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Stream graphs model highly dynamic networks in which nodes and/or links arrive and/or leave over time. Strongly connected components in stream graphs were defined recently, but no algorithm was provided to compute them. We present here several solutions with polynomial time and space complexities, each with its own strengths and weaknesses. We provide an implementation and experimentally compare the algorithms in a wide variety of practical cases. In addition, we propose an approximation scheme that significantly reduces computation costs, and gives even more insight on the dataset.

Connected components are among the most important concepts of graph theory. They were recently generalized to stream graphs [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF], a formal object that captures the dynamics of nodes and links over time. Unlike other generalizations available in the literature, these generalized connected components partition the set of temporal nodes. This means that each node at each time instant is in one and only one connected component. This makes these generalized connected components particularly appealing to capture important features of objects modeled by stream graphs. However, computation of connected components in stream graphs has not been explored yet. Therefore, up to this date, they remain a formal object with no practical use. In addition, the algorithmic complexity of the problem is unknown, as well as the insight they may shed on real-world stream graphs of interest.

After introducing key notations and definitions (Section 1), we present two algorithms for strongly connected components, together with their complexity (Section 2). We then apply these algorithms to several large-scale real-world datasets and demonstrate their ability to describe such datasets (Section 3). We also show that their performances may be improved greatly at the cost of reasonable approximations. A stream graph S = (T, V, W, E) is defined [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF] by a finite set of nodes V , a time interval T ⊆ R, a set of temporal nodes W ⊆ T × V , and a set of links E ⊆ T × V ⊗ V such that (t, uv) ∈ E implies (t, u) ∈ W and (t, v) ∈ W .

The Stream Graph Framework

For any u and v in V , T u = {t, (t, u) ∈ W } denotes the set of time instants at which u is present, and T uv = {t, (t, uv) ∈ E} the set of time instants at which u and v are linked together. We assume that both T u and T uv are unions of a finite number of disjoint closed intervals (possibly singletons) of T . We call node segment a couple ([b, e], u) such that [b, e] is a segment that is not included in any other segment of T u , and we denote by W the set of all node segments in W . We say that b is an arrival of u, and e a departure. We denote by N = |W | the number of node segments in the stream. Likewise, we call link segment a couple ([b, e], uv) such that [b, e] is not included in any other segment of T uv , and by E the set of all link segments in E. We say that b is an arrival of uv, and e a departure. We denote by M = |E| the number of link segments in the stream. We call all time instants that correspond to a node or link arrival or departure an event time. There are at most 2 • N + 2 • M event times. Notice that the intervals considered above may be singletons. Then, b = e and [b, e] = {b} = {e}. See Figure 1 for an illustration.

The induced graph G(S) = (V (S), E(S)) is defined by V (S) = {v, T v = ∅} and E(S) = {uv, ∃t, (t, uv) ∈ E}. We denote by n = |V (S)| and m = |E(S)| its number of nodes and links, respectively. We denote by G t = (V t , E t ) the graph such that V t = {v, (t, v) ∈ W } and E t = {uv, T uv = ∅}. We denote by G - t the graph that corresponds to the nodes and links present between the event time just before t and t: G

- t = (V - t , E - t ) where V - t = {v, ∃t = t, [t , t] ⊆ T v } and E - t = {uv, ∃t = t, [t , t] ⊆ T uv }.
We consider in input a time-ordered sequence of node or link arrivals or departures. We maintain the set of present nodes and links at the current time instant t, i.e. the graph G t , and we store their latest arrival time seen so far.

This has a Θ(N + M ) time and Θ(n + m) space cost for the whole processing of input data. Therefore, these worst-case complexities are lower bounds for our algorithms.

Strongly Connected Components

A strongly connected component of S = (T, V, W, E) is a maximal subset I × X of W such that I is an interval of T and X is a connected component of G t for all t in I. It is denoted by (I, X). The set of all strongly connected components of S is a partition of W [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF]. See Figure 1 to indicate an interval that can be either open or closed on its extremities. This interval contains ]b, e[ and may or may not contain b and/or e. We will also use mixed notation: b, e] for instance designates an interval that may or may not contain b, but does contain e.

The number of strongly connected components is in Θ(N + M ), because there can be one component per node segment, and each link segment may induce up to four components. Indeed, each beginning of a link segment may correspond to the beginning of two components: one instantaneous at the link segment beginning and one that starts just after; and each link segment ending may correspond to the beginning of two connected components if the corresponding component becomes disconnected. Explicitly writing a component to the output is done in linear time with respect to its number of nodes, in Ω(N + n • M ).

Direct Approach

One may compute strongly connected components directly from their definition, by processing event times in increasing order and by maintaining the set of strongly connected components that begin before or at current event time, and end after it. We represent each such component as a couple ( b, C), meaning that it starts at b (included or not) and involves nodes in C.

More precisely, we start with a set C containing ([α, C) for each connected component C of the graph G α at the first event time α. Then, for each event time t > α in increasing order we consider the connected components of G - t . For each such component C, if there is no component ( b, X) with X = C in C then we add (]t , C) to C , where t is the event time preceding t. For each element ( b, X) of C , if X is not a connected component of G - t , then we remove it from C and we output ( b, t ], X). We then turn to the connected components of G t : for each such component C, if there is no component ( b, X) with X = C in C then we add ([t, C) to C ; and for each element ( b, X) of C , if X is not a connected component of G t , then we remove it from C and we output ( b, t[, X). Finally, when the last event time t = ω is reached, we output ( b, ω], X) for each element ( b, X) of C .

Clearly, this algorithm outputs all strongly connected components of the considered stream graph. Computing the connected components of each graph is in O(n + m) time and space. The considered set families (the graph connected components, as well as the elements of C ) form partitions of V . Therefore, their storage and all set comparisons processed for each event time have a cost in O(n) time and space. There are O(M +N ) event times, therefore, the time complexity of this method is O((N + M ) • (n + m)), and it needs O(n + m) space.

Without changing its time complexity, this algorithm may be improved by ignoring event times t such that all events occurring at t are link arrivals between nodes already in the same connected component. However, one still has to compute graph connected components at each event time with link departures. Therefore, this improvement is mostly appealing if many link departures occur at the same event times.

More generally, the approach above is efficient only if many events (node and/or links arrivals and/or departures) occur at each event time. Then, many connected components may change at each event time, and computing them from scratch makes sense. Instead, if only few events occur at most event times, managing each event itself and updating current connected components accordingly is appealing.

This leads to the following algorithm, which starts with an empty set C , considers each event time t in increasing order, and performs the following operations.

1. For each node segment ([b, e], u) such that b = t (node arrival), add ([b, {u}) to C . 2. For each link segment ([b, e], uv) such that b = t (link arrival), let C u = ( b u , X u ) and C v = ( b v , X v ) be the elements of C such that u ∈ X u and v ∈ X v ; if C u = C v then replace C u and C v by ([t, X u ∪ X v ) in C . Then: if b u = [t then output ( b u , t[, X u ); if b v = [t then output ( b v , t[, X v ). 3. Let G t = G t ; then for each link segment ([b, e], uv) such that e = t (link departure), let C v = C u = ( b u , X u ) be the element of C such that u ∈ X u and v ∈ X u ; remove the link uv from G t ; if there is no path between u and v in G t then replace C u by C u = (]t, X u ) and C v = (]t, X v ) in C where X u and X v are the connected components of u and v in G t , respectively; if b u =]t then output ( b u , t], X u ). 4. For each node segment ([b, e], u) such that e = t (node departure), let C u = ( b u , X u ) be the element of C such that u ∈ X u ; remove C u from C ; if b u =]t then output ( b u , t], {u}).
We call this algorithm SCC Direct. It clearly outputs the strongly connected components of the considered stream, like the previous algorithm. It performs 2(M + N ) of the steps above, corresponding to N node arrivals and departures and M link arrivals and departures. One easily deals with node arrivals and departures in constant time. If a link arrival induces a merge between two components, computing their union is in O(n), as is outputting both components if needed. Thus the complexity for link arrival steps is in O(M • n). Each link departure calls for a computation of the connected components of a graph, and writing a component to the output is in O(n). Thus the complexity for link departure steps is in O(M • (m + n)). We obtain a total time complexity in O(M • (m + n) + N ). The space complexity is still in O(n + m) as above.

Fully Dynamic Approach

The SCC Direct algorithm presented above is strongly related to one of the most classical algorithmic problems in dynamic graph theory, called fully dynamic connectivity [START_REF] Kejlberg-Rasmussen | Faster Worst Case Deterministic Dynamic Connectivity[END_REF][START_REF] Wulff-Nilsen | Faster deterministic fully-dynamic graph connectivity[END_REF][START_REF] Iyer | An Experimental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms[END_REF][START_REF] Alberts | An Empirical Study of Dynamic Graph Algorithms[END_REF][START_REF] Huang | Fully dynamic connectivity in O(logn(loglogn) 2 ) amortized expected time[END_REF][START_REF] Kapron | Dynamic Graph Connectivity in Polylogarithmic Worst Case Time[END_REF][START_REF] Henzinger | Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time Per Operation[END_REF], which aims at maintaining the connected components of an evolving graph. Considering a sequence of link additions and removals, dynamic connectivity algorithms maintain a data structure able to tell if two nodes are in the same connected components (query operation) and to merge or split connected components upon link addition or removal (update operation).

This data structure and the corresponding operations can be used in the above algorithm: we can use the data structure to store C , the set of current connected components (we also need to store the beginning time of each component, which has negligible cost). Then, at each link arrival or departure, we can use the query operation to test whether the two nodes are in the same component or not, and the update operation to add or remove the current link to the data structure, while keeping an up-to-date set of connected components. When we observe a node appearance it is necessarily isolated, so we have to add the current time to its component. All the other steps (mainly, writing the output) are unchanged. We call this algorithm SCC FD.

Several methods efficiently solve the dynamic connectivity problem, the key challenge being to know if updates and queries may be performed in O(log(n)) time, where n is the number of nodes in the graph. Current exact solutions per-

form updates in O n•(log log(n)) 2 log(n)
worst time [START_REF] Kejlberg-Rasmussen | Faster Worst Case Deterministic Dynamic Connectivity[END_REF], or in log 2 (n) log log(n) amortized worst time [START_REF] Wulff-Nilsen | Faster deterministic fully-dynamic graph connectivity[END_REF]. Probabilistic (exact or approximate) methods perform even better, but they remain above the O(log(n)) time cost [START_REF] Huang | Fully dynamic connectivity in O(logn(loglogn) 2 ) amortized expected time[END_REF][START_REF] Kapron | Dynamic Graph Connectivity in Polylogarithmic Worst Case Time[END_REF][START_REF] Henzinger | Randomized Fully Dynamic Graph Algorithms with Polylogarithmic Time Per Operation[END_REF].

It is well acknowledged that these algorithmic time and space complexities hide big constants, and that the underlying algorithms and data structures are very intricate. As a consequence, implementing these algorithms is an important challenge in itself [START_REF] Alberts | An Empirical Study of Dynamic Graph Algorithms[END_REF][START_REF] Iyer | An Experimental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms[END_REF], and the results above should be considered as theoretical bounds. In practice, the implemented algorithms typically have O(log(n) 3 ) amortized time and linear space complexities, still with large constants [START_REF] Alberts | An Empirical Study of Dynamic Graph Algorithms[END_REF][START_REF] Iyer | An Experimental Study of Polylogarithmic, Fully Dynamic, Connectivity Algorithms[END_REF].

In SCC FD, we perform O(M ) updates and queries, which leads to a O(M • polylog(n)) overall time cost for these operations, with any of the polylog dynamic connectivity algorithms cited above. This cost is dominated by the cost of outputting the results, which is in O(M • n). An additional N factor is needed to deal with node arrivals and departures. Hence, we obtain a total time in O(M • n + N ). The space cost of dynamic connectivity methods is in O(m + n • log n), and we do not store significantly more information.

This algorithm is particularly appealing if large connected components are quite stable, i.e. if most largest strongly connected components in the stream have a long duration. Indeed, in this case, fully dynamic update operations are much faster than updates used in SCC Direct, and the output is much smaller than the maximum Ω(N + M • n) bound. The cost of SCC FD is then dominated by fully dynamic operations, and its time complexity is reduced to O(M • polylog(n)).

Experiments and Applications

In this section, we conduct thorough experiments with several real-world datasets and our different algorithms. SCC Direct was significantly faster, and only SCC Direct was able to perform the computation in central memory of large-scale datasets (several dozens of millions of link segments). We publicly provide Python 3 implementations of our algorithms in the Straph library [START_REF] Rannou | Straph -Python Library for the modelisation and analysis of Stream Graphs[END_REF].

Datasets

First notice that most available datasets record instantaneous interactions only, either because of periodic measurements, or because only one timestamp is available. In such situations, one resorts to δ-analysis [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF]: one considers that each interaction lasts for a given duration δ. This transforms a dataset into a stream graph S = (T, V, W, E) in which all link segments last for at least δ, and all links in D separated by a delay lower than δ lead to a unique link segment. Nodes are considered as present only when they have at least one link.

In order to explore the performances of our algorithms in a wide variety of situations, we considered 14 publicly available datasets that we shortly present below. Their key stream graph properties are given in Table 1, together with the value of δ we used. It either corresponds to a natural value underlying the dataset or is determined by the original timestamp precision. 1: Key features of the real-world stream graphs we consider, ordered with respect to their number M of link segments (K indicates thousands, M millions).

UC Message (UC) [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] is a capture of messages between University of California students in an online community. High School 2012 (HS 2012) [START_REF] Fournet | Contact patterns among high school students[END_REF] is a sensor recording of contacts between students of 5 classes during 7 days in a high school in Marseille, France in 2012. Digg [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] is a set of links representing replies of Digg website users to others. Infectious [START_REF] Isella | What's in a crowd? analysis of face-to-face behavioral networks[END_REF] is a recording of face-to-face contacts between visitors of an exhibition in 2009, Dublin. Twit-ter Higs (Twitter) [START_REF] Domenico | The Anatomy of a Scientific Rumor[END_REF][START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF] is a recording of all kinds of twitter activity for one week around the discovery of the Higgs boson in 2012. Linux Kernel mailing list (Linux) [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] represents the email replies between users on this mailinglist. Facebook wall posts (Facebook) [START_REF] Viswanath | On the evolution of user interaction in facebook[END_REF] represents messages exchanged between Facebook users, through their walls. Epinions [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] is a set of timestamped trust and distrust link creations on Epinions, an online product rating site. Amazon [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] contains product ratings on Amazon. Youtube [START_REF] Mislove | Online Social Networks: Measurement, Analysis, and Applications to Distributed Information Systems[END_REF] is a social network of YouTube users and their friendship connections. Movielens [7] contains movie ratings by users of the Movielens site. Wiki Talk En (Wiki) [START_REF] Kunegis | Konect: the koblenz network collection[END_REF] is a recording of discussions between contributors to the English Wikipedia. Mawilab 2020-03-09 (Mawilab) [START_REF] Fontugne | MAWILab: Combining Diverse Anomaly Detectors for Automated Anomaly Labeling and Performance Benchmarking[END_REF] is a 15 minutes capture of network traffic on a backbone trans-pacific router in Japan on March 3, 2020. Each link represents a packet exchanged between two internet addresses. Stackoverflow [START_REF] Paranjape | Motifs in Temporal Networks[END_REF][START_REF] Leskovec | SNAP Datasets: Stanford large network dataset collection[END_REF] is a recording of interactions on the stack overflow web site. Figure 2 presents the time cost for each dataset, and show a strong relation between the number of link segments, the number of connected components, and computation time. Notice however that Wiki and Mawilab have similar numbers of link and node segments but SCC Direct is several order of magnitude faster on Wiki. This difference comes from their quite different structure regarding connected components: Mawilab has more than 21M SCC involving at least 30K nodes, whereas Wiki has only 2K such SCC. As explained in Section 2, the computational cost of SCC Direct mainly depends on the number of nodes in each SCC, which is observed in this experiment.

Algorithm performances

Connectedness analysis of IP traffic

We take the MawiLab IP traffic capture as a typical instance of large real-world datasets modeled by a stream graph, and we use it to illustrate the relevance of connected component analysis. The stream has 30, 062, 184 such components, with no giant one. Given C = ( b, e , X) we call the number of involved nodes |X| its size, and the length of its time interval e -b its duration.

In Figure 3, we display the strongly connected component size and duration distributions as well as the duration of components as a function of their size. Clearly, component size and duration are not linearly dependant. No component significantly stands out of the crowd: there is no component with both a long duration and a large size. Instead, large strongly connected components have a very short duration, and, conversely, long components have a small size. For instance, all components involving at least 2K nodes have a duration lower than 1e-3 seconds, and all components that last for more than two seconds involve less than ten nodes. The largest component (in terms of number of nodes) involves 49, 791 nodes (only 5.3% of the whole), and lasts for 8.2e-5 seconds (only 9.1e-6% of the whole).

More generally, these plots show that there are many strongly connected components with very short duration: 90% last less than 0.14 seconds. These components are due to the frontier effect, that we define as follows. Consider a set X of nodes, and assume that link segments that start close to a given time b and end close to a given time e connect them. However, they all start at different times and end at different times. This leads to a connected component ([b , e ], X), with b close to b and e close to e, but also to many short strongly connected components that both start and end close to b, or close to e. These components make little sense, if any, but they account for a huge fraction of all strongly connected components, and so they have a crucial impact on computation time as explained in the previous section. We show below how to get rid of them while keeping crucial information.

Approximate Strongly Connected Components

The fact that link segments start and end at slightly different times induces many strongly connected components of very low duration, that have little interest. We, therefore, propose to consider the following approximation of the stream graph S = (T, V, W, E). Given an approximation parameter ∆ < δ and any time t in T , we define t ∆ as ∆ • t ∆ and t ∆ as ∆ • t ∆ . We then define

S ∆ = (T, V, W ∆ , E ∆ ) where W ∆ = ∪ ([b,e],v)∈W [ b ∆ , e ∆ ] × {v} and E ∆ = ∪ ([b,e],uv)∈E [ b ∆ , e ∆ ] × {uv}.
In other words, we replace each node segment ([b, e], v) by a shorter node segment that starts at the first time after b and ends at the last time before e which are multiple of ∆. We proceed similarly with link segments.

First notice that S ∆ is an approximation of S, in the sense that S ∆ may be computed from S, but not the converse. In addition, each node or link segment in S lasts at least δ, and since ∆ is lower than δ, no node or link segment disappears when S is transformed into S ∆ ; only their starting and ending times change. In addition, S ∆ is included in S: W ∆ ⊆ W and E ∆ ⊆ E. This has an important consequence: all paths in S ∆ are also paths in S, and so the approximation does not create any new reachability relation. It, therefore, preserves key information contained in the original stream. Let us first observe the effect of the approximation on strongly connected components in Figure 4. The number of components rapidly drops from its initial value of 30 millions (for ∆ = 0, i.e. no approximation) to less than 6 millions for ∆ = δ/10 3 = 0.002. Its decrease is much slower when ∆ grows further, which indicates that the stream does not anymore contain an important number of irrelevant components due to the frontier effect. As expected, this has a strong impact on computation time, which we also display; it also very rapidly drops, from more than one day to less than one hour, making computations on such large-scale datasets much quicker. Figure 5 presents the effect of ∆ on size, duration and span distributions of strongly connected components. For ∆ = δ/10 4 , we notice that while the number of components has decreased by half only fifty percent of them involve more than 30K nodes. Furthermore, as ∆ increases, the number of components tends to be stable (Figure 4) but the number of components involving more than 30K nodes continues to drop. This explains the differences observed in the execution time of SCC Direct (Figure 4) and confirms that the approximation eliminates most very short connected components, but not all: the ones which are not due to the frontier effect are preserved, another wanted feature. Although the approximation above has a strong impact on the number of strongly connected components, it preserves key information of the stream. We illustrate this by considering one of the most widely studied features of these objects: the latency between nodes [START_REF] Kempe | Connectivity and Inference Problems for Temporal Networks[END_REF][START_REF] Xuan | Computing shortest, fastest, and foremost journeys in dynamic networks[END_REF]. Given two nodes u and v in a stream graph S = (T, V, W, E), the latency from u to v, denoted by (u, v), is the minimal time needed to reach v from u by following links of S in a time-respecting manner, and taking into account node dynamics, see [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF] for details.

Notice that latencies in S ∆ are necessarily larger than or equal to latencies in S, since paths in S ∆ are also paths in S. Therefore, latencies in S ∆ are upper bounds of latencies in S, and we show below that they are actually quite close.

Figure 6 displays the average difference between latencies in S and S ∆ as a function of ∆ for the Mawi dataset:

u,v∈V,u =v ∆ (u,v)-(u,v) n•(n-1)
. It also displays the average latency stretch u,v∈V,u =v ( ∆ (u,v)+1)/( (u,v)+1)

n•(n-1)
and the latency root mean square error:

LRMSE (S, S ∆ ) = u,v∈V,u =v ( (u,v)-∆ (u,v)) 2 n(n-1)
. The figure also indicates the number of node pairs that were reachable in S but became unreachable in this approximation. It appears that latencies are not significantly impacted by approximation, thus confirming that S ∆ , despite its reduced number of strongly connected components, captures key information available in S. More precisely, only 11 temporal paths disappear for ∆ = δ/10 3 and 115 disap-pear for ∆ = δ/10 2 , among a total number of 2, 888, 917. The over-estimate of latencies is very small, with a LRMSE of 0.51 and 1.61, respectively. This has important consequences. For instance, one may compute latencies in S ∆ from its strongly connected components, which are much easier to compute and store than the ones of S, and obtain this way fast and accurate upper bounds (or approximations) of latencies in S, like we did here for the Mawilab dataset.

Related Work

We focus here on connected components defined in [START_REF] Latapy | Stream graphs and link streams for the modeling of interactions over time[END_REF], but other notions of connected components in dynamic graphs have been proposed. Several rely on the notion of reachability, which, in most cases, induces components that may overlap and are NP-hard to enumerate, see for instance [START_REF] Bhadra | Complexity of Connected Components in Evolving Graphs and the Computation of Multicast Trees in Dynamic Networks[END_REF][START_REF] Gómez-Calzado | A Connectivity Model for Agreement in Dynamic Systems[END_REF][START_REF] Huyghues-Despointes | Forte delta-connexité dans les flots de liens[END_REF][START_REF] Nicosia | Components in time-varying graphs[END_REF]. This makes them quite different from the connected components considered here.

Akradi and Spirakis [START_REF] Akrida | On Verifying and Maintaining Connectivity of Interval Temporal Networks[END_REF] study and propose an algorithm for testing whether a given dynamic graph is connected at all times during a given time interval. If it is not connected, their algorithm looks for large connected components that exist for a long duration. Vernet et al. [START_REF] Vernet | A Study of Connectivity on Dynamic Graphs: Computing Persistent Connected Components[END_REF] propose an algorithm for computing all sets of nodes that remain connected for a given duration, and that are not dominated by other such sets. Unlike our work, these papers do not partition the set of temporal nodes.

Finally, observing the size of largest components is classical, and Nicosia et al. [START_REF] Nicosia | Components in time-varying graphs[END_REF] study them in time-varying graphs, with a connectivity based on reachability through temporal paths. They have a component for each node, which may overlap.

Conclusion

We proposed, implemented, and experimentally assessed a family of polynomial algorithms to compute the connected components of stream graphs. These algorithms handle streams of dozens of millions of events, and output connected components in a streaming fashion. This brings valuable information in practice, as we illustrate on a large-scale real-world dataset. We also propose a dataset approximation scheme making computations much faster while preserving key properties of the original data. Up to our knowledge, it is the first time that a partition of temporal nodes into connected components is computed at such scales.

A promising perspective is to enumerate connected components without listing them: one may for instance output only component size and duration in this way. Fully dynamic algorithms are particularly appealing to this regard, as their complexity is dominated by the explicit component listing.

  Given any two setsA and B, we denote by A ⊗ B the set of pairs ab such that a ∈ A, b ∈ B and a = b. Couples are ordered, while pairs are unordered: (a, b) = (b, a) while ab = ba.

Fig. 1 :

 1 Fig. 1: (Left) An example of stream graph. We display time T = [0, 10] on the horizontal axis and nodes V = {A, B, C, D, E, F } on the vertical one. We represent each node segment by a colored horizontal segment, with one color per node; and each link segment in grey by a vertical line between the two involved nodes at the link segment starting time, and an horizontal line from this time to its ending time. (Right) The 16 strongly connected components of the stream graph.

  for an illustration. Notice that some component time intervals are closed, some are open and some are a combination of the two. For instance, ([0, 1], {C, D}) is a closed component, (]4, 6[, {B}) is an open one, ([6, 7[, {B, C}) is a left-closed and right-open one, and ([4, 4], {A, B, C}) is a closed and instantaneous component. Since the time intervals of components may be open or closed, we introduce the notation b, e

Fig. 2 :

 2 Fig. 2: Time cost of SCC Direct and SCC FD in seconds, along with the number M of link segments and the number of strongly connected components, for each considered stream (horizontal axis, ordered with respect to M ).

Fig. 3 :

 3 Fig. 3: Distribution of the size (left) and duration (middle) of SCC in Mawilab dataset. Duration of each SCC as a function of its size, in log-log scales (right).

Fig. 4 :

 4 Fig. 4: Running time of SCC Direct, number of SCC and number of event times in MawiLab, as a function of ∆ (here, δ = 2s).

Fig. 5 :

 5 Fig. 5: Box plots representing the distribution of the size (left), duration (middle) and span (right) of strongly connected components in Mawilab, for various values of ∆ (here, δ = 2s). We indicate the mean, minimal, and maximal values with dots connected by horizontal lines, as well as the median and percentiles with vertical boxes.

Fig. 6 :

 6 Fig.6: Evolution of the LRMSE, the average difference between latencies and the average latency stretch with respect to ∆ in Mawilab. We indicate the number of missing paths and represent it as a disk of area proportional to this number.

Table

  

		δ	n	m	|T | N	M
	UC	1h 2K	14K 189d 43K 34K
	HS 2012	60s 327 6K	4d	48K 46K
	Digg	1h 30K 85K 14.5d 110K 86K
	Infectious	60s 11K 45K 80d 85K 133K
	Twitter	600s 304K 452K 7d	543K 488K
	Linux	10h 27K 160K 8y	450K 544K
	Facebook	10h 46K 183K 4.3y 957K 588K
	Epinions	10h 132K 711K 2.6y 404K 743 K
	Amazon	1h 2.1M 5.7M 9.5y 9.9M 5.8M
	Youtube	24h 3.2 M 9.4M 226d 6.7M 9.4M
	Movielens	1h 70K 10M 14y 8.5M 10M
	Wiki	1h 2.9M 8.1M 14.3y 18.3M 14.5M
	Mawilab	2s 940K 9.1M 902s 17M 18.8M
	Stackoverflow 10h 2.6M 28.2M 7.6y 30M 33.5 M