
HAL Id: hal-02999881
https://hal.science/hal-02999881

Submitted on 11 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KClist++: A Simple Algorithm for Finding k-Clique
Densest Subgraphs in Large Graphs

Bintao Sun, Maximilien Danisch, T-H Hubert Chan, Mauro Sozio

To cite this version:
Bintao Sun, Maximilien Danisch, T-H Hubert Chan, Mauro Sozio. KClist++: A Simple Algorithm
for Finding k-Clique Densest Subgraphs in Large Graphs. Proceedings of the VLDB Endowment
(PVLDB), 2020. �hal-02999881�

https://hal.science/hal-02999881
https://hal.archives-ouvertes.fr

KClist++: A Simple Algorithm for Finding k-Clique Densest
Subgraphs in Large Graphs

Bintao Sun
The University of Hong Kong

Hong Kong SAR, China

btsun@connect.hku.hk

Maximilien Danisch∗
Sorbonne Université, CNRS,
LIP6, F-75005 Paris, France

maximilien.danisch@lip6.fr

T-H. Hubert Chan†
The University of Hong Kong

Hong Kong SAR, China

hubert@cs.hku.hk

Mauro Sozio‡
Télécom Paris, IP Paris

Paris, France
sozio@telecom-paris.fr

ABSTRACT
The problem of finding densest subgraphs has received in-
creasing attention in recent years finding applications in bi-
ology, finance, as well as social network analysis. The k-
clique densest subgraph problem is a generalization of the
densest subgraph problem, where the objective is to find
a subgraph maximizing the ratio between the number of
k-cliques in the subgraph and its number of nodes. It in-
cludes as a special case the problem of finding subgraphs
with largest average number of triangles (k = 3), which plays
an important role in social network analysis. Moreover, al-
gorithms that deal with larger values of k can effectively find
quasi-cliques. The densest subgraph problem can be solved
in polynomial time with algorithms based on maximum flow,
linear programming or a recent approach based on convex
optimization. In particular, the latter approach can scale
to graphs containing tens of billions of edges. While find-
ing a densest subgraph in large graphs is no longer a bot-
tleneck, the k-clique densest subgraph remains challenging
even when k = 3. Our work aims at developing near-optimal
and exact algorithms for the k-clique densest subgraph prob-
lem on large real-world graphs. We give a surprisingly sim-
ple procedure that can be employed to find the maximal
k-clique densest subgraph in large-real world graphs. By
leveraging appealing properties of existing results, we com-
bine it with a recent approach for listing all k-cliques in a
graph and a sampling scheme, obtaining the state-of-the-art
approaches for the aforementioned problem. Our theoreti-
cal results are complemented with an extensive experimental
evaluation showing the effectiveness of our approach in large
real-world graphs.

1. INTRODUCTION
Algorithms for finding dense subgraphs have emerged as

an important subroutine in a wide variety of data mining
applications, in particular, in biology [14] and finance [11],

∗Funded by the ANR (French National Agency of Research)
under the LiMass JCJC and the FiT LabCom projects.
†T-H. Hubert Chan was partially supported by the Hong
Kong RGC under the grants 17200817.
‡This work has been carried out in the frame of a cooper-
ation between Huawei Technologies France SASU and Tele-
com Paris (Grant no. YBN2018125164).

while they have been employed for social network analy-
sis [3], reachability and distance query indexing [8, 22] and
many other tasks.Many of those applications require find-
ing quasi-cliques, i.e. graphs where “almost” every pair of
nodes is connected with an edge. In [30], the author for-
mulated and studied the k-clique densest subgraph prob-
lem, where one wishes to find a subgraph with maximum
k-clique density, defined as the ratio between its number of
k-cliques and its number of nodes. Such a problem is a gen-
eralization of the densest subgraph problem (k = 2) and the
problem of finding subgraphs with largest average number of
triangles (k = 3). It has been experimentally demonstrated
in [30] and [9] that as k increases, a subgraph with large
k-clique density quickly approaches a quasi-clique. Hence,
algorithms for finding k-clique densest subgraphs provide
powerful tools for social network analysis.

The densest subgraph problem can be solved in polyno-
mial time with algorithms based on maximum flow, linear
programming (LP) or a recent approach based on convex
optimization [10]. In particular, the last approach can scale
to graphs containing up to tens of billions of edges. While
finding a densest subgraph in large graphs is no longer a bot-
tleneck, the k-clique densest subgraph remains challenging
even when k = 3. It can be solved in polynomial time when
k is a constant, however, exact algorithms suffer from scal-
ability issues even for relatively small graphs and relatively
small values of k. On the other hand, the greedy approx-
imation algorithm for such a problem [30] comes with the
somehow disappointing approximation guarantee of Θ(k).
Our work aims at developing exact and near-optimal algo-
rithms for the k-clique densest subgraph problem on large
real-world graphs. This might enable a more effective dis-
covery of quasi-cliques which in turn might lead to the dis-
covery of more interesting patterns in the data.

When adapting exact algorithms for the densest subgraph
problem to the k-clique densest subgraph problem, one has
to either introduce some variables for every k-clique in the
graph (in the LP-based approach) or some nodes for each
such a clique in the maximum flow network. This is clearly
not feasible for large values of k. Our first contribution is
a surprisingly simple algorithm for computing the maximal
k-clique densest subgraph, requiring linear amount of mem-
ory in the size of the graph for any k ≥ 2. The algorithm for
computing the maximal densest subgraph (k = 2) proceeds

http://bit.ly/LiMass
http://fit.complexnetworks.fr

as follows. We assign a score r(u) to every node u in the
graph, which is initialized to 0. Then in each iteration, we
process the edges in some arbitrary order. When processing
edge uv we add 1 to the lower score between r(u) and r(v),
breaking ties arbitrarily. The generalization to compute the
maximal k-clique densest subgraph is straightforward and
does not require any additional memory: we process all k-
cliques in a sequential fashion, each time adding 1 to the
minimum score among all r scores of the nodes in the k-
clique. We show that when the number of iterations is suf-
ficiently large, the nodes in the maximal k-clique densest
subgraph have larger scores than the others. This allows for
an efficient extraction of the k-clique maximal densest sub-
graph. In contrast to the algorithm developed in [10] for the
densest subgraph problem, our algorithm is not a gradient-
descent-like algorithm, so we need different techniques to
prove its convergence. Our algorithm employs kClist [9]
as a subroutine, which is the state-of-the-art algorithm for
listing all k-cliques in a graph, while requiring linear amount
of memory in the size of the input graph. We call our al-
gorithm kClist++ as it uses the kClist algorithm as a
building block and the ++ operator. In addition, borrow-
ing ideas from [25], we give an alternative solution to resolve
the memory issue by taking only a small fraction of k-cliques
into consideration via sampling.

Our theoretical results are complemented with an exten-
sive experimental evaluation showing the effectiveness of
our approach in large real-world graphs. Our experimen-
tal evaluation shows for example that a parallel version of
kClist++ can find near-optimal k-clique densest subgraphs
in graphs containing up to more than one billion edges and
for k = 9.
Related Work. Dense subgraphs detection has been widely
studied [23]. Such a problem aims at finding a subgraph of
a given input graph that maximizes some notion of density.
The most common density notion employed in the literature
is the average degree. Due to its popularity, the correspond-
ing problem of finding a subgraph that maximizes the av-
erage degree has been commonly referred to as the densest
subgraph problem. The densest subgraph can be identified
in polynomial time by solving a parametric maximum flow
problem [15], while a simple greedy algorithm based on core
decomposition produces a 2-approximation in linear time [7].
It is worth mentioning that [16] and subsequent work [17, 2]
show an interesting connection between load balancing and
the densest subgraph problem. An algorithm based on con-
vex optimization has also been introduced in [10] and has
been shown to scale to graphs containing tens of billions of
edges. The densest subgraph problem has also been studied
in evolving graphs [5, 12].

In [30], the author studies the k-clique densest subgraph
problem, which is a generalization of the densest subgraph
problem and consists of finding a subgraph with maximum
ratio between the number of its k-cliques and its number
of nodes. In particular, the author generalizes the greedy
2-approximation algorithm to a k-approximation algorithm
for the k-clique densest subgraph problem. Later in [25],
the authors propose a sampling scheme to deal with a large
number of k-cliques.

Other notions of density have also been investigated such
as the minimum degree density [28] or density based on tri-
angles [32] which can be solved in polynomial time. Other
densities leading to NP-hard problems have also been in-

vestigated such as the k-densest subgraph problem, which
consists of finding a densest subgraph of k nodes [4] and
quasi-clique detection [31, 1].

2. PRELIMINARIES
We are given an unweighted undirected graph G = (V,E),

with n,m denoting its number of nodes and edges, respec-
tively. Define [n] := {1, 2, . . . , n}. We interpret each edge
e ∈ E as a subset e ⊆ V of nodes. A k-clique of G is a
subset of nodes, C ⊆ V , such that |C| = k and every two
distinct nodes in C are adjacent. Denote Ck(G) := {C ⊆
V : C is a k-clique of G} as the collection of k-cliques of G.
Note that C2(G) = E. The k-clique density of a subgraph

H = (VH , EH) in G is defined as ρk(H) := |Ck(H)|
|VH |

. A sub-

graph H of G is called a k-clique densest subgraph if H has
the maximum k-clique density among all subgraphs of G.
Problem Definition. Given an undirected graph G =
(V,E) and a positive integer k, find its (exact or approx-
imate) k-clique densest subgraph.

For a non-empty S ⊆ V , we define the induced subgraph
G[S] := (S,E(S)) by S in G, where E(S) := {e ∈ E : e ⊆ S}
denotes the set of edges in G contained in S. A set S is called
a k-clique densest subset in G if it induces a k-clique densest
subgraph of G.

If we consider a hypergraph where the set of nodes is V
and the set of hyperedges is Ck(G), then k-clique density
in G is equivalent to density in this hypergraph. Lemma
4.1 of [6], which focuses on normal graphs, can be readily
generalized to the following fact.

Fact 1. We define the density of an (edge-)weighted hy-

pergraph H = (VH , EH , wH) as
∑

e∈EH
wH (e)

|VH |
. The maximal

densest subhypergraph of H is unique. It is induced by some
subset of nodes and contains all densest subhypergraphs of
H.

We also briefly mention the notion of quotient hypergraph
and k-clique-diminishingly-dense decomposition generalized
from [29, 10].

Definition 2 (Quotient Hypergraph) .Given an edge-
weighted hypergraph H = (V,E,w) and a subset B ⊆ V , the
quotient hypergraph of H with respect to B is a hypergraph

H\B = (V̂ , Ê, ŵ), which is defined as follows.

• V̂ := V \B.

• Ê := {e ∩ V̂ : e ∈ E, e ∩ V̂ 6= ∅}, i.e., every hyperedge

e ∈ E not contained in B contributes towards Ê.

• For e′ ∈ Ê, ŵ(e′) :=
∑
e∈E:e′=e∩V̂ w(e).

Definition 3 (k-Clique-Diminishingly-Dense Decom-
position) .Given an unweighted undirected graph G = (V,E),
we define the k-clique-diminishingly-dense decomposition B
of G as the sequence ∅ = B0 (B1 (B2 (· · · (Bk = V as
follows. Consider a weighted hypergraph H = (V, Ck(G), w)
where w(C) := 1 for every C ∈ Ck(G).

• Initially, B0 := ∅ and H0 := H.

• For i ≥ 1, if Bi−1 = V , the decomposition is fully de-
fined. Otherwise, let Hi := Hi−1\Bi−1 = (Vi, Ei, wi)
be the quotient graph of Hi−1 with respect to Bi−1.
Let Si be the maximal densest subset in Hi. Define
Bi := Bi−1 ∪ Si.

3. ALGORITHMS
In this section, we present our main algorithms for com-

puting maximal k-clique densest subgraphs. We start by
summarizing the Frank-Wolfe based algorithm for finding
the maximal densest subgraph which has been developed
in [10] (Section 3.1). Then we consider a straightforward
generalization, which comes with the drawback of requiring
a large amount of memory (Section 3.2): it requires memory
proportional to the number of k-cliques in the input graph,
making it unfeasible to deal with large graphs and large
values of k. Such a problem is tackled by the algorithms
presented in Section 3.3 and Section 3.4, which handle the
task of computing a near-optimal solution. This represents
one of the main contributions of our work. In Section 3.5,
we present an algorithm for exactly computing the maximal
k-clique densest subgraph for relatively small values of k.

3.1 Frank-Wolfe Based Algorithm
For the sake of self-containment, we summarize the Frank-

Wolfe based algorithm for finding the maximal densest sub-
graph developed in [10]. Such an algorithm maintains two
variables αeu and αev for each edge e = uv, as well as a vari-
able r(u) for each node u. The αeu’s are initialized to 1

2
.

Throughout the execution of the algorithm, r(u) stores the
sum over all αeu’s such that e contains u. At each step, the
α’s are modified simultaneously as follows. For each edge uv,
such that r(u) ≤ r(v), let α̂eu and α̂ev be equal to 1 and 0, re-
spectively, breaking ties arbitrarily. A new value for the α’s
is computed as a convex combination between their value in
the previous step and the α̂’s (Line 11 of Algorithm 1). Such
an algorithm is an instance of the well known Frank-Wolfe
algorithm, which is widely used in convex optimization [19].

Algorithm 1: FW-Based Algorithm for k-clique
Densest

Input: G = (V,E), number T of iterations

Output: α ∈ RCk(G)×V
+ and r ∈ RV+

1 for each k-clique C do

2 αCu
(0) ← 1

k
, ∀u ∈ C

3 for each u ∈ V do

4 r(0)(u)←
∑
C∈Ck(G):u∈C α

C
u

(0)

5 for each iteration t = 1, . . . , T do
6 γt ← 2

t+2

7 for each k-clique C do

8 x← arg minv∈C r
(t−1)(v)

9 for each u ∈ C do
10 α̂Cu ← 1 if u = x and 0 otherwise.

11 α(t) ← (1− γt) · α(t−1) + γt · α̂
12 for each u ∈ V do

13 r(t)(u)←
∑
C∈Ck(G):u∈C α

C
u

(t)

14 return (α(T), r(T))

It is shown in [10] that if the number of iterations T is
“large enough”, then for some s > 0, the s nodes with largest
r values induce a maximal densest subgraph (see [10, Lemma
4.3 and Corollary 4.9]). Therefore, in that case, the maximal
densest subgraph can be found efficiently from the r(u)’s.

The efficiency of the algorithm has been demonstrated in [10]
by an extensive experimental evaluation.

3.2 Large Memory Approximation Algorithm
The algorithm presented in [10] can be generalized so

as to compute the k-clique densest subgraph by introduc-
ing k variables for each k-clique in the graph and updating
them in a similar way. A full pseudocode is shown in Algo-
rithm 1, whose proof of convergence is omitted for space con-
straints. Observe that Algorithm 1 requires a prohibitively
large amount of memory for large values of k, in that, it
requires to keep all k-cliques as well as their corresponding
variables in main memory. This is clearly not feasible, as
the number of k-cliques might grow exponentially in k. For
instance, when running Algorithm 1 on some of our datasets
(see Table 1), it runs out of memory for Friendster and Live-
Journal when k = 4 and for Orkut when k = 5, while it
would require more than 250 terabytes of main memory for
Livejournal when k = 6.

Therefore, some novel techniques are needed in order to
deal with large graphs and large values of k. In Section 3.3
and Section 3.4, we present two variants of Algorithm 1 op-
timized for memory consumption, which is among the main
contributions of our work.

Our algorithm requires a subroutine that list all k-cliques
in large input graphs. To this end, we employ kClist [9],
which is the state-of-the-art algorithm for such a task. Such
an algorithm is appealing in that it requires linear mem-
ory in the size of the graph for any k ≥ 2, listing each k-
clique exactly once. Any algorithm ensuring the aforemen-
tioned properties can be employed in our approach. An-
other appealing property of kClist is its running time of
O(k · m · (c

2
)k−2), where c is the core value of the graph.

This makes it suitable for large real-world graphs which are
typically sparse (i.e. their core value is relatively small).

3.3 Linear Memory Approximation Algorithm
We first overcome the memory issue by means of a sur-

prisingly simple algorithm. It processes the k-cliques in the
input graph sequentially. At each step, the minimum r value
of the nodes in the k-clique is increased by 1 (breaking ties
arbitrarily), as if the k-clique is assigned to the node with
least “load”. By employing kClist [9], we process all k-
cliques in the input graph using linear amount of main mem-
ory. We call our algorithm kClist++, as its main build-
ing blocks are the kClist algorithm and the ++ operator
(which increases the value of a variable by 1 in programming
languages such as C and Java). A pseudocode of it is shown
in Algorithm 2.

Algorithm 2: kClist++

Input: G = (V,E), number T of iterations
Output: r ∈ RV+

1 r(u)← 0,∀u ∈ V
2 for t← 0, 1, . . . , T − 1 do
3 for each k-clique C in G do
4 u← arg minv∈C r(v)
5 r(u)++

6 r(u)← r(u)/T,∀u ∈ V
7 return r

After running kClist++ for a sufficiently large number of
iterations T , we sort the nodes according to their r values:
r(u1) ≥ r(u2) ≥ · · · ≥ r(un). In such an ordering, we
examine the set of the first s nodes for each s ∈ [n], and
return a set inducing a subgraph with maximum k-clique
density. More precisely, we let yi := |{C ∈ Ck(G) : i =
max{j : uj ∈ C}}| for each i ∈ [n] (as in [10]) and return
a value s ∈ [n] that maximizes 1

s

∑s
i=1 yi. The latter value

can be computed by means of another execution of kClist.
We show in Section 4.1 that the graph computed by our

algorithm is the maximal k-clique densest subgraph when T
is large enough. Additionally, the r values imply an upper
bound on the optimal solution; see Section 4.2.

The algorithm stores a linear number of variables in the
number of nodes (the r(u)’s) without storing any αCu ’s. Fur-
thermore, unlike Algorithm 1, the r(u) variables are updated
sequentially. Consequently, any change in the r values is
promptly taken into account. This turns out to be more ef-
ficient in practice, according to our experimental evaluation.
Algorithm 3, an equivalent procedure to Algorithm 2 with α
explicitly stored, further illustrates the differences and simi-
larities between the two algorithms. We refer to this variant
of the algorithm as Seq-kClist++ or simply as kClist++.
For completeness, we consider a variant of kClist++ where
the r(u)’s are updated simultaneously, which we refer to as
Sim-kClist++ (see Algorithm 4 for a pseudocode).

Algorithm 3: kClist++ (with α variables)

Input: G = (V,E), integer T , α ∈ RCk(G)×V
+ feasible

(optional)

Output: α ∈ RCk(G)×V
+ and r ∈ RV+

1 if α = NULL then
2 for each k-clique C do
3 αCu ← 1

k
, ∀u ∈ C

4 for each u ∈ V do
5 r(u)←

∑
C∈Ck(G):u∈C α

C
u

6 for each iteration t = 1, . . . , T do
7 γt ← 1

t+1

8 α← (1− γt) · α, r ← (1− γt) · r
9 for each k-clique C do

10 u← arg minv∈C r(v)

11 αCu ← αCu + γt, r(u)← r(u) + γt

12 return (α, r)

Algorithm 4: Sim-kClist++

Input: G = (V,E), number T of iterations
Output: r ∈ RV+

1 r(u)← 0, ∀u ∈ V
2 for t← 0, 1, . . . , T − 1 do
3 s(u)← r(u), ∀u ∈ V
4 for each k-clique C in G do
5 u← arg minv∈C s(v)
6 r(u)++

7 r(u)← r(u)/T,∀u ∈ V
8 return r

3.4 Save Memory via Sampling
An alternative approach to save memory, shown in Al-

gorithm 5, is inspired by [25]. In lieu of going through all
k-cliques by kClist for many iterations, we just run kClist
to count the number of k-cliques (this can also be done by
any exact or approximate clique-counting subroutine, such
as [13, 20, 21]) and then call it again to sample the k-cliques.
Rather than setting the sampling probability directly, we set
a parameter σ, the approximate number of k-cliques to be
sampled. Once the number of k-cliques M is computed,
we set the sampling probability as p := min{σ/M, 1}, and
each k-clique is stored into main memory independently with
probability p. As a result, the number of sampled k-cliques
will be very close to σ. In the subsequent iterations, we only
perform the ++ operator for the sampled k-cliques. We call
this variant Seq-Sampling++.

After that, an approximate k-clique densest subset and an
upper bound on the optimal solution in the sampled graph
can be identified in the same way as described in Section 3.3
(the yi’s corresponding to the sampled graph can be com-
puted by making a pass over the sampled k-cliques stored in
main memory). To restore the k-clique density of the sub-
graph induced by this set in the original graph, we need to
call kClist once more on the induced subgraph.

Algorithm 5: Seq-Sampling++

Input: G = (V,E), number T of iterations, rough
number σ of cliques to be sampled

Output: r ∈ RV+
1 M ← |Ck(G)|
2 p← min{σ/M, 1}
3 S ← ∅
4 for each k-clique C in G do
5 Include C in S independently with probability p

6 r(u)← 0,∀u ∈ V
7 for t← 0, 1, . . . , T − 1 do
8 for each k-clique C in S do
9 u← arg minv∈C r(v)

10 r(u)++

11 r(u)← r(u)/T,∀u ∈ V
12 return r

3.5 Exact k-Clique Densest Subgraph
In the case when neither k nor the input graph is “too

large”, we are able to compute an exact solution for the k-
clique densest subgraph problem by employing Algorithm 3,
which maintains for every k-clique k variables. Similarly
to [10], one can derive from the α’s an upper bound on the
density of a densest subgraph, which in turn can be used to
verify whether a given subgraph is densest.

Our exact algorithm (pseudocode shown in Algorithm 6)
initializes the α’s so that for any k-clique its corresponding
variables sum up to 1 (Line 3). We call feasible any assign-
ment satisfying such a constraint. Then, it runs T iterations
of Algorithm 3 yielding refined values for the α’s. Those are
then used to tentatively extract a k-clique densest subset
S. If S is stable (Line 7; see Definition 6), the optimality
of S is then tested by means of an improved version of the
Goldberg’s condition (see [15] and Section 4.3) which states
that the densities of two subgraphs cannot be “too close”

(Theorem 17) or a max-flow algorithm (Algorithm 9). If
the optimality test fails, we double T and iterate.

The most interesting aspects of Algorithm 6 are perhaps
the improved Goldberg’s condition (Theorem 17) and the
fact that it employs kClist++ where the α variables are
kept in main memory (Algorithm 3). The algorithm for
tentatively extracting a k-clique densest subgraph (Algo-
rithm 7) is a rather straightforward generalization of the
algorithms developed in [10]. We include most pseudocodes,
except that of TryDecompose, which is already fully de-
scribed in Section 3.2 of [10].

Algorithm 6: Exact Algorithm

Input: G = (V,E), k
Output: S ⊆ V inducing a k-clique densest

subgraph in G
1 T ← 1
2 for each k-clique C do
3 αCu ← 1

k
, ∀u ∈ C

4 while true do
5 (α, r)← run Algorithm 3 with input (G,T, α)
6 (α, r, S)← TryExtractDensest(G,α, r)
7 if minu∈S r(u) > maxv∈V \S r(v) then
8 if S satisfies condition in Theorem 17 then
9 return S

10 if IsDensestMF(G[S]) then
11 return S

12 T ← 2T

Algorithm 7: TryExtractDensest

Input: G = (V,E), α, r
Output: α, r, tentative k-clique densest subset S

1 (S1, . . . , Sl)← TryDecompose(G, r)
2 α← Squeeze(G, k, α, (S1, . . . , Sl))
3 for u ∈ V do
4 r(u)←

∑
C∈Ck(G):u∈C α

C
u

5 return (α, r, S1)

Algorithm 8: Squeeze

Input: G = (V,E), k, α, partition (S1, S2, . . . , Sl)
Output: α

1 for C ∈ Ck(G) do
// Redistribute the weights as

‘‘backward’’ as possible

2 p← max{1 ≤ i ≤ l : C ∩ Si 6= ∅}
3 s←

∑
u∈C\Sp

αCu

4 ∀u ∈ C \ Sp, αCu ← 0

5 ∀u ∈ C ∩ Sp, αCu ← αCu + s
|C∩Sp|

6 return α

4. ANALYSIS
Inspired from Charikar’s LP relaxation for densest sub-

graphs [7], Danisch et al. [10] proposed a convex program

Algorithm 9: Optimality Test by Max-Flow: Is-
DensestMF

Input: G = (V,E)
Output: Is G a k-clique densest subgraph in G?

1 Ck ← Ck(G)
2 n← |V |, M ← |Ck|
3 Construct a network with node set {s, t} ∪ V ∪ Ck
4 ∀C ∈ Ck, add an edge with capacity n from s to C
5 ∀u ∈ V , add an edge with capacity M from u to t
6 ∀C ∈ Ck, ∀u ∈ C, add an edge with capacity n from

C to u
7 f ← maximum flow from s to t
8 return f = nM

to find the so-called diminishingly-dense decomposition, the
first member of which is indeed the densest subgraph. The
generalization to k-clique density is straightforward; we sum-
marize the related results below without proof.

Consider the convex program

CP(G, k) := min{QG,k(α) : α ∈ D(G, k)},

where the domain

D(G, k) := {α ∈
∏

C∈Ck(G)

RC+ : ∀C ∈ Ck(G),
∑
u∈C

αCu = 1}

and the objective function

QG,k(α) :=
∑
u∈V

r(u)2,

in which r(u) =
∑
C∈Ck(G):u∈C α

C
u , ∀u ∈ V . Intuitively,

each k-clique C distributes its unit weight among all nodes
in C, and r(u) is the total weight received by u.

Definition 4 (Level Sets [10]) .The collection of the
level sets of a vector r ∈ RV+ is defined as {Sρ : ∃u ∈
V, r(u) = ρ}, where each level set is Sρ := {u ∈ V : r(u) ≥
ρ}.

Proposition 5 ([10, Corollary 4.4]) . Suppose an op-
timal solution α of CP(G, k) induces the vector r ∈ RV+ via
r(u) =

∑
C∈Ck(G):u∈C α

C
u , ∀u ∈ V . Then the level sets of r

give the exact k-clique-diminishingly-dense decomposition of
G. In particular, let ρ∗ := maxu∈V r(u). Then Sρ∗ induces
the maximal k-clique densest subgraph of G with k-clique
density ρ∗.

Definition 6 (Stable Subset) . A non-empty subset
B ⊆ V is stable with respect to α ∈ D(G, k) if the following
conditions hold.

• ∀u ∈ B and v ∈ V \B, r(u) > r(v).

• ∀C ∈ Ck(G) s.t. C intersects both B and V \B, ∀u ∈
C ∩B, αCu = 0.

Proposition 7 ([10, Lemma 4.11]) . Suppose a non-
empty subset B ⊆ V is stable with respect to some α ∈
D(G, k). Then B is a member of the k-clique-diminishingly-
dense decomposition. In particular, the maximal k-clique
densest subgraph of G is contained in G[B].

4.1 Convergence Rate of kClist++
In this section, we study the convergence rate of kClist++.

Recall that such an algorithm updates its variables sequen-
tially and it is not a gradient-descent-like algorithm. As a
result, we need different techniques from the one used in [10]
to study its convergence rate.

From now on, we use the simplified notation Q(α) :=
QG,k(α), D := D(G, k) and K := |Ck(G)|. Let

∆ := max
v∈V
|{C ∈ Ck(G) : v ∈ C}|

be the maximum k-clique degree.
The convergence rate will be represented by the curvature

of the objective function [19], which is defined as

ξQ := sup
α,s∈D,
γ∈(0,1],

y=α+γ(s−α)

2

γ2
(Q(y)−Q(α)− 〈y − α,∇Q(α)〉).

It has been observed in [10, Lemma 4.7] that ξ := 2∆K is
an upper bound on ξQ.

Notice that the vector α, although discarded in the algo-
rithm, is still lying behind: we pretend that we maintain r
and α simultaneously and when we perform r(u)++ to the
node u = arg minv∈C r(v), we see it as if αCu is also increased

by 1. We use r(t) and α(t) to denote vector r and the implicit
α in Algorithm 2 when t rounds of iteration are completed,
respectively.

Now suppose having completed t iterations, we pick the
first clique C1 from the stream in the (t+1)-st iteration. For-

mally speaking, we find the node u with minimum r(t) value

within C1 and let s(t,1) ∈ RC
1

+ be the vector with value 1 at
coordinate u and 0 elsewhere. Inductively, for the i-th clique

Ci, s(t,i) ∈ RC
i

+ is the vector with value 1 at coordinate u
and 0 elsewhere, where u is the node within Ci with mini-
mum r value induced by α(t,i) := α(t) +

∑i−1
j=1 s

(t,j) (here we

slightly abuse the operator + by embedding each s(t,j) into
D ⊆

∏
C∈Ck(G) R

C
+). Finally, letting s(t) :=

∑K
i=1 s

(t,i) ∈ D,

we have α(t+1) = α(t) + s(t).
Note that the r values between consecutive iterations in

Algorithm 2 satisfies r(t+1)

t+1
= 1

t+1

(
r(t) +

(
r(t+1) − r(t)

))
=

t
t+1
· r

(t)

t
+ 1

t+1

(
r(t+1) − r(t)

)
. Rewriting it in terms of

α(t+1), α(t) and s(t), we have α(t+1)

t+1
= t

t+1
· α

(t)

t
+ 1

t+1
· s(t).

We aim to build the following variant of [19, Theorem 1].
To this end, Lemma 9 is the most technical part.

Theorem 8 (Convergence Rate) . For each t ≥ 1,

α(t) computed as above satisfies

Q

(
α(t)

t

)
−Q(α∗) ≤ O

(
log t

t

)
· ξ(1 + δ),

where α∗ ∈ D is an optimal solution to CP(G, k), and δ =√
32k.

Lemma 9 (Approximate Linear Minimizer) . Given
any t ≥ 1, denote

ŝ := (ŝ1, . . . , ŝK) := arg min
s̃∈D

〈
s̃,∇Q

(
α(t)

)〉
,

δ :=
√

32k, γt := 1
t+1

and ξ := 2∆K. Then s(t) is an
approximate linear minimizer, i.e.,〈

s(t),∇Q
(
α(t)

t

)〉
≤
〈
ŝ,∇Q

(
α(t)

t

)〉
+

1

2
δγtξ.

Proof. We use∇CQ(α) to denote the projection of∇Q(α)
onto RC . By a straightforward calculation [10, proof of
Lemma 4.5], The (C, u)-coordinate of ∇Q(α) is

2r(u) = 2
∑

C̃∈Ck(G):u∈C̃

αC̃u .

It has been noted in the proof of Lemma 4.5 in [10] that
one can consider each k-clique C ∈ Ck(G) independently and

actually s(t,i) = arg min
s̃∈RCi

:
∑

u∈Ci s̃u=1

〈
s̃,∇CiQ

(
α(t,i)

)〉
.

Therefore, for t ≥ 1, we have〈
s(t),∇Q

(
α(t)

t

)〉
−
〈
ŝ,∇Q

(
α(t)

t

)〉
=

1

t

〈
s(t) − ŝ,∇Q

(
α(t)

)〉
=

1

t

K∑
i=1

〈
s(t,i) − ŝi,∇CiQ

(
α(t)

)〉
=

1

t

K∑
i=1

〈
s(t,i) − ŝi,∇CiQ

(
α(t,i)

)〉
+

K∑
i=1

〈
s(t,i) − ŝi,∇CiQ

(
α(t) − α(t,i)

)〉
≤ 1

t

K∑
i=1

〈
s(t,i) − ŝi,∇CiQ

(
α(t) − α(t,i)

)〉
=

1

t

〈
s(t) − ŝ,∇Q

(
α(t)

)
−
(
∇C1Q

(
α(t,1)

)
, . . . ,

, . . . ,∇CKQ
(
α(t,K)

))〉
≤ 1

t

∥∥∥s(t) − ŝ∥∥∥ · ∥∥∥∇Q(α(t)
)
−
(
∇C1Q

(
α(t,1)

)
, . . . ,

, . . . ,∇CKQ
(
α(t,K)

))∥∥∥ .
Now observe that 1

t
≤ 2γt and ‖s(t) − ŝ‖ ≤

√
2K. Also,

∂Q(α)

∂αC
u

= 2r(u). In each iteration, r(u) will be increased by

at most ∆, so the absolute value of each coordinate of

∇Q
(
α(t)

)
−
(
∇C1Q

(
α(t,1)

)
, . . . ,∇CKQ

(
α(t,K)

))
is at most 2∆. Since the dimension of α is kK, we have∥∥∥∇Q(α(t)

)
−
(
∇C1Q

(
α(t,1)

)
, . . . ,∇CKQ

(
α(t,K)

))∥∥∥ ≤
2∆
√
kK.

Therefore,
〈
s(t),∇Q

(
α(t)

t

)〉
−
〈
ŝ,∇Q

(
α(t)

t

)〉
can be upper

bounded by 1
t

√
2K · 2∆

√
kK ≤ 4γt∆K

√
2k = 1

2
δγtξ.

Proof of Theorem 8. Now that we have Lemma 9,
by the same argument as in [19], we can establish a variant
of [19, Lemma 5] and in turn deduce the claimed guaran-
tee.

We complete the analysis on convergence rate as in [10]
by making a connection between error in Q and error in r.

Lemma 10. Suppose α ∈ D induces r such that ‖r −
r∗‖2 ≥ ε > 0 where r∗ is induced by an optimal α∗. Then,
Q(α)−Q(α∗) ≥ ε2.

Corollary 11. For any ε > 0, if t > Ω
(

log ε
ε2
·∆K

√
k
)

,

then we have ‖r(t) − r∗‖2 < ε.

Remark 12. The step size of 2
t+2

chosen in [19] gives an

error of O(1/t) after t iterations. As stated in Theorem 8, a
step size of 1

t+1
gives a slightly worse error of O(log t

t
). This

in turn introduces an extra factor of Θ(log ε) in the number
of steps required in Corollary 11. However, we will see in
Section 5 that our algorithms are efficient in practice for
such a step size.

4.2 Upper Bound
In Section 4.2 and Section 4.3, we consider any density

vector r ∈ RV+ induced via r(u) =
∑
C∈Ck(G):u∈C α

C
u , ∀u ∈

V for some α ∈ D(G, k).
The vector r returned by Algorithm 2 implies an upper

bound on the maximum k-clique density of the input graph.

Lemma 13. Given a density vector r ∈ RV+ on G sup-
posing r(u1) ≥ r(u2) ≥ · · · ≥ r(un). Fix i ∈ [n]. Then
any i nodes induces a subgraph with k-clique density at most

min
{

1
i

(
i
k

)
, 1
i

∑i
j=1 r(uj)

}
.

Proof. As the number of k-cliques among any i nodes
is at most

(
i
k

)
, the k-clique density of an i-node subgraph

is at most 1
i

(
i
k

)
. In addition, suppose there are M k-cliques

in the induced subgraph of some subset {v1, v2, . . . , vi} of
i nodes. Then each of the M cliques will distribute all its
weight among the nodes in it. As a result, the sum of r
values of these i nodes is at least M . Therefore, the k-clique
density M

i
≤ 1

i

∑i
j=1 r(vj) ≤

1
i

∑i
j=1 r(uj), where the last

inequality follows from the fact that u1, u2, . . . , ui are the i
nodes with greatest r values.

Corollary 14 (Upper Bound on Maximum k-Clique
Density) . Given a vector r ∈ RV+ returned by Algorithm 2
and suppose r(u1) ≥ r(u2) ≥ · · · ≥ r(un). Then the maxi-
mum k-clique density of G is at most

max
1≤i≤n

min

{
1

i

(
i

k

)
,

1

i

i∑
j=1

r(uj)

}
.

Consider the hypergraph with hyperedge set Ck(G). Sam-
pling with some probability p preserves k-clique densities of
subgraphs due to Chernoff bounds [25], so an upper bound
on the maximum k-clique density of the sampled hypergraph
implies an upper bound on that of the original hypergraph.
For U ⊆ V , we use ρ(U) and ρ̃(U) to denote the k-clique
density of the subhypergraph induced by U in the original
hypergraph and the sampled hypergraph, respectively. The
following theorem is adapted from [25, Theorem 4] and we
omit the proof.

Theorem 15. Let ε > 0 be an accuracy parameter. Sup-
pose we sample each k-clique independently with probability
p ≥ 6 logn

ε2D
where D ≥ logn is the density threshold, then

with probability 1−O(1
n

), for all U ⊆ V such that ρ(U) ≥ D,
we have ρ̃(U) ≥ (1− ε)pD.

Corollary 16. Suppose a real number D̃ satisfies that

∀U ⊆ V , ρ̃(U) < D̃ and D̃ > 6 logn. Then with probability

1−O(1
n

), for all U ⊆ V , ρ(U) < D̃(
1−
√

6 log n

D̃

)
p

.

Proof. This follows directly from Theorem 15 by setting

ε :=
√

6 logn

D̃
and D := D̃(

1−
√

6 log n

D̃

)
p
.

4.3 Exact Algorithm

Theorem 17 (Optimality Test by Improved Gold-
berg’s Condition) . Given a density vector r ∈ RV+ on G
and suppose r(u1) ≥ r(u2) ≥ · · · ≥ r(un). Let K := |Ck(G)|.
If ∀i ∈ [n− 1],

min

{
1

i

(
i

k

)
,

1

i

i∑
j=1

r(uj)

}
− ρk(G) <

max

{
1

ni
,

1

i

(⌈
iK

n

⌉
− iK

n

)}
,

then G is the maximal k-clique densest subgraph of itself.

Proof. Suppose by contradiction that there exist i < n
nodes with strictly higher k-clique density than G. Let M be
the number of k-cliques among these i nodes. Then M/i >
ρk(G) = K/n.

Since M , i, K and n are all integers, we have M
i
− K

n
≥ 1

ni

and M
i
−K
n

= 1
i

(
M − iK

n

)
≥ 1

i

(⌈
iK
n

⌉
− iK

n

)
. By Lemma 13,

min
{

1
i

(
i
k

)
, 1
i

∑i
j=1 r(uj)

}
is an upper bound on M/i, which

leads to a contradiction.

Theorem 18 (Optimality Test by Max-Flow) . Al-
gorithm 9 returns true if and only if G is the maximal k-
clique densest subgraph of itself.

Proof. Suppose Algorithm 9 returns true, i.e., there ex-
ists a feasible flow with value nM in the constructed net-
work. The feasible flow induces a vector α ∈ D(G, k): for
each u ∈ C ∈ Ck(G), αCu is the flow on the edge from u to
C divided by n. This α induces r ∈ RV+ where r(u) = M/n,
∀u ∈ V . Lemma 13 implies that there is no subgraph with
strictly higher k-clique density.

Conversely, if G is the maximal k-clique densest subgraph
of itself, the k-clique-diminishingly-dense decomposition of
G will simply be ∅ = B0 (B1 = V . By Proposition 5, V
is the only level set of the density vector r ∈ RV+ induced
from the optimal solution α of CP(G, k), i.e., r(u) = M/n,
∀u ∈ V . From α we can construct a feasible flow with value
nM by setting the flow from C to u to be nαCu , ∀u ∈ C ∈
Ck(G).

After performing Squeeze in Line 2 of Algorithm 7, if set
S satisfies the condition in Line 7 of Algorithm 6, then S is
stable with respect to α. By Proposition 7, the maximal k-
clique densest subgraph is included in G[S]. Hence, once S
passes either one of the two optimality tests, we can confirm
that S is the maximal k-clique densest subgraph of G. In
addition, it is guaranteed by Theorem 8 and Corollary 11
that after sufficiently many iterations, the maximal k-clique
densest subset will emerge as S1 in Algorithm 7.

5. EXPERIMENTS
We design our experiments so as to answer the following

questions:
Q1. Convergence: How fast does kClist++ converge as
a function of the number of iterations? Do the sequential
updates lead to much faster convergence than the simulta-
neous ones? And what about Seq-Sampling++?
Q2. Comparison: Does our algorithms allow better trade-
offs between time and quality of results than existing algo-
rithms?
Q3. Degree of parallelism and running time: Does
the kClist++ algorithm have a good degree of parallelism?
How fast is our algorithm and what can it do within a rea-
sonable amount of time?
Q4. Exact solution: Can our exact algorithm compute
the exact densest subgraph for large values of k on large
graphs when existing methods fail?

5.1 Experimental Setup
Machine. We carried out our experiments on a Linux ma-
chine equipped with 4 processors Intel Xeon CPU E5-4617
2.90GHz with 6 cores each (that is a total of 24 threads) and
with 64G of RAM DDR4 2133 MHz. We will use 1 thread
for most of the experiments and use up to 24 threads to
evaluate the degree of parallelism.
Datasets. We consider several large real-world graphs from
SNAP [24] of different nature (social networks, co-authorship
and communication networks, etc.) containing up to two bil-
lion edges, while exhibiting a wide range of core values. In
particular, the core value of the input graph has an impor-
tant impact on the overall running time of kClist. Statis-
tics of the datasets are summarized in Table 1.

Table 1: Our set of large real-world graphs from [24]. The
last three columns specify the core value c, the size kmax of
a maximum clique (computed by [26]) and the number s of
nodes in the maximal densest subgraph (computed by [10]),
respectively.

Network n m c kmax s

road-CA 1,965,206 2,766,607 3 4 62
Amazon 334,863 925,872 7 7 97

soc-pokec 1,632,803 22,301,964 47 29 8,485
loc-gowalla 196,591 950,327 51 29 560
Youtube 1,134,890 2,987,624 51 17 1,959

zhishi-baidu 2,140,198 17,014,946 78 31 8,993
DBLP 425,957 1,049,866 113 114 115

WikiTalk 2,394,385 4,659,565 131 26 1,384
Wikipedia 2,080,370 42,336,692 208 67 1,238

Orkut 3,072,627 117,185,083 253 51 25,969
Friendster 124,836,180 1,806,067,135 304 129 49,092

LiveJournal 4,036,538 34,681,189 360 327 440

Competitors. We consider the following existing approaches
to compare against:

1. Greedy: The algorithm which removes in each round
a vertex belonging to the minimum number of k-cliques
and returns the subgraph that achieves the largest k-
clique density, is a k-approximation for the k-clique
densest subgraph problem. It also produces the so-
called k-clique core decomposition [30, 9].

2. Batch: The algorithm which removes in each round
the set of vertices belonging to less than k(1 + ε)ρk
k-cliques and returns the subgraph that achieves the
largest k-clique density, where ρk is the k-clique den-
sity of the subgraph at that round. Such an algorithm
gives a k(1 + ε)-approximation, while it terminates in
O(logn

ε
) rounds, for any ε > 0 [30, 9].

3. MaxFlow: The exact Goldberg’s max-flow based bi-
nary search algorithm generalized to the case when
k ≥ 3 by Tsourakakis [30] and Hu et al. [18].

4. MaxFlow-Sampling: The max-flow based binary
search algorithm equipped with sampling, proposed
by Mitzenmacher et al. [25]. It differs from our Seq-
Sampling++ only in that it finds a k-clique densest
subgraph via a series of max-flow computations, rather
than iterations of sequential update.

Implementation. We implemented all our algorithms in
C++, including the max-flow based exact algorithm. We
used OpenMP for parallelization and made our implemen-
tations publicly available1. To compute a maximum flow, we
used the implementation available in Boost library [27]. In
particular, we used the push-relabel algorithm which turned
out to be faster than the Boykov-Kolmogorov algorithm for
our settings. For the competitors we used the publicly avail-
able implementations2 of the algorithms presented in [9].
We set σ := 107 for Seq-Sampling++ and σ := 105 for
MaxFlow-Sampling to make both the running time and
the obtained solution comparable.
Implementation Details of k-Cliques Ordering. It
turns out that the order by which the k-cliques are pro-
cessed affects the convergence rate of our sequential algo-
rithms. In particular, if the k-cliques that contain a node u
come in batch too early, then r(u) will not adjust later dur-
ing that iteration over the k-cliques. Ideally, the k-cliques
should appear in a random order, but this does not seem
to be possible under the framework of kClist. We spec-
ify the order of k-clique enumeration as follows. Recall that
kClist is a recursive algorithm performed on a directed ver-
sion of the input graph G based on some total ordering on
the nodes η : V → [n], where each edge uv is oriented from
u to v such that η(u) < η(v). In each recursive step, kClist
picks the nodes in the current graph one by one to recurse
in the subgraph induced by the out-neighbors of each node
([9, Line 9–10, Algorithm 2]). The nodes can be picked in
arbitrary order for the purpose of k-clique listing. We pick
the nodes in reverse order : in Line 9 of [9], we process the
nodes in decreasing order of η value, that is, in the order
u1, u2, . . . , un such that η(u1) > η(u2) > · · · > η(un). For
Seq-Sampling++ we simply shuffle the sampled cliques.

5.2 Q1. Convergence
Figure 1 shows the relative error of kClist++ as a func-

tion of the number of the iterations. The relative error is
defined as (ubk − ρk)/ρk where ubk is the upper bound on
the k-clique density, while ρk is the k-clique density of the
subgraph detected. We can see that we obtain a relative
error of 10−3 within 1,000 iterations in all graphs.

Figure 2 compares the two variants of kClist++, namely
with sequential updates (Seq-kClist++) and simultaneous

1https://github.com/btsun/kClistpp
2https://github.com/maxdan94/kClist

https://github.com/btsun/kClistpp
https://github.com/maxdan94/kClist

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
er

ro
r

k = 3

road-CA
Amazon
soc-pokec
loc-gowalla
Youtube
zhishi-baidu
DBLP
WikiTalk
Wikipedia
Orkut
Friendster
LiveJournal

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

R
el

at
iv

e
er

ro
r

k = 4

road-CA
Amazon
soc-pokec
loc-gowalla
Youtube
zhishi-baidu
DBLP
WikiTalk
Wikipedia
Orkut
Friendster
LiveJournal

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
er

ro
r

k = 5

Amazon
loc-gowalla
Youtube
soc-pokec
zhishi-baidu
DBLP
WikiTalk
Wikipedia
Orkut
Friendster
LiveJournal

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
er

ro
r

k = 6

Amazon
loc-gowalla
Youtube
soc-pokec
zhishi-baidu
DBLP
WikiTalk
Wikipedia
Orkut
Friendster
LiveJournal

Figure 1: Relative error of kClist++ as a function of the number of iterations.

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

×101 Amazon k = 3

Seq-kClist++
Seq-kClist++ (u. b.)
Sim-kClist++
Sim-kClist++ (u. b.)

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Amazon k = 6

Seq-kClist++
Seq-kClist++ (u. b.)
Sim-kClist++
Sim-kClist++ (u. b.)

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

D
en

si
ty

×104 Orkut k = 3

Seq-kClist++
Seq-kClist++ (u. b.)
Sim-kClist++
Sim-kClist++ (u. b.)

1 2 4 8 16 32 64 128 256 512 1024

Number of iterations

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

D
en

si
ty

×106 Orkut k = 5

Seq-kClist++
Seq-kClist++ (u. b.)
Sim-kClist++
Sim-kClist++ (u. b.)

Figure 2: Comparison of the convergence rate of Seq-kClist++ and Sim-kClist++. “Seq-kClist++ (u.b.)” and
“Sim-kClist++ (u.b.)” denote the upper bound on the optimum density obtained by Seq-kClist++ and Sim-kClist++,
respectively.

updates (Sim-kClist++). It shows the k-clique density as
well as the upper bound on the optimal solution as a func-
tion of the number of iterations. We can see that in all cases,
Seq-kClist++ converges faster. In particular for Orkut

and k = 5, Seq-kClist++ computes a nearly optimal so-
lution within one iteration, while the Sim-kClist++ needs
more than 100 iterations to achieve a similar result. This
is expected because in Seq-kClist++ any change in the

Table 2: The results (density, upper bound, and the relative error implied) given by Seq-Sampling++ after 1 and 256
rounds of computation. The density and the upper bound after 256 iterations are presented as the difference (∆) between
the value and that produced after 1 iteration.

Network k # iterations Density Upper bound Relative error

loc-gowalla 5
1 1.38× 104 1.51× 104 9.71%

256 ∆ ≈ 0.35 ∆ ≈ −8.11 9.65%

zhishi-baidu 5
1 7.99× 103 9.58× 103 19.84%

256 ∆ = 0 ∆ ≈ −5.19 19.77%

DBLP 5
1 1.29× 106 1.34× 106 4.07%

256 ∆ = 0 ∆ ≈ −6.57 4.07%

Orkut 5
1 1.04× 106 1.65× 106 58.65%

256 ∆ = 0 ∆ ≈ −2718 58.39%

LiveJournal 5
1 1.69× 108 1.91× 108 12.97%

256 ∆ = 0 ∆ ≈ −24 621 12.95%

Table 3: Relative error and number of iterations over all
k-cliques after one hour and one day of computations using
kClist++ with 20 threads.

One hour One day
Network k Rel. err. # iter. Rel. err. # iter.

Orkut
7 2× 10−1 16 2× 10−3 256
8 3× 10−1 2 1× 10−2 64

Friendster
7 4× 10−3 2 3× 10−4 64
8 5× 10−3 1 6× 10−4 32

LiveJournal
5 1× 10−3 32 3× 10−5 1024
6 3× 10−3 1 2× 10−3 16

minimum r values are promptly taken into account, while
in Sim-kClist++ a given r(u) might be increased even if
it is no longer the minimum because of the simultaneous
updates. We observe similar results for other graphs, which
are omitted due to space constraints.

As for Seq-Sampling++, Table 2 shows the approxi-
mate solution and the upper bound computed on part of
the datasets (other results are similar and omitted due to
space constraints). We observe that the quality of the ap-
proximate solution converges quite fast as the density given
after 256 iterations does not significantly differ from that
given after 1 iteration. However, the relative error is not
ideal compared with kClist++. This is because the term

1−
√

6 logn

D̃
is inevitable when estimating the upper bound

on the original hypergraph (see Corollary 16), even though
the upper bound on the sampled hypergraph converges.

5.3 Q2. Comparison Against State of the Art
Figure 3 shows the k-clique density of the subgraph pro-

duced by the algorithms as a function of time. Here, we
consider the approximation algorithms, namely kClist++,
Seq-Sampling++, MaxFlow-Sampling, Batch and
Greedy. We also include the upper bound computed by
kClist++ to examine the quality of the solutions. We re-
mark that Greedy, Batch and MaxFlow-Sampling pro-
duce exactly one solution, while our algorithms provide grad-
ually improving results. In practice, when running kClist++
or Seq-Sampling++, one can stop whenever needed de-
pending on the available computation resources or time.

We can see that kClist++ and Seq-Sampling++ out-
perform their competitors almost all the time. When ex-

ecuted long enough, kClist++ computes a near-optimal
k-clique densest subgraph, while Seq-Sampling++ is even
faster than kClist++ in producing a good approximation.
Batch turns out to be faster than Greedy but often leads
to much worse results. As expected, MaxFlow-Sampling
is less effective, due to the fact that computing a maximum
flow is usually more time-consuming than iterating through
k-cliques in main memory3. Additionally, the upper bound
given by kClist++ also helps estimating the quality of so-
lution produced by other algorithms in absence of an exact
solution. For example, Greedy turns out to achieve an ap-
proximation ratio close to 1 relatively often, as opposed to
a k-approximation guarantee without such an upper bound.
Similar results can be observed in other graphs and for other
values of k, which are omitted for space constraints.

5.4 Q3. Degree of Parallelism
Figure 4 shows the running time and the speedup of

kClist++ as a function of the number of threads. We
can see that the algorithm has a very good degree of par-
allelism, as using 24 threads allows to reduce the running
time by a factor of nearly 24 in most settings for large value
of k. When k is small, say 5 or less, there is a relatively
small number of k-cliques. In such a case, the speedup is
sub-optimal (e.g. Friendster k = 4 has a speedup of nearly
10 using 24 threads) due to the non-negligible cost of thread
coordination. Nevertheless, in these settings kClist++ is
already very fast.

We pushed kClist++ to its limit to see what we are able
to compute using 20 threads within one hour and one day of
computations on our largest graphs and for large values of k.
We found that kClist++ is able to compute approximate
k-clique densest subgraphs with a relative error of at most
3× 10−1 within one hour and at most 1× 10−2 within one
day; see Table 3. We conclude that kClist++ boasts an
excellent degree of parallelism, allowing the computation of
nearly optimal k-clique densest subgraphs in large graphs
for unprecedentedly large values of k.

5.5 Q4. Exact Algorithms
We compare the algorithms for computing the maximal k-

clique densest subgraphs, namely MaxFlow and the exact
version of kClist++ (Algorithm 6) on several datasets and

3A comparison between the running time of a Frank-Wolfe
based algorithm and a max-flow based algorithm is shown
in [10, Table 2].

100 101 102

Running time (seconds)

0.5

0.6

0.7

0.8

0.9

1.0
D

en
si

ty
×101 Amazon k = 3.

100 101

Running time (seconds)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

D
en

si
ty

Amazon k = 6.

102 103 104

Running time (seconds)

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

D
en

si
ty

×104 soc-pokec k = 5.

102 103 104

Running time (seconds)

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

D
en

si
ty

×104 soc-pokec k = 6.

100 101 102 103

Running time (seconds)

2.6

2.8

3.0

3.2

3.4

3.6

D
en

si
ty

×103 loc-gowalla k = 4.

100 101 102 103

Running time (seconds)

1.0

1.1

1.2

1.3

1.4

D
en

si
ty

×104 loc-gowalla k = 5.

101 102

Running time (seconds)

3.8

4.0

4.2

4.4

4.6

4.8

5.0

D
en

si
ty

×102 Youtube k = 3.

102 103

Running time (seconds)

4.5

5.0

5.5

6.0

D
en

si
ty

×102 zhishi-baidu k = 3.

102 103 104

Running time (seconds)

3.0

3.2

3.4

3.6

3.8

D
en

si
ty

×104 zhishi-baidu k = 6.

101 102 103

Running time (seconds)

3.28

3.30

3.32

3.34

3.36

3.38

3.40

D
en

si
ty

×103 WikiTalk k = 3.

102 103 104

Running time (seconds)

2.08

2.10

2.12

2.14

2.16

D
en

si
ty

×106 WikiTalk k = 6.

102 103 104 105

Running time (seconds)

2.0

2.2

2.4

2.6

2.8

D
en

si
ty

×105 Wikipedia k = 5

102 103 104 105

Running time (seconds)

1.71

1.72

1.73

1.74

1.75

1.76

D
en

si
ty

×106 Wikipedia k = 6

103 104 105 106

Running time (seconds)

0.6

0.7

0.8

0.9

1.0

1.1

D
en

si
ty

×105 Orkut k = 4

103 104 105 106

Running time (seconds)

0.8

0.9

1.0

1.1

1.2

1.3

D
en

si
ty

×107 Orkut k = 6

102 103 104 105

Running time (seconds)

2.39

2.40

2.41

2.42

2.43

D
en

si
ty

×104 LiveJournal k = 3

104 105 106

Running time (seconds)

1.660

1.665

1.670

1.675

1.680

1.685

D
en

si
ty

×108 LiveJournal k = 5

104 105 106

Running time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
en

si
ty

×103 Friendster k = 3

104 105 106

Running time (seconds)

0.98

1.00

1.02

1.04

1.06

1.08

1.10

D
en

si
ty

×105 Friendster k = 4

kClist++

Upper bound

Seq-Sampling++

Greedy

Batch

MaxFlow-Sampling

Figure 3: Comparison of kClist++ and Seq-Sampling++ against the three state-of-the-art approximation algorithms,
namely Greedy, Batch and MaxFlow-Sampling.

for different values of k. Recall that kClist++ might also
run a max-flow algorithm, however, on a subgraph which is
possibly much smaller than the input graph. We summarize
the main results in Table 4. We observe that MaxFlow
runs out of memory in many cases, namely in WikiTalk for
k ≥ 5, zhishi-baidu for k ≥ 9, etc., which is expected as
MaxFlow introduces one node for every k-clique in the
graph. In most of those cases, kClist++ can compute
the k-clique densest subgraph within 60–90 minutes. More-
over, in almost all other cases (with very few exceptions),
kClist++ is faster than MaxFlow by several orders of
magnitude (up to a factor of 50–100). Finally, in a few
cases kClist++ does not require any maximum flow com-
putation at all, namely in DBLP for k ∈ {3, 4, 5}.

6. CONCLUSION
We developed algorithms for computing a near-optimal so-

lution for the k-clique densest subgraph problem, which has
received increasing attention in recent years. Our algorithms
are appealing in that they require small amount of memory
even when the number of k-cliques residing in the input
graph is huge, which allows to deal with large real-world
graphs for relatively large values of k. In contrast with state-
of-the-art approaches, our algorithms update their variables
sequentially, which turns out to be more efficient in prac-
tice than similar algorithms based on gradient descent. Our
study of the convergence rate requires different techniques
and it is interesting per se. Seq-Sampling++ is faster
than kClist++ in producing a near-optimal solution, while
kClist++ additionally gives a good upper bound on the

5 10 15 20 25

Number of threads

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(i

n
ho

ur
s)

Time
Speedup

5

10

15

20

25

S
p

ee
du

p

DBLP k=8

5 10 15 20 25

Number of threads

0

5

10

15

20

25

30

T
im

e
(i

n
ho

ur
s)

Time
Speedup

5

10

15

20

25

S
p

ee
du

p

LiveJournal k=6

5 10 15 20 25

Number of threads

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
(i

n
ho

ur
s)

Time
Speedup

5

10

15

20

25

S
p

ee
du

p

Friendster k=4

5 10 15 20 25

Number of threads

0

20

40

60

80

100

120

140

T
im

e
(i

n
ho

ur
s)

Time
Speedup

5

10

15

20

25

S
p

ee
du

p

Friendster k=9

Figure 4: Running time and speedup as a function of the number of threads for one iteration of kClist++.

Table 4: Comparison of efficiency between exact algorithms.

Running time (seconds) # max-flow calls # iterations
Network k MaxFlow [30] kClist++ MaxFlow [30] kClist++ kClist++

WikiTalk
3 669 44 37 1 16
4 13954 384 42 1 2
5 Run out of memory 4099 - 1 8

zhishi-baidu
8 18672 187 39 1 1
9 Run out of memory 537 - 1 1
10 Run out of memory 2010 - 1 1

soc-pokec
8 38647 261 47 1 1
9 Run out of memory 418 - 1 1
10 Run out of memory 1013 - 1 1

loc-gowalla
9 15795 316 32 1 1
10 46070 733 33 1 1
11 Run out of memory 1967 - 1 1

DBLP
3 35 1 28 0 1
4 1480 4 34 0 1
5 Run out of memory 64 - 0 1

Wikipedia
3 970 260 37 2 8
4 15306 19320 44 7 1024
5 Run out of memory 5740 - 1 1

Orkut
3 9432 11262 44 1 256
4 Run out of memory Run out of memory - - -

LiveJournal
3 8312 206 42 1 1
4 Run out of memory Run out of memory - - -

maximum k-clique density. We also developed an exact al-
gorithm, which is shown to be able to deal with relatively
large graphs and values of k. We demonstrated the effec-
tiveness of our algorithms by means of an extensive exper-
imental evaluation on graphs containing up to two billion
edges and for values of k up to 10. The evaluation shows
that our algorithms outperform state-of-the-art approaches

and boast an excellent degree of parallelism.

7. REFERENCES
[1] J. Abello, M. G. Resende, and S. Sudarsky. Massive

quasi-clique detection. In Latin American Symposium
on Theoretical Informatics, pages 598–612. Springer,
2002.

[2] V. Anantharam, J. Salez, et al. The densest subgraph
problem in sparse random graphs. The Annals of
Applied Probability, 26(1):305–327, 2016.

[3] A. Angel, N. Sarkas, N. Koudas, and D. Srivastava.
Dense subgraph maintenance under streaming edge
weight updates for real-time story identification.
PVLDB, 5(6):574–585, 2012.

[4] Y. Asahiro, R. Hassin, and K. Iwama. Complexity of
finding dense subgraphs. Discrete Applied
Mathematics, 121(1):15–26, 2002.

[5] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and MapReduce. PVLDB,
5(5):454–465, 2012.

[6] O. D. Balalau, F. Bonchi, T. Chan, F. Gullo, and
M. Sozio. Finding subgraphs with maximum total
density and limited overlap. In WSDM, pages
379–388, 2015.

[7] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. In
Approximation Algorithms for Combinatorial
Optimization, pages 84–95. Springer, 2000.

[8] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick.
Reachability and distance queries via 2-hop labels. In
Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8,
2002, San Francisco, CA, USA, pages 937–946, 2002.

[9] M. Danisch, O. Balalau, and M. Sozio. Listing
k-cliques in sparse real-world graphs. In Proceedings of
the 2018 World Wide Web Conference, WWW ’18,
pages 589–598, Republic and Canton of Geneva,
Switzerland, 2018. International World Wide Web
Conferences Steering Committee.

[10] M. Danisch, T. H. Chan, and M. Sozio. Large scale
density-friendly graph decomposition via convex
programming. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, Perth,
Australia, April 3-7, 2017 [10], pages 233–242.

[11] X. Du, R. Jin, L. Ding, V. E. Lee, and J. H. T. Jr.
Migration motif: a spatial - temporal pattern mining
approach for financial markets. In SIGKDD, pages
1135–1144, 2009.

[12] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest
subgraph computation in evolving graphs. In WWW,
pages 300–310, 2015.

[13] I. Finocchi, M. Finocchi, and E. G. Fusco. Clique
counting in MapReduce: algorithms and experiments.
Journal of Experimental Algorithmics (JEA), 20:1–7,
2015.

[14] E. Fratkin, B. T. Naughton, D. L. Brutlag, and
S. Batzoglou. Motifcut: regulatory motifs finding with
maximum density subgraphs. Bioinformatics,
22(14):e150–e157, 2006.

[15] A. V. Goldberg. Finding a maximum density subgraph.
University of California Berkeley, CA, 1984.

[16] B. Hajek. Performance of global load balancing by
local adjustment. IEEE Transactions on Information
Theory, 36(6):1398–1414, 1990.

[17] B. Hajek et al. Balanced loads in infinite networks.
The Annals of Applied Probability, 6(1):48–75, 1996.

[18] S. Hu, X. Wu, and T. H. Chan. Maintaining densest

subsets efficiently in evolving hypergraphs. In
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017, pages
929–938, 2017.

[19] M. Jaggi. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In ICML, pages 427–435,
2013.

[20] S. Jain and C. Seshadhri. A fast and provable method
for estimating clique counts using turán’s theorem. In
Proceedings of the 26th International Conference on
World Wide Web, pages 441–449. International World
Wide Web Conferences Steering Committee, 2017.

[21] S. Jain and C. Seshadhri. The power of pivoting for
exact clique counting. In WSDM, pages 268–276, 2020.

[22] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a
high-compression indexing scheme for reachability
query. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA, June
29 - July 2, 2009, pages 813–826, 2009.

[23] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A
survey of algorithms for dense subgraph discovery. In
Managing and Mining Graph Data, pages 303–336.
Springer, 2010.

[24] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[25] M. Mitzenmacher, J. Pachocki, R. Peng,
C. Tsourakakis, and S. C. Xu. Scalable large
near-clique detection in large-scale networks via
sampling. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 815–824. ACM, 2015.

[26] R. A. Rossi, D. F. Gleich, and A. H. Gebremedhin.
Parallel maximum clique algorithms with applications
to network analysis. SIAM Journal on Scientific
Computing, 37(5):C589–C616, 2015.

[27] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. Boost Graph
Library: User Guide and Reference Manual, The.
Pearson Education, 2001.

[28] M. Sozio and A. Gionis. The community-search
problem and how to plan a successful cocktail party.
In SIGKDD, pages 939–948, 2010.

[29] N. Tatti and A. Gionis. Density-friendly graph
decomposition. In WWW, pages 1089–1099, 2015.

[30] C. Tsourakakis. The k-clique densest subgraph
problem. In Proceedings of the 24th international
conference on world wide web, pages 1122–1132.
International World Wide Web Conferences Steering
Committee, 2015.

[31] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and
M. Tsiarli. Denser than the densest subgraph:
extracting optimal quasi-cliques with quality
guarantees. In SIGKDD, pages 104–112, 2013.

[32] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung. On
triangulation-based dense neighborhood graph

discovery. PVLDB, 4(2):58–68, 2010.

http://snap.stanford.edu/data

	Introduction
	Preliminaries
	Algorithms
	Frank-Wolfe Based Algorithm
	Large Memory Approximation Algorithm
	Linear Memory Approximation Algorithm
	Save Memory via Sampling
	Exact k-Clique Densest Subgraph

	Analysis
	Convergence Rate of kClist++
	Upper Bound
	Exact Algorithm

	Experiments
	Experimental Setup
	Q1. Convergence
	Q2. Comparison Against State of the Art
	Q3. Degree of Parallelism
	Q4. Exact Algorithms

	Conclusion
	References

