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Abstract—Edge Computing exploits computational capabilities
deployed at the very edge of the network to support applications
with low latency requirements. Such capabilities can reside in
small embedded devices that integrate dedicated hardware – e.g.,
a GPU – in a low cost package. But these devices have limited
computing capabilities compared to standard server grade equip-
ment. When deploying an Edge Computing based application,
understanding whether the available hardware can meet target
requirements is key in meeting the expected performance. In this
paper, we study the feasibility of deploying Augmented Reality
applications using Embedded Edge Devices (EEDs). We compare
such deployment approach to one exploiting a standard dedicated
server grade machine. Starting from an empirical evaluation of
the capabilities of these devices, we propose a simple theoretical
model to compare the performance of the two approaches. We
then validate such model with NS-3 simulations and study their
feasibility. Our results show that there is no one-fits-all solution.
If we need to deploy high responsiveness applications, we need a
centralized server grade architecture and we can in any case only
support very few users. The centralized architecture fails to serve
a larger number of users, even when low to mid responsiveness is
required. In this case, we need to resort instead to a distributed
deployment based on EEDs.

I. INTRODUCTION

The massive growth in popularity of real time applications,

e.g., Augmented Reality (AR) and the Internet of Things (IoT),

has pushed service providers to part ways from the standard

Cloud Computing paradigm and move towards decentralized

solutions like Mobile Edge Clouds (MEC) [1]. MECs are more

distributed and localized forms of cloud computing that aim to

minimize the service response time of deployed applications

by offering computing capabilities at the edge of the network

instead that from a centralized remote location. Applications

can then benefit of the processing computing advantages of

cloud computing without compromising on their real time

requirements.
To further carry forward the adoption of MECs, hardware

providers have started to develop tiny embedded devices that

integrate dedicated computing capabilities, e.g. a GPU or

a TPU, at a reduced cost. NVIDIA’s Jetson Nano [2] and

Google’s Coral Dev Unit [3] are just two examples of this

trend, providing a good balance between cost and perfor-

mance. This is in contrast to more expensive approaches that

require the deployment of expensive server grade hardware.

On the other hand, adopting single board devices for com-

puting intensive applications can introduce a new bottleneck

in the edge computing architecture. Even if enabled with

(a) Centralized architecture (b) Distributed architecture

Fig. 1: The centralized vs. distributed architecture

dedicated hardware capabilities, these devices provide only

reduced computing power which might not be sufficient for

computing intensive applications like DNNs.

In this paper we aim to answer the following question:

can EEDs be a viable solution to support applications with

stringent computing and responsiveness requirements? To un-

derstand the adoptability of these systems, we compare two

different deployment strategies for edge cloud deployments

(Fig.1): (a) a centralized approach that uses shared server grade

equipment to support object recognition tasks and (b) a dis-

tributed system that exploits EEDs under the same application

scenario. We focus our study on a realistic use case, in which

user equipment (EU) devices like Augmented Reality (AR)

glasses or smartphones capture videos continuously and send

frames to some Processing Units (PUs), which can either be

a single server grade hardware or a set of EEDs. In particular,

we use object recognition models based on DNN as the target

computing task.

Our contributions can be summarized as follows:

1) We develop a simple mathematical model (§IV-A) to

study how varying the number of users affects the total

performance of the system.

2) To correctly parametrize such a model, we carry on

a set of empirical measurements (§IV-B)to evaluate

the latency and the accuracy of a state deep learning

algorithm for video analytics (e.g., object detection

and recognition) on different platforms (i.e. Coral Dev

Board, Jetson Nano, and GPU enabled server).

3) Finally, we validate the analytical model through simu-

lations (§IV-C) in NS3 [4] and conduct the performance

comparison (§IV-D) between centralized and distributed
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solutions in a real life scenario. Our results show that,

if we want to support a high number of users, we need

to deploy a certain number of EEDs instead of a single

central server with high computational capacities when

it is the case of an AR application requiring low/mid

responsiveness (Fig. 5 and 6). For applications that

demand high responsiveness, the only solution is the

central server with high computational capacity, which

anyways can support very few users.

II. SYSTEM DESCRIPTION

We consider an AR application, whose aim is to capture

videos of the environment, with User Equipments (UEs) such

as smart glasses or phones, and show to the user an appropriate

description. This kind of application is envisaged in the

context of Industry 4.0, where human operators are provided

with information on their visual field, during maintenance

or training. It can also be considered for cultural or leisure

activities, as in smart museums, to identify artifacts.

A camera on the UE captures a video and continuously

sends frames to processing units over the wireless link, via

wireless Access Points (APs). The Processing Units (PUs)

can be either a single Central Server or several EEDs,

e.g., Jetson Nano or Google TPU Boards, as in Fig. 1. PUs

host a pre-trained DNN, which performs object detection and

recognition. Finally the classification result (and optionally

additional information) is sent back to the users from the PUs

through the wireless link, and is shown in the field of view in

the UE.

We contrast two architectures: (i) a Centralized Architec-

ture, where the PU is one single central server, equipped with

a powerful GPU and (ii) a Distributed Architecture, where

PUs are EEDs, and we deploy one EED per AP.

We want to show in which cases one is to be preferred

to the other. We consider three kinds of applications, whose

requirements are in Table I. They are Low Responsiveness

(LR), Mid Responsiveness (MR) and High Responsiveness

(HR) applications. We also consider two types of wireless

links, which we denote with Low Wireless Capacity and

High Wireless Capacity, whose good data rate (number of

TCP payload bits tranmitted per second) is R = 450 Mbps

and R = 1 Gbps, respectively. The first corresponds to the

standard 802.11.ac used for wireless communication with 80

Mhz channel (see Fig.3 of [5] ). The second corresponds to

the standard 802.11.ax (Wi-Fi 6) with 160 Mhz channel.

III. RELATED WORK

We now review the different solutions proposed in the

literature to enable AR. AR is demanding both in terms of

complex computation and low latency. Indeed, computation is

mostly performed by DNN and the result, e.g., classification,

must be sent back to the User Equipment in few milliseconds

(Table I). Recent work proposes optimizing DNNs in order

to run them directly into the smartphones [6]. However, due

to energy and computational constraints of smartphones, the

latency is about 600 ms, which is too high for mid and high

responsiveness applications (Table I). For this reason, most

of the interest has now moved to offloading techniques: the

computation takes place in a processing unit (PU), different

than the UE. While this generally decreases the computation

latencies, it also adds a network latency. In some work [7], the

PU is represented by the Cloud. However, the latency remains

above 400 ms, due to the high network latency to reach the

Cloud. Moreover, the bandwidth consumed on Metro Area

Networks risks to be unmanageable [8].

The Edge Computing (EC) paradigm promises to keep

network latency small, thanks to the proximity of PUs and

UE. An AR application with object detection, similar to our

considered set-up, is studied in [9], where images from the

User Equipment (UE) are matched against a database of

images to find the most similar. Most of the computation is

done by the edge servers, which also cache a part of the

database. Only if the correct images are not found in such

cache, the video frames are sent to the Cloud to be processed

there. According to the authors, their system can achieve

300ms end-to-end latency when the edge server is used by

36 users simultaneously. The focus of [10] is instead a load-

balancing algorithm that chooses in which of the available

edge servers the video frames from UE should be sent. A

limit of [10] is that it needs to solve an optimization problem.

Between one resolution and the next, requests reside in a

queue, for up to 100 ms. Therefore, this queue-and-optimize

approach introduces a non-negligible additional latency which

does not fit all the AR applications requirements as shown

in Table I. Moreover, they assume to use Edge servers, on

average 50 ms away, which, alone, exceeds the most stringent

requirements. In our work we tackle instead a wider range

of application requirements and, in order to satisfy the most

stringent, we do not apply any load-balancing optimization and

we place, in our distributed architecture, one processing unit

(PU) per access point (AP). Liu et Al. [11] observe that, to

adapt to the visual field on the UE, which continuously moving

in AR applications, the overall latency must be below 20 ms.

To achieve such objective, they propose a set of solutions

consisting in performing part of the computation directly in the

UE, in order to reduce the amount of information to offload

toward the PUs. In this paper, instead, we do not consider any

of such optimizations: our UE just needs to capture and sends

the video and the entire processing is done in the PUs, in order

to save computation and energy burden on battery-limited UE.

A novelty of our work is that, while in all the previous work

mentioned here, the PUs are fully-fledged servers, we instead

consider a fully distributed architecture, where the processing

is entirely done on small and cheap (~150$) embedded devices

and contrast it with the use of a fully-fledged server as PU. In

an alternative architecture proposed by [8], PUs are Cloudlets,

i.e., virtual machines deployed at the edge of the network, i.e.,

in base stations. However, cloudlets can only run on fully-

fledged servers. We want to understand, instead, the feasibility

of low latency applications only relying on edge AI embedded

devices as a replacement of fully-fledged servers.
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TABLE I: Augmented Reality requirements

AR requirements Latency
Low Responsiveness 500 ms [6]
Mid Responsiveness 100 ms
High Responsiveness 16 ms [11]

IV. PERFORMANCE EVALUATION

In order to assess the performance of the Centralized vs.

Distribution architectures, we first provide a simple analytical

model (§IV-A) to obtain equations for the latency and the

maximum number of supported users. In order to give realistic

values to the model parameters and to assess the classification

accuracy of the DNNs on the PU, we perform a measurement

campaign (§IV-A) on a central server and two types of

EEDs available in the market. We then validate our model

in simulation (§IV-C). We finally find the system capacity

and latency (§IV-D).

A. Analytical Model

Let us consider a network with N users and a process-

ing unit (PU). User Equipment (UE) transmits a sequence

of frames to one wireless Access Point (AP), which will

then route it to the PU. For our analytic model we resort

to [10], with the additional simplifying assumption that we

do not consider the latency of sending-back the detection and

recognition results, as in [12], as we assume they are mainly

textual. Note that, as in [10], we do not consider the core

network latency to transmit the frames from the AP to the

PU, as it is negligible in practical scenarios (lower than 2 ms

in [17]). As in [10], we also ignore the effect of congestion

in the AP-PU network segment. Therefore, the system latency

experienced by a user can be defined as :

L = Lw + Lp (1)

where Lw is the wireless latency incurred by sending a

video frame up to the AP and Lp is the processing latency

for object detection and recognition in the PU. We denote

with Lrequired the latency required by the application (Table I).

Obviously, L ≤ Lrequired must be guaranteed.

1) Wireless Channel characterization: The wireless latency

is determined by the user’s video frame resolutions and

wireless data rates. We denote with R the good data rate, i.e.,

the number of TCP payload bits sent in a second. Assuming

that TCP is adopted and, as usual, that the data-rate is

approximately equally shared among the N users on the same

wireless link (§11.5 of [15]). Therefore, the data-rate of a

single UE is r = R
N

.

A frame can be encoded in different resolutions k ∈ K.

Each resolution corresponds to s2k pixels. The color depth σ is

the number of bits employed to encode one pixel. Therefore,

the size of a frame is Dk = σ · s2k, in bits and to transmit a

frame from the UE to the AP, the wireless latency is is [13]:

Lw =
Dk

r
=
Dk ·N

R
=
σ · s2k ·N

R
(2)

2) Framerate and maximum number of users: Let us denote

with f the framerate, i.e. the number of frames transmitted

per second from the UE to the PU. Observe that f does not

necessarily correspond to the framerate at which the video is

captured, which can indeed be larger than f . Indeed, for some

application, we may choose to subsample the video frames

and send to the PU only a fraction p ≤ 1 of the video frames

(see §3.1 of [7]). Note also that the deep learning strategies

considered in this paper and the related literature we refer to

here, take entire frames as input, independent of the video

encoding. For instance, if video is encoded in MPEG where

there is only one complete frame (I-frame) in a Group of

Picture (GoP), since DNNs are only capable of processing I-

frames, f will refer to the number of I-frames sent to the PU,

independent of the GoP and framerate of the video capture.

If we want to have a response within Lrequired to events

detected in the environment, we need to send at least a frame

each Lrequired. Therefore, f ≥ 1/Lrequired. When N users send

Dk bits in a shared wireless channel per each of their frames,

then f ·N ·Dk ≤ R and thus N ≤ R
Dk·f

≤ R·Lrequired

Dk

. Therefore,

the number of users that can be supported simultaneously is:

Nmax =
R · Lrequired

Dk

(3)

More complex models as [14] will be also considered in

our future work.

3) Computational latency: As in [10], the computational

latency to process a single frame is:

Lp =
ck
Fpu

·N (4)

where ck denotes the complexity of the inference for the frame

resolution k, Fpu the amount of computation resources on the

processing unit pu (which can be either a central server or a

EED, as Jetson Nano or Google TPU board) and N the number

of users sharing the PU. ck depends on the frame resolution

s2k following a function ck = ψ(sk). For simplicity, we set

ψpu(s
2
k) ,

ψ(s2
k
)

Fpu
and rewrite (4) as:

Lp = ψpu(s
2
k) ·N (5)

We experimentally measure in §IV-B and Fig. 2a the value

of the function ψ(s2k), for all resolutions k ∈ K and for

the three types of PUs considered (Jetson Nano, Coral Dev,

Central Server).

B. Measurement Campaign

In order to make our analytical model operational for our

comparison of Centralized vs. Distributed architectures, we

perform a set of measurements on real devices, in order to

fix the value of the resolution k, the bits-per-pixel σ and find

the complexity ck. Since we want our work to be general

enough and applicable to different scenarios, where different

objects may need to be detected, we use the Common Objects

in COntext (COCO) dataset [16].

As for the Centralized Architecture, our Central Server

is equipped with an Intel(R) Xeon(R) CPU E5-2620 v3

3
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Fig. 2: Experiments results on different platforms

@ 2.40GHz CPU, 32 GB of RAM and NVIDIA GeForce

GTX980 GPU. As for the distributed architecuture, instead,we

experimented with two different EEDs: Jetson Nano Developer

kit from Nvidia and Coral Dev Board by Google.

We deploy on the PUs a pre-trained DNN called SSD

mobilenet v2 [18], which combines SSD for object detection

and Mobilenet to classify the detected objects. In order to run

such a DNN on Coral Dev and Jetson Nano in an effective

way, we convert the regular model to a lighter version using

Tensorflow Lite Converter and TensorRT, respectively, with

their default configurations. Converting the regular model

reduces its file size and introduces optimizations suitable

for EEDs. The TensorFlow Lite Converter takes a trained

TensorFlow (TensorFlow only) model as input and outputs

a TFLite (.tflite) file, a FlatBuffer-based file containing a

reduced, binary representation of the original model. On the

other hand, TensorRT, built on CUDA, NVIDIA’s parallel

programming model, enables to optimize inference for all deep

learning frameworks by fusing specific Layers and Tensors

in one layer which improves the use of GPU memory and

bandwidth.

All the measurements of this section are obtained with a

color depth σ = 8 bits/pixel. In fact, we observe that increasing

it does not considerably improve accuracy.

The frame resolution k chosen is one of the most important

parameters: on the one hand, increasing it improves the classi-

fication accuracy, on the other hand it increases the amount of

bits to send over the wireless link. Therefore, a good trade-off

must be found.

In this paper, we consider 6 frame resolutions: K =
{100x100, 200x200, 300x300, 500x500, 800x800 and

1000x1000} pixels. For each frame resolution, we perform

object detection+classification inference on 200 images.

Fig. 2a shows the inference latency, i.e., the time spent by

the DNN between the instant it receives the frame up to the

instant in which it provides the classification. As in [10], we

fit the curve ψpu(s
2
k) with a cubic regression, i.e., ψpu(s

2
k) =

a+ bs3k. The values of the coefficients a, b for with the types

of PUs considered are given in Table II. The resolution has a

negligible impact on the inference time (which is confirmed

TABLE II: Inference time fitted curve parameters

Type of PU a b

Central server 3.23 9.56 e− 10

Coral Dev Board 20.98 3.37 e− 09

Jetson Nano 41.10 7.15 e− 09

by the small b coefficients). It is instead very evident that

the inference time greatly depends on the type of PU. The

Central server is one magnitude faster than Jetson Nano, which

remarkably slower than Coral Dev. The goal of this paper is

however not to compare different Edge AI platforms. Here we

want just to show that it is important to take into account the

differences between them, and always starts the study of the

performance in such scenarios with a measurement campaign

on the real devices considered.
Fig. 2b shows that, in order to achieve a satisfying accuracy,

we need a resolution larger than 500p. For this reason, we fix

in what follows k = 600p. Note also that accuracy with the

Central Server is better than with EDDs, which is due to the

optimizations applied when converting the DNN to the format

suitable for EEDs.
Having fixed k, σ and ck = ψpu(s

2
k), for all the PUs under

consideration, we can now use the analytical model of §IV-A

to obtain numerical values for the wireless latency (2), com-

putational latency (5) and the maximum number of supported

users (3).
Note that our measured accuracy matches the one observed

in [10], while results are quite different in what concerns

the inference time, which can be explained by the different

Edge AI platform considered there. This confirms that a solid

performance evaluation of Edge AI solutions should always

start from a preliminary measurement campaign on the real

devices, as we do here.

C. Simulation setup

We now validate the analytical model via simulation in NS-

3. In this section, we first focus on one single AP and N
UEs connected to it, in both the Centralized and Distributed

scenario, with Low Wireless Capacity. We defer to §IV-D the

case of multiple APs and High Wireless Capacity. We model

the UEs, the AP and the PUs server with the NS-3 class

NodeContainers. The size of each NodeContainer

corresponds to the number of elements from each class (EEDs,

APs and PUs). We measure the wireless latency plus the

inference time, verying the number of UEs. Since NS-3 does

not model the computational capacity of a server, we model a

PU as a queue. This queue has a constant serving time which

corresponds, for each platform, to the inference latency for

one frame, as measured in §IV-B. Since the timescales we are

considering are very short (Table I), much faster than human

movement, it is reasonable to simulate, every time, a static

snapshot of the system, in which users do not switch from

an AP to another. Our UEs send continuously frames to the

PU, sending the next frame immediately after receiving the

response. The simulation time is 17 minutes. Fig. 3 shows

that simulation results match the analytical ones.
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(a) Wireless performance validation (b) Computation validation

Fig. 3: Validation of the analytical model

(a) Maximum number of users (b) System Latency

Fig. 4: System capacity and latency.

We then simulate two real scenarios where we have multiple

users in the coverage of multiple APs. As in Fig. 1, for

the distributed architecture, we deploy an EED at every AP

(in a way that we have one EED per AP) while for the

centralized architecture we deploy a single server connected

to all of the APs. In each scenario, we let the total number

of users vary, as well as the number of APs (the more the

APs, the less the users-per-AP). Note that the number of APs

corresponds, in the simplest case, to the number of rooms a

the museum/exposition or industrial plant.

D. System Capacity and Latency

The capability of sustaining AR applications depends on

two factors: the system capacity, i.e., the number of simul-

taneous users that can be supported, and the system latency,

i.e., how fast can each single request be satisfied. The system

capacity, on its turn, depends on two elements: the number of

users supported by the wireless channel and the processing

capability of the PUs. In what follows, we first study the

limitations imposed by the wireless channel (§IV-D1), then

the system latency (§ IV-D2). Considering system capacity

and latency together, we finally study which requirements can

be supported by the centralized and distributed architecture

(§ IV-D3).

1) Limitations imposed by the wireless channel: The maxi-

mum number of users Nmax per AP supported by the wireless

channel can be obtained by (3). Fig. 4a shows Nmax with Low

and High wireless capacity technologies, namely providing

R = 450 Mbps and R = 1 Gbps and with High, Mid

and Low responsiveness requirements (HR, MR, LR), i.e.,

Lrequired = {16, 100, 500} ms (see Table I). Observe that

Nmax only takes into account the limitation imposed by the

wireless channel and not by the Processing Units (PUs). This

limitation appears the same, in both distributed and centralized

architectures. In other words, Nmax indicates the maximum

number of supported users in presence of ideal PUs of infinite

capacity.

Fig. 4a shows that the number of users that can be supported

by the wireless channel is very low when we need to send a

frame every 16 ms (HR) e.g. 2 users with the low wireless

capacity and 5 users with the high wireless capacity. The

maximum number of users supported by the wireless channel

goes to 15 and 34 for the low wireless capacity and the high

wireless capacity respectively when we need to send a frame

each 100 ms (MR). When it comes to LR (sending a frame

every 500 ms), the wireless channel can support more than 75

users for low wireless capacity and more than 150 users for

the higher wireless capacity.

2) System Latency: The system latency (see (1)) computed

by the analytical model is depicted in Fig. 4b, where we focus

on just one AP and we assume that there is one PU, namely

a Coral Dev or Jetson Nano or Central server, behind the

AP. We also assume Low wireless capacity R = 450 Mbps.

Note that these results are a lower bound for the centralized

architecture, in which there is one PU only for all the APs (see

Fig. 1). N1 and N2 in Fig. 4b refer to the maximum number

of users (see (3)) supported by the wireless channel for High

Responsiveness (HR) and Mid Responsiveness (MR) applica-

tions, respectively (see Table I). For Low Responsiveness (LR)

applications, instead, Nmax > 20.

Fig. 4b shows, under these assumptions, just the wireless

latency Lw is below the latency required for HR only with

very few users. Adding also the processing time Lp, we

see that HR is never achievable for the distributed systems,

not even with a single user per AP while it is achievable

on the centralized system with no more than 1 user per

AP. However, we can achieve Mid Responsiveness and Low

Responsiveness requirements with the distributed architecture

but with a limited number of users compared to the centralized

architecture.

3) Supported Applications: In Fig. 5 and 6, we show the

requirements achievable (Table I) in 4 scenarios, assuming

Low and High wireless data rates (§II) and the distributed

vs. centralized architectures (Fig. 1). We consider a range of

number of users #U going from a small scenario (2 users) up

to 1400 users, which is the number of simultaneous visitors in

a big museum as the Louvre. Such users are distributed across

different APs, whose number #AP is varied between 1 and

105. The number of users sharing the wireless channel of a

single AP is N = ⌈ #U
#AP ⌉, i.e., the minimum integer bigger

than #U
#AP .

A certain requirement Lrequired is satisfied if N ≤ Nmax

(see (3)) and L = Lw + Lp ≤ Lrequired. We check such

conditions via our analytical model (§IV-A). In Fig. 5 and 6

we represent which of the requirements of Table I is satisfied.

The results presented in Fig. 5 and 6 are obtained via NS3
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Fig. 5: Achievable requirements for R = 450 Mbps.
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(b) Distributed architecture

Fig. 6: Achievable requirements for R = 1 Gbps.

simulation. Furthermore, we verified that they are also matched

by the analytical model, which lets us compute the wireless

latency Lw, based on (2), and the processing latency via (4):

Lp =

{

ck
Fpu

·#U for the centralized architecture
ck
Fpu

·N for the distributed architecture
(6)

The results show that HR applications are only supported

by the centralized architecture and only with few users. In all

the other situations, the distributed architecture outperforms

the centralized and can support MR and LR applications with

a relatively large number of users, which is instead infeasible

for the centralized architecture. Also observe that, as expected,

increasing the number #AP of access points allows to support

more demanding applications, as it reduces contention in the

wireless channel in the centralized architecture. This also

holds for the distributed architecture, in which the benefit of

increasing #AP , and thus also the PUs (see Fig. 1), are more

evident, since it also reduces contention in processing (see (6)).

Also note that adopting the latest wireless technology with

high capacity helps to support more demanding applications.

V. CONCLUSION AND FUTURE WORK

This paper presents a comparison of classic centralized

systems vs. distributed systems based on Embedded Edge

Devices (EEDs) for deploying AR applications with different

requirements. We develop an analytical model to represent

system capacity and latency of the two alternative systems.

We evaluated the performance of deep learning algorithms for

video analytics (e.g., object detection and recognition) on such

devices via a measurement campaign. We parametrized our

analytical model based on such measurements. We developed

a NS3 simulator and verify that its results match the analytical

model. The analytical model allowed us to study the perfor-

mance with multiple users up to the order of a thousand.

We show in this paper that for a certain AR applications

with high responsiveness requirements, the only solution is

a powerful central server. Only few users can be supported.

On the other hand, other AR applications with less stringent

demands (LR and MR) can be well supported by a distributed

architecture based on EEDs. More importantly, only the dis-

tributed architecture is able to support a large number of users.

In our future work, we will introduce the monetary cost

into the comparison of centralized vs. distributed architecture,

based on the products available on the market. We also plan to

optimize the EED assignment to the AR user by introducing

on-line strategies, which take decisions at every new user.

Focusing on improving the power consumption management,

the challenge is to develop strategies in order to optimize

transmission power and offloading data. Another challenge is

to explore the performance of other DNN architectures and

probably combinations between CNNs and Recurrent Neural

Networks (RNNs).
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