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Abstract Predicting responses of plankton to variations in essential nutrients is hampered by limited in
situ measurements, a poor understanding of community composition, and the lack of reference gene
catalogs for key taxa. Iron is a key driver of plankton dynamics and, therefore, of global biogeochemical
cycles and climate. To assess the impact of iron availability on plankton communities, we explored the
comprehensive bio‐oceanographic and bio‐omics data sets from Tara Oceans in the context of the iron
products from two state‐of‐the‐art global scale biogeochemical models. We obtained novel information
about adaptation and acclimation toward iron in a range of phytoplankton, including picocyanobacteria and
diatoms, and identified whole subcommunities covarying with iron. Many of the observed global patterns
were recapitulated in the Marquesas archipelago, where frequent plankton blooms are believed to be caused
by natural iron fertilization, although they are not captured in large‐scale biogeochemical models. This work
provides a proof of concept that integrative analyses, spanning from genes to ecosystems and viruses to
zooplankton, can disentangle the complexity of plankton communities and can lead to more accurate
formulations of resource bioavailability in biogeochemical models, thus improving our understanding of
plankton resilience in a changing environment.

Plain Language Summary Marine phytoplankton require iron for their growth and
proliferation. According to John Martin's iron hypothesis, fertilizing the ocean with iron could
dramatically increase photosynthetic activity, thus representing a biological means to counteract global
warming. However, while there is a constantly growing knowledge of how iron is distributed in the ocean
and about its role in cellular processes in marine photosynthetic groups such as diatoms and cyanobacteria,
less is known about how iron availability shapes plankton communities and how they respond to it. In the
present work, we exploited recently published Tara Oceans data sets to address these questions. We first
defined specific subcommunities of co‐occurring organisms that co‐vary with iron availability in the oceans.
We then identified specific patterns of adaptation and acclimation to iron in different groups of
phytoplankton. Finally, we validated our global results at local scale, specifically in the Marquesas
archipelago, where recurrent phytoplankton blooms are believed to be a result of iron fertilization. By
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integrating global data with a localized response, we provide a framework for understanding the resilience of
plankton ecosystems in a changing environment.

1. Introduction

Marine plankton play critical roles in pelagic oceanic ecosystems. Their photosynthetic component (phyto-
plankton, consisting of eukaryotic phytoplankton and cyanobacteria) accounts for approximately half of
Earth's net primary production, fueling marine food webs, and sequestration of organic carbon to the ocean
interior. Phytoplankton stocks depend on the availability of primary resources such as nutrients that are
characteristically limiting in the oligotrophic ocean. For example, high‐nutrient low‐chlorophyll (HNLC)
regions are often lacking the key micronutrient iron and increased bioavailability of iron will typically trig-
ger a phytoplankton bloom (Boyd et al., 2007). Notwithstanding, the community response and its impact on
food web structure and biogeochemical cycles are seldom predictable. The composition of blooms when lim-
iting nutrients are supplied as sudden pulses with respect to the pre‐existing community has been only
poorly explored and is even more elusive when comparing to situations when nutrients are in quasi‐steady
state. Characterizing these responses is crucial to anticipate future changes in the ocean yet is challenged by
community complexity and processes that span from genes to ecosystems. Dissecting these processes would
also enhance the robustness of existing biogeochemical models and improve their predictive power (Stec
et al., 2017).

In this report we explore the responsiveness of plankton communities to iron and assess the representation
of iron bioavailability in biogeochemical models. Using global comprehensive metagenomics and metatran-
scriptomics data from Tara Oceans (Alberti et al., 2017; Bork et al., 2015; Carradec et al., 2018; Guidi et al.,
2016), we examine abundance and expression profiles of iron‐responsive genes in diatoms and other phyto-
plankton, together with clade composition in picocyanobacteria and the occurrence of iron‐binding sites in
bacteriophage structural proteins. These profiles are compared in the global ocean with the iron products
from two state‐of‐the‐art biogeochemical models. We further identify coherent subcommunities of taxa cov-
arying with iron in the open ocean that we denote iron‐associated assemblages (IAAs). Overall, our findings
are congruent with the outputs from the models and reveal a range of adaptive and acclimatory strategies to
cope with iron availability within plankton communities. As a further proof of concept, we track community
composition and gene expression changes within localized blooms downstream of the Marquesas archipe-
lago in the equatorial Pacific Ocean, where previous observations have suggested them to be triggered by
iron (Martinez & Maamaatuaiahutapu, 2004), even though the biogeochemical models currently lack the
resolution to detect the phenomenon. Our results indicate that iron does indeed drive the increased produc-
tivity in this area, suggesting that a pulse of the resource can elicit a response mimicking global steady
state patterns.

2. Materials and Methods
2.1. Iron Concentration Estimates

Due to the sparse availability of direct observations of iron in the surface ocean, iron concentrations were
derived from two independent global ocean simulations. The first is the ECCO2‐DARWIN ocean model con-
figured with 18‐km horizontal resolution and a biogeochemical simulation that resolves the cycles of nitro-
gen, phosphorus, iron, and silicon (Menemenlis et al., 2008). The simulation resolves 78 virtual
phytoplankton phenotypes. The biogeochemical parameterizations, including iron, are detailed in Follows
et al. (2007). In brief, iron is consumed by primary producers and exported from the surface in dissolved
and particulate organic form. Remineralization fuels a pool of total dissolved iron, which is partitioned
between free iron and complexed iron, with a fixed concentration and conditional stability of organic ligand.
Scavenging is assumed to affect only free iron, but all dissolved forms are bioavailable. Atmospheric deposi-
tion of iron was imposed using monthly fluxes from the model of Mahowald et al. (2005).

PISCES (Aumont et al., 2015) is a more complex global ocean biogeochemical model than ECCO2‐
DARWIN, representing two phytoplankton groups, two zooplankton grazers, two particulate size classes,
dissolved inorganic carbon, dissolved organic carbon, oxygen, and alkalinity, as well as nitrate, phosphate,
silicic acid, ammonium, and iron as limiting nutrients. In brief, PISCES accounts for iron inputs from
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dust, sediments, rivers, sea ice, and continental margins, and flexible Michaelis‐Menten‐based phytoplank-
ton uptake kinetics result in dynamically varying iron stoichiometry and drives variable recycling by zoo-
plankton and bacterial activity. Iron loss accounts for scavenging onto sinking particles as a function of a
prognostic iron ligand model, dissolved iron levels, and the concentration of particles. Iron loss from colloi-
dal coagulation is also included and accounts for both turbulent and Brownian interactions of colloids. The
PISCES iron cycle we use is denoted as “PISCES2” (Tagliabue et al., 2016) performed at the upper end of a
recent intercomparison of 13 global ocean models that included iron.

2.2. In Situ Data

To generate a limited data set of observed dissolved iron concentrations for this analysis, we used a dissolved
iron database updated from Tagliabue et al. (2012). For this we searched for the nearest available observation
at the same depth as the Tara Oceans sampling and collected data that were within a horizontal radius of 2°
from the sampling coordinates.

2.3. Marquesas Archipelago Sampling

Four stations within the Marquesas archipelago were sampled during the TaraOceans expedition in August
2011 (Bork et al., 2015) using protocols described in Pesant et al. (2015): They were denoted TARA_122,
TARA_123, TARA_124, and TARA_125. The sample details and physicochemical parameters recorded dur-
ing the cruise are available at PANGAEA (http://www. pangaea.de), and nucleotide data are accessible at
the ENA archive (http://www.ebi.ac.uk/ena/) (see further details below).

The study was initiated by releasing a glider that characterized the water column until the end of the experi-
ment. First, the mapping of the water column structure via real‐time analysis of glider data was conducted.
After this initial step, the continuous inspection of near real‐time satellite color chlorophyll images and alti-
metric data revealed a highly turbulent environment, with a mixed layer up to 100‐m deep and strong lateral
shearing, especially downstream of the islands, which generated an area of recirculation in the wake of the
main island (Nuku Hiva). A series of four sampling stations was then planned and executed by performing
the full set of measurements and sampling using the Tara Oceans holistic protocol (Pesant et al., 2015).
Station TARA_122 sampled the HNLC prebloom waters upstream of the islands and thus served as a refer-
ence station for the others. This station was located 27‐km upstream of the island of Nuku Hiva.

2.4. Oceanographic Observations

The Biogeochemical Argo float deployed in the framework of the Marquesas study (WMO 6900985) was a
PROVBIO‐1 free‐drifter profiler (Xing et al., 2012). It was based on the “PROVOR‐CTS3” model, equipped
with a standard CTD sensor (to retrieve temperature and salinity parameters) together with bio‐optical sen-
sors for the estimation of chlorophyll‐a concentrations, colored dissolved organic matter, and backscatter at
700 nm. It was also equipped with a radiometric sensor to estimate spectral downward irradiance at three
wavelengths (412, 490, and 555 nm) and with a beam transmissometer. The data processing is discussed
in Xing et al. (2012). The profiling float was programmed to adopt a modified standard Argo strategy
(Freeland & Cummins, 2005). After deployment, it navigated at 700‐m depth, to a daily maximum of
1,000 m, and then surfaced a first time, generally early in the morning. It then submerged again to a depth
up to 400 m, to again reach the surface approximately at noon. A third profile to 400 m, followed by a sub-
sequent resurfacing, was performed at the end of the day. During all the ascending phases, a complete profile
of all the available parameters was collected. At surface, the obtained data were transmitted to land through
a satellite connection and the profiler descended again to 1,000 m to start another cycle. The Biogeochemical
Argo was deployed on‐site at Station TARA_123 on 2 August 2011. It performed 55 profiles in theMarquesas
region, before moving westward in early October (then outside the study area), and then southward. It defi-
nitively ceased to function in December 2012, approximately 400 km south of the Marquesas islands and
after collecting more than 150 profiles.

An autonomous glider was also deployed in the study area. A complete description of glider technology and
functioning is available in Testor et al. (2010). This glider was able to reach 1,000‐m depths. It was equipped
with temperature and salinity sensors, an optode for oxygen concentration measurements, two Wetlab eco-
pucks with two fluorometers for chlorophyll and colored dissolved organic matter concentrations, and three
backscatterometers to estimate backscatter coefficients at three wavelengths (532, 700, and 880 nm). The gli-
der was deployed on 16 July 2011 (approximately 1 month before TARA arrived in the Marquesas
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archipelago), close to the position of Station TARA_122. It was recovered on 5 August 2011 by TARA
because a malfunction in the tail rudder had been detected. It performed approximately 250 profiles, with
35 dives at 1,000‐m depths and 90 dives at 500‐m depths.

Analysis of trace metals was performed exclusively at the Marquesas Islands sampling stations (Stations
TARA_122‐TARA_125) following the methods reported in Scelfo (1997). Dissolved iron was not measured
due to lack of technical resources.

2.5. Network Analysis and Correlations With Iron

A co‐occurrence network analysis similar to that reported in Guidi et al. (2016) was performed to delineate
feature subnetworks of prokaryotic and eukaryotic lineages, as well as viral populations, based on their rela-
tive abundance. All procedures were applied on 103 sampling sites (Guidi et al., 2016) after excluding out-
liers (Stations TARA_82, TARA_84 and TARA_85) on Hellinger‐transformed log‐scaled abundances.
Computations were carried out using the R package WGCNA (Langfelder & Horvath, 2007). After building
a co‐occurrence weighted graph, a hierarchical clustering was performed. This resulted in the definition of
several subnetworks or modules, each represented by its first principal component, called module eigen
value. Associations between the calculated subnetworks and a given trait were measured by the pairwise
Pearson correlation coefficients, as well as with corresponding p values corrected for multiple testing using
the Benjamini and Hochberg false discovery rate (FDR) procedure, between the considered environmental
trait and their respective principal components. The results are reported in the first 10 columns of the heat-
map in Figure S1a in the supporting information. The subnetworks that showed the highest correlation
scores are of interest to emphasize a putative community associated with a given environmental trait. In
addition to the multiple environmental parameters previously reported (Guidi et al., 2016), we simulated
iron bioavailability in Tara Oceans stations based on the two different models of iron concentration in the
global oceans: the ECCO2‐DARWIN model (Menemenlis et al., 2008) and the PISCES2 model (Aumont
et al., 2015). Both models performed well in the recent global iron model intercomparison project
(Tagliabue et al., 2016), and so we conducted an assessment of model outputs at TaraOceans sampling loca-
tions using compilations of iron observations (Tagliabue et al., 2016) augmented by those from the
GEOTRACES program (Mawji et al., 2014). ECCO2‐DARWIN‐derived estimates (57 stations at surface)
and PISCES2 model (83 stations at surface, 44 of which also at maximum chlorophyll depth) can be found in
Table S1a. For further details on the models and for a comparison of the two, see the supporting information.
We then identified eukaryotic, prokaryotic, and viral subnetworks that correlated most strongly with iron
bioavailability, denoted IAAs. Four IAAs consisting of eukaryotic metabarcodes (de Vargas et al., 2015) were
significantly associated with iron. Similarly, four viral IAAs could be identified by analysis of viral commu-
nities. Based on taxonomy, no prokaryotic IAAs with significance could be identified; however, when con-
sidering prokaryotic genes (as described in Guidi et al., 2016), five subnetworks of prokaryotic genes could
be identified.

In addition to the network analyses, we examined whether the identified subnetworks can be used as predic-
tors of iron bioavailability. Following the protocol described in Guidi et al. (2016), we used partial least
square regression, which is a dimensionality‐reduction method that aims to determine predictor combina-
tions with maximum covariance with the response variable. The predictors were ranked according to their
value importance in projection (VIP) using the R package pls (Mevik & Wehrens, 2007). For each eukaryotic
IAA, their relative contribution to each sample was estimated by computing the first eigen value.

2.6. Taxonomy Determinations

Taxonomic studies were performed using various methods (photosynthetic pigments, flow cytometry, and
optical microscopy for phytoplankton and zooplankton as detailed in Villar et al. (2015); phytoplankton
counts using unfiltered bottles or nets as described in Malviya et al. (2016) and Villar et al. (2015); and meso-
zooplankton samples collected by vertical tows with aWP2 net (200‐μmmesh aperture) from 100‐mdepth to
the surface during the day, followed by fixation in buffered formaldehyde (2–4% final concentration), and
later analyzed in the laboratory). Data from an Underwater Vision Profiler (UVP) were used to determine
particle concentrations and size distributions >100 μm, (Campbell et al., 1994). To have an estimate of bio-
mass variations in the different compartments at the Marquesas Islands, we applied empirical formulas to
transform Chlorophyll‐a (phytoplankton) or body measurements (zooplankton) to biomass. To this
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purpose, we used the ratio of phytoplankton biomass to Chlorophyll‐a (Phyto C: Chl a) in the euphotic zone
as previously estimated in an area with similar biogeochemical features (Campbell et al., 1994—See Table
S1b). Of note, our aim was not to determine absolute biomass but to estimate variations in biomass between
the Marquesas Islands stations. To estimate the total phytoplankton biomass, Chl a concentration from
HPLC data was thus used. The relative contribution of microplankton, nanoplankton, and picoplankton
to the [Chla]tot was estimated according to Uitz et al. (2006). The biomass of large zooplankton was esti-
mated using previously published conversion factors from body length to carbon content (C:L) in selected
zooplankton lineages. Individual body measures were estimated from literature considering similar commu-
nity composition, with the exception of the Copepoda prosome length, which was herein measured. Zooscan
(Bongo net, >300 μm) derived abundance data (ind ×m−3) were used to evaluate the total biomass along the
water column.

2.7. Genomic Analyses

Eukaryotes larger than 5 μm were collected directly from the ocean using nets with different mesh sizes
while smaller organisms and viruses were sampled by peristaltic pump followed by on‐deck filtration.
Several filtration steps were performed usingmembranes with different pore sizes to obtain size‐fractionated
samples corresponding to viruses (<0.1 and 0.1–0.2 μm), prokaryotes (0.2–3 μm), and eukaryotes (0.8–5,
5–20, 20–180, and 180–2,000 μm). In this study, we only used samples collected from the surface water
layer. Details about genomics methods are available in Carradec et al. (2018) and in the following
publications: virus metagenomes (Roux et al., 2016); prokaryote metagenomes (Sunagawa et al., 2015);
eukaryote metabarcoding (de Vargas et al., 2015); and eukaryote metagenomes and metatranscriptomes
(Alberti et al., 2017; Carradec et al., 2018). The abundance of individual genes was assessed by normaliza-
tion to the total number of sequences within the same organismal group (Carradec et al., 2018).
Cyanobacterial clade absolute cell abundance was assessed using the petB marker gene, as described in
Farrant et al. (2016), in combination with flow cytometry counts using the method published by
Vandeputte et al. (2017).

Metatranscriptomic and metagenomic unigenes were functionally annotated using PFAM (Finn et al., 2016)
as the reference database and search tool (Katoh & Standley, 2013). To detect the presence of genes encoding
silicon transporters, ferritin, proteorhodopsin, FBAI, and FBAII among the unigene collection, the profile
hiddenMarkov models of the PFAMs PF03842, PF0210, PF01036, PF00274, and PF01116, respectively, were
used, with HMMer v3.2.1 with gathering threshold option (http://hmmer.org/). It is important to note that
flavodoxin (PF00253, PF12641, and PF12724), ferredoxin (PF00111), and cytochrome c6 (PF13442) PFAM
families do not discriminate those sequences involved in photosynthetic metabolism from other homologous
sequences. The photosynthetic isoforms for flavodoxin, ferredoxin, and cytochrome c6 were therefore deter-
mined by phylogeny, as described below.

To discriminate the photosynthetic isoforms from other homologous sequences, we started with the
results from HMMer and then built libraries composed of well‐known reference sequences (manually
and experimentally curated) from both photosynthetic and nonphotosynthetic pathways. To enrich our
libraries, we used the reference sequences to find similar sequences by using BLAST search tool
(“tBLASTn” program with an e−5e value threshold) against phyloDB reference database (Dupont et al.,
2015). Next, we used MAFFT version 7 using the G‐INS‐I strategy (Katoh & Standley, 2013). The corre-
sponding phylogenetic reference trees were generated with PhyML 3.0 (Guindon et al., 2010) using the
LG substitution model with four categories of rate variation. The starting tree was a BIONJ tree, and
the type of tree improvement was subtree pruning and regrafting. Branch support was calculated using
the approximate likelihood ratio test with a Shimodaira‐Hasegawa‐like procedure. We then manually
identified the branches containing the photosynthetic versions and those with nonphotosynthetic pro-
teins. We ensured that the approximate likelihood ratio test values of the photosynthetic and nonphoto-
synthetic branches were higher than 0.7 by retaining only the most conserved matches in our trees.
Finally, we realigned and labeled the unigenes against the reference trees depending on the placement
of each translated unigene on them.

While HMMer has the highest sensitivity among the classical domain detection approaches, not all the refer-
ences collected by PFAM are sufficiently rich with HMMer to maintain the same detection (Bernardes et al.,
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2016). To deal with the poor representation of ISIP genes in the PFAM database and to improve their
detection, we adopted a simplified version of the approach presented in Bernardes et al. (2015) to build
our own pHMM to detect the different conserved regions represented by ISIP1, ISIP2a, and ISIP3 amino
acid sequences. For this, we collected all the sequences in the reference literature (Allen et al., 2008;
Chappell et al., 2015; Lommer et al., 2010; Morrissey et al., 2015), all 35 sequences belonging to PFAM
PF07692 and the 56 most conserved sequences from PF03713 (all the seeds).

2.8. Data and Code Availability

Sequencing data are archived at ENA under the accession number PRJEB4352 for the metagenomics data
and PRJEB6609 for the metatranscriptomics data (Carradec et al., 2018). Environmental data are available
at PANGAEA. The gene catalog, unigene functional and taxonomic annotations, and unigene abundances
and expression levels are accessible at http://www.genoscope.cns.fr/tara/. Computer codes are available
upon request to the corresponding authors.

2.8.1. Accession Numbers of Metagenomics and Metatranscriptomics Data
2.8.1.1. Sample
ERS492651, ERS492651, ERS492650, ERS492669, ERS492669, ERS492662, ERS492662, ERS492658,
ERS492658, ERS492650, ERS492740, ERS492742, ERS492742, ERS492751, ERS492751, ERS492763,
ERS492763, ERS492757, ERS492740, ERS492757, ERS492825, ERS492825, ERS492824, ERS492824,
ERS492829, ERS492852, ERS492852, ERS492846, ERS492846, ERS492829, ERS492897, ERS492897,
ERS492895, ERS492895, ERS492912, ERS492912, ERS492909, ERS492909, ERS492904, ERS492904.

2.8.1.2. Experiment
ERX948080, ERX948010, ERX1782415, ERX1782384, ERX1782327, ERX1796912, ERX1796638,
ERX1796690, ERX1796805, ERX1782126, ERX1782109, ERX1782245, ERX1796854, ERX1796544,
ERX1782292, ERX1782172, ERX1782221, ERX1796700, ERX1796855, ERX1782301, ERX1782464,
ERX1782128, ERX1789668, ERX1789366, ERX948029, ERX948074, ERX1796627, ERX1796773,
ERX1789369, ERX1789449, ERX1796931, ERX1796605, ERX1789426, ERX1789575, ERX1789524,
ERX1796866, ERX1796524, ERX1789649, ERX1789612, ERX1789647, ERX1796596, ERX1796836,
ERX1789655, ERX1789574, ERX1789407, ERX1782118, ERX1782283, ERX947973, ERX948088,
ERX1789391, ERX1789539, ERX1789587, ERX1796687, ERX1796586, ERX1796703, ERX1789662,
ERX1789616, ERX1789589, ERX1796662, ERX1796518, ERX1796678, ERX1796698, ERX1782217,
ERX1782352, ERX1796645, ERX1796858, ERX1796924, ERX1789675, ERX1789597, ERX1789700,
ERX1789362, ERX1782350, ERX1782418, ERX947994, ERX948064, ERX1789361, ERX1789368,
ERX1789532, ERX1796658, ERX1796818, ERX1796632, ERX1789638, ERX1789548, ERX1789579,
ERX1796921, ERX1796732, ERX1796741, ERX1789714, ERX1789489, ERX1789628, ERX1796689,
ERX1796850, ERX1796523, ERX1782181, ERX1782370, ERX1796607, ERX1796738, ERX1796714,
ERX1789437, ERX1789516, ERX1789417.

2.8.1.3. Run
ERR868475, ERR868513, ERR1712182, ERR1712118, ERR1711869, ERR1726556, ERR1726667,
ERR1726938, ERR1726688, ERR1712207, ERR1711933, ERR1711897, ERR1726927, ERR1726932,
ERR1712069, ERR1712197, ERR1711986, ERR1726883, ERR1726891, ERR1712219, ERR1711929,
ERR1711951, ERR1719463, ERR1719159, ERR868466, ERR868469, ERR1726762, ERR1726913,
ERR1719393, ERR1719310, ERR1726961, ERR1726522, ERR1719437, ERR1719413, ERR1719343,
ERR1726622, ERR1726721, ERR1719297, ERR1719410, ERR1719307, ERR1726770, ERR1726561,
ERR1719256, ERR1719298, ERR1719217, ERR1711914, ERR1711917, ERR868363, ERR868489,
ERR1719301, ERR1719160, ERR1719214, ERR1726564, ERR1726725, ERR1726569, ERR1719448,
ERR1719389, ERR1719194, ERR1726571, ERR1726533, ERR1726892, ERR1726601, ERR1711949,
ERR1712155, ERR1726608, ERR1726657, ERR1726763, ERR1719391, ERR1719175, ERR1719381,
ERR1719365, ERR1711882, ERR1711999, ERR868382, ERR868352, ERR1719395, ERR1719316,
ERR1719207, ERR1726643, ERR1726714, ERR1726846, ERR1719404, ERR1719213, ERR1719459,
ERR1726822, ERR1726912, ERR1726691, ERR1719356, ERR1719145, ERR1719293, ERR1726695,
ERR1726666, ERR1726903, ERR1712102, ERR1711923, ERR1726745, ERR1726946, ERR1726765,
ERR1719295, ERR1719249, ERR1719385.
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3. Results
3.1. Modeled Iron Distributions Are Highly Correlated With the Expression of Marker Genes for
Iron Limitation

Iron is a complex contamination‐prone micronutrient whose bioavailability is difficult to assess in the ocean
(Tagliabue et al., 2017). Rather than using single discrete measurements, we linked observed differences in
plankton communities at sites sampled during the TaraOceans expedition (Bork et al., 2015) with the range
of iron conditions typical of each location. Specifically, we extracted annual mean iron concentrations and
their variability from two state‐of‐the‐art ocean models (ECCO2‐DARWIN [Menemenlis et al., 2008] and
PISCES2 [Aumont et al., 2015]) and analyzed their correspondence with the best available estimates based
upon in situ data (a compilation of iron observations [Tagliabue et al., 2012] merged with GEOTRACES data
[Mawji et al., 2014; Tagliabue et al., 2012] in a manner similar to previous studies [Toulza et al., 2012];
Figure 1).

To assess the reliability of the modeled iron distributions, we correlated the expression of diatom ISIP genes
in metatranscriptomics data sets with the annual means of iron concentrations estimated by the DARWIN
model, and with annual and monthly means by the PISCES2 model (Carradec et al., 2018; Table S1a and
supporting information S1). These genes have been found in multiple previous studies to be inversely corre-
lated with iron availability (Allen et al., 2008; Chappell et al., 2015; Graff van Creveld et al., 2016; Marchetti
et al., 2017; Morrissey et al., 2015). Figure 1 presents a comparison between the estimates of dissolved iron
concentrations derived from the annual mean iron field from PISCES2 and ECCO2‐DARWIN (Table S1a),
with the Tara Oceans stations superimposed and best available estimates based upon in situ

Figure 1. Comparison of ECCO2‐DARWIN and PISCES2 iron estimates with observed data and expression of diatom ISIP genes at Tara Oceans stations. Maps
of (a) annual average iron concentrations from the ECCO2‐DARWINmodel (57 stations at surface), (b) from the PISCES2model (83 stations at surface, 44 of which
also at deep chlorophyll maximum depth), and (c) from the observed data where it was available at less than 2° radius distance from locations of the Tara
Oceans sampling sites (20 stations at surface, 16 of which also at deep chlorophyll maximum depth). Each circle corresponds to a sampling site, where the upper
semicircle is filled according to the surface iron concentration while the lower semicircle is filled according to the deep chlorophyll maximum depth where
available. Color scale indicates dissolved iron concentrations expressed in nM. (d) Biogeographical pattern of diatom ISIP gene expression. The circle colors
represent iron concentration estimates at each Tara Oceans sampling site according to PISCES2 model (Table S1a). The abundance of ISIP transcripts was
normalized by the total abundance of all diatom unigenes at each station, and the corresponding values are represented by the circle area. Boxes indicate the
Marquesas Islands sampling area.

10.1029/2018GB006022Global Biogeochemical Cycles

CAPUTI ET AL. 398



measurements (Figure 1). In spite of the evident scarcity of actual iron concentration data (which illustrates
the need to use models for estimating iron in the current exercise; Figure 1), both models and ISIP mRNA
levels describe very satisfactorily the global‐scale gradients, with the highest concentrations of iron observed
in the Mediterranean and Arabian Seas (both highly impacted by desert dust deposition) and the lowest in
the tropical Pacific and Southern Oceans. This demonstrates that the geographical coverage of the Tara
Oceans expedition is well suited to studies of the role of iron on euphotic planktonic ecosystems. The avail-
able data (Figure 1; Table S1a) further indicates that the gradients of iron appear to be better captured by
PISCES2, a more complex and recent model (Aumont et al., 2015). This is for instance the case for the
North Atlantic Ocean and the Mediterranean Sea, where longitudinal gradients are stronger in PISCES2
and are consistent with ISIP gene levels, while ECCO2‐DARWIN seems to overestimate iron in the
Eastern Atlantic Ocean and underestimate it in the Mediterranean Sea. The opposite is true in the South
Atlantic Ocean, where ISIP mRNA levels show a clear increase correlated with iron stress between South
America and Africa (Figure 1). Overall, in the Atlantic ECCO2‐DARWIN has higher concentrations, and
thus, a clearer large‐scale Atlantic‐Pacific gradient is observed.

The Pacific and Southern Oceans (subpolar and polar stations TARA 81–85) are both characterized by low
levels of iron, as mentioned above. Notably, PISCES2 has a rather flat distribution in the Pacific Ocean, with
very low values, while the other model shows a relatively higher level of iron at the core of the subtropical
gyres, that is, close to the Hawaii Islands (Stations TARA_131 and TARA_132) and offshore from South
America (TARA_98 and close‐by stations) that seems to be in agreement with ISIP mRNA levels (at least
for the Hawaiian sample—Figure 1). These are very oligotrophic oceanic regions, where nitrate is also a
strongly limiting nutrient. Again, the ISIP expression pattern in Figure 1 is closer to the PISCES2 model,
in that it shows a clear reduction of the stress resulting from iron deprivation within these gyres. Finally,
while a significant increase in iron at the Equator may be expected as a consequence of the upwelling in this
region, both the models and the ISIP levels (at Station TARA_128) suggest that this area is rather character-
ized by low values of iron. Overall, our analysis indicates that both models correlated very well with Tara
Oceans transcriptomic data, with no relevant differences amongmonthly and yearly values, but with annual
means from the ECCO2‐DARWIN estimates showing the best reliability (Table S1c). This analysis also indi-
cates that metatranscriptomics is now mature enough to provide an independent, biologically based valida-
tion of ecosystem models.

3.2. Plankton Response to Iron Availability Is Coordinated at Subcommunity Level

The higher level organization of plankton communities, and its possible relationship with the roles of indi-
vidual constituents, has been highlighted previously in an analysis of the potential links between commu-
nity structure and carbon export using data from Tara Oceans (Guidi et al., 2016). We here used this
approach to explore plankton ecosystem responses to iron bioavailability using an end‐to‐end approach from
genes to communities and from viruses to metazoa to reveal community responses at global scale (see
section 2). Known as weighted gene correlation network analysis (WGCNA; see section 2 for further descrip-
tion; Guidi et al., 2016; Langfelder & Horvath, 2007), this approach deciphers subcommunities (modules) of
organisms within a global co‐occurrence network, and because of the high levels of covariation of individual
taxa, it is possible to deduce putative ecological interactions. As proxies for organism abundance we used the
relative abundances of eukaryotic lineages (defined as operational taxonomic units; OTUs) derived from
18S‐V9 rDNA metabarcoding data (de Vargas et al., 2015). WGCNA generated a total of 31 modules. Each
module groups a subset of eukaryotic taxa found in TaraOceans samples whose pairwise relative abundance
was highly correlated over all the sampling sites; that is, they have a high probability of co‐occurrence and to
change their abundance in a coordinated way. Because they react in phase, we can infer that within each
subcommunity these organisms have a higher probability of interaction among themselves than with the
organisms in other modules.

We found four eukaryotic subnetworks significantly associated with the ECCO2‐DARWIN‐derived and/or
with the PISCES2‐derived estimates of iron concentrations in the global ocean (Figures 2a, S1a, and S1b;
Table S1d). The Black and Turquoise modules were associated with high significance to the iron concentra-
tions generated by both models whereas the DarkRed and Yellow modules were better associated with
ECCO2‐DARWIN and PISCES2, respectively, Black (DARWIN: R = 0.37, P = 6 × 10−4; PISCES2:
R = 0.38, P = 3 × 10−4), Turquoise (DARWIN: R = 0.46, P = 1 × 10−5; PISCES2: R = 0.42, P = 9 × 10−5),
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DarkRed (DARWIN: R=−0.43, P= 5 × 10−5; PISCES2: R= 0.19, P= 0.08), and Yellow (DARWIN: R= 0.19,
P = 0.09; PISCES2: R = 0.56, P = 5 × 10−8), and contained between 31 and 591 different OTUs (Tables S1d
and S1e). These subnetworks were denoted IAAs. For each IAA subnetwork, WGCNA computes a single
representative as a combination of lineages. Such a score, denoted as “module eigengene” score (hereafter
termed an eigenlineage score), represents the first eigenvector of the assemblage (Langfelder & Horvath,
2007). Projections of samples on such an eigenvector show the relative importance of samples to the
global variance of each IAA. Together with their contribution, in terms of OTU abundance to the total
eukaryotic abundance in each station (Table S1f), they provide clues to interpret the link between
modules and iron availability. The mismatch in some regions between the two models (see above) is
likely the reason why the significance of association of the Yellow module with ECCO2‐DARWIN, whose
variance and representativeness is particularly significant in the South Adriatic and is minimally present
in the Peruvian upwelling area, is much less than that with PISCES2. By contrast, the DarkRed module,
which appears to be the best indicator module for the Marquesas area (Figure 2b, upper panel) and is
highly relevant in the Peruvian upwelling region, displays a much less significant association and an
opposite variation with PISCES2 iron versus ECCO2‐DARWIN iron. The IAAs show slightly different,
often antagonistic, variance contributions at global scale (Figure 2b, upper panel), with each of them
being particularly responsive, in terms of variance, in specific sites, for example, the Yellow module in the
Eastern Mediterranean Sea.

Figure 2. Planktonic iron‐associated assemblages (IAAs) in the global ocean and in the Marquesas Islands stations. (a) Description of eukaryotic modules
associated with iron. Relative abundances and co‐occurrences of eukaryotic lineages were used to decipher modules. Four modules can predict iron with high
accuracy: Black, DarkRed, Turquoise, and Yellow. For each IAA, lineages are associated to their score of centrality (x‐axis), to their correlation with iron
concentrations (y‐axis), and their VIP score (circle area). Representative lineages within each module are emphasized by circles and named (C = Copepoda;
B = Bacillariophyta; R = Rhizaria). (b) Upper panel: contribution of Tara Oceans stations to the global variance of IAAs of eukaryotic lineages. For each IAA, we
represent the projection of stations on the first principal component (upper panel). Lower panel: projection of the relative contribution of the Tara Oceans
stations to the global variance of iron‐associated prokaryotic gene assemblages, as revealed by WGCNA. For each prokaryotic gene module associated with iron
(from top to bottom: Grey60, Plum1, Red, SkyBlue, and SaddleBrown), we represent the projection of stations on the first principal component, proportional to
triangle sizes for each module. The behavior of each IAA in the Marquesas archipelago stations is shown in the inset.
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We examined the lineage composition of each IAA and the relevance of each taxon within them by deter-
mining the relative abundance of each lineage with respect to iron concentration estimates and their central-
ity within the module (see section 2). The results are reported in Tables S1d and S1e. The IAAs displayed
significant differences in terms of numbers of lineages and compositions, with the Turquoise module being
the largest and dominated by consumers, predominantly metazoans, and the DarkRed module being the
smallest. The Black module displayed the highest proportion of autotrophs, while the DarkRed IAA dis-
played the highest proportion of diatoms (Bacillariophyta; 57% of all autotrophic protists).

To reduce complexity further, we screened the networks in terms of the VIP score of each node (i.e., the
OTUs displaying the highest statistical weight in differentiating sites because of iron availability; section 2;
Table S1d; Figures 2a and S1c). Species with high VIP scores can be predicted to be particularly important
in reflecting the adjustments of each module via their specific interactions with other members of their
subcommunity. Although interpreting why high VIP taxa are related to iron bioavailability is often
severely restricted by our knowledge of plankton functional ecology and interorganism interactions, in
other cases the role of VIP taxa within the modules is clearer. As an example, identification of an IAA
in which several diatoms have the highest VIPs (DarkRed module, eight subnetwork members, −0.337
correlation with iron), commonly found in the most severely iron‐limited regions of the world's ocean
and often the most responsive groups in mesoscale iron fertilization experiments (Boyd et al., 2007;
Marchetti et al., 2006), suggests a strong physiological plasticity of these groups (Greene et al., 1991;
Lommer et al., 2012). The fact that Pseudo‐nitzschia is among the highest scoring VIP genera in the
DarkRed module further suggests that this genus tracks regions with low iron bioavailability, being able
to profit from it when it becomes available. Other examples concern metazoans: copepods from the genus
Temora (high subnetwork centrality and strong correlation with iron) are known to be iron‐limited (Chen
et al., 2011), and the two cnidarian lineages—the class Hydrozoa and the genus Pelagia (both of which
display relatively strong subnetwork centrality and strong correlations with iron)—suggest strong
predator‐prey links.

Considering the ECCO2‐DARWIN‐derived VIP scores, lineages with the highest scores (>1) could predict as
much as 61.9%, 52.6%, 49.1%, and 38.1% (in the Turquoise, Black, DarkRed, and Yellow IAAs, respectively;
leave‐one‐out cross‐validated) of the variability of iron in the oligotrophic ocean. When the PISCES2‐derived
VIP scores are taken into account, the predictive potential of the IAAs is even higher: 73.2% (Turquoise),
61.9% (Yellow), 59.0% (Black), and 54.4% (DarkRed). More importantly, the VIP scores obtained with the
two models for each OTU showed an extremely good covariance (Figure S1d). This confirms the biological
coherence and stability of the modules and their components to iron availability despite the occasional mis-
match in the predictions of the two models.

Of the photosynthetic groups, autotrophic dinoflagellate taxa were particularly relevant in the Turquoise
and Black modules, diatoms were relevant in the DarkRed module, and haptophytes were significantly pre-
sent in the Yellow module. Metazoans were particularly important in the Black and the Turquoise modules,
and marine stramenoplies/marine alveolata groups of phagotrophic and parasitic heterotrophs were rele-
vant in the Black (marine alveolata), Turquoise, and Yellow modules (marine stramenoplies; Figures 2a
and S1c; Tables S1d and S1e). This hints at particularly intricate, and still elusive, interactions among organ-
isms that ultimately lead to the observed collective responses.

To further interpret the patterns observed for the IAAs, we chose two additional modules, denoted
DarkGrey and Red, because of the different correlations of diatoms within these modules to iron con-
centrations with respect to the DarkRed module (Figures S1a and S1c). By examining the abundance
of the components of each module at different sampling sites (Table S1f), the results suggest that the
Turquoise module groups lineages relevant in all of the main oceanic biogeographic regions with the
exception of the Mediterranean basin, and with a prominent weight in the Southern Ocean. By contrast,
the Black and Yellow modules are of particular importance in the Mediterranean Sea, while other IAAs
have minor contributions. The DarkRed module is generally poorly represented; however, in the South
Pacific and in particular around the Marquesas Islands, its relevance is high (Figure 2b, upper panel;
Table S1f).

Based on all of the above information, we then sketched the ecological profiles of the seven modules, sum-
marized below:
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Black IAA: Ubiquitous, but with low abundance except in the Mediterranean basin, and composed prin-
cipally of heterotrophic organisms (protists and metazoans; Tables S1e S1f). Dinophytes are the autotrophic
component of this module while diatoms are poorly represented. Around the Marquesas Islands, its weight
is constantly low. Lineages are positively correlated or loosely anticorrelated with iron (Figures 2a and 2b;
Table S1d). This module has an intermediate level of internal connectivity and suggests top heavy (pyrami-
dal) trophic interactions. The assemblage resembles a typical pattern in a postbloom phase, with biomass
accumulated in the metazoan compartment. No significant differences are seen when the ECCO2‐
DARWIN‐derived and PISCES2‐derived VIPs are compared since the module is not relevant in areas where
the two models disagree. This pattern is consistent with the differences detected at molecular level.

DarkRed IAA: The module is not particularly significant at global scale in terms of abundance (Figure 2b,
upper panel; Table S1e). It contains a small number of lineages with a high relative weight of diatoms and
few metazoans but no copepods, with carbon recycling mostly in the protistan compartment. This module
is particularly intriguing because, with very few exceptions, all the lineages including diatoms are negatively
correlated with iron (Figure S1c). It is particularly responsive in the Marquesas area but is also present in
offshore South American upwelling areas. The internal connectivity is of an intermediate level
(Table S1d). These features hint at an assemblage in the subtropical ocean driven by the activity of diatoms
thriving in regions of low iron availability (while exploiting a higher than average silicon availability), thus
showing an inversion of the pattern compared to high iron regions (Figure 2b, upper panel). Significantly, its
abundance drops at Station TARA_123 in the Marquesas archipelago (see below).

Turquoise IAA: Ubiquitous, with a general high weight in terms of abundance, and very abundant in the
Southern Ocean (in particular in stations TARA_85–88; Table S1f). The module includes relatively few dia-
toms, but many dinoflagellates (both autotrophic and heterotrophic species; Tables S1d and S1e). Copepods
are themost numerous components and show the highest VIP scores. Of note, this module includes the crus-
tacean order Euphausiacea (krill), which specifically emerges as having high VIP scores only when the
PISCES2‐derived iron estimates are used. Both internal connectivity and number of lineages are high
(Table S1d). The module as a whole responds in the Marquesas area, especially at TARA_123 (Figure 2b,
upper panel; Table S1f).

Yellow IAA: This module is particularly important in South Adriatic and Eastern Mediterranean, as well
as in the tropical North Atlantic (Figure 2b, upper panel; Table S1f). It includes relatively fewmetazoans and
diatoms but a notable abundance of haptophytes and heterotrophic protists (Tables S1d and S1e). It displays
a weak response in the Marquesas area (TARA_125; Figure 2b, upper panel) and seems to be less dependent
on iron availability as compared to the other modules.

DarkGrey: Not an IAA and has a low weight in general, with a slight positive correlation to iron and only
low internal connectivity. Diatoms in this module are very relevant (Tables S1d and S1e). It contains a high
fraction of metazoans with fewer heterotrophic protists. This module displays a typical bottom heavy (pyr-
amidal) structure with diatoms reacting positively to iron availability.

Red module: Not an IAA, but this module displays a similar response to iron than the DarkGrey module,
with the main differences being that it contains fewmetazoans and the protist compartment is dominated by
Dinophyceae. Diatoms are also dominant as autotrophic protists. It is the module that correlates the most
with chlorophyll and primary productivity (Figure S1a) and seems to be associated with highly productive
areas. It is thus not very relevant globally, with the exception of the South Atlantic Ocean, where it domi-
nates the Benguela upwelling (Station TARA_67), a very rich region that is not iron limited. It is apparently
driven by bottom‐up flexible responses to iron availability, most probably by macronutrient availability
(Tables S1d and S1e). It displays variable correlations of its members to iron and has also a bottom heavy
pyramidal trophic structure.

Overall, our analysis strongly suggests that different subassemblages of co‐occurring lineages can be pin-
pointed within communities that respond differently to resource limitation, mostly without marked geogra-
phical preferences albeit with high plasticity to iron availability. Particularly remarkable is the contrasting
role shown by diatoms, with different lineages covering the full range of correlations with iron
(Figure S1c), possibly linked to their different strategies for responding to the lack of a crucial resource. In
some cases their communities share a similar response while in others the structure of the assemblage is
modified. The further observation that co‐occurrence of IAAs can show biogeographical patterns
(Figure 2b, upper panel) that are not clearly emphasized by analysis of single eukaryotic groups
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(Figure S1c) is suggestive of a compartmentalization of communities in subcommunities or modules. Our
analysis also infers that it is the module as a whole that responds to perturbation, reinforcing the need to
dissect plankton responses to iron bioavailability at community scale, while investigating the
physiological responses of key species.

In addition to eukaryotes, WGCNA analysis was also performed on prokaryotic communities, as well as on
prokaryotic genes from the Ocean Microbial Reference Gene Catalog (Alberti et al., 2017; Sunagawa et al.,
2015). Using relative abundances of prokaryotic 16S rDNA miTags, no subnetwork could be associated sig-
nificantly with iron (maximum r = 0.19, P < 10−2). However, following the same procedure but using the
relative abundances of prokaryotic genes rather than taxa, five subnetworks were significantly associated
with iron (ECCO2‐DARWIN iron data; Figure 2b, lower panel; Table S1g; P < 10−5): Grey60 (r = 0.38,
P = 6. 10−5), Plum1 (r = 0.54, P = 3.10−9), Red (r = −0.42, P = 10−5), SkyBlue (r = −0.44, P = 2.10−6),
and SaddleBrown (r = −0.47, P = 6.10−7). VIPs obtained from each of the two models displayed high corre-
lations (Grey60 = 0.99, Plum1 = 0.94, Red = 0.99, SkyBlue = 0.96, SaddleBrown = 0.98). The VIP genes of
the SaddleBrown subnetwork represent 25% (N = 41) of the total number of genes, and several genes that
could be functionally identified encode proteins associated with iron transport, saccharopine dehydrogen-
ase, aminopeptidase N, and ABC‐type transporters (Table S1g). The Plum1 subnetwork is a small subnet-
work of around 100 genes that is solely associated with iron concentration variability, and 30% of its VIP
genes encode principally specialized functions defined as noncore functions in a previous study of the
Tara Oceans Global Ocean Microbiome (Sunagawa et al., 2015; Table S1g). Not surprisingly, 75% of the
genes within this subnetwork encode proteins with unknown functions, although some known functions
are linked to iron, such as ferredoxin and regulation of citrate/malate metabolism. The contribution to the
global variance by stations located within the Red Sea (Stations TARA_31–34) is particularly high
(Figure 2b, lower panel). The Red subnetwork is very large, composed of 3,059 genes. However, only 9%

Figure 3. Correlation analysis between absolute cell abundance of marine picocyanobacterial clades and iron concentration estimates from PISCES2 model in
surface waters. Only statistically significant correlations are displayed (p value < 0.05). Spearman correlation coefficients and p values are indicated. The cell
abundance for each cyanobacterial clade was assessed combining petB marker gene counts with flow cytometry determinations using the method published by
Vandeputte et al. (2017).

10.1029/2018GB006022Global Biogeochemical Cycles

CAPUTI ET AL. 403



represent high scoring VIPs, among which functions related to iron are evident (e.g., ABC‐type Fe3+

siderophore transport system, putative heme iron utilization protein, metalloendopeptidase—Table S1g).
Finally, the SkyBlue subnetwork is a small subnetwork (172 genes) containing 33% of VIPs whose
functions are generally unknown (Table S1g). The global variance of this gene subnetwork can be
correlated principally with several oligotrophic regions of the Pacific Ocean (e.g., Stations TARA_93, 100,
112, and 128).

In summary, association of prokaryotes with iron is detectable at the functional level (gene abundance) but
not at the taxonomic level, which would suggest a low level of specialization, at least with the resolution
allowed by the 16S marker. To further analyze this aspect, we focused on Prochlorococcus and
Synechococcus, the two most abundant and widespread bacteriophytoplankton in the global ocean, and
for which a higher‐resolution genetic marker is available. Combining the information from the taxonomic
marker petB, which encodes cytochrome b6 (Farrant et al., 2016), with flow cytometry cell counts, we esti-
mated the absolute cell abundance of the picocyanobacterial clades and found that many of them have a
strong correlation with predicted iron levels from PISCES2 (Figure 3) and ECCO2‐DARWIN models (not
shown). Prochlorococcus HLIII and IV ecotypes showed the highest anticorrelation with iron, in agreement
with previous descriptions that they are the dominant populations in HNLC areas (Rusch et al., 2010; West
et al., 2011). Prochlorococcus LLI, a minor component in surface waters, also showed anticorrelation with
iron. In the case of Synechococcus, the strongest positive correlation was found for clade III, whereas a
weaker pattern is displayed by clade II. On the contrary, CRD1 showed the highest negative correlation with
iron, consistent with it being reported as the major Synechococcus clade in HNLC regions (Farrant et al.,
2016; Sohm et al., 2016). In addition, clade EnvB also displayed a negative correlation with estimated
iron concentrations.

These results demonstrate that iron affects picocyanobacterial community composition and raise the ques-
tion of whether the lack of correlation with taxonomic networks depends on a poor taxonomic resolution or
to being more pronounced for autotrophs with respect to heterotrophs.

Finally, we used relative abundance of viral populations (Brum et al., 2015) to applyWGCNA and tentatively
explore whether the viral module subnetworks display any kind of association to the same suite of environ-
mental factors used above for prokaryotes and eukaryotes (data not shown). In spite of the fact that we found
four viral IAAs significantly associated with iron using the ECCO2‐DARWIN iron estimates (data not

Figure 4. Tara Oceans metagenome survey in surface waters for oceanic phages containing putative iron‐containing structural proteins. (a) Representation of
protein domain architecture of viral tail proteins with putative iron‐binding HxH motifs, the HMM logos for the HxH motifs identified in the corresponding Tara
Oceans viral unigenes, and the biogeographical distribution of the corresponding viral contigs. In the map, the circle colors represent iron concentration
estimates at each sampling site according to PISCES2 biogeochemical model (Table S1a), and the circle areas represent the cumulated normalized coverage of the
viral contigs of interest. (b) Equivalent analysis for viral spike proteins with putative iron‐binding HxHmotifs. (c) Equivalent analysis for viral tail tip proteins with
CX8–13CX22–23CX6C motif involved in 4Fe‐4S cluster binding.
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shown), our current knowledge of marine viruses is not advanced enough to discuss our results in the view of
the impact on viruses of global iron biogeochemistry. This lack of knowledge is aggravated by the fact that
the vast majority of viruses in the IAAs have unknown host ranges.

Viruses are thought to impact oceanic iron during host lysis; however, there is a current discussion about
their potential role in complexing iron (Bonnain et al., 2016). To explore this latter point, we surveyed the
Tara Oceans metagenomes for genes encoding viral structural proteins with putative iron‐binding sites.
Specifically, we searched for paired histidine residues (H × H motifs) in tail proteins (Bartual et al., 2010)
and baseplate assembly proteins (Browning et al., 2012) because this motif has been experimentally impli-
cated in the octahedral coordination of iron. We also analyzed the presence of four conserved cysteine resi-
dues involved in the coordination of a 4Fe‐4S cluster in tail tip proteins (Tam et al., 2013). Remarkably, these
potential iron‐binding motifs are present in 87% unigenes encoding viral tail proteins, 47% of baseplate
assembly proteins, and 12% in those coding for tip proteins (Figures 4a–4c). The corresponding viral contigs
are distributed ubiquitously and with high abundance (Figures 4a–4c), suggesting that a significant fraction
of colloidal iron may be associated with viruses in the ocean, a factor that is not currently considered in the
modeling of ocean biogeochemistry. The question is then how substantial this contribution could be.
Bonnain et al. (2016) made a broad estimation based on the number of iron ions experimentally determined
in tails of nonmarine phages, and the amount of tailed viruses typically found inmarine surface waters. They
thereby suggested that between 6% and 70% of the colloidal iron fraction from surface waters could be bound
to tail fibers of phages. In this context, the recent “Ferrojan Horse Hypothesis” posits that iron ions present
in phage tails enable phages to exploit their bacterial host's iron‐uptake mechanism, where the apparent gift
of iron leads to cell lysis (Bonnain et al., 2016). Although our analysis does not allow to confirm this hypoth-
esis, it provides a useful context to explore it further.

3.3. Functional Responses Are Mediated Either by Changes in Gene Copy Number or by
Expression Regulation

Given the clear patterns in the community responses to iron availability, we next wondered whichmolecular
patterns were associated with them. We first examined the prevalence of the diatom ISIP genes in more
detail using both metagenomics and metatranscriptomics data to detect changes in gene abundance and
expression, respectively. We found that both the abundance and expression of this gene family displayed a
strong negative correlation with iron (Figure 5a). Figure 5a shows a strong hyperbolic profile of ISIP gene
abundance and mRNA levels with respect to iron concentrations (nonlinear regression fitness of 97.01
and 98.14, respectively; Table S1c). Furthermore, density clustering algorithms detected two types of
responses—stations in which ISIP was only increased in metagenomics data (denoted group 0) and others
in which both metagenomic and metatranscriptomic data showed increases in ISIP levels (denoted group 1;
Figure 5a). The former likely correspond to locales where ISIP copy numbers vary in diatom genomes as a
function of iron, implying that the diatoms at these stations display permanent genetic adaptations to the
ambient iron concentrations, whereas the latter display transcriptional variation, indicative of more flexible
short‐term acclimatory rather than permanent adaptive evolutionary processes. Taxonomic analyses
revealed that diatoms from the Thalassiosira genus were typical of group 0, whereas Pseudo‐nitzschia was
found largely in Group 1 (Figure 5b). Representatives from both these genera are well known to respond
to fluctuations in iron (Cohen et al., 2017; see supporting information S1 ‐ Claustre et al., 2008), so these
different iron‐response strategies may underlie why they are present in different IAAs; Thalassiosira is
present in the Black and Turquoise IAAs whereas Pseudo‐nitzschia is only present in the DarkRed module,
where it is negatively correlated to iron (Figure 2a; Table S1d).

It is interesting to note that sampling sites can be grouped in a similar way according to either their picocya-
nobacterial community or diatom ISIP patterns in relation to iron levels (Figure 6). HLIV and HLIII codo-
minate the Prochlorococcus community in group 1 stations, and these sites are also characterized by the
presence of LLI, as well as the Synechococcus clades CRD1 and EnvB. Based on picocyanobacteria commu-
nity composition, these stations tend to cluster together in a group of low‐iron stations from Indian and
Pacific Oceans (TARA_52, 100, 102, 110, 111, 122, 124, 125, 128, and 137). On the contrary, group 0 ISIP
stations were dominated by either Prochlorococcus HLI or HLII and by Synechococcus clades II or III.
Among these stations, those from the high‐iron Mediterranean Sea (TARA_7, 9, 18, 23, 25, and 30) clustered
together based on picocyanobacteria community composition (Figure 6).
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Figure 5. Abundance and expression of diatom ISIP genes with respect to iron concentration estimates. (a) 2‐D scatter plots correspond to the correlation between
gene abundance and iron (left), gene expression and iron (middle), and abundance and expression of ISIP genes (right). Pearson correlation coefficients (pcc)
and p values are indicated in blue. Iron concentrations were estimated using PISCES2 model (Table S1a). In all cases, the abundance and expression of ISIP genes
were normalized by the total diatom unigene abundance and expression, respectively, and were then scaled to the unit interval. The 3‐D plot shown below is
derived from the three 2‐D scatter plots, with the color gradient representing the third dimension. The data were clustered using density clustering algorithms,
resulting in a group of Tara Oceans sampling sites in which ISIP was only increased in metagenomics data (denoted Group 0 stations [40 stations; circles]) and
others in which both metagenomic and metatranscriptomic data showed increases in ISIP levels (denoted group 1 stations; 21 stations; triangles). The values
corresponding to TaraOceans stations in theMarquesas archipelago are labeled (122–125). TaraOceans sampling sites are colored according to the ocean region in
the 3‐D plot: NPO = North Pacific Ocean; SO = Southern Ocean; SPO = South Pacific Ocean; NAO = North Atlantic Ocean; SAO = South Atlantic Ocean;
MS =Mediterranean Sea; IO = Indian Ocean. (b) Relative abundance (left) and expression (right) of ISIP genes assigned at different levels of resolution in a diatom
phylogenetic tree. The color code corresponds to the two clusters of stations defined in panel a based on ISIP patterns (red for group 0 with variations only at
metagenome levels; blue for group 1 with variations in both metagenome and metatranscriptome levels).
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Figure 6. Comparison of iron‐driven changes in diatom ISIP gene abundance and expression and in the picocyanobacterial community from surface waters.
Histograms of cell abundance of Synechococcus and Prochlororococcus clades at each Tara Oceans station are displayed, with stations sorted by hierarchical
clustering of a Bray‐Curtis distance matrix. The left panels indicate iron concentration estimates from PISCES2 model, and metagenome and metatranscriptome
levels of diatom ISIP genes, including the resulting cluster type (circles and triangles as described in Figure 5).
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Besides diatoms, we carried out a detailed analysis of ISIP distributions among other phytoplankton taxa.
We found that in chlorophytes Fea1‐domain‐encoding genes (related to ISPI2a; Marchetti et al., 2017) vary
in copy number as a function of predicted iron levels and that ISIP expression also varies in haptophytes and
pelagophytes (Figure S2). Dinoflagellates display the lowest correlations of ISIP gene abundance and expres-
sion with respect to iron. This may indicate that dinoflagellates respond differently to iron concentrations or
with different genes.

A similar analysis was performed to examine the abundance and expression of type I (metal‐free) and type II
(containing iron or other divalent cations) FBAs (Allen et al., 2012). We found that the FBAII gene showed a
clear up‐regulation at high‐iron stations in all groups, while diatoms showed a concomitant reduction in
FBAI gene abundance and mRNA levels, pelagophytes and dinoflagellates displayed decreased gene abun-
dance, and haptophytes displayed a response at the mRNA level (Figure S2). The chlorophytes displayed
no consistent trends.

Ferritin is another important protein of iron metabolism that was relatively recently identified in diatoms
(Marchetti et al., 2009) and in other phytoplankton functional groups (Botebol et al., 2015). Although it
appears to be involved in long‐term iron storage in Pseudo‐nitzschia (Marchetti et al., 2009), other studies
have suggested that its principal role could be in cellular iron buffering and temporal storage over shorter
timescales such as during diurnal cycles (Botebol et al., 2015; Cohen et al., 2018; Pfaffen et al., 2015). Our
analysis revealed no clear pattern in ferritin gene abundance or expression and estimated iron levels
(Figure S2), suggesting that iron storage may not be the main function of ferritin in most eukaryotic marine
phytoplankton. The exceptions are haptophytes, in which an iron‐driven increase in copy number is
observed (Figure S2), and the diatom genus Pseudo‐nitzschia, in which the biogeographical patterns of fer-
ritin gene abundance and expression suggest a positive correlation with iron (Figure S3).

We additionally examined the levels of genes encoding proteorhodopsin, a light‐driven proton pump for the
generation of ATP that has been proposed to supplement ATP generation from photosynthesis in iron‐
limiting conditions, when photosynthetic electron transport is suboptimal (Marchetti et al., 2015).
According to our results, abundance of the gene is negatively correlated with iron in pelagophytes and dino-
flagellates (as well as in diatoms, albeit without statistical support), and mRNA levels are negatively corre-
lated with iron availability in pelagophytes and haptophytes (Figures S2).

We also examined the interaction between iron and other nutrients in diatoms. Particularly, we focused on
silicate metabolism because iron bioavailability has been found to play a role in silicon utilization in these
organisms (Durkin et al., 2012, 2016; Mock et al., 2008). The analysis of the different clades of Si transporter
(SIT) multigene family support the strong interaction between iron and silicate in diatoms and suggest that
the diversification of SITs has led to specialized adaptations to deal with it (see supporting information S1
and Table S1h).

Collectively, our results indicate that individual genes implicated in iron metabolism in specific organismal
groups do not provide an unequivocal evaluation of iron availability in the environment and are thus of only
limited use as sentinel genes of iron bioavailability. Instead, the integration of all these iron‐driven patterns,
spanning from genes to ecosystems, is a promising strategy for designing omics‐enabled tools that can
improve the representation of key nutrients in biogeochemical models. In this sense, the covariation of pico-
cyanobacterial communities with the transcriptional regulation and altered copy numbers of diatom ISIP
genes can potentially be exploited to predict actual iron bioavailability in the ecosystem (Figure 6). A recent
report on the phytoplankton transcriptional response to upwelling (Lampe et al., 2018) highlighted that
diatoms express genes involved in nitrogen assimilation, probably to overcome possible autotrophic
competitors, thus suggesting that different transcriptional sets of genes may be expressed under different
bloom‐triggering conditions.

3.4. Plankton Respond to a Resource Burst in the Marquesas Archipelago by Reorganization
of IAAs

The global analyses of IAAs and iron responsive genes in the context of the ranges of geographic iron avail-
ability provide a first‐order approximation of plankton community structure organization and responses for
large‐scale, iron‐linked biogeochemical regions. In other words, they possibly reflect the integrated, albeit
diversified, response to average conditions and in a stationary or quasi‐stationary phase. They further
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Figure 7. The Marquesas study site, showing sampling sites, surface chlorophyll concentrations, and the local dynamics of the four eukaryotic IAAs. (a) Map of
surface chlorophyll in the Marquesas area. Drifter and Provbio trajectories are indicated as well as the Tara Oceans sampling stations, with a zoom on stations
TARA_123 and TARA_124. For further details see main text and supporting information S2. (b) Analysis of the dynamics of the four IAAs at the Marquesas
archipelago stations in relation to their eigenlineage values (upper), richness (middle), and relative abundance (lower). All modules show negative eigenlineage
values, with the exception of the DarkRed IAA. The DarkRed module positive eigenlineage scores significantly decrease within the bloom stations. The mean IAA
relative abundance calculated over the global Tara Oceans data set was subtracted from IAA relative abundance calculated at the Marquesas Islands. The
increase in DarkRed relative abundance in station TARA_124 was due to a single Prasinophyceae OTU. The mean IAA richness calculated over the global Tara
Oceans data set was subtracted from IAA richness calculated at the Marquesas Islands. Data indicates that the DarkRed IAA retains ~60% of its OTUs in low iron
conditions, a percentage that decreases in the bloom stations. (c) Relative abundance changes at the Marquesas Islands stations for IAA photosynthetic lineages
with high iron correlation. The graph shows the list of IAA autotroph lineages with the highest statistically significant correlations against PISCES2 iron estimates
(p < 0.05) at a global scale, with the corresponding Pearson correlation coefficient, and their relative abundance at the Marquesas Islands sampling sites.
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provide support for the iron products of the two biogeochemical models. We reasoned that they might also
be able to indicate increases in iron in regions where biogeochemical models do not have sufficient resolu-
tion and to highlight mechanisms in action when the resource is provided in bursts that drive the commu-
nity out of a previous steady state, for example, leading to blooms. One such case is the Marquesas
archipelago in the subtropical Pacific Ocean, where previous studies (Martinez & Maamaatuaiahutapu,
2004) have highlighted a dynamic natural perturbation resulting in perennial plankton blooms that are visi-
ble from space. Although iron concentrations have not been measured extensively in the region, these and
similar blooms (Gong et al., 2016) are triggered by different processes due to the presence of the islands (ver-
tical mixing, horizontal stirring, local precipitation, and runoff), which are typically coupled to iron injection
(Martinez & Maamaatuaiahutapu, 2004), a phenomenon that has been termed Island Mass Effect (Gove
et al., 2016). We therefore focused on this region to examine the relationship between the global patterns
in plankton subcommunities and iron‐responsive gene abundance/expression in a more localized dynamic
setting (supporting information S2–S4).

Satellite chlorophyll estimates showed that in the days preceding the visit of the Tara Oceans expedition to
the archipelago in August 2011, the area was characterized by intense variability. Our analyses also revealed
a highly turbulent environment, with mixing up to 100‐m depth and strong lateral shearing downstream of
the islands, which generated an area of recirculation in the wake of the main island and the formation of
small eddies where the blooms were occurring (Figures 7a and S4a). Station TARA_122 sampled the
HNLC prebloom waters upstream of the islands (Figure 7a). Waters of Station TARA_122 were character-
ized by low chlorophyll concentrations in the water column ([Chl‐a]int: 16.6 mg/m2) but high concentrations
of nutrients (NO2−: 0.12 mmol/m3, PO4: 0.57 mmol/m3, NO2NO3: 5.5 mmol/m3, Si: 2. 2 mmol/m3; Figure
S4b and Table S2a), characteristic of an HNLC region (Quéguiner, 2013; Smetacek & Naqvi, 2008). Of note,
the low concentration of silicates in this stationmay have acted as a limiting factor for the growth of diatoms.
Station TARA_123 is coastal, 8‐km downstream of NukuHiva island and with a seabed depth of 1,903 m and
higher chlorophyll levels ([Chl‐a]int 33.6 mg/m2), indicative of a bloom. Nutrients were as elevated as in the
prebloom HNLC area, and with a particular increase of NO2− around 150‐m depth (1.47 mmol/m3). Station
TARA_124 is away from the coast, 43 km from Nuku Hiva, in even deeper water (2,414‐m bottom depth),
and in an eddy also characterized by high chlorophyll content with respect to Station TARA_122 ([Chl‐a]

int 28.5 mg/m2). The chlorophyll patch was possibly seeded near the islands and transported by currents
far from the coast but sustained by the eddy dynamics and its interaction with underlying water. Station
TARA_125 is located 300‐km downstream of the islands. The chlorophyll patch was still clearly evident
([Chl‐a]int 27.6 mg/m2). Of note, the large NO2− reservoir at the base of the mixed layer (120–180 m;
Figure S4b) may indicate significant biological activity, although our data are not sufficient to discriminate,
which is the relative contribution of phytoplankton, zooplankton, and bacterioplankton to establish the
nitrite reservoirs.

The concentration of measured biologically relevant metals was generally reduced in Stations TARA_123 to
TARA_125 with respect to HNLC station TARA_122 (Table S2b). The reduction of dissolved ions was parti-
cularly significant in the case of cobalt, nickel, copper, and cadmium, whichmay be considered as a potential
clue for an increased uptake of biologically available trace metals in the leeward stations, although other
mechanisms cannot be ruled out. Since these metals were not limiting in the HNLC conditions, it is possible
that the removal of iron limitation affected the biological pathways related to metal ion uptake in general.
For more information on the oceanographic context of the Marquesas Island at the time of sampling, see
supporting information S2 (Blain et al., 2008; Dolan et al., 2007; Gómez et al., 2007; Guidi et al., 2008;
Legeckis et al., 2004; Masquelier & Vaulot, 2007; Ras et al., 2008; Signorini et al., 1999; Stemmann
et al., 2008).

At the four Marquesas sampling sites the IAAs displayed dynamic patterns (Figures 7b and 7c; Table S1f;
supporting information S3). The low‐iron adapted DarkRed IAA showed a progressive decrease in its promi-
nence leeward of the islands, consistent with its negative correlations to iron at global level, while the
Turquoise IAA showed increases in abundance. The Turquoise IAA is the only module containing auto-
trophs both positively and negatively correlated with iron, and while the latter were prominent at Station
TARA_122 the former were prevalent at stations TARA_123–125 (Figure 7c). The observed changes in
IAA prevalence in the Marquesas stations therefore supports a role for iron in the modulation of plankton
communities in the region. Prokaryote IAAs, although not taxonomy based, are dynamically responsive at
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the Marquesas Islands (Figure 2b, lower panel). Two types of response can be detected: (a) The prokaryote
IAAs Grey60 and Plum1 show a shift from negative to positive eigenlineage scores from TARA_122 to
TARA_123, and (b) the SaddleBrown, Red, and SkyBlue IAAs show eigenvalue peaks in Station TARA_123.

The dynamics of the DarkRed subnetwork at the Marquesas Islands may be used to examine our previous
claim that it is the module as a whole that responds to perturbation. This is a low‐iron‐associated module,
in which the autotrophic species are the most relevant and typically show negative correlations to iron at
the global level, in contrast to most of the autotrophs in the other modules (Figure 7c). Indeed, only a few
of the species associated to this subnetwork are present in high‐iron conditions. In the context of the
Marquesas Islands, most of the DarkRed‐assigned OTUs were detected in the oligotrophic Station
TARA_122 but not at Station TARA_123, where iron was not expected to be a limiting factor. Both richness
and the relative abundance of the subnetwork decreased at Station TARA_123. We thus observe that an iron‐
responsive subnetwork changes its richness and abundance in a manner consistent with iron availability,
rearranging the connectivity between its nodes. Additional details about the dynamics of IAAs in the
Marquesas archipelago can be found in supporting information S3.

Figure 8. Variations in plankton community composition at Marquesas sampling sites. (a) Relative contribution of differ-
ent autotrophic lineages to the total chlorophyll concentration in the euphotic zone (0–120 m), derived from photosyn-
thetic pigment analysis and expressed as percent of the total measured chlorophyll. (b) Depth‐integrated biomass
(mg·C·m−2) of autotrophs and mesozooplankton (>300 μm) in the euphotic zone (0–120 m). (c) Relative abundance of
Prochlorococcus and Synechococcus picocyanobacteria expressed as percent of the total Prochlorococcus plus Synechococcus
abundance estimated from flow cytometry data. Genetic markers (petB) showed exactly the same trends (supporting
information S3). (d) Relative abundance (%) of ribotypes (18S‐V9 tags) assigned to autotrophic eukaryote lineages at the
surface (5‐mdepth). Abundances were computed for the two size fractions containing themajority of autotrophic lineages,
namely, 0.8‐ to 5‐μm and 5‐ to 20‐μm size fractions. (e) Relative abundance (%) of ribotypes (18S‐V9 tags) assigned to
metazoan lineages at the surface (5‐m depth). Abundances were computed for the two size fractions containing the
majority of metazoans, namely, the 20‐ to 180‐μm and 180‐ to 2,000‐μm size fractions. (f) Richness and diversity (expo-
nential Shannon index) of eukaryotic autotrophs in two different size fractions estimated from the metabarcode data.

10.1029/2018GB006022Global Biogeochemical Cycles

CAPUTI ET AL. 411



Further analysis of the plankton communities at the Marquesas stations showed that the biomass of pri-
mary producers was around 50% higher at the leeward stations (Stations TARA_123, 124 and 125) than at
HNLC Station TARA_122, with increases in diatoms, haptophytes, pelagophytes, and Synechococcus
(Figures 8a–8d; supporting information S3, Alexander et al., 2015). The higher productivity likely fueled
increases in zooplankton standing stock at these three stations, in particular copepods, chaetognaths, and
appendicularians (Figures 8b and 8e).

Eukaryotic phytoplankton diversity increased at TARA_123 (Figure 8f; supporting information S3, Martin et
al., 2013), likely favored by the intense physical dynamics (Barton et al., 2010; Biard et al., 2016). At these
stations the increased number of diatoms was due principally to Thalassiosira andMinutocellus (supporting
information S3). Increases in haptophyte and pelagophyte abundance were due to Phaeocystis and
Pelagomonas, respectively. By contrast, the community at Station TARA_122 was more characteristic of
an extremely oligotrophic environment, with an abundance of Rhizaria (Biard et al., 2016), Planktoniella
diatoms (Malviya et al., 2016), Chrysochromulina haptophytes (Stibor & Sommer, 2003), and Pelagococcus
pelagophytes (Guillou et al., 1999), as well as Prochlorococcus (Rusch et al., 2010).

Analysis of picocyanobacteria also revealed alterations consistent with increased iron bioavailability in the
wake of the islands with respect to TARA_122 (Figure 6). For example, we observed an almost complete shift
of Synechococcus community composition from clade CRD1 at TARA_122 to clade II at TARA_123 and
TARA_124, while absolute abundances of Prochlorococcus HLIII and IV, previously shown to dominate in
iron‐depleted waters (Rusch et al., 2010; West et al., 2011), were significantly reduced (Figure 6; supporting
information S3 and S4, Grob et al., 2007).

Using transcriptomes from MMETSP together with metatranscriptomes from Tara Oceans (Alberti et al.,
2017; Carradec et al., 2018; Louca et al., 2016; Sunagawa et al., 2015), we could further compare the

Figure 9. Variations in gene abundance and expression in cyanobacteria and diatoms at Marquesas sampling sites. (a, b) Differential expression patterns of iron‐
related genes from cyanobacteria Prochlorococcus (a) and Synechococcus (b) at stations TARA_122–125. Transcription values were normalized over genomic
occurrence and are expressed relative to the levels observed at station TARA_122 (index 100). The flavodoxin/ferredoxin ratio is also plotted (PetF/IsiB). (c) Relative
abundances and mRNA levels of diatom genes potentially responsive to iron in metagenome and metatranscriptome data sets from stations TARA_122 and 123.
Values were normalized by total abundance or expression of all unigenes assigned to the corresponding taxonomic group (Pseudo‐nitzschia and Thalassiosira).
For clarity we focused only on changes in 5‐ to 20‐μm size fractions. Colors indicate the contribution of each station to the total levels. (d) Relative ratios
between pairs of genes whose presence in the genome or transcriptional activity has been reported previously to be potentially responsive to iron bioavailability. For
clarity, ferritin levels have been multiplied by a factor of 10 to be comparable with ISIP levels, and only 5‐ to 20‐μm size fractions from stations TARA_122
and 123 are compared.
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qualitative shifts in genotypes highlighted above with changes in transcriptional outputs in cyanobacteria
(Figures 9a and 9b), eukaryotic phytoplankton (Figures 9c, 9d, and S5), metazoans (Figure S6 and support-
ing information S4), and more specifically in diatoms (Figures 9c, 9d, and S7). Importantly, ISIP levels were
decreased in the leeward stations (Figures 5a, 9c, and 9d), and study of gene switches proposed to be respon-
sive to ambient iron concentrations such as ferredoxin/flavodoxin, plastocyanin/cytochrome c6, and
FBAI/FBAII (Allen et al., 2012; Mackey et al., 2015; Marchetti et al., 2012; Peers & Price, 2006; Pierella
Karlusich et al., 2015; Thompson et al., 2011) revealed patterns generally consistent with increased bioavail-
ability at Stations TARA_123–125 with respect to HNLC Station TARA_122 both in Synechococcus
(Figures 9a and 9b) and in the major groups of eukaryotic phytoplankton (Figures 9c, 9d, S5, and S7). The
abundance of proteorhodopsin and ferritin genes and mRNA in diatoms were generally also consistent with
this hypothesis, with decreases in proteorhodopsin transcripts and increases in ferritin in Station TARA_123
with respect to Station TARA_122 (Figures 9c, 9d, and S7d). These patterns of known iron‐responsive genes
provide strong support that iron bioavailability is an important driver of the phytoplankton blooms in the
Marquesas Islands (supporting information S4, Groussman et al., 2015; Kazamia, et al., 2018; Lane &
Morel, 2000; McQuaid et al., 2018; Whitney et al., 2011).

Furthermore, and consistently with the global analyses, Thalassiosira and Pseudo‐nitzschia appear to
employ different mechanisms to respond to iron in the Marquesas stations. Specifically, small ferritin‐
containing Thalassiosira cells expressing cytochrome c6 genes increase in abundance at Station
TARA_123, replacing larger Thalassiosirales genetically adapted to low iron at Station TARA_122 by their
almost exclusive expression of plastocyanin with respect to cytochrome c6 (Figures 9c, 9d, and S7; supporting
information S4). On the other hand, Pseudo‐nitzschia cells with flavodoxin and plastocyanin genes are
enriched in TARA_122 in comparison with TARA_123. For these two diatom genera, the investigation of
the local response around the Marquesas Islands therefore corroborates their behavior within IAAs at the
global level, and their compartmentalization into different groups based on ISIP gene abundance and
expression (Figure 5) supports the hypothesis that they have evolved fundamentally different mechanisms
to respond to iron resource availability.

The outcome of the taxon‐specific responses summarized above and discussed more comprehensively in
supporting information S4, (Arienzo et al., 2014; Berline et al., 2011; Gorsky et al., 1999; Probert et al.,
2014; Yuasa et al., 2016) is shifts in abundance and occurrence of taxa within IAAs that change the overall
structure of the food web. Our observations also reveal novel information about the genetic strategies and
specialized mechanisms employed by each taxon to cope with iron availability (supporting information
S4, Bundy & Kille, 2014; De Vos et al., 1992) and illustrate that these responses may ensure resilience of each
IAA in a subset of conditions within a highly variable environment. Collectively, our results therefore
demonstrate that the delineation of co‐responsive subcommunities at global scale can provide a valuable
framework for identifying key lineages whose adaptive capacities can be compared and contrasted in specific
dynamic contexts. Finally, our in‐depth analysis of community structure and gene expression around the
Marquesas Islands illustrates how biological data can be used to inform biogeochemical models, because
neither of the models used here was able to project increased iron availability in the wake of the islands.
Furthermore, while the four Marquesas stations were used in the global analysis that defined the IAAs, they
did not contribute to the correlation of IAAs because of the lack of resolution of the models in this area. The
module responses in the Marquesas are therefore not biased but are remarkably indicative of a change in
iron bioavailability in the lee of the islands.

4. Discussion

In this study we have shown how the turnover of organisms coping with ocean variability involves a combi-
nation of ontogenetic responses driven essentially by modulation of gene expression patterns, that is, accli-
mation, together with phylogenetic responses driven by changes in plankton community structure as well as
different genotypes adapted to local conditions by altered copy numbers of iron responsive genes. Different
organismal groups appear to use different strategies, meaning that they will not all respond over the same
evolutionary timescales. The island mass effect in the wake of the Marquesas Islands leads to the selection
of preferred genotypes at the community level and triggers acclimatory responses to fine‐tune metabolic
functioning via transcriptional responses. These local observations of the most affected organisms are
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consistent with IAAs identified in the global ocean, suggesting that large‐scale equilibria are in fact dynamic
and responsive to smaller scale perturbations.

Previous studies at global scale of the effects of iron on marine plankton were focused on a specific subset of
bacterial genes involved in iron metabolism using metagenomics samples from North West Atlantic,
Equatorial Pacific, and Indian Oceans (Toulza et al., 2012). Our current study extends this analysis because
of its broader geographical coverage and the vastly expanded sequencing data set, which has permitted us to
explore both community‐level and gene‐level responses throughout the entire plankton community, from
viruses to zooplankton. Our work thus provides an extensive global scale analysis of the different levels at
which plankton biodiversity may be impacted by iron availability, although it should not be assumed that
all the responses we highlighted depend solely on iron because one single resource is very unlikely to drive
the physiological and structural dynamics of a community. Nonetheless, our extensive statistical analyses
suggest that the responses we define do certainly involve iron bioavailability and that the responses occur
at molecular, physiological, and compositional levels. Of note is the evidence of modularity in the commu-
nity structure with modules of co‐occurring taxa being sensitive to the resource yet displaying often contrast-
ing strategies. This extends the results obtained by Guidi et al. (2016) who focused on a specific process,
indicating that modularity is a general feature of plankton communities, whichmight be related to their con-
tinuous turnover. To the extent allowed by available gene catalogs and taxonomic resolution, we were able to
link the subcommunity responses to the molecular toolkits of the organisms, but in many cases we empha-
size that the response is not unequivocal but rather maps to a suite of strategies that had already been
recorded previously in localized or laboratory experiments.

The complexity of the plankton ecosystem that emerges from the analysis of each IAA and their VIPs, whose
dynamics have a certain degree of freedom with respect to the response of the others, indicates that there is
some flexibility between the composition of primary producers and their consumers, even though the former
are the organismsmost directly impacted by nutrient availability. In particular, heterotrophic grazers appear
to be central for responses to such bottom‐up processes as nutrient acquisition. We interpret the VIP values
versus correlation to iron and community centrality as follows: that communities are assemblages of several
organisms with multiple interactions among them that cannot be reduced to just a handful of opportunistic
autotrophic species able to benefit from nutrient injection and that supply organic carbon to higher trophic
levels. Rather, organisms respond to resource availability according to their functional traits but also mod-
ulate interactions within their communities, thus affecting their structure. These changes will nonetheless
depend on the resident community, immigration from beyond, and changes in the ambient conditions.
Some organisms may thrive in different contexts and therefore not be strongly dependent on iron, but rather
be good exploiters of primary production stimulated by increased nutrient bioavailability; most of the VIPs
are indeed consumers. Furthermore, the relatively low subnetwork centrality of these consumers may sug-
gest that they co‐occur with only a subcomponent of the other species. Finally, the nature of the modules
composed of parasitic and mixotrophic organisms further suggests that recycling of matter, for example,
through remineralization, parasitism, and pathogenesis, are additional strategies within plankton commu-
nities to overcome resource limitation. Such strategies would be expected to confer further flexibility and
lead to an improved capacity to respond to sporadic bursts of favorable conditions.

Taxonomy‐based network analysis for the prokaryotes did not reveal significant associations with iron bioa-
vailability, whereas their gene subnetworks did. In accordance with a recent study based largely on Tara
Oceans data (Louca et al., 2016), this result advocates for the use of prokaryotic functional signals rather
than standard taxonomic criteria to study functional responses of prokaryotes in the global ocean, at least
at the level of current taxonomic resolution. In fact, picocyanobacteria displayed a remarkable strain‐
dependent sensitivity to iron availability. The observations further indicate the need for a better assignation
of functional taxonomy, and more studies to better characterize prokaryotic genes of relevance for interpret-
ing the mechanistic changes in prokaryotes following perturbations in iron bioavailability. Furthermore,
while standard steady state analyses of ocean systems do not consider biological responses to perturbation
per se, our approach of identifying steady state global IAA subnetworks and then investigating their
responses to local, short‐term perturbation represents a promising new approach.

Comparison of the local response to an inferred iron injection in the Marquesas archipelago with the global
patterns indicates that the community response to iron availability cannot be characterized by an even
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increase in biomass among existing components but involves a change in their relative weights reflecting
their different adaptive solutions and the concurrent reorganization of the subcommunities. In other words,
our results infer that the rate of supply of a resource is a factor that modulates the response of organisms and
their communities.

Our analysis is based on iron distribution derived from two advanced biogeochemical models rather than
from discrete measurements. This is because we considered them to be more representative than the instan-
taneous in situ measurements whose coverage is also scarce and could not be improved by our expedition,
since TARA was not equipped to accurately perform iron concentration assessments. While this may be
viewed as a limitation of our work, we provide evidence from independent data of the reliability of these esti-
mates, thus providing a valuable demonstration of the utility of omics data as a tool to validate (and conse-
quently improve) current models of earth system dynamics. The good correspondence between the
molecular response and the model simulations demonstrates that metatranscriptomics is now mature
enough to provide an independent, biologically based validation of ecosystem models especially when the
data are scarce or hard to obtain in a reliable way. The quality and number of iron measurements are con-
tinuously improving, but metatranscriptomics may anticipate and suggest the presence of biogeochemical
constraints that are still undetectable with analytical methods. In addition, it could significantly integrate
the formulation of processes in current ecological models because, on the long term, it can complement
the missing information about organism interactions (see above) that cannot be derived from the availability
of resources (e.g., Stec et al., 2017).

In conclusion, our study reinforces the results obtained in smaller‐scale studies and significantly expands the
suite of indicators that can be monitored to detect responses to changes in environmental conditions, from
target genes to higher levels of biological organization. Our work paves the way to a suite of possible devel-
opments in experimental design and in model formulations that prompt for the improvement of statistical
tools to better characterize responses at system level. Numerical simulations of ocean processes aimed at
capturing the fluxes of key elements are currently based on just a handful of plankton functional types
(Le Quere et al., 2005) or functional genes (Coles et al., 2017). Our results highlight the need to incorporate
the response of entire plankton assemblages to more accurately determine responses at different levels, such
as gene expression, gene copy numbers, or community composition. To determine the relevance of such pro-
cesses, omics should become a routine component of ocean observation, and we further demonstrate here
that it can contribute to assessing the validity of ecosystem models by complementing biogeochemical mea-
surements in the field and adding critical information about the actual bioavailability of nutrients, which is
currently difficult to measure. Finally, the IAAs and other modules described herein provide a framework
that is independent of taxonomic or functional groupings to tackle the complexity of natural communities,
thus assisting our capacity to predict the responses and resilience of planktonic ecosystems to natural and
human‐induced perturbations.
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