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ABSTRACT

Context. Mars-crossing asteroids (MCs) are a dynamically unstable group between the main belt and the near-Earth populations.
Characterising the physical properties of a large sample of MCs can help to understand the original sources of many near-Earth
asteroids, some of which may produce meteorites on Earth.

Aims. Our aim is to provide diameters and albedos of MCs with available WISE/NEOWISE data.

Methods. We used the near-Earth asteroid thermal model to find the best-fitting values of equivalent diameter and, whenever possible,
the infrared beaming parameter. With the diameter and tabulated asteroid absolute magnitudes we also computed the visible geometric
albedos.

Results. We determined the diameters and beaming parameters of 404 objects observed during the fully cryogenic phase of the WISE
mission, most of which have not been published elsewhere. We also obtained 1572 diameters from data from the 3-Band and posterior
non-cryogenic phases using a default value of beaming parameter. The average beaming parameter is 1.2 +0.2 for objects smaller than
10 km, which constitute most of our sample. This is higher than the typical value of 1.0 found for the whole main belt and is possibly
related to the fact that WISE is able to observe many more small objects at shorter heliocentric distances, i.e. at higher phase angles.
We argue that this is a better default value for modelling Mars-crossing asteroids from the WISE/NEOWISE catalogue and discuss the
effects of this choice on the diameter and albedo distributions. We find a double-peaked distribution for the visible geometric albedos,
which is expected since this population is compositionally diverse and includes objects in the major spectral complexes. However, the

distribution of beaming parameters is homogeneous for both low- and high-albedo objects.

Key words. minor planets, asteroids: general — surveys — infrared: planetary systems

1. Introduction

Mars-crossing asteroids (MCs) occupy unstable orbits between
the main belt and the population of near-Earth asteroids (NEAs).
Knowledge about their diameters and albedos can be com-
bined with dynamical studies (see e.g. Migliorini et al. 1998;
Michel et al. 2000; Morbidelli et al. 2002; Granvik et al. 2016)
to link many NEAs with their source regions in the asteroid belt.
This knowledge, combined with the physical properties of NEAs
as a population, can lead to better estimates of crucial parame-
ters required to assess impact risk and select adequate mitigation
strategies in case a collision with an NEA is deemed probable.
Risk assessment and mitigation are major areas of interest of
the NEOshield-2 project (Harris et al. 2013), which focuses on
small-sized NEAs (<1 km), the least accessible for observation.
As part of this effort, in this article we provide diameters and
visible geometric albedos of Mars-crossing asteroids observed
by the Wide-field Infrared Survey Explorer (WISE) in the differ-
ent phases of the survey (Wright et al. 2010). Ultimately, these
can also help the community expand the scientific return gained
from spacecraft missions to NEAs by providing context for

* Full Table 1 is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg. fr (130.79.128.5) or via
http://cdsarc.u-strasbg. fr/viz-bin/qcat?]/A+A/603/A55

Article published by EDP Sciences

everything we learn about the individual asteroids visited (e.g.
Michel & Delbo 2010; Bottke et al. 2015; Lauretta et al. 2015).

We took the definition of MC given in the Jet Propulsion
Lab Small-Body Database Search Engine', i.e. all objects with
semi-major axis a < 3.2 au and perihelion distance (g) in the
range 1.3 au < g < 1.666 au. Other authors may apply different
criteria to classify MCs (e.g. Michel et al. 2000) but we opted
for the broadest definition possible.

To compute diameters we modelled infrared (IR) data ob-
tained by the WISE/NEOWISE mission (Mainzer et al. 201 1a,
2014a). More details and references about the data catalogue
and WISE are given in Sect. 2. We queried the IRSA/IPAC
catalogues for any available data of all objects in the MC list.
We used the near-Earth asteroid thermal model (NEATM) of
Harris (1998) to find what values of diameter (D) best fit those
data (see Sect. 3). Although the NEATM was conceived to pro-
duce better results for NEAs, it has been successfully applied
to all small bodies without atmospheres, including cometary
nuclei and trans-Neptunian objects (e.g. Fernandez et al. 2013;
Santos-Sanz et al. 2012; Bauer et al. 2013).

We determined the diameters and beaming parameters of
404 objects observed during the fully cryogenic phase of
the WISE mission, most of which have not been published

I See http://ssd.jpl.nasa.gov/sbdb_query.cgi
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elsewhere. With a suitable default value of 1, we also obtained
1572 more diameters from data from the 3-Band and posterior
non-cryogenic phases. Combining the asteroid absolute magni-
tudes tabulated by the Minor Planet Center with these diameters
we also computed the visible geometric albedos. In the absence
of any other information, visible albedos can help distinguish
between typically low-albedo primitive asteroids, spectrally as-
sociated with carbonaceous chondrites, and higher-albedo types
associated with ordinary chondrites and other more processed
meteorites that contain a smaller amount of volatiles than car-
bonaceous chondrites (for a review and pertinent caveats, see
DeMeo et al. 2015).

To compare our diameters with previously published val-
ues, we searched for objects in the MCs list in the catalogues
of Masiero et al. (2011, 2013, 2014) and Nugent et al. (2015,
2016). We found a total of 48 and 534 objects, respectively, with
which we compared our sizes and albedos on a one-to-one basis.
In Sect. 3.1 we show that for equal input parameters we obtain
small systematic deviations between our sizes and albedos but
that these fall well within the minimum expected errors of the
NEATM (Harris 2006; Mainzer et al. 2011c).

The most salient features of the beaming parameter and
albedo distributions of our sample are presented in Sects. 4.1 and
4.2.In Sect. 4.3 we discuss to what extent the particular choice of
the default beaming parameter can bias NEATM diameters and
the corresponding values of visible geometric albedo and justify
our choice of default beaming parameter for the MCs.

2. WISE/NEOWISE data

The WISE survey provided measurements in up to four bands
in the short-wavelength and thermal IR, W1 = 3.4 um, W2 =
4.6 um, W3 = 12 ym, and W4 = 22 um (see Wright et al. 2010,
and references therein) during the fully cryogenic stage of the
mission (see below). Enhancements to the WISE data process-
ing system were designed by what is collectively referred to as
the NEOWISE project to allow detection and archiving of so-
lar system objects (Mainzer et al. 2011a). Nugent et al. (2016)
provide an updated compendium of the different works of the
NEOWISE team reporting asteroid sizes, albedos and infrared
beaming parameters derived from NEOWISE data.

The survey scan angular velocity of WISE was such that
an inertial source was observed about twelve times per appari-
tion, once every ~1.58 h (Cutri et al. 2012). Owing to their non-
sidereal motion, asteroids were sometimes not exposed on the
following scan but at a subsequent pass, usually 3.16 h later.
The fully cryogenic phase of the mission covered 120% of the
sky’. Asteroid observations were obtained in the four bands but
mostly in bands W3 and W4, where these bodies emit a great
fraction of their thermal radiation (see Sect. 3). After one of the
coolant tanks ran out, 30% of the sky was surveyed in bands
W1, W2, and W3, (3-Band phase) and once the cooling system
became inoperative (Post-Cryo survey), an additional 70% of the
sky was surveyed in bands W1 and W2. The mission is currently
operational and collecting W1 and W2 data since its reactivation
in December 2013 after a hiatus of 32 months (Mainzer et al.
2011a, 2014a). Two NEOWISE Reactivation releases, covering
two years of observations, have been published so far.

The procedure we followed to download WISE/NEOWISE
asteroid data and reject low-quality and/or contaminated ex-
posures is based on a combination of criteria taken from
several works by the NEOWISE team (Wrightetal. 2010;

2 http://irsa.ipac.caltech.edu/Missions/wise.html
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Masiero et al. 2011; Mainzer et al. 2011a,c; Grav et al. 2012;
Cutri et al. 2012). We downloaded the reported observation
tracklets from the Minor Planet Center (MPC) and used a cone-
search radius of 1” around these coordinates when we queried
the IRSA/TPAC catalogues; we required the tracklet date to be
within 4 s of the catalogue date. We rejected data with magni-
tudes brighter than the point-source saturation thresholds given
by Cutri et al. (2012), which means that we do not use partially
saturated data. We also rejected any catalogue entry with a mag-
nitude error bar greater than 0.25 mag and artefact flag other
than 0, p, or P3. Finally, we queried the All-sky catalogue with a
cone-search radius of 6.5” around the tracklets to identify poten-
tially contaminating inertial sources. When matches were found,
we accepted the asteroid fluxes only if the inertial sources were
much fainter, namely if their reported flux was <5% of the aster-
oid fluxes.

3. Near-Earth asteroid thermal model (NEATM)

The basic assumption of some asteroid thermal models is that
the tempearure (7') of a surface element reaches thermal equi-
librium instantaneously with the incident solar energy. Since no
a priori information about the asteroids is usually available, a
non-rotating spherical shape with a smooth surface and no heat
conduction towards the subsurface is assumed. This means that
the instantaneous temperature of a surface element will be deter-
mined only by how much energy it absorbs. If we assume black-
body emission, we then have

Wl = 4)°2 = o, M)
where p is the cosine of the angle between the element’s normal
and the direction towards the sun, A the bolometric Bond albedo,
S o the solar incident energy at 1 au, r the heliocentric distance,
€ the emissivity (assumed to be 0.9; see Delbo et al. 2015, and
references therein), and o the Stefan-Boltzmann constant. The
factor n, the infrared beaming parameter, is introduced to ac-
count for the non-linear increase in the thermal flux observed at
low phase angles, i.e. the angle subtended by the observer and
the sun from the asteroid’s point of view. The standard thermal
model used a value of 7 = 0.756, which resulted in a better match
to the sizes of large asteroids determined from occulations (see
Lebofsky & Spencer 1989, for a review). Harris (1998) used n
as a free parameter to improve the radiometric sizes for NEAs,
for which the standard thermal model produced systematically
smaller values (Veeder et al. 1989). The treatment of 7 as a free
parameter has the benefit of partially compensating for the sim-
plifying assumptions of the model — after all, asteroids are not
spherical, they rotate, and their surfaces are non-Lambertian.
Equation (1) allows us to compute the temperatures of all
surface elements of the sphere at the time of the observations.
Our shape model is a sphere with a diameter of 1 km or, more
precisely, a polyhedron composed of 2296 triangular facets of
equal area. Thus, the model flux corresponding to a body with
equivalent diameter D km would be the sum of all fluxes coming
from all illuminated facets of said sphere visible to the observer
multiplied by D?. Non-illuminated facets are neglected. To ac-
count for the geometry of the observations, the model fluxes are

3 A value of “0” indicates no known artefact affecting the exposure,
whereas “P” and “p” indicate possible spurious detections of and con-
tamination by a latent image, respectively. These flags were found to be
overly conservative and they have been widely used in previous works
(e.g. Masiero et al. 2011).
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also scaled by the inverse of the square of the distance between
the asteroid and WISE (for simplicity, we take the geocentric
distance since WISE is in a low Earth orbit).

We follow the NEATM implementation of the NEOWISE
team closely (Masiero et al. 2011, 2014; Mainzer et al. 2011c¢),
but with two main differences. First, whenever possible, we only
model data dominated by thermal emission (wavelengths longer
than ~7 um), i.e. W3 and W4 data. This avoids influencing the
NEATM with the introduction of additional model assumptions
needed to account for the reflected light component that usually
becomes relevant at wavelengths shorter than 7 pum, which af-
fects W1 and W2 data. Secondly, the visible geometric albedo
(pv) is not a parameter of our model. It is computed from the fit-
ted diameter and the asteroid absolute magnitudes (H) tabulated
by the MPC (as of August 2016). We used the expression
2

1329 km
pv = (— @)

D

Absolute magnitudes are constantly updated in the MPC,
new py-values can be easily recomputed from our radiomet-
ric diameters and the updated H-values from Eq. (2). Alter-
natively, H magnitudes from other catalogues could also be
used (Muinonen et al. 2010; Oszkiewicz et al. 2011; Veres et al.
2015; Williams 2012).

The H-values are also used along with the slope parameters
(G) of Bowell et al. (1989) as input for the NEATM to obtain an
estimate of the Bond albedo (A), which is required but not known
a priori. We start with an initial guess value of py = 0.10 and
compute the corresponding diameter (from Eq. (2)) and Bond
albedo (e.g. from G and Egs. (5) and (6) in Lebofsky & Spencer
1989). We run the model and find the best-fitting value of D,
which we use to recompute A. We iterate until we arrive at a
desired level of convergence for the Bond albedo, normally re-
quiring four or five iterations to achieve 1%. This procedure en-
sures that the Bond albedo is consistent with the size and the
H and G values (see, e.g. Delbo’ 2004; Mueller 2007). On the
other hand, we note that our diameters are somewhat insenstive
to H and G as long as at least one band dominated by purely
thermal data is available, because temperatures do not change
significantly over the relatively narrow range of asteroidal Bond
albedos (from Eq. (1), T o (1 — A)%).

Whether we fit 7 along with the diameter or not depends on
the availability of data in the WISE bands in each case. We con-
sider three possibilities:

10H/5)

1. The diameter and 5 are both fitted only in cases in which
there are data available in both of the purely thermal bands,
W3 and W4. We model separately groups of data taken more
than three days apart (e.g. Mainzer et al. 2011c) because 7,
is not a purely physical property of the asteroid surfaces and
there is no unique n-value for a given asteroid. For example,
it can vary depending on the phase angle of the observations
(@) or the particular aspect angle of the direction towards the
observer, which can change the visible projected area of an
irregular object significantly (see e.g. Delbo’ et al. 2007).

2. When data are available in only one purely thermal bandpass
(either W3 or W4, but not both), we model them assuming
a default value of 7y = 1.2 based on the average value ob-
tained in this work for this sample of MCs (see Sect. 4.1
below). This default value is different from that used by NE-
OWISE team, and we discuss the effects of this choice on the
diameters and albedos in Sect. 4.3.

3. If W3 and W4 data are not available but W2 data are, we
need to account for the contribution of the reflected light,

since fluxes at 4.6 ym are usually a mixture of emitted and
reflected sunlight in different proportions depending on the
heliocentric distance and albedo. We assume a default value
for the albedo at 4.6 um of py, = 1.4 X py, based on a com-
promise between the more neutral spectra of C-complex as-
teroids and the higher spectral slopes characteristic of many
of the S-complex spectral classes (e.g. Masiero et al. 2014).
We also adopt the default value of g = 1.2.

Finally, following Nugent et al. (2016), in the few cases when
the resulting py value was too low to be physical — we set the
limit to 0.025 — we re-ran the model with a lower fixed value of
nq = 1.0, and reiterated with g = 0.9 if we still did not obtain
values of py higher than the minimum values.

3.1. Comparison with the NEOWISE team diameters
and albedos

To compare our results with those of the NEOWISE team and
validate our model, we took the list of MCs provided by the
JPL Horizons search engine and found 47 MCs in Table 1 of
Masiero et al. (2011), observed during the full cryogenic phase
of the WISE mission, and 532 in Nugentetal. (2015) and
Nugent et al. (2016), observed during the reactivation phase.

One source of discrepancy in the albedos is the different
sources from which we obtained the H values. Pravec et al.
(2012) obtained H magnitudes for nearly 600 asteroids and com-
pared them to those tabulated in the most widely quoted cat-
alogues, including the MPC. They found the latter to be sys-
tematically overestimated (the MPC H-values are greater than
theirs) for objects smaller than H > 12 and more importantly
H > 14, which presented an average offset of —0.5 mag). For
this reason, Nugent et al. (2016) used an improved catalogue of
H-values by Williams (2012), in which said offset is corrected.
To give an idea of how much our results could be affected by this,
we computed the differences in H-values for the objects featured
in our catalogue and/or in Nugent et al. (2015) and Nugent et al.
(2016). Out of 489 objects, 200 have the same H value, 186 are
brighter in our catalogue by —0.25 mag on average, and 103 are
about 0.1 mag fainter on average. Although these systematic de-
viations are comparable to the expected error bars of the abso-
lute magnitudes (typically 0.1 mag, but not infrequently as large
as 0.3 mag), some albedo values can be biased. Thus, to compare
our results (see below), we only consider those cases with equal
H magnitudes.

We computed relative differences between our diameters and
the Masiero et al. values only in those cases where the absolute
magnitudes were the same and the beaming parameter was either
fitted (6 values) or not fitted (21 values) in both catalogues. Our
sizes are 2.3% smaller on average and our albedos 3% higher.

We also modelled the Nugent et al. objects using their default
values of beaming parameter and (W2) 4.6-um albedo, 0.95 and
1.5%py, respectively. Figure 1 shows the histogram of the rela-
tive difference between their diameters and ours for all objects
which had the same H values in both catalogues (271 entries).
For comparison, we also plotted Gaussian functions with the
same average value and standard deviations of 0.05 and 0.10.
Similarly, the lower panel shows the same for the visible geo-
metric albedo values, for which we expect a broader distribution
since py o« D72 (Eq. (2)). In this case, our sizes are 3% higher
on average and our albedos 3% lower.

These systematic differences fall well within the typical di-
ameter error bars quoted for the NEATM. Figure 4 in Harris
(2006) shows, for example, that the fractional error in NEATM
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Fig. 1. Relative differences between our diameters (upper panel)
and visible geometric albedos (lower panel) and those reported in
Nugent et al. (2015, 2016). We used the same default value of beaming
parameter and 4.6-um albedos that they used. The curves are Gaussian
functions with the same mean values but different standard deviations.
Our diameters are 3% higher on average and our albedos 3% lower.

diameters fitted to synthetic fluxes generated by a spherical
shape with non-zero thermal inertia can range from <1% for low
thermal inertia and low phase angles, to 15% for high thermal
inertia and high phase angle. The error for non-spherical shapes
has not been quantified in this manner, but the expectation is that
the discrepancies would be larger. Therefore, it seems reason-
able to assume a minimum error bar of 10% for the diameter (in
agreement with the estimate of Mainzer et al. 2011c); we note,
however, that the model can be much less accurate in some par-
ticular cases, for example when very few data points are avail-
able for the fit (see Secs. 4.1 and 4.3).

4. Results

Table 1 provides our best-fitting values of parameters and other
relevant information regarding the observations and input pa-
rameters. Unlike in our previous works, we do not impose an
absolute minimum number of data points to produce a fit. How-
ever, for a given group of observations not separated by more
than three days, we do reject all data in a band if it does not con-
tain at least 40% of the data with the highest number of valid de-
tections (Mainzer et al. 2011¢). This means that in Table 1 there
are beaming parameter values derived from one measurement in
W3 and one in W4, but never from one measurement in W3 and
three in W4, for example; in other words, the number of reliable
detections needs to be reasonably similar in both bands.

In the following sections we show and discuss some notewor-
thy features of the beaming parameter and albedo distributions
of our sample.

ASS, page 4 of 8

4.1. Infrared beaming parameters

Figure 2 shows normalised histograms for four different sam-
ples. The first two, labelled A and B, include all objects with
fitted to at least three (nys3, nws > 2) and ten (nys3, nws > 9) mea-
surements in each of the purely thermal bands, W3 and W4. Im-
posing these two different criteria to fit 7 illustrates how increas-
ing the minimum number of detections per band can be used to
judge the fit reliability (this is discussed further below) and can
help identify questionable extreme values (see Appendix A in
Ali-Lagoa et al. 2016).

The Kolmogorov-Smirnof (KS) test rules out that samples A
and B are compatible with a p-value of ~0.001. We obtain
p-values greater than 1 per cent only for samples with at least
five data points in each thermal band, so we take this as a cri-
terion to ensure reliable fits with uncertainties in diameter close
to, but not lower than, 10%. With this criterion, the sample’s av-
erage beaming parameter is 1.2 + 0.2 (median 1.1 + 0.2). Based
on the analysis of Sect. 4.3 we argue that this, is a better default
value (174) for modelling MCs from the WISE/NEOWISE data
catalogue. Since the n-value distribution reflects the size-related
biases inherent to the WISE survey for the MCs, this choice is
not necessarily valid for other asteroid groups.

Although the MCs are a compositionally heterogeneous pop-
ulation (de Ledn et al. 2010, and references therein), we do not
find any statistical indications of compositional heterogeneity
in their n-value distributions. We took the sample of panel B
and separated it into objects with albedos lower than or equal
to 0.12 and those higher than 0.12, but we see almost identical
histograms (panels C and D in Fig. 2), with KS p-values greater
than 0.98. As we discuss in the following section (see Fig. 4),
this albedo value roughly distinguishes between C-complex
and S-complex spectral classes (although X-types fall in both
albedo groups; see e.g. Tholen 1984; Bus & Binzel 2002a,b;
DeMeo et al. 2009; Mainzer et al. 2011d).

On the other hand, the beaming parameters of the largest
bodies do seem to be lower than those of the smaller ones
(Fig. 3). We have 19 objects with D > 10 km and 267 objects
with D < 10 km among the “nys3, nys > 9” sample, with av-
erage 7 of 1.0 £ 0.1 and 1.2 + 0.2, respectively. The KS rules
out that both samples are drawn from the same distribution with
a p < 107>, Although this could plausibly be related to the ex-
pected presence of finer regolith on the surfaces of larger bodies
(Delbo’ et al. 2007; Delbo’ & Tanga 2009; Delbo et al. 2015), it
is not possible to give a purely physical interpretation to this
trend without modelling additional physical information because
the beaming parameter is not a physical property of the surfaces.
Rotational periods*, spin pole orientations and shapes are re-
quired to use thermophysical models to infer thermal inertias,
which reveal information about the physical nature of the sur-
face materials (see Delbo et al. 2015, for a review), but work in
this direction is far beyond the scope of this paper.

Moreover, there may be other causes for this trend. For ex-
ample, it is known that 5 increases with the phase angle of the
observations (e.g. Delbo’ 2004; Wolters & Green 2009), and be-
cause WISE observed in quadrature, many MCs were detected
at relatively short heliocentric distances, i.e., high phase angles
reaching up to 50 degrees. This also explains why the average
MC beaming parameter is intermediate between that of main belt
asteroids and NEAs (see Fig. 7 in Mainzer et al. 2011b).

4 We have found 322 MCs in our list with reported periods in the
Asteroid Lightcurve Database managed by B. Warner (http://www.
minorplanet.info/home.html). See Warner et al. (2009).
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Table 1. Best-fitting values of size (D) and beaming parameter (77) and corresponding visible geometric albedos (py) for all our objects.

Object H G D (km) pv n nwy Nwz  Nwa r (au) A (au)  a (degree) MIJD

00132 938 0.15 50.13 0.124 092 O 15 15 3.30812 3.14966 17.88688  55395.8002
00323 9.73 0.15 2923 0265 094 0 15 15 277473 250662 21.25193 55321.6229
00391 10.80 0.15 17.33 0.282 091 0 11 11 276976 2.58080 20.89958  55244.0457
00391 10.80 0.15 19.66 0.219 1.01 0 12 12 228260 196104 26.29792  55409.9965
00512 10.68 0.15 18.70 0.270 1.03 0 14 14  2.18148 1.94928 27.23824 55284.5366
00699 11.72 0.15 12.19 0244 1.02 O 14 13 3.66612 3.43622 15.92318 55325.3199
01009 13.90 0.15 647 0.116 126 0 7 5 3.04221 2.85917 18.86819 55217.0517
01011 12.74 0.15 7.56 0248 1.19 0 9 9 2.56987 2.36658 22.80497 55276.0682
01131 1290 0.15 6.53 0287 1.13 0 16 16  2.17259 1.83759 26.90384 55243.0204
01139 12,51 0.15 824 0258 090 O 22 11 224136 197573 26.69370 55285.0652

Notes. Absolute magnitude and slope parameters (H, G) were retrieved from the Minor Planet Center. W1 through W4 indicate the number of
observations used in each WISE band. When 7 could not be fitted, we show the negative value of the default r7 that we used. We took the geometry
of observation for each epoch from the Miriade Ephemeris Generator. “MJD” refers to the modified Julian Date of the first observation, whereas
r, A and « are the average values of heliocentric and geocentric distances and phase angle of each group of epochs. Minimum relative errors of
10%, 15%, and 20% should be considered for D, n, and py when 1 could be fitted to at least five measurements in bands W3 and W4. Otherwise,
the minimum errors for the diameters would be 20% and 40% for the albedos (see Nugent et al. 2016). Here we provide a small set of results to
illustrate the format of the full table, which can be downloaded from the CDS.
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Fig. 2. Histograms of infrared beaming parameter of MCs observed
during the full cryogenic phase of the WISE mission. A) All objects
with at least three data points in each one of the thermal bands. B) All
objects with at least ten data points. C) Low- and D) high-albedo objects
from the sample of panel B).

Beaming parameter

100

Diameter (km)

Fig. 3. Beaming parameter versus size for Mars-crossing asteroids de-
termined from at least five (large black circles) and ten (small green
circles) measurements in each purely thermal band. Error bars in diam-
eters (>10%) and beaming parameters (>15%) are not shown for better
visibility.

Also, the lower quality of the data for small objects and the
fact that these objects tend to have more irregular shapes (e.g.
Harris & Burns 1979; Nortunen et al. 2017) can have an impact
on the dispersion of the 7 values, so as we increase the minimum
number of data points in bands W3 and W4 we remove most of
the more extreme beaming parameters, 7 > 2 (cf. the black and
green circles of Fig. 3).

4.2. Visible geometric albedos

Our sample presents two peaks in the albedo histograms shown
in Fig. 4. These peaks correspond to the C-complex and the low-
albedo component of the X-complex on the one hand, and to
the S-complex and high-albedo X-complex on the other hand
(Mainzer et al. 2011d, and references therein). Panel A includes
all objects whose diameter was fitted to W2 data only, with fixed
beaming parameter (173 = 1.20; case 3 in Sect. 3). Panel B also
shows the histogram for those objects with fixed 7, but the di-
ameter is fitted to W3 data (case 2 in Sect. 3). Panels C and D
include objects with 7 fitted to at least three and ten data points,
respectively.

Comparing the first two panels with the other two illustrates
the effect of fixing the beaming parameter to a default value: for
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Fig. 4. Histograms of visible geometric albedos. The upper panels
show the samples for which we had to assume a default value of beam-
ing parameter to fit the diameter to W2 data only A) and W3 data
only B). The lower panels show the samples with diameter and 7 fit-
ted to three or more C) and ten or more D) data points in both thermally
dominated bands, W3 and W4.

the samples with fixed 7, the lower albedo peaks are broader and
the histograms are slightly shifted. The lower two histograms
show how increasing the minimum number of data points avail-
able for the fits removes most of the extremely low albedos from
the sample with fitted 7.

It is also apparent how the low-albedo peak in panel B is
more populated than the high-albedo peak, whereas the con-
verse is true for the other samples. This could be explained by
the fact that band W3 has a higher sensitivity than band W4,
which makes it more likely for low-albedo objects to be de-
tected in band W3 alone since their surface temperatures tend to
be higher (see Eq. (1)). Instead, higher albedo objects are more
likely to verify the requirement that both W3 and W4 data should
be available.

4.3. Biases in the sizes and albedos related to the choice
of a default value of the beaming parameter

In this section we discuss how our particular choice of the de-
fault beaming parameter (174) affects the corresponding sizes and
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Fig. 5. Relative change in diameter (fop) and visible geometric albedo
(bottom) as a function of the relative change in the beaming parameter
for MC asteroid (90943). We took the fitted value of n obtained from
the first group of observations (labelled nys, ny4 > 9) as reference and
fitted diameters using different fixed 5 values (up to +40%) for three
groups of observations. The label nys, ny4 > 9 means that W3 and W4
data were available (more than 9 data points in each band), ny; > 0
indicates that the diameter was only fitted to 12 yum (W3) data, and
nys = 0, ny, > 0 only to 4.6 um (W2) data only. We note the different
scales in the panels.

visible albedos. We examined how modifying the value of 74 (by
up to £40%) changes the sizes and albedos of a particular object.
We chose asteroid (90943) because it was observed in all phases
of the WISE survey and thus has several groups of observations
verifying the three situations enumerated in Sect. 3.

The upper panel of Fig. 5 shows the relative change in size
as a function of the relative change in 14 for asteroid (90943).
In the first case we have purely thermal data available in both
thermal bands (labelled nys, nws > 9), but in the second group
of observations we have data in one thermal band only (ny3; >
0). If we take the fitted n-value of the first case (nw3, nws >
9) as reference, the relative change in size scales linearly with
the relative change in beaming parameter to the point that 20%
change in 7 results in a 10% change in diameter. As expected,
this is consistent with the minimum error bars of 10% typically
quoted for NEATM.

In the third case, i.e. when there is no purely thermal data
available (empty squares in Fig. 5), there are several likely rea-
sons why the size is more sensitive to inadequate choices of the
beaming parameter. First, we had to assume a value for the W2
(4.6 um) geometric albedo in order to estimate the reflected light
contribution to the measured W2 fluxes, and the assumed value
of 1.4 times the visible geometric albedo may not be particu-
larly adequate for this asteroid. Second, we took the value of
fitted to the first group of observations (nys, nws > 9) as a ref-
erence, but as we have already discussed in Sect. 3, this value
is not a property of the object and may not be appropriate for


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629917&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629917&pdf_id=5

V. Ali-Lagoa and M. Delbo’: Sizes and albedos of Mars-crossing asteroids

This work .
Nugent et al. 2015,2016  +
Masiero et al. 2011,2013,2014

0.1 ¢

Visible geometric albedo

0.01 : + :
1 10

Diameter (km)

100

Fig. 6. Visible geometric albedo versus diameter for a sample of MCs
that are featured both in Masiero et al. (2011) or Nugent et al. (2015,
2016) and this work. The alignment of some groups of points in hori-
zontal or diagonal lines are artefacts and are discussed in the text.

modelling other groups of observations®. Thus, different viewing
geometries and/or object orientations can account for the greater
effect on equivalent size determination seen in this third case.
Finally, asteroid fluxes are typically faint in band W2 (4.6 um)
plus the constant 0.9 emissivity assumption may break down at
wavelengths shorter than 8 um (Delbo et al. 2015).

The visible geometric albedo is more strongly and non-
linearly affected, which is expected since py o« D? (lower panel
in Fig. 5). Moreover, underestimating the beaming parameter re-
sults in a larger deviation, especially in cases when no W3 or
W4 data are available, which also argues in favour of using a
higher default value of q = 1.2. We thus expect our choice of
na = 1.2 to increase our sizes by 15 to 25% and decrease our
albedos by 30 to 50% on average with respect to those of the
NEOWISE team. To show the effect, we plotted the albedos of
the NEOWISE team MCs and ours as a function of diameter
in Fig. 6. Indeed, although the two clouds of points (related to
the different taxonomies, cf. Fig. 4) seem to overlap reasonably
well, our diameters do tend to be somewhat larger and our albe-
dos lower to the extent we expected.

There are two artefacts apparent in Fig. 6 that deserve being
mentioned. On the one hand, the Nugent et al. points in the low-
albedo cloud are aligned in horizontal lines because their pub-
lished py values are rounded off. In our case, we can see streaks
of points aligned diagonally in the less populated regions. These
correspond to curves of constant H (straight lines in our log-log
plot). In particular, some of these aligned points belong to the
same objects, those with more than one entry in our catalogue.
Most noticeably, the group of points to the right of the plot corre-
spond to asteroid (132) Aethra, the largest object in our sample,
which was observed several times in post-cryogenic phases.

The above demonstrates how the errors in the diameters
(albedos) derived from NEATM with a fixed n-value can be
significantly larger than the often quoted minimum values of
20% (40%) for these cases (Mainzer et al. 201 1c; Masiero et al.
2012; Nugent et al. 2015) if the chosen default value 4 is not

3 For example, asteroid (408795) has two groups of observations taken
at widely different dates with a similar geometry of observation. How-
ever, we obtained almost identical sizes (2.166 versus 2.099 km) but sig-
nificantly different beaming parameters (1.4 versus 1.13). Conversely,
for asteroid (475) Ocllo, observed during the Reactivation phase on
three occasions, our default 74 results in three different size values,
34 km (39 degrees phase angle), 25 km (27 degrees), and 37 km
(18 degrees), which suggests this object can be significantly irregular.

appropriate, especially for very small objects observed at high
phase angles. Although Nugent et al. (2016) compared the di-
ameters of 23 objects in their catalogue for which ground-truth
values are available, this sample is too small to provide a defini-
tive estimate of size and albedo error bars since they do not rep-
resent all asteroid populations. However, a better examination
of how these factors influence the NEATM diameters would re-
quire many more ground-thruth values, asteroid shapes that are
currently unavailable, and better statistics of the distribution of
asteroidal spin vector orientations (Hanus et al. 2011). Thus, for
the moment, we emphasise that the quoted uncertainties are only
minimum values and that caution is required when analysing di-
ameters and albedos derived from NEATM.

5. Conclusions

We provide a set of equivalent diameters and visible geo-
metric albedos (py) of Mars-crossing asteroids derived from
WISE/NEOWISE data. We fitted the infrared beaming param-
eter (7)) of more than 400 MCs observed during the fully cryo-
genic part of the mission, most of which have not been published
previously. We also report diameters and albedos of 1572 MCs,
949 observed only in one thermal band (W3, 12 ym), and 891 ob-
served in band W2 (4.6 um). Our results are collected in Table 1
(full version available at the CDS).

We compared our diameters and albedos with those of MCs
featured in Masiero et al. (2011) or Nugent et al. (2015, 2016)
and showed that we obtain similar results when the input param-
eters are the same, including their default value of the beaming
parameter when it could not be fitted. More specifically, our sizes
tend to be about 2% lower and our albedos 3% higher. These off-
sets are well within the typical errors expected for the NEATM
(minimum of 10% for diameter and 20% for albedos).

The py-value distribution shows two peaks, one at ~0.06, the
other at ~0.26. This is expected since the MCs are composition-
ally diverse and include members of all the main spectroscopic
classification groups.

The n-value distribution, on the other hand, does not re-
flect this compositional heterogeneity. It peaks at a value of 1.20
(see Figs. 2 and 3), which is higher than the average 1 of main
belt asteroids Masiero et al. (2011) but lower than for NEAs
(Mainzer et al. 2011b). This is actually expected for a population
with intermediate semi-major axes, since the beaming parame-
ter is known to correlate with phase angle and WISE observed
in quadrature, which means that objects closer to the sun were
observed at higher phase angles.

In that sense, because the beaming parameter is not a phys-
ical property of the asteroids and given the inevitable effects of
size-related biases, we argue that the average n of the population
is the best default value of the beaming parameter (174), which
also means this choice is not generally valid for other asteroid
groups observed by WISE. We thus remark that the features
mentioned here only reflect the properties of the MCs within the
limits of the size-related biases inherent to the WISE survey and
that more in-depth studies would require an assessment of the
completeness of the catalogue (Mainzer et al. 2011b, 2014b, and
references therein).

Finally, since we are proposing a different value of 74 than
the NEOWISE team for the MCs, in Sect. 4.3 we examined how
the diameters and albedos are affected. Our higher 74 produces
15 to 20% larger diameters and therefore 30 to 50% lower albe-
dos on average (see Fig. 6).
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