the
recipient ecosystem. Moreover, the maximum influence of such cross-ecosystem
flow is found near at the shoreline and decreases with distance from the shore (for
example, in aquatic insects19). To adjust for this in a conservative approach, we
homogenized our aquatic-to-terrestrial flows assuming a uniform distribution of
the flow on the first ten meters from the shore, a distance within which most of the
aquatic insect flows fall52 (but could fall substantially farther in some specific
systems53), or most of the salmon carcasses brought by bears on land are
deposited54. Therefore, when the values of spatial flows were provided in areal unit
of the donor ecosystem (aquatic), we first calculated the flow per meter shoreline
(in some cases, values were already provided per meter shoreline; e.g., wrack
deposited on beaches), and then divided this value by 10 m of influenced land. To
calculate the spatial flow per shoreline length in freshwater systems, we followed
the method described by Gratton and Vander Zanden19 for insect emergence data:
In lakes we multiplied the data per the total lake area and divided per the
perimeter. When not directly available, the perimeter was approximated by 2 ×
DL × (area × π)0.5, with DL the development factor defined by Kalff55, which is 1 for
circular shapes, 2 for the same area with a two-fold larger perimeter. In streams we
multiplied the original donor area flow value by stream width, and then divided it
per two (riversides) to obtain the flow per shoreline length. Supplementary Table 6
shows that our conclusions are not sensitive to the choice of the distance from
shoreline used to calculate the recipient terrestrial area of aquatic subsidies: using a
more conservative threshold of 100 m only decreases the importance of carbon
spatial flows to terrestrial ecosystems, that we already assess as low compared to
terrestrial local fluxes.

Flow drivers. We defined categories of flow drivers to examine the underlying
processes of documented cross-ecosystem subsidies. Drivers could be either pas-
sive, via physical processes such as gravity, wind, water currents, tides, or diffusion,
or active, via animal movements such as those triggered by foraging behaviors,
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seasonal migration, or cross-ecosystem movement of animals needing to complete
a life-cycle. We kept these last three categories for active drivers and we clumped
the passive drivers into categories reflecting broad classes of spatial flows: Fall/wind
for aerial transport from terrestrial systems, Leaching for diffusion processes,
Current/tides for lateral flows from aquatic systems and Sinking for vertical passive
flows in the water column (see Supplementary Table 7).

Statistical analysis of NEP. We tested whether mean NEP of each ecosystem type
was significantly different from zero with a Student’s t-test (two-sided). Full results
are reported in Supplementary Table 1. Moreover, we tested the differences of NEP
among ecosystem types using the non-parametric Kruskal–Wallis’ rank-test
(because variances were heterogeneous according to the Bartlett’s test). We then
used post-hoc multiple comparison tests with the function krusckalmc of the
pgirmess R package 1.6.6, based on the methods in Siegel and Castellan56, to
determine which ecosystem types were significantly different (see Fig. 4 and
associated legend).

Software. We analyzed the data and plotted the figures with the open source
software R 3.3.357 and the R-packages ggmap582.6.1, maps593.2.0, and pgir-
mess601.6.6. Final artwork was realized with Illustrator CC 22.0.1.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are summarized in Supplementary
Table 3 and Supplementary Table 4, with all associated references in Supple-
mentary Data 1. Source data files are available from the corresponding authors
upon request. A reporting summary for this article is available as a Supplementary
Information file.
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