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bUniversité Grenoble Alpes, CNRS, Grenoble-INP, GIPSA-lab, F-38000, Grenoble, France

cDyson School of Design Engineering, Imperial College London, London, U.K

Abstract

This paper discusses the in-domain feedback stabilization of reaction-diffusion PDEs with Robin boundary conditions in the
presence of an uncertain time- and spatially-varying delay in the distributed actuation. The proposed control design strategy
consists of a constant-delay predictor feedback designed based on the known nominal value of the control input delay and is
synthesized on a finite-dimensional truncated model capturing the unstable modes of the original infinite-dimensional system.
By using a small-gain argument, we show that the resulting closed-loop system is exponentially stable provided that the
variations of the delay around its nominal value are small enough. The proposed proof actually applies to any distributed-
parameter system associated with an unbounded operator that 1) generates a C0-semigroup on a weighted space of square
integrable functions over a compact interval; and 2) is self-adjoint with compact resolvent.

Key words: Delayed distributed actuation, Spatially-varying delay, Distributed parameter systems, Predictor feedback,
Reaction-diffusion equation

1 Introduction

Stabilization of open-loop unstable partial differential
equations (PDEs) in the presence of delays has attracted
much attention in the recent years. A first class of
problems deals with the feedback stabilization of PDEs
in the presence of a state-delay [12,15–18,26,25,41]. In
this paper, we are concerned with a second class of
problem, namely: the feedback stabilization of PDEs
in the presence of a delay in the control input [14,21–
23,28,27,24,31–35]. One of the very first contributions
in this field was reported in [21]. In this work, the prob-
lem of boundary feedback stabilization of an unstable
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reaction-diffusion equation under a constant input delay
was tackled via a backstepping transformation. More
recently, the same problem was investigated in [34] by
adopting a different control design approach. Inspired
by the early work [37] and the later developments re-
ported in [7,8], the authors synthesized a predictor
feedback on a finite-dimensional model capturing the
unstable modes of the original infinite-dimensional sys-
tem. The stability property of the resulting closed-loop
infinite-dimensional system was obtained via the study
of a Lyapunov function. It was shown in [14] that this
approach is not limited to reaction-diffusion systems but
can also be applied to the boundary feedback stabiliza-
tion of a linear Kuramoto-Sivashinsky equation under a
constant input delay. This approach was generalized to
the boundary stabilization of a class of diagonal infinite-
dimensional systems in [22,27] for constant input delays
and then in [23,28] for fast time-varying input delays.

Most of the approaches reported in the literature deal
with boundary control inputs only. Very few reported
works are concerned with the in-domain stabilization
of PDEs in the presence of a long delay in the control
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input. In this domain, the recent work [35] tackles the
in-domain stabilization of an unstable reaction-diffusion
equation with Dirichlet boundary conditions and a con-
stant delay in the in-domain control input. The reported
control design strategy takes advantage of a backstep-
ping transformation and involves technical challenges in
the stability analysis due to the occurrence of kernel
functions presenting singularities.

From a practical perspective, it is worth noting that in-
put delays are generally uncertain and possibly time-
varying. In this context, the study of the robustness
of the proposed control strategies with respect to de-
lay mismatches is of paramount importance. The case
of a distributed actuation scheme is even more complex
since spatially-varying delays can arise due to network
and transport effects that may vary among different spa-
tial regions. A first example of this situation occurs in
the context of biological systems and population dynam-
ics [38]. In such a situation, delays effects are ubiqui-
tous due to reaction or maturation times induced ei-
ther by natural processes or exogenous inputs acting in
a feedback loop. An example of the latter can be found
in the context of epidemic dynamics [42] in which con-
trol inputs take the form of either medical prescriptions
(medicines, vaccination), social distancing measures or
physical restrictions (confinement, partial limitation of
people fluxes). In this setting, spatially-varying delays
appear in the application of the measures due to the com-
bination of incubation periods [13] and specific regional
characteristics. A second example occurs in the context
of thermonuclear fusion with Tokamaks [30]. The objec-
tive of these devices is to control the plasma in a torus
in order to, ultimately, achieve controlled thermonuclear
fusion. In this setting, one of the control design objec-
tives is to regulate the temperature of the plasma’s elec-
trons described by a diffusion equation. The distributed
control input takes the form of the total electron heat-
ing power density and is actually implemented by a set
of neutral-beam injection and radio frequency antennas;
see in particular [30, Eq. (2)] that is a diffusion equation
with one distributed control input. It is reported in [1]
that, due to network effects, delays of around 100 ms are
introduced in the feedback loop. Uncertain time- and
spatially-varying delay occur due to network effects and
the multiplicity of the devices used to generate the heat-
ing power density. A last example occurs in the context
of the stabilization of fronts in a reaction-diffusion sys-
tem with possible application to chemical reactors [40].
However, to the best of our knowledge, the design and/or
robustness analysis of control strategies with respect to
possibly spatially-varying delays is still an open prob-
lem. The present study is a first step into that research
direction.

This paper is concerned with the feedback stabilization
of an unstable reaction-diffusion equation with Robin
boundary conditions in the presence of an uncertain
time- and spatially-varying delay in the distributed con-

trol input. Motivated by [34], the proposed control strat-
egy relies on a constant-delay predictor feedback synthe-
sized on a finite-dimensional truncated model capturing
the unstable modes of the original infinite-dimensional
system. In essence, this approach is similar to the one
reported in [23] with application to the boundary con-
trol of a class of diagonal abstract boundary control sys-
tems. However, we point out that the spatially-varying
nature of the delay in the control input brings new chal-
lenges that do not allow the replication of the proof
of stability reported in [23]. This is because while time
and space variables where fully uncoupled in [23], the
spatially-varying nature of the delay considered in this
present work introduces a strong coupling between time
and space variables. Consequently, a dedicated stabil-
ity analysis is required. Inspired by the early work [19]
dealing with the robustness of constant-delay predic-
tor feedback w.r.t. uncertain and time-varying input
delays for finite-dimensional systems (see also [28] in
the context of input-to-state stabilization), this analy-
sis is carried out in this paper via a small gain argu-
ment. We show that the constant-delay predictor feed-
back achieves the exponential stabilization of the closed-
loop infinite-dimensional system provided that the devi-
ations of the uncertain time- and spatially-varying delay
around its nominal value are small enough. The derived
proof applies to any distributed parameter system asso-
ciated with an unbounded operator that 1) generates a
C0-semigroup on a weighted space of square integrable
functions on a compact interval; and 2) is self-adjoint
with compact resolvent. This includes, e.g., the linear
Kuramoto-Sivashinsky equation studied in [14].

The remainder of this paper is organized as follows. The
problem setting and the proposed control strategy are
reported in Section 2. Then, the stability analysis is car-
ried out in Section 3. The numerical illustration of the
obtained results is reported in Section 4. Finally, con-
cluding remarks are provided in Section 5.

Notation. The sets of non-negative integers, real, and
non-negative real numbers are denoted by N, R, and R+,
respectively. The set of n-dimensional vectors over R is
denoted by Rn and is endowed with the Euclidean norm
‖x‖ =

√
x∗x. The set of n×mmatrices over R is denoted

by Rn×m and is endowed with the induced norm denoted
by ‖ · ‖. For any t0 > 0, we say that ϕ ∈ C0(R;R) is a
transition signal over [0, t0] if 0 ≤ ϕ ≤ 1, ϕ|(−∞,0] = 0,

and ϕ|[t0,+∞) = 1.

2 Problem setting and control design strategy

2.1 Problem setting

2.1.1 Abstract system

We consider the real state-space H = L2
ρ(0, 1) for some

0 < ρ ∈ C0([0, 1];R), i.e. the space of square integrable
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functions over (0, 1) endowed with the weighted 1 in-

ner product 〈f, g〉 =
∫ 1

0
ρ(ξ)f(ξ)g(ξ) dξ. The associated

norm is denoted by ‖ · ‖H. We recall that this structure
defines a separable real Hilbert space. Let A : D(A) ⊂
H → H be the generator of a C0-semigroup T (t). We
further assume that A is self-adjoint with compact re-
solvent. In this context the following result is standard,
see e.g. [5, Chap. 6] and [9, Sec A.4.2]. The eigenvalues
(λn)n≥1 of A are all real with finite multiplicity, can be
sorted such that they form a non-increasing sequence
with λn → −∞ when n → +∞, and the associated
eigenvectors (en)n≥1 can be selected to form a Hilbert
basis of H.

Our starting point is the abstract system:

dX

dt
(t) = AX(t) + v(t) (1a)

X(0) = X0 (1b)

for t > 0. Here X(t) ∈ H is the state-vector and X0 ∈ H
is the initial condition. We assume that the distributed
feedback control u(t) ∈ H is related to v(t) ∈ H by

[v(t)](ξ) = [u(t−D(t, ξ))](ξ)

withD ∈ C0(R+×[0, 1];R) a time- and spatially-varying
delay that satisfies |D −D0| ≤ δ where D0 > 0 and δ ∈
(0, D0) are known given constants. Constant D0 > 0 is
referred to as the nominal value of the delay D while δ >
0 stands for its maximal amplitude of variation around
D0. The system is assumed uncontrolled for negative
times, i.e., [u(t)](ξ) = 0 for t < 0 and ξ ∈ (0, 1). The
objective is to design the feedback control u, taking the
form of a state-feedback of the system trajectoryX, such
that the closed-loop system is exponentially stable.

2.1.2 Example 1: reaction-diffusion equation

The abstract formulation as previously described is mo-
tivated by the study of the in-domain feedback stabi-
lization of the following reaction-diffusion equation with
Robin boundary conditions:

yt(t, ξ) =
1

ρ(ξ)
(pyξ)ξ(t, ξ) +

q(ξ)

ρ(ξ)
y(t, ξ) (2a)

+ u(t−D(t, ξ), ξ)

cos(θ1)y(t, 0)− sin(θ1)yξ(t, 0) = 0 (2b)

cos(θ2)y(t, 1) + sin(θ2)yξ(t, 1) = 0 (2c)

y(0, ξ) = y0(ξ), (2d)

for t > 0 and ξ ∈ (0, 1). Here we have ρ, q ∈ C0([0, 1];R),
p ∈ C1([0, 1];R), ρ, p > 0, and θ1, θ2 ∈ [0, 2π). In this set-
ting, u : [−D0−δ,+∞)× (0, 1)→ R, with u(t, ·) = 0 for

1 The introduction of the weighting function ρ is motivated
by the study of the reaction-diffusion equation described in
Subsection 2.1.2.

t < 0, is the in-domain control input. This input is sub-
ject to the uncertain time- and spatially-varying contin-
uous input delay D : R+× [0, 1]→ R with |D−D0| ≤ δ
where D0 > 0 and δ ∈ (0, D0) are given constants. Fi-
nally, y0 : (0, 1)→ R stands for the initial condition.

The reaction-diffusion system (2) can be written in
the abstract form (1) by using the real state-space
H = L2

ρ(0, 1). In this case, we have the operator

Af = 1
ρ (pf ′)′ + q

ρf ∈ H defined on the domain

D(A) = {f ∈ H2(0, 1) : cos(θ1)f(0) − sin(θ1)f ′(0) =
0, cos(θ2)f(1) + sin(θ2)f ′(1) = 0}, the state-vector
X(t) = y(t, ·) ∈ H, the distributed function v(t) =
u(t −D(t, ·), ·) ∈ H with control input u(t, ·) ∈ H, and
the initial condition X0 = y0 ∈ H. Recalling that A
generates a C0-semigroup T (t) on H and that A is self-
adjoint with compact resolvent (see, e.g., [36, Sec. 8.6]
and [10]), the context of the abstract form (1) applies
to this system.

Remark 1 The stabilization of (2) in the case of con-
stant functions ρ, p, q, a constant and known delay D,
and for Dirichlet boundary conditions (θ1 = θ2 = 0), has
been investigated in [35] via a backstepping design.

2.1.3 Example 2: linear Kuramoto-Sivashinsky equa-
tion

An other example of a PDE system fitting within the
abstract form (1) is the linear Kuramoto-Sivashinsky
equation studied in [14]:

yt(t, ξ) + yξξξξ(t, ξ) + λyξξ(t, ξ) = u(t−D(t, ξ), ξ)
(3a)

y(t, 0) = y(t, 1) = yξ(t, 0) = yξ(t, 1) = 0 (3b)

y(0, ξ) = y0(ξ), (3c)

for t > 0 and ξ ∈ (0, 1). Here we have λ > 0. As in the
previous setting, u is the in-domain control input, D is
a time- and spatially-varying delay, and y0 is the initial
condition.

The linear Kuramoto-Sivashinsky equation (3) can be
written as (1) by introducing the real state-space H =
L2(0, 1), the operator Af = −f ′′′′ − λf ′′ ∈ H defined
on the domain D(A) = H4(0, 1) ∩ H2

0 (0, 1), the state-
vector X(t) = y(t, ·) ∈ H, the distributed function
v(t) = u(t−D(t, ·), ·) ∈ Hwith control input u(t, ·) ∈ H,
and the initial condition X0 = y0 ∈ H. The fact that
A is self-adjoint, has compact resolvent, and generates
a C0-semigroup, is reported, e.g., in [6].

3



2.2 Control design strategy

Assuming that the control input u is such that 2 v ∈
C0(R+;H), the mild solution X ∈ C0(R+;H) of (1) is
uniquely defined by [9, Def. 3.1.4 and Lem. 3.1.5]

X(t) = T (t)X0 +

∫ t

0

T (t− s)v(s) ds. (4)

We introduce xn(t) = 〈X(t), en〉 the coefficients of
projection of X(t) onto the Hilbert basis (en)n≥1.
Then we have X(t) =

∑
n≥1 xn(t)en and ‖X(t)‖2H =∑

n≥1 |xn(t)|2 for all t ≥ 0. Since Aen = λnen, we have

that T (t)en = eλnten. Thus, we obtain from (4) that

xn(t) = eλntxn(0) +

∫ t

0

eλn(t−s) 〈v(s), en〉 ds.

As v is continuous, this shows that xn ∈ C1(R+;R) and
satisfies the ODE

ẋn(t) = λnxn(t) + 〈v(t), en〉

for all t ≥ 0. Considering D0 > 0 a nominal value of
the delay D as described in Subsection 2.1.1, we define a
nominal delayed control input v0(t) = u(t−D0). We also
introduce the coefficients of projection vn(t) = 〈v(t), en〉
and v0,n(t) = 〈v0(t), en〉, and the residual term ∆n(t) =
vn(t)− v0,n(t) = 〈v(t)− v0(t), en〉. Then we have

ẋn(t) = λnxn(t) + v0,n(t) + ∆n(t) (5)

for all t ≥ 0.

Let N ≥ 1 and γ > 0 be such that λn ≤ −γ for all
n ≥ N + 1. We consider the following structure for the
control input:

[u(t)](ξ) =

N∑
k=1

wk(t)ek(ξ) (6)

with wk(t) ∈ R to be defined. In particular, we have

[v(t)](ξ) =

N∑
k=1

wk(t−D(t, ξ))ek(ξ), (7a)

[v0(t)](ξ) =

N∑
k=1

wk(t−D0)ek(ξ). (7b)

Then we obtain from (5) that

ẋn(t) = λnxn(t) + wn(t−D0) + ∆n(t) (8)

2 This regularity will be assessed in Subsection 3.1 based on
the forthcoming control strategy.

for 1 ≤ n ≤ N , while

ẋn(t) = λnxn(t) + vn(t) (9)

for n ≥ N + 1.

Remark 2 As it can be seen from (7a), the spatially-
varying nature of the input delay introduces a strong cou-
pling between the time and space variables. A decoupling
is obtained only in the case of a delay that is uniform
throughout the spatial domain, i.e., D(t, ξ) = Du(t).

In that case, (7a) reduces to [v(t)](ξ) =
∑N
k=1 wk(t −

Du(t))ek(ξ). This implies the following simplifications:
vn(t) = wn(t − Du(t)) and ∆n(t) = wn(t − Du(t)) −
wn(t−D0) for n ≤ N while vn(t) = 0 for n ≥ N + 1.

Introducing

x(t) =
[
x1(t) . . . xN (t)

]>
∈ RN ,

w(t) =
[
w1(t) . . . wN (t)

]>
∈ RN ,

∆(t) =
[
∆1(t) . . . ∆N (t)

]>
∈ RN ,

Λ = diag(λ1, . . . , λN ) ∈ RN×N ,

we obtain that

ẋ(t) = Λx(t) + w(t−D0) + ∆(t) (10)

for all t ≥ 0. From (6), we have ‖u(t)‖H = ‖w(t)‖.

The control design strategy consists of the design of a
constant-delay predictor feedback in the nominal config-
uration D(t, ξ) = D0 for which (10) reduces to ẋ(t) =
Λx(t) + w(t −D0). Thus, the control scheme takes the
form of the classical constant-delay predictor feedback:

w(t) = ϕ(t)K

{
x(t) +

∫ t

t−D0

e(t−D0−s)Λw(s) ds

}
,

(11)
where K ∈ RN×N is a feedback gain such that Acl =
Λ + e−D0ΛK is Hurwitz and ϕ ∈ C0(R;R) is a transition
signal 3 over [0, t0] for some arbitrarily given t0 > 0. In
particular, we have w(t) = 0 and hence u(t) = 0 for
t ≤ 0. The existence and uniqueness of a function w
that is solution of the implicit equation (11) has been
investigated in [4]. See the proof of Lemma 9 for details.

The objective of the remainder of this paper is to show
the following robustness result: the constant-delay pre-
dictor feedback (11) achieves the exponential stabiliza-
tion of (1) with command input (6) for small enough de-
viations of the time- and spatially-varying delay D(t, ξ)
around its nominal value D0.

3 See notation section.
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Remark 3 For a given desired closed-loop matrix Acl ∈
RN×N , the corresponding feedback gain K ∈ RN×N is
given by K = eD0Λ(Acl − Λ).

Remark 4 The transition signal ϕ appearing in (11) is
used to ensure a continuous transition from open-loop
(t < 0) to closed-loop (t ≥ 0). In particular, recalling
that [v(t)](ξ) = [u(t−D(t, ξ))](ξ), this transition signal
prevents the occurrence of jumps in the distributed signal
v(t) at times t ≥ 0 for which the function t 7→ t−D(t, ξ)
crosses 0 while avoiding the introduction of compatibility
conditions restricting the set of admissible initial condi-
tions X0 ∈ H. This continuous behavior will be used in
the well-posedness assessment; see the proof of Lemma 9
for details.

2.3 Statement of the main result

The main result of this paper is stated below.

Theorem 5 Let the real state-space H = L2
ρ(0, 1) for

some 0 < ρ ∈ C0([0, 1];R). Let A : D(A) ⊂ H → H be
a self-adjoint operator with compact resolvent and which
is the generator of a C0-semigroup. Let an integer N ≥ 1
be such that λN+1 < 0. Let D0 > 0 be a given nominal
delay. Let K ∈ RN×N be a feedback gain such that Acl =
Λ + e−D0ΛK is Hurwitz. Let M ≥ 1 and σ > 0 be such
that ‖eAclt‖ ≤Me−σt for all t ≥ 0. We denote by Kk the
k-th line of the feedback gain K. Let δ ∈ (0, D0) be such
that

max(M, e‖Acl‖δ)
√
N

σ

N∑
k=1

‖Kk‖
{

(e‖Acl‖δ − 1) + σδeσδ
}
< 1.

(12)
Let ϕ ∈ C0(R;R) be a transition signal over [0, t0] for
some given t0 > 0. Then there exist constants κ,C > 0
such that, for any initial condition X0 ∈ H and any
delay D ∈ C0(R+ × [0, 1];R) with |D − D0| ≤ δ, the
mild solution X ∈ C0(R+;H) of the closed-loop system
composed of (1), (6), and (11) satisfies

‖X(t)‖H + ‖u(t)‖H ≤ Ce−κt‖X0‖H

for all t ≥ 0.

Remark 6 As the left-hand side of (12) is equal to zero
when evaluated at δ = 0, the existence of δ > 0 such
that (12) holds is ensured by a continuity argument. This
shows that the constant-delay predictor feedback synthe-
sized based on the nominal value D0 of the time- and
spatially-varying delay D(t, ξ) ensures the exponential
stability of the resulting closed-loop system for delays with
deviations δ around the nominal value D0 that are small
enough. In this context, (12) stands for an explicit suffi-
cient condition on the admissible values of δ > 0.

Remark 7 The first part of the proof of Thm. 5 consists
of the study of the robustness of the constant-delay pre-
dictor feedback with respect to delay mismatches in the
context of the finite-dimensional system (10). Note that
similar problems were investigated in [3,19,20,23,29,39]
either in the case of constant or time-varying input de-
lays. However, due to the spatially varying nature of the
delay considered in this work, the above results do not
apply because of the occurrence of the ∆(t) term in (10).
Hence, a dedicated stability analysis, taking into account
the spatially-varying nature of the delay, is required.

Remark 8 The stability result stated by Theorem 5
holds in L2-norm. In the particular case of the reaction-
diffusion equation

yt(t, ξ) = yξξ(t, ξ) + c(ξ)y(t, ξ) + u(t−D(t, ξ), ξ)

with Dirichlet boundary conditions y(t, 0) = y(t, 1) = 0
and where c ∈ L∞(0, 1), the classical solutions (obtained,
e.g., for y0 ∈ H2(0, 1)∩H1

0 (0, 1), D ∈ C1(R+× [0, 1];R),
and ϕ ∈ C1(R;R)) of the closed-loop system are exponen-
tially stable in H1-norm. This result essentially relies on
the identity:

‖f‖2H1
0 (0,1) =

∫ 1

0

c(ξ)f(ξ)2 dξ −
∑
n≥1

λn〈f, en〉2L2(0,1)

which holds for any f ∈ H2(0, 1) ∩ H1
0 (0, 1); see

[34, Eq. 42] for a detailed proof. Based on the sta-
bility result of Theorem 5 and using a similar ap-
proach to the one reported in Subsection 3.3 to estimate∑
n≥N+1 |λn||xn(t)|2, the claimed stability estimate in

H1-norm follows.

3 Proof of the main result

This section is devoted to the proof of the main result of
this paper, namely: Theorem 5.

3.1 Well-posedness

We first assess the well-posedness of the closed-loop sys-
tem dynamics.

Lemma 9 For any initial condition X0 ∈ H and any
delay D ∈ C0(R+ × [0, 1];R) with |D − D0| ≤ δ < D0,
there exists a unique mild solution X ∈ C0(R+;H) of
the closed-loop system composed of (1), (6), and (11).
Moreover, the control input satisfies u ∈ C0([−D0 −
δ,+∞);H) as well as v ∈ C0(R+;H) withw ∈ C0([−D0−
δ,+∞);RN ).

Proof. Let X0 ∈ H and D ∈ C0(R+ × [0, 1];R) with
|D−D0| ≤ δ < D0. We show by induction that, for any
k ≥ 1, the mild solution X ∈ C0([0, k(D0− δ)];H) given
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by (4) is well and uniquely defined with u ∈ C0([−D0 −
δ, k(D0 − δ)];H) and v ∈ C0([0, k(D0 − δ)];H) where
w ∈ C0([−D0− δ, k(D0− δ)];RN ) is the unique solution
of (11) over the time interval [−D0 − δ, k(D0 − δ)].

Initialization. For 0 ≤ t ≤ D0 − δ, we have that t −
D(t, ξ) ≤ t − (D0 − δ) ≤ 0 hence v(t) = 0. Then we
have X(t) = T (t)X0 for all 0 ≤ t ≤ D0 − δ, yielding
X ∈ C0([0, D0 − δ];H). In particular x ∈ C0([0, D0 −
δ];RN ) and the control input w solution of the fixed-
point equation (11) is well and uniquely defined (see [4]
for details), and we have w ∈ C0([−D0− δ,D0− δ];RN ).
Finally, we infer from (6) that u ∈ C0([−D0 − δ,D0 −
δ];H).

Induction. Assume that the property holds true for a
given integer k ≥ 1. For 0 ≤ t ≤ (k + 1)(D0 − δ), we
have that t−D(t, ξ) ≤ t− (D0− δ) ≤ k(D0− δ). Thus v
over the time interval [0, (k + 1)(D0 − δ)] only depends
on the known control input u for times in the interval
[−D0−δ, k(D0−δ)]. We need to show that v ∈ C0([0, (k+
1)(D0 − δ)];H). First, as wk is continuous on [−D0 −
δ, k(D0−δ)] andD is continuous on R+×[0, 1], we obtain
thatwk(t−D(t, ·)) ∈ L∞(0, 1) for any t ∈ [0, (k+1)(D0−
δ)]. Then we obtain from (7a) that v(t) ∈ L2

ρ(0, 1) for
any t ∈ [0, (k+1)(D0−δ)]. Now we note from (7a) that,
for any τ, t ∈ [0, (k + 1)(D0 − δ)],

‖v(τ)− v(t)‖H

≤
N∑
k=1

‖{wk(τ −D(τ, ·))− wk(t−D(t, ·))}ek‖H

with

‖{wk(τ −D(τ, ·))− wk(t−D(t, ·))}ek‖2H

=

∫ 1

0

ρ(ξ)|wk(τ −D(τ, ξ))− wk(t−D(t, ξ))|2ek(ξ)2 dξ

−→
τ→t

0

by the Lebesgue dominated convergence theorem [11].
We have shown that v ∈ C0([0, (k+1)(D0−δ)];H). Thus,
using (4), the mild solution X ∈ C0([0, k(D0 − δ)];H) is
uniquely extended as a function X ∈ C0([0, (k+1)(D0−
δ)];H). In particular x ∈ C0([0, (k+1)(D0−δ)];RN ) and
the control input w solution of the fixed-point equation
(11) is well and uniquely defined (see [4] for details), and
we have w ∈ C0([−D0−δ, (k+1)(D0−δ)];RN ). Finally,
we infer from (6) that u ∈ C0([−D0 − δ, (k + 1)(D0 −
δ)];H). This completes the proof by induction. 2

We have shown the existence and uniqueness of the mild
solution X ∈ C0(R+;H) for the closed-loop system asso-
ciated with any initial condition X0 ∈ H and any delay
D ∈ C0(R+ × [0, 1];R) with |D −D0| ≤ δ < D0. More-
over, as v ∈ C0(R+;H), then the spectral reduction re-
ported in Section 2 holds true. Now, the proof of the sta-
bility result stated in Theorem 5 is completed in three

steps. First, a small gain argument is used to assess the
stability of the truncated model (10). Second, the stabil-
ity of the residual infinite-dimensional dynamics (9) is
investigated. Finally, we will be in position to prove the
stability of the closed-loop infinite-dimensional system.

3.2 Stability analysis of the closed-loop truncated model

The stability analysis takes the form of a small gain argu-
ment. This approach is inspired by the seminal work [19]
dealing with the robustness of constant-delay predictor
feedback w.r.t. uncertain and time-varying input delays.

Step 1: use of theArtstein transformation. We first
introduce the change of variable [2]:

z(t) = x(t) +

∫ t

t−D0

e(t−D0−s)Λw(s) ds. (13)

In particular we have from (11) that w = ϕKz with
z ∈ C1(R+;RN ) satisfying

ż(t) = Λz(t) + e−D0Λw(t) + ∆(t) (14)

for all t ≥ 0, and thus

ż(t) = Aclz(t) + ∆(t) (15)

for all t ≥ t0.

Step 2: estimation of sups∈[t0+D0+δ,t] e
κs‖∆(s)‖. We

infer that, for all t ≥ 0,

|∆n(t)|

≤
N∑
k=1

∫ 1

0

ρ(ξ)|wk(t−D(t, ξ))− wk(t−D0)||ek(ξ)||en(ξ)|dξ

≤
N∑
k=1

sup
τ∈[D0−δ,D0+δ]

|wk(t− τ)− wk(t−D0)| (16)

where it has been used that, by Cauchy-Schwarz inequal-

ity,
∫ 1

0
ρ(ξ)|ek(ξ)||en(ξ)|dξ ≤ ‖ek‖H‖en‖H = 1. Now, as

wk = ϕKkz with ϕ(s) = 1 for s ≥ t0, we have for all
t ≥ t0 +D0 + δ that

|∆n(t)| ≤
N∑
k=1

‖Kk‖ sup
τ∈[D0−δ,D0+δ]

‖z(t− τ)− z(t−D0)‖

hence

‖∆(t)‖ ≤ C0 sup
τ∈[D0−δ,D0+δ]

‖z(t− τ)− z(t−D0)‖ (17)

for all t ≥ t0 +D0 + δ with C0 =
√
N
∑N
k=1 ‖Kk‖.
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AsAcl is Hurwitz, we consider constantsM ≥ 1 and σ >
0 such that ‖eAclt‖ ≤ Me−σt for all t ≥ 0. Integrating
(15), we obtain for all t ≥ t0 + D0 + δ and τ ∈ [D0 −
δ,D0 + δ] that

z(t−τ) = eAcl(D0−τ)z(t−D0)+

∫ t−τ

t−D0

eAcl(t−τ−s)∆(s) ds

from which we obtain that

‖z(t− τ)− z(t−D0)‖
≤ ‖eAcl(D0−τ) − I‖‖z(t−D0)‖

+

∥∥∥∥∫ t−τ

t−D0

eAcl(t−τ−s)∆(s) ds

∥∥∥∥
≤ (e‖Acl‖δ − 1)‖z(t−D0)‖

+Mδ

∣∣∣∣∫ t−τ

t−D0

e−σ(t−τ−s)‖∆(s)‖ ds

∣∣∣∣ .
where Mδ = max(M, e‖Acl‖δ). For any κ ∈ (0, σ), to be
specified later, we have∣∣∣∣∫ t−τ

t−D0

e−σ(t−τ−s)‖∆(s)‖ds

∣∣∣∣
≤ e−σ(t−τ)

∣∣∣∣∫ t−τ

t−D0

e(σ−κ)s ds

∣∣∣∣ sup
s∈[t−(D0+δ),t−(D0−δ)]

eκs‖∆(s)‖.

Moreover, one has

e−σ(t−τ)

∣∣∣∣∫ t−τ

t−D0

e(σ−κ)s ds

∣∣∣∣ ≤ e−κ(t−D0)

σ − κ

∣∣∣eκ(τ−D0) − eσ(τ−D0)
∣∣∣

≤ σδeσδ

σ − κ
e−κ(t−D0),

where the last estimate is a consequence of the mean
value theorem. Combining the three latter estimates, we
infer that, for all t ≥ t0 +D0 + δ,

sup
τ∈[D0−δ,D0+δ]

‖z(t− τ)− z(t−D0)‖

≤ (e‖Acl‖δ − 1)‖z(t−D0)‖

+
Mδσδe

σδ

σ − κ
e−κ(t−D0) sup

s∈[t−(D0+δ),t−(D0−δ)]
eκs‖∆(s)‖.

Thus, we infer from (17) that, for all t ≥ t0 +D0 + δ,

sup
s∈[t0+D0+δ,t]

eκs‖∆(s)‖ (18)

≤ C1(δ) sup
s∈[t0+δ,t−D0]

eκs‖z(s)‖

+ C2(δ) sup
s∈[t0,t−(D0−δ)]

eκs‖∆(s)‖

where C1(δ) = C0e
κD0(e‖Acl‖δ − 1) and C2(δ) =

MδC0σδe
σδ

σ−κ eκD0 .

Step 3: estimation of sups∈[t0,t] e
κs‖z(s)‖. We now

integrate (15) over [t0, t] for t ≥ t0. Recalling that 0 <
κ < σ, this yields

‖z(t)‖ ≤Me−σ(t−t0)‖z(t0)‖+M

∫ t

t0

e−σ(t−τ)‖∆(τ)‖ dτ

≤Me−κ(t−t0)‖z(t0)‖+
M

σ − κ
e−κt sup

s∈[t0,t]

eκs‖∆(s)‖

hence

sup
s∈[t0,t]

eκs‖z(s)‖ ≤Mδe
κt0‖z(t0)‖+ Mδ

σ − κ
sup

s∈[t0,t]

eκs‖∆(s)‖

(19)
for all t ≥ t0.

Step 4: exponential stability of z(t). Combining es-
timates (18-19), we deduce that

sup
s∈[t0+D0+δ,t]

eκs‖∆(s)‖ (20)

≤ C3(δ)‖z(t0)‖+ η(δ) sup
s∈[t0,t]

eκs‖∆(s)‖

for all t ≥ t0 +D0 + δ with C3(δ) = Mδe
κt0C1(δ) and

η(δ) =
MδC1(δ)

σ − κ
+ C2(δ)

=
MδC0e

κD0

σ − κ

{
(e‖Acl‖δ − 1) + σδeσδ

}
.

From the small gain assumption (12), a continu-
ity argument at κ = 0 shows the existence of 4

κ ∈ (0,min(σ, γ/2)) such that 0 ≤ η(δ) < 1. We fix such
a κ ∈ (0,min(σ, γ/2)) for the remainder of the proof.
Noting that the supremums appearing in (20) are finite,
we infer from this estimate that, for all t ≥ t0 +D0 + δ,

sup
s∈[t0+D0+δ,t]

eκs‖∆(s)‖

≤ C3(δ)

1− η(δ)
‖z(t0)‖+

η(δ)

1− η(δ)
sup

s∈[t0,t0+D0+δ]

eκs‖∆(s)‖

From (19) and using the estimate sups∈[t0,t] e
κs‖∆(s)‖ ≤

sups∈[t0,t0+D0+δ] e
κs‖∆(s)‖+sups∈[t0+D0+δ,t] e

κs‖∆(s)‖,
we have for all t ≥ t0 +D0 + δ

sup
s∈[t0,t]

eκs‖z(s)‖

4 We recall that γ > 0 has been selected such that λn ≤ −γ
for all n ≥ N + 1.
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≤ C4(δ)‖z(t0)‖+ C5(δ) sup
s∈[t0,t0+D0+δ]

eκs‖∆(s)‖

with C4(δ) = Mδ

{
eκt0 + C3(δ)

(σ−κ)(1−η(δ))

}
and C5(δ) =

Mδ

σ−κ

{
1 + η(δ)

1−η(δ)

}
= Mδ

(σ−κ)(1−η(δ)) . This yields, for all

t ≥ t0 +D0 + δ,

‖z(t)‖ ≤ C4(δ)e−κt‖z(t0)‖ (21)

+ C5(δ)e−κt sup
s∈[t0,t0+D0+δ]

eκs‖∆(s)‖.

We now evaluate, in function of the initial condition
z(0) = x(0), the two terms on the right hand side of
(21). We recall that w = ϕKz. On one hand we have
for t ≤ D0 − δ that t −D(t, ξ) ≤ t − (D0 − δ) ≤ 0 and
t − D0 ≤ 0. From (7), we obtain v(t) = v0(t) = 0 and
∆n(t) = 〈v(t)− v0(t), en〉 = 0, hence ∆(t) = 0. On the
other hand, we have from (16) that, for t > D0 − δ,

|∆n(t)| ≤ 2

N∑
k=1

sup
s∈[t−(D0+δ),t−(D0−δ)]

|wk(s)|

≤ 2

N∑
k=1

‖Kk‖ sup
s∈[0,max(t−(D0−δ),0)]

‖z(s)‖,

where we have used that wk(s) = 0 for s ≤ 0 and
|wk(s)| ≤ ‖Kk‖‖z(s)‖ for s ≥ 0. In both cases, we ob-
tain that, for all t ≥ 0,

‖∆(t)‖ ≤ 2C0 sup
s∈[0,max(t−(D0−δ),0)]

‖z(s)‖. (22)

We now show by induction that, for any k ≥ 1, there
exists αk ≥ 0 such that ‖z(t)‖ ≤ αk‖x(0)‖ for all 0 ≤
t ≤ k(D0 − δ).

Initialization. For 0 ≤ t ≤ D0−δ, we have ż(t) = Λz(t)+
e−D0Λw(t) = (Λ + ϕ(t)e−D0ΛK)z(t) hence ‖ż(t)‖ ≤
C6‖z(t)‖ with C6 = ‖Λ‖+ ‖e−D0ΛK‖. In particular we

have ‖z(t)‖ ≤ ‖x(0)‖+C6

∫ t
0
‖z(s)‖ds. The application

of Grönwall’s inequality [9, Lem. A.6.7] yields ‖z(t)‖ ≤
α1‖x(0)‖ for all 0 ≤ t ≤ D0−δ with α1 = 1+eC6(D0−δ).

Induction. Assume that ‖z(t)‖ ≤ αk‖x(0)‖ for all 0 ≤
t ≤ k(D0−δ). Recalling that ż(t) = Λz(t)+e−D0Λw(t)+
∆(t) = (Λ + ϕ(t)e−D0ΛK)z(t) + ∆(t), we obtain from
(22) that, for all 0 ≤ t ≤ (k + 1)(D0 − δ),

‖ż(t)‖ ≤ C6‖z(t)‖+ 2C0 sup
s∈[0,max(t−(D0−δ),0)]

‖z(s)‖

≤ C6‖z(t)‖+ 2C0αk‖x(0)‖.

The use of Grönwall’s inequality shows the existence of
αk+1 ≥ 1 such that ‖z(t)‖ ≤ αk+1‖x(0)‖ for all 0 ≤ t ≤
(k+ 1)(D0 − δ). This completes the proof by induction.

Consequently, we have the existence of a constant α ≥ 1,
independent of X0, such that ‖z(t)‖ ≤ α‖x(0)‖ for all
0 ≤ t ≤ t0 +D0 + δ. Moreover, we obtain from (22) that
‖∆(t)‖ ≤ 2C0α‖x(0)‖ for all 0 ≤ t ≤ t0 +D0 + δ.

We can now conclude on the exponential stability of z.
On one hand, we have for all 0 ≤ t ≤ t0 +D0 + δ that

‖z(t)‖ ≤ α‖x(0)‖ ≤ αeκ(t0+D0+δ)e−κt‖x(0)‖.

On the other hand, we obtain from (21) that, for all
t ≥ t0 +D0 + δ,

‖z(t)‖ ≤ α{C4(δ) + 2C0C5(δ)eκ(t0+D0+δ)}e−κt‖x(0)‖.

Combining the two latter estimates, we obtain the
existence of a constant C7 ≥ 0 such that ‖z(t)‖ ≤
C7e

−κt‖x(0)‖ for all t ≥ 0.

Step 5: exponential stability of the system in its
original coordinates. Recalling that w = ϕKz with
0 ≤ ϕ ≤ 1, we infer that

‖u(t)‖H = ‖w(t)‖ ≤ C7‖K‖e−κt‖x(0)‖ (23)

for all t ≥ 0. Finally, we obtain from (13) that, for all
t ≥ 0,

‖x(t)‖ ≤ ‖z(t)‖+

∫ t

t−D0

e|t−D0−s|‖Λ‖‖w(s)‖ ds (24)

≤ C8e
−κt‖x(0)‖

with C8 = (1 + ‖K‖e(κ+‖Λ‖)D0/κ)C7. Thus we have
shown the exponential stability of the system trajecto-
ries, as well as the exponential decay of the control in-
put, for the closed-loop truncated model (10).

3.3 Stability analysis of the residual infinite-dimensional
dynamics

We now investigate the stability of the residual infinite-
dimensional dynamics (9). We consider in this subsection
integers n ≥ N+1 for which we recall that λn ≤ −γ < 0.
We also recall that κ > 0 has been selected such that
0 < 2κ < γ. Now, integrating (9), we infer that xn(t) =

eλntxn(0) +
∫ t

0
eλn(t−τ)vn(τ) dτ for all t ≥ 0. Thus we

have

|xn(t)|2 ≤ 2e−2γt|xn(0)|2 + 2

{∫ t

0

e−γ(t−τ)|vn(τ)|dτ
}2

≤ 2e−2γt|xn(0)|2 +
2

γ

∫ t

0

e−γ(t−τ)|vn(τ)|2 dτ

where the latter estimate is obtained by using Cauchy-
Schwarz inequality. Summing the latter estimate for n ≥
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N + 1, we deduce that∑
n≥N+1

|xn(t)|2 ≤ 2e−2γt
∑

n≥N+1

|xn(0)|2 (25)

+
2

γ

∫ t

0

e−γ(t−τ)‖v(τ)‖2H dτ

for all t ≥ 0. We now need to evaluate the term ‖v(τ)‖H.
From (7a), we have

‖v(t)‖H ≤
N∑
k=1

√∫ 1

0

ρ(ξ)|wk(t−D(t, ξ))ek(ξ)|2 dξ.

Noting from (23) that

|wk(t−D(t, ξ))| ≤ ‖w(t−D(t, ξ))‖
≤ sup
τ∈[t−(D0+δ),t−(D0−δ)]

‖w(τ)‖

≤ C7‖K‖eκ(D0+δ)e−κt‖x(0)‖,

we obtain from the two latter estimates that, for all t ≥ 0,

‖v(t)‖H ≤ NC7‖K‖eκ(D0+δ)e−κt‖x(0)‖,

were we have used that ek ∈ H is a unit vector. Since
0 < 2κ < γ, we have the following estimate:∫ t

0

e−γ(t−τ)e−2κτ dτ = e−γt
∫ t

0

e(γ−2κ)τ dτ ≤ 1

γ − 2κ
e−2κt.

Using the two latter estimates into (25), we infer that∑
n≥N+1

|xn(t)|2 ≤ 2e−2κt
∑

n≥N+1

|xn(0)|2 (26)

+ C2
9e
−2κt‖x(0)‖2

for all t ≥ 0, where C9 ≥ 0 is given by C2
9 =

2N2C2
7‖K‖

2e2κ(D0+δ)

γ(γ−2κ) .

3.4 Conclusion of the proof of the main result

Combining estimates (24) and (26), we thus infer that,
for all t ≥ 0,

‖X(t)‖2H = ‖x(t)‖2 +
∑

n≥N+1

|xn(t)|2 ≤ C2
10e
−2κt‖X0‖2H

where C10 ≥ 0 is given by C2
10 = max(2, C2

8 + C2
9 ). Re-

calling that the command input u satisfies the estimate
(23), this completes the proof of the main result.
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Fig. 1. Time and spatial evolution of the input delay D(t, ξ)

4 Numerical example

We illustrate the result of Theorem 5 based on the
reaction-diffusion system described by (2) in the case
ρ = 1, p = 0.015, q = 0.35, θ1 = π/3, and θ2 = π/10.
The open-loop system is unstable with λ1 ≈ 0.317
and λ2 ≈ 0.116 while all other modes are stable with
λ3 ≈ −0.342. Thus we set N = 2. We consider the nom-
inal value of the delay D0 = 1 s. We impose the location
−0.3 for the two poles of the closed-loop truncated dy-
namics. In this case, the small gain condition (12) is
satisfied for δ = 0.237, allowing to apply the stability
result stated in Theorem 5.

For simulation purposes, we consider the time- and
spatially-varying distributed input delay D(t, ξ) =
0.77 + 0.23|2ξ − 1| {1 + sin([3/2 + ξ]t+ [11ξ − 3])} for
t ≥ 0 and ξ ∈ [0, 1]; see Fig. 1. In particular, we have
that |D − D0| ≤ 0.23 ≤ δ. The initial condition is se-
lected as y0(ξ) = (1−2ξ)/2+20ξ(1−ξ)(ξ−3/5). We set
the transition time as t0 = 0.2 s with ϕ linearly increas-
ing from 0 to 1 on [0, t0]. The numerical scheme consists
of the modal approximation of the reaction-diffusion
equation by its 20 dominant modes. The solution of the
the implicit equation (11), used to implement the feed-
back law (6), is computed based the approximation of
the integral appearing in (11) by a Riemann sum. The
corresponding simulation results are depicted in Fig 2.
They are compliant with the predictions of Theorem 5.

5 Conclusion

This paper discussed the problem of in-domain stabiliza-
tion of a class of infinite-dimensional systems, which op-
erate on a weighted space of square integrable functions
over a compact interval, in the presence of an uncertain
time- and spatially-varying delay in the distributed actu-
ation. This class includes, for example, reaction-diffusion
PDEs. The spatially-varying nature of the delay induces
new challenges because it introduces a strong coupling
between the space and time variables compared to only
time-varying delays configurations. We solved this con-
trol design problem by synthesizing a constant-delay pre-
dictor feedback on a finite-dimensional truncated model
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Fig. 2. Time evolution of the closed-loop system

capturing the unstable modes of the original plant. In-
voking a small gain argument, we showed that the re-
sulting closed-loop system is exponentially stable pro-
vided the fact that the deviations of the delay around
its nominal value are small enough. As small gain condi-
tions are, in general, conservative, future works will be
devoted to the derivation of relaxed stability conditions.
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