
HAL Id: hal-02999630
https://hal.science/hal-02999630v1

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Forty-Year Karstic Critical Zone Survey (Baget
Catchment, Pyrenees-France): Lithologic and

Hydroclimatic Controls on Seasonal and Inter-Annual
Variations of Stream Water Chemical Composition,

pCO2, and Carbonate Equilibrium
Francesco Ulloa-Cedamanos, Jean-Luc Probst, Stéphane Binet, Thierry
Camboulive, Virginie Payre, Corinne Pautot, Michel Bakalowicz, Sandra

Beranger, Anne Probst

To cite this version:
Francesco Ulloa-Cedamanos, Jean-Luc Probst, Stéphane Binet, Thierry Camboulive, Virginie Payre,
et al.. A Forty-Year Karstic Critical Zone Survey (Baget Catchment, Pyrenees-France): Lithologic
and Hydroclimatic Controls on Seasonal and Inter-Annual Variations of Stream Water Chemical Com-
position, pCO2, and Carbonate Equilibrium. Water, 2020, 12 (5), pp.1227. �10.3390/w12051227�.
�hal-02999630�

https://hal.science/hal-02999630v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


  

Water 2020, 12, 1227; doi:10.3390/w12051227 www.mdpi.com/journal/water 

Article 

A Forty-Year Karstic Critical Zone Survey (Baget 
Catchment, Pyrenees-France): Lithologic and 
Hydroclimatic Controls on Seasonal and Inter-
Annual Variations of Stream Water Chemical 
Composition, pCO2, and Carbonate Equilibrium 
Francesco Ulloa-Cedamanos 1,2,3,*, Jean-Luc Probst 1,2,3, Stephane Binet 1,4, Thierry Camboulive 1,2,3, 
Virginie Payre-Suc 1,2,3, Corinne Pautot 1,2,3, Michel Bakalowicz 5, Sandra Beranger 6 and Anne 
Probst 1,2,3,* 

1 Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, CNRS, UPS, INPT, Campus 
ENSAT, 31326 Castanet Tolosan, France; jean-luc.probst@toulouse-inp.fr (J.-L.P.); stephane.binet@univ-
orleans.fr (S.B.); thierry.camboulive@univ-tlse3.fr (T.C.); virginie.payre@ensat.fr (V.P.-S.); 
corinne.pautot@toulouse-inp.fr (C.P.) 

2 Long-Term Socio-Ecological Research, Zone Atelier Pyrénées-Garonne, CNRS, Université de Toulouse, 
Campus ENSAT, 31326 Castanet Tolosan, France 

3 Long-Term Ecosystem Research, Bassin versant du Baget, SNO Karst, IR OZCAR, CNRS, Université de 
Toulouse, Campus ENSAT, 31326 Castanet Tolosan, France 

4 Institut des Sciences de la Terre d'Orléans, Université d’Orléans, CNRS, BRGM, 45100 Orléans, France 
5 HydroSciences Montpellier, Université de Montpellier, CNRS, 34095 Montpellier, France; 

michel.bakalowicz@gmail.com 
6 Bureau de Recherches Géologiques et Minières—Délégation Régionale Occitanie-Site de Toulouse, 31520 

Ramonville-Saint-Agne, France; s.beranger@brgm.fr 
* Correspondence: francesco.ulloacedamanos@toulouse-inp.fr (F.U.-C.); anne.probst@ensat.fr (A.P.) 

Received: 26 March 2020; Accepted: 20 April 2020; Published: 25 April 2020 

Abstract: The long-term trends and seasonal patterns of stream water chemical composition in a 
small remote forested karst catchment, were investigated from 1978 to 2018. Calcium, magnesium, 
and bicarbonates, the dominant ions, increased over the period together with temperature, while 
sulfates decreased. Carbonate and sulfate mineral dissolution was the main source of these 
elements. These trends and the seasonal opposite patterns of discharge vs. temperature, calcite 
saturation index vs. pCO2 and bicarbonate vs. sulfates, suggested the influence of discharge, of 
reduced long-range atmospheric pollution, and of increasing air temperature on biological activity 
and carbonate dissolution. Furthermore, the hydrological regime controlled the seasonal stream 
water chemical composition and fluxes by: (i) a dilution during the high discharge period, (ii) a 
change in the contribution rate of the waters draining different lithological areas in the catchment, 
e.g., the increased sulfates to bicarbonates ratio during summer low flows, with a maximum 
alkalinity decrease of 24%, and (iii) a “piston” and a “flushing” effects of dissolved elements stored 
in soils and epikarst with the first autumn heavy rains. Long-term stream water hydrochemical 
surveys of karst system have proved to be powerful indicators of biogeochemical processes, water 
sources and pathways under variable natural and anthropogenic environmental pressure 
conditions. 

Keywords: long-term monitoring; hydrochemical trends; carbonate dissolution; mineral 
weathering; seasonal patterns; global warming; mountainous catchment 

 

1. Introduction 
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The increasing trend of CO2 has a feedback effect on climate change and noticeably on the 
frequency of extreme hydro-climatic events [1–3]. The atmospheric CO2 sink and the transfer of 
dissolved inorganic carbon (DIC) from the atmosphere to the critical zone and to the oceans, via the 
rivers is greatly controlled by carbonate dissolution [4,5]. Although carbonates constitute between 
10%–15% of the continental surfaces [6–9], their chemical weathering has an important role: (i) in the 
annual production of dissolved elements exported (between 45% and 60%) annually by rivers to the 
oceans [5,10] and (ii) in the consumption of atmospheric/soil CO2 (0.38 Gt·yr−1) at the global scale [7]. 
Even though carbonate dissolution is the main part of the karstification process, it is not considered 
on a global scale as a carbon sink over geological timescales [11] because carbonate precipitation in 
the oceans (source of CO2) compensates carbonate dissolution on the continents (sink of CO2). 
However, its role on regulating global atmospheric CO2 becomes relevant over short timescales. This 
is due to the quick kinetic dissolution [12] getting to the control of DIC concentrations in almost all 
carbonated catchment areas [13–17]. 

In addition, karst aquifers provide almost 25% of the water used for drinking water supply [8] 
and about half of the world’s karst area lies between latitudes 20° and 40° north [7]. Furthermore, 
mountainous areas in southern Europe appear to be particularly vulnerable and sensitive to climate 
change [18–22] and also to land cover changes [23,24]. This is the case of the Pyrenees Mountains 
(South of France), which are expected to be severely affected by environmental perturbations during 
the 21st century, mainly with the decrease in water availability [25,26]. 

The karst system is mainly recharged by rainwater, where water seepage is enabled by the 
fractured and karstic nature of the calcareous rock [27]. The karst system includes both the infiltration 
zone (including epikarst) and the saturated zone, and by extension, the hydrological system that 
flows in the fractures and in the conduits formed mainly by the dissolution of carbonate rock [28]. 
Epikarst is the quasi-permanent shallow and discontinuous saturated layer, where the infiltrated 
water dissolves the carbonate mineral and changes the geochemical features of the rock [29]. Indeed, 
the main agent of the dissolution of carbonates is the biogenic CO2, supplied by the organic matter 
mineralization and stored in the soil, a few meters above the epikarst [30]. However, the CO2–H2O–
Ca(1−x)Mg(x)CO3 system is sensitive to environmental changes due to karstic characteristics such as 
high transmissivity (lower residence time), high dissolution kinetics, and low filtering role of the 
infiltration zone [31]. 

Among the parameters that play a role in the dissolution of carbonates, we can highlight 
hydrology [29,32], climate [17,33], land-use/vegetation [34,35], lithology [7,36,37], and human 
activities [38,39]. 

Several studies have shown the strong control that runoff has over carbonate dissolution flow 
[7,40]. Moreover, during the high flow period, the huge and rapid water flow through the karstic 
network could reduce the dissolution due to less water-rock interaction [41] but on the opposite, 
enhance the dissolution by renewal of the solutions in contact with the mineral [42]. Then, it may also 
explain a gradual increase in element concentrations as runoff increases. 

Temperature is another parameter which strongly influences carbonate dissolution. 
Thermodynamically, an increase in temperature leads to a decrease in carbonate solubility [43–45]. 
However, increasing temperatures also enhance biological activity and decomposition of soil organic 
matter, causing an increasing pCO2, carbonic acid, and organic acid contents in the critical zone, 
particularly in epikarsts and caves, accelerating carbonate dissolution [34,46–48]. In addition, based 
on a global database of pure carbonate lithologies, Probst [49], Amiotte-Suchet et al. [7], and 
Gaillardet et al. [50] evidenced a control of temperature over carbonate weathering intensity, with a 
Ca2+ + Mg2+ concentration peak in river water under temperate conditions. 

The CO2 mainly originates from atmospheric and soil sources. Vegetation plays a key role in 
sequestering and storing atmospheric CO2 to be transformed into organic matter [51]. Subsequently, 
the decomposition of organic matter and root respiration lead to the production of CO2 in soils [52]. 
Between these two CO2 sources, the direct input of atmospheric CO2 to the soils is usually low due to 
high pressure of soil CO2 and low pH values (lower than 5.6) of rainwater [53]. The dissolution of 
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CO2, mainly resulting from the oxidation of organic matter, is illustrated by the following chemical 
reactions: CHଶO + Oଶ  ↔  COଶ + HଶO, (1)COଶ + HଶO ↔  HଶCOଷ, (2)HଶCOଷ ↔  Hା + HCOଷି , (3)

Furthermore, in recent years, increases of pCO2 in soils and caves [33,54], total dissolved solids 
(TDS) and alkalinity in rivers have been observed [55–57]. In the meantime, the reduction of annual 
streamflows, particularly in Mediterranean rivers was evidenced [58–60]. These changes suggest the 
intervention of external driving factors such as climate change [61–63] and/or land use change 
[24,38,64,65]. 

Carbonate dissolution can also be carried out by chemical agents other than carbonic acid. 
Anthropic disturbances such as agricultural practices using N-fertilizers [66–68], atmospheric 
deposition from long-distance sources of air pollution [69–72] and acid mine drainage [73,74], are 
potential sources of sulfuric and nitric acids that can add to or substitute carbonic acid in carbonate 
dissolution process. Likewise, there are also natural sources of sulfuric acid from volcanoes and hot 
springs as well as sulfur minerals in soils and sediments [75,76]. Additionally, by enhancing the 
capture of dry deposition, coniferous forests can contribute to the increase in sulfuric acid inputs to 
soils by atmospheric deposition (dry and wet deposition), particularly from throughfalls [77,78] at 
the catchment scale. Unlike carbonate dissolution by carbonic acid that generates two moles of 
bicarbonates consuming one mole of CO2, sulfuric and nitric acids only release one mole of 
bicarbonates, which could escape from the water in the form of gas (CO2 gas), or could enter seepage 
water and dissolves carbonate again (aqueous CO2) [39]. 

In this context, the Baget catchment in the Pyrenees Mountains, was selected as a research area 
to analyze the fluctuations of physico-chemical composition of stream waters over a 40-years period. 
This catchment has been already extensively studied using time series data for a hydrological 
perspective [79–81] and for some chemical parameters until 2005 [82,83]. However, this is the first 
time that all the hydrogeochemical data available between 1978 and 2018 were investigated and the 
pCO2 in stream water was reconstituted at both interannual and seasonal scales. Then, long-term 
trends as well as interannual seasonal variations for all the physico-chemical parameters allow to 
better understand the karst biogeochemical functioning. 

The objectives were: (i) to investigate the variation of discharge, temperature, CO2, SIc (Calcite 
Saturation Index), and major element concentrations in the river water using long-term surveys at 
various time scales (instantaneous, monthly, and annual values); (ii) to depict the impact of global 
changes on carbonate dissolution and hydrochemistry of stream waters; (iii) to elucidate the key 
factors controlling carbonate dissolution (such as temperature, discharge, and vegetation), and the 
respective contributions of water sources, particularly from karst and epikarst; and iv) to understand 
the dynamics of CO2, carbonate dissolution, and stream water chemistry. 

According to described uplines, several hypotheses were set up to explain the observed trends. 
At the year scale, the discharge would cause an increase in carbonate dissolution, but with a dilution 
effect during the highest flow conditions. The increase in air temperature should finally enhance 
indirectly carbonate dissolution due to the rise in organic matter mineralization and production of 
carbonic and organic acids, even if carbonate solubility would decrease with temperature increase 
[82]. Therefore, an increase in global air temperature and change in land use, i.e., from crops or 
grasslands to forest, should increase carbonate dissolution on the long-term. However, other external 
anthropic pressures might add other drivers to the karstic system and change the dynamic of 
carbonate dissolution. 

2. Materials and Methods 

2.1. Site Description 
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The small Baget catchment (BC, 13.25 km2; 42°57’42” N 0°58’30” E; Figure 1) is located in the 
lower part of the Pyrenees Mountains, in the Ariege department, in the Southwest of France. Its 
altitude ranges from 498 to 1417 m.s.l., with a water flow orientation from West to East [84]. Slopes 
are very steep, particularly in the middle part of the basin, where they reach 60% [79]. 

BC drains a karst area, mainly in the calcareous formation of the Jurassic and Lower Cretaceous, 
relatively homogeneous at the outcrop and with a mineralogical composition usually greater than 
98% of calcite. However, they are associated with pyrite, which is sometimes abundant in the area of 
contact with the impermeable formation of black flysch (Figure 1b) [83]. Some schists (with small 
pyrite impurities), minor gypsum rocks and dolomitic rocks were also observed in the BC [85]. 

The catchment is essentially forested. The land cover is dominated by fir-beech forests and it is 
particularly dense on the north-facing slope, whereas, grassland occupies partly the upper part and 
the lower part close to the outlet of the south-facing slope. Although there is an extensive vegetation, 
the soils are generally very thin. The limestones are covered by discontinuous brown soils, sometimes 
with rendzina soils, generally occupying the limestone pavement slits. Podzols are developed on 
detrital formations. The grasslands are located on podzolic soils well exposed to the south near to the 
Lachein stream water and also, in the bottom of the valley, downstream, on the alluvium [83]. BC is 
weakly exposed to local anthropogenic pollution with only few remaining mountain stockbreeding 
on the upper part of the south facing slope. 

 

Figure 1. Location of the Baget karstic catchment with: (a) altitude isolines (modified from Labat et al. 
[80]) and (b) lithology based on main formations (1/50,000) modified from BRGM [86], this study). 
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BC is under the influence of the Atlantic oceanic climate characterized by a clear mountain 
tendency with an average annual air temperature of 12.3 °C, an average annual rainfall close to 1700 
mm and an estimated annual evapotranspiration of 540 mm [79,87,88]. Those values are close to the 
daily average air temperature of 12.0 ± 6.3 °C and higher than the annual average rainfall of 975.5 
mm, registered at the closest Meteo-France meteorological station of St. Girons (43°00’19” N 1°06’25” 
E, elevation 414 m), located 8.3 km downstream from the outlet of BC. The precipitation gradient 
between the two stations is of +138 mm/100 m, which is close to that reported for the Jura Mountains 
[34], but much greater than that mentioned by Joly [89] for the Pyrenees Mountains (>25 mm/100 m). 
Indeed, this gradient depends on factors such as wind direction, relief, distance to the ocean and 
latitude, highly variable in mountainous areas [90]. 

The runoff which drains calcareous lithology can be lost through seepage or in losses of the 
Lachein stream water (e.g., losses of “La Hille” and “La Peyrère”, this last one performing as a spring 
during flood period, Figure 1a), thus feeding the Baget groundwater karstic network. Downstream 
of the Baget valley, the Lachein stream water (usually dried up in summer) connects with the main 
perennial spring of the Baget karst system called “Las Hountas” (Figure 1a) [79]. The high-water flow 
period (from November to April) displays a bimodal rainfall regime with usually a first peak in 
December and a second one in February [79]. Considering the mean altitude, the storage of water in 
the form of snow is low and snowmelt does not result in significant increases in discharge. The 
average annual discharge is 0.48 m3·s−1 with a specific discharge of 36 L·s−1·km−2 [79,91], as measured 
at the outlet station (Baget B1, Figure 1a). 

This experimental catchment belongs to the French Karst Network (SNO Karst, Jourde et al., 
2018) [92] and is one of the observatories of the French Research Infrastructure called OZCAR 
(Observatoire de la Zone Critique: Application et Recherche) [93], which is part of the European 
Research Infrastructure eLTER (Long Term Ecosystem Research in Europe) [94,95]. 

2.2. Sampling and Analytical Methods 

The hydrochemical monitoring station is located at the outlet of the catchment (Baget B1, Figure 
1a). The water level was measured continuously using a mechanical limnigraph (OTT 20 1/5) and a 
float-type water level sensor (OTT Thalimedes) [96]. Discharge is estimated from the rating curve 
calibrated for this gauging station [79]. For water quality purpose, we used, the samples collected 
weekly from 1978 to 2006 by the CNRS “Laboratoire Souterrain de Moulis” [82] and every six months 
from 2007 to 2014 by the Adour-Garonne Water Agency (accessible via the ADES database, BRGM) 
[96]. By 2014, water sampling and hydrochemical parameters analyses were performed by EcoLab 
(Laboratoire Ecologie fonctionnelle et Environnement in Toulouse), fortnightly and more frequently 
during flood events using an automatic sampler. It should be noted that in 1990, a long-term pumping 
test dried the Baget spring (“Las Hountas”), so no data was available for part of this year. 

From 1978 to 2006, pH, total carbonate alkalinity (in mmol·L−1; 0.2 TAC = HCO3−) and total water 
hardness (in mmol·L−1; 0.1 TWH = Ca2+ + Mg2+, R2 = 0.92, N = 541) were measured using a titrimetric 
method. Major ions were analyzed by ion chromatography. 

Since April 2014, pH, pressure (water level), conductivity, water temperature, turbidity, 
dissolved O2, N-NO3−, and Cl− concentrations were registered at a high frequency (every 10 mn) in 
the mid-depth of the water column (at Baget B1) using a multiparameter probe (YSI 6920V2-01, YSI 
Incorporated, Yellow Springs, OH, USA) equipped with different sensors and an atmospheric 
pressure correction. Moreover, from 2017 to present-day, a portable multi-parameter (WTW probe, 
Xylem Analytics Germany Sales GmbH & Co., Weilheim, Germany) was used to measure 
physicochemical parameters of water in the field, including water temperature (WT), pH, and 
electrical conductivity (EC) at the time of sampling. 

Samples were collected in polypropylene plastic bottles of 1 L, then filtered immediately back to 
field in the laboratory using a Millipore 0.22 µm cellulose nitrate membrane. Since 2014, the protocol 
for sample treatment in the laboratory is as follows: firstly, an aliquot of 125 mL was taken to measure 
cation concentrations. This sub-sample was acidified with 3 drops of 16N HNO3 (to prevent 
complexation and precipitation) and stored until the analyze by inductively coupled plasma optical 
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emission spectrometer (ICP-OES; Iris Intrepid II XLD, Thermo Electron, Thermo Fisher Scientific, 
Waltham, MA, USA); secondly, an aliquot of 2 mL was used to analyze major anion concentrations 
(SO42−, NO3−, and Cl−) by ion chromatography (Dionex apparatus ICS 5000+, Thermo Fisher Scientific, 
Waltham, MA, USA); lastly, an aliquot of 20 mL was taken to measure alkalinity concentration using 
standard acid titration method with HCl 0.02N and a Metrohm titrant (716 DMS Titrino, Metrohm, 
Riverview, Forida, USA) within 12 h after sampling. DOC was analyzed on a Shimadzu TOC 5000 
analyzer (Shimadzu Corporation, Kyoto, Japan) using the 680 °C combustion catalytic oxidation 
method and CO2 detection using an infrared gas analyzer (NDIR). All samples were stored in 
darkness at 5 °C before analysis. 

Concerning the quality assurance (QA) and the quality control (QC), the data set is too long to 
have a QA/QC procedure over the whole period from 1978 until 2018. Anyway, concerning the QA, 
the protocols for sampling, filtration, pre-treatment and storage of the stream water before analysis 
were carefully controlled during the whole period. Concerning the QC, all the methods of analysis 
are normalized following French (NF), European (EN), and international (ISO) standards. The 
accuracy of analyses was controlled using blanks and two Certified Reference Materials (ION-96.4 
and ION SUPER 05) depending on the range of ion concentration. The detection limits for major ions 
range between 0.2 and 65 µmol·L−1 according to the elements. 

For each sample analysis, the Net Inorganic Charge Balance (NICB % = 100 × (TZ+ − TZ−)/(TZ+ + 
TZ−)) between the sum of cations (TZ+) and the sum of anions (TZ−) (considered both in meq·L−1) was 
calculated and was inferior to 5% for almost all samples, indicating that there is a good equilibrium 
between cation and anion charges, and consequently that the contribution of organic anions to the 
anionic charge remain negligible. This is confirmed by the low DOC concentrations (0.82 ± 0.79 
mg·L−1, N = 39, from November 2016 to September 2018). 

Furthermore, since several decades, the physico-chemical analysis laboratory of EcoLab 
participates each year to the ICP-Water Intercomparison with the Norwegian Institute for Water 
Research (NIVA), which follows a QA/QC procedure. 

2.3. Data Treatment 

2.3.1. pCO2 and Calcite Saturation Index (SIc) 

The partial pressure of carbon dioxide (pCO2) and calcite saturation index (SIc) were calculated 
using the mass equation. The calculations were computed with PhreeqC Interactive 3.4 software and 
the database “phreeqc.dat” [44], using the analyzed major element concentrations in stream water as 
well as the physicochemical parameters measured in the field during the water sampling. 

In addition, stream water temperature was necessary to calculate pCO2. The air temperature 
available for the full period and the water temperature available from 2014 to 2018 (N = 73) confirmed 
that the water temperature in stream varied very slightly during the year (from 9.5 to 11 °C). It could 
thus be estimated using the air temperature in centigrade degrees (Twater = 0.03 Tair + 9.93, R = 0.6, N = 
59, p-value < 0.0001). 

Due to the absence of concentration data for some major ions (SO42−; Cl−; NO3−, Na+, and K+) 
during certain time slots, pCO2 was also calculated manually, assuming the dissolution of pure calcite 
and using the following chemical reaction [97]: αଵCaCOଷ(ୱ) + αଶHଶO(୪) + αଶCOଶ() ↔  αଵCa(ୟ୯)ଶା + αଵHCOଷ(ୟ୯)ି + αଶHCOଷ(ୟ୯)ି , (4)

The coefficients α1 and α2 had the same value but showed that, when the dissolution of 
carbonates by carbonic acid, one bicarbonate ion came from the mineral dissolution and the other 
one came from the consumption of atmospheric/soil CO2. CaCOଷ(ୱ) ↔ Ca(ୟ୯)ଶା + COଷ(ୟ୯)ଶି  ;  Kୱ = (Caଶା) ∙ (COଷଶି), (5)COଶ() + HଶO(୪) = HଶCOଷ(ୟ୯)  ; Kୌ = (ୌమେయ )(୮େమ) , (6)
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HଶCOଷ(ୟ୯) =  H(ୟ୯)ା + HCOଷ(ୟ୯)ି  ; Kଵ = ൫ୌశ൯∙(ୌେయష)൫ୌమେయ ൯ , (7)

HCOଷ(ୟ୯)ି = H(ୟ୯)ା + COଷ(ୟ୯)ଶି   ; Kଶ = ൫ୌశ൯∙൫େయమష൯൫ୌେయష൯ , (8)

HଶO(୪) = H(ୟ୯)ା + OH(ୟ୯)ି   ; K୵ = (Hା) ∙ (OH ି ), (9)

where the round parenthesis represents the activities of the respective species, and K, the equilibrium 
constants calculated using the temperature dependence of thermodynamic constants defined by 
Plummer and Busenberg [98]. 

Assuming that the dissolution of carbonates took place under open system conditions and in 
equilibrium with regard to calcite, the Ca2+ or pCO2 could be estimated using the following equation: 

(Caଶା) = ቆKଵKୌKୗ4Kଶγଵଶγଶ pCOଶቇଵଷ, (10)

where γ1 and γ2, the ion activity coefficients for single-charge and dual-charge species, respectively. 
These activity coefficients were calculated using the Davies equation [99] with the PhreeqC 
Interactive 3.4 software [44]. 

These pCO2 values calculated using the PhreeqC Interactive 3.4 software and manually 
calculations for the periods 1994–2006 and 2016–2018 confirmed that both results are consistent (R2 = 
1.00). 

Likewise, the calcite saturation indexes were calculated using the thermodynamic constant Ks 
(solubility product of calcite) at given water temperature, as given below by Clark and Fritz [97]: SIc = log൫(Caଶା) ∙ (COଷଶି)൯ /Kୱ), (11)

2.3.2. Statistics 

All calculations were computed on a hydrological year basis (October–September). For 
simplicity, only the second year of each period will be indicated, for example the period from October 
1978 to September 1979 will be shown as the year 1979. The mean concentrations were discharge-
weighted. Statistical data treatments like correlation matrix and principal component analysis (PCA) 
were done using RStudio software (CRAN, the Comprehensive R Archive Network, version 3.5.1, 
RStudio, Inc., Boston, MA, USA). PCA was performed on raw data transformed with log-ratio data 
using the “rgr” package. The detection of the change-points was calculated using the Buishand test 
[100,101]. Due to non-normal distribution of the data: (i) trends were determined using the Mann 
Kendall trend test on linear regression and (ii) the degree of association between two variables was 
evaluated by the Spearman’s correlation coefficient. Plotting for ternary diagram (Piper diagram, 
[102]) was performed using the method developed by Hamilton [103]. 

3. Results 

3.1. Stream Water Physico-Chemical Characteristics 

3.1.1. Hydrochemical Composition of the Baget Stream Water 

The hydrochemical properties are reported in Table 1. All available data from 1978 to 2018 were 
considered in the sub-Sections 3.1.1 and 3.2 whereas the others sub-sections only concerned the 
dataset from the period October 1994 to September 2006, plus October 2016 to September 2018 (N = 
592). This allowed to homogenize the periods of time studied since the parameters had different 
sampling frequencies. The values show averages with a 95% confidence interval (±2σ). 

To ensure the consistency of common parameters, the averages were compared for the two 
studied periods (Table 1). It could be noted that the average and median values for the physico-
chemical parameters were similar, with an average variation always less than 5% for almost all the 
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considered parameters. The exception was mainly for discharge (Q) whose mean value decreased 
from 0.44 to 0.39 m3·s−1 and the calcite saturation index (SIc) which increased from 0.03 to 0.09, 
comparing the whole period (1978–2018) to the 1994–2006 plus 2016–2018 period, respectively. 
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Table 1. Comparison of the main physico-chemical parameter characteristics of the Baget stream 
water for the two periods: 1978–2018 (first number) versus 1994–2006 plus 2016–2018 (second 
number), both periods separated by a slash, respectively. Max., maximum; Min., minimum, Std. Dev., 
standard deviation; CV, coefficient of variation (σ/X)തതത.The units are m3·s−1 (Q, discharge), °C (T°, air 
temperature), µS·cm−1 (Cond, conductivity), meq·L−1 (major elements), mg·L−1 (TDS) and atm (pCO2). 
The mean concentrations are discharge-weighted. SIc is the calcite saturation index. 

Parameter N Max. Min. 
Mean 

(Xഥ) Median Mode 
Std. Dev. 

(σ) CV 

Q 14609/592 10.10/5.41 0.02/0.04 0.44/0.39 0.22/0.20 0.13/0.15 0.67/0.54 1.52/1.40 
Air T° 14604/592 29.5/28.2 −11.1/−5.0 12.0/12.2 11.9/12.0 9.2/8.4 6.33/6.35 0.53/0.52 

pH 1506/592 8.4/8.4 6.5/6.9 7.7/7.7 7.7/7.7 7.6/7.7 0.18/0.18 0.02/0.02 
Cond 637/381 398/398 223/268 306/317 307/316 319/319 24.90/18.97 0.08/0.06 
Ca2+ 1504/592 3.65/3.55 2.40/2.57 2.97/3.03 2.96/3.01 3.00/3.15 0.18/0.17 0.06/0.05 
Mg2+ 1504/592 0.75/0.75 0.23/0.23 0.36/0.37 0.36/0.36 0.34/0.40 0.05/0.06 0.13/0.15 
Na+ 880/592 0.07/0.06 0.03/0.03 0.05/0.05 0.05/0.05 0.05/0.05 0.01/0.00 0.11/0.10 
K+ 880/592 0.19/0.04 0.00/0.00 0.01/0.01 0.01/0.01 0.01/0.01 0.01/0.00 0.57/0.28 

HCO3− 1501/592 4.40/3.66 2.43/2.57 2.90/2.98 2.88/2.96 2.76/2.76 0.22/0.19 0.07/0.06 
SO42− 763/592 0.84/0.78 0.01/0.04 0.35/0.35 0.34/0.34 0.27/0.27 0.13/0.13 0.37/0.36 
Cl− 893/592 0.25/0.13 0.00/0.02 0.05/0.05 0.05/0.05 0.04/0.04 0.01/0.01 0.27/0.23 

NO3− 705/592 0.17/0.17 0.00/0.00 0.03/0.03 0.03/0.03 0.03/0.03 0.02/0.02 0.57/0.56 
TDS 642/592 331.5/327.5 229/229 272.8/273.6 272.0/272.8 264.3/264.3 15.02/14.41 0.06/0.05 

pCO2 1498/592 1 × 10−1.64 

/1 × 10−1.68 
1 × 10−3.23 

/1 × 10−3.23 
1 × 10−2.45 

/1 × 10−2.48 
1 × 10−2.50 

/1 × 10−2.52 
1 × 10−2.44 

/1 × 10−2.50 
0.002/0.001 0.53/0.46 

SIc 1482/592 0.78/0.78 −0.88/0.64 0.03/0.09 0.03/0.07 0.03/0.04 0.18/0.18 6.09/2.12 

As a whole, Q exhibited a high variability (coefficient of variation (σ/Xഥ), CV = 1.52) compared 
to the variability in air temperature (T°, CV = 0.53), sulfate (SO42−, CV = 0.37), partial pressure of CO2 
(pCO2, CV = 0.53), magnesium (Mg2+, CV = 0.13), alkalinity (HCO3−, CV = 0.07), and calcium (Ca2+, CV 
= 0.06). 

Over the whole period, Q and T° values registered daily in BC were in the range of 0.02 to 10.10 
m3·s−1 and −11.1 to 29.5 °C, respectively. Stream water pH averages7.7 ± 0.4 and the conductivity 
varied from 223 to 398 µS·cm−1. 

The total dissolved solid content (TDS = (Ca2+) + (Mg2+) + (Na+) + (K+) + (HCO3−) + (SO42−) + (Cl−) + 
(NO3−) + (H4SiO4)) varies from 229 to 331.5 mg·L−1, with a mean value of 273 ± 30 mg·L−1. The relative 
abundance of each ion or group of ions (ex: monovalent or divalent cations) can be expressed as the 
percentage of the total respective sum of cations or anions in equivalents per liter (Figure S1). 
Whatever the season and the hydrological conditions, the stream water chemistry was dominated by 
calcium and alkalinity (mainly corresponding to bicarbonate), which are controlled by carbonate 
dissolution as follows: Caଵି୶Mg୶COଷ + HଶCOଷ → (1 − x)Caଶା + (x)Mgଶା + HCOଷି + HCOଷି , (12)

Calcium was the most abundant cation with a concentration varying from 2.40 to 3.65 meq·L−1, 
i.e., 80.1%–92.0% of the sum of cations. The second most important one was Mg2+ with a mean value 
of 0.36 ± 0.10 meq·L−1. 

Then, the mean Ca2+/Mg2+ equivalent ratio was 8.4 ± 1.8. This ratio in Baget was higher than in 
the Beipanjiang River (3.6) from the Asian Karts Region [70], in the Herault River (2.5) from southern 
France [104], in the Alpine region (3.7 ± 2.8) [105], in the Ibrahim River–Lebanon (5.8) [106], and 
exceeded the average value of the world’s carbonate basins (4.4) [4]. Nevertheless, it was lower than 
in the springs of the karstic area of the Jura Mountains (22) in France [34] or in the La Sigouste River 
(54 ± 39) from the French Southern Alps [107]. In any case, it was rather consistent with the mean 
value proposed by Meybeck [4] for the French monolithologic basins draining carbonate rocks (12). 
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Likewise, HCO3− was the most abundant anion (75.5%–99.6% of total anions) with a mean 
concentration of 2.90 ± 0.42 meq·L−1, while SO42− varies from 0.01 to 0.84 meq·L−1. In addition, the 
equivalent ratio of Ca2+ + Mg2+ to HCO3− + SO42− was close to a constant value of 1 (1.02 ± 0.06 N = 734). 
The SO42−/HCO3− equivalent ratio was more variable and ranged from 0 to 0.29 and exhibits a mean 
value of 0.12 ± 0.10 (N = 735), indicating during some hydroclimatic conditions that the stream water 
was slightly enriched in SO42−. 

Concentrations of sodium and potassium were much lower, with mean values of 0.05 ± 0.01 and 
0.01 ± 0.00 meq·L−1, respectively. Chloride and nitrate ions exhibited also low concentrations, with 
mean values of 0.05 ± 0.01 and 0.03 ± 0.02 meq·L−1, respectively. The respective contribution of these 
strong acid anions did not exceed 6.5% of the total anions. 

The pCO2 in stream water, which was mainly a function of organic matter degradation and soil 
respiration, varied from 1 × 10−3.23 to 1 × 10−1.64 atm with a mean of 1 × 10−2.45 atm. The highest pCO2 

values are during low water flow period from June to October. Stream water pCO2 was always higher 
than the atmospheric pCO2 (1 × 10−3.5). SIc varied in the range of –0.88 to 0.78, and 57% of the samples 
had SIc > 0. Moreover, SIc in BC was lower in the dry season than in the wet season. 

3.1.2. Multivariate Statistical Analysis 

The principal component analysis (PCA, Figure 2) sets the studied variables according to factors 
explaining their relative variations [108]. The correlation between the variable and the factor was 
indicated by a factor loading varying from 1 (strong positive correlation) to −1 (strong negative 
correlation) [109]. In order to improve the representation of the variables in the PCA, it was decided 
to consider only 11 variables, the least ones autocorrelated and representative of the hydrochemical 
processes in the BC. Thus, for example, neither pH nor SIc were considered in the PCA, both strongly 
correlated with pCO2 (see Equations 10 and 11), or the TDS which was significantly correlated with 
Ca2+ and HCO3−, these two ions representing more of the 75% of TDS. The results of PCA are 
presented in Figure 2, Table S1, and Table S2. 

The percentage of variance in the data explained by the first four axes was 83.6%. The first axis 
(Table S1), responsible for 42.6% of the variance, contrasted Ca2+ (87% of contribution to this axis), air 
temperature (79%), HCO3− (74%), Na+ (68%), Mg2+ (60%), and SO42− (30%) on the upper positive side 
of the PCA biplot, with NO3− (40%) and discharge Q (17%) positioned in the lower negative side. 

The second axis (Table S1 and Table S2), which extracted 18.9% of the variance, contrasted Q 
(76%) and HCO3− (14%) in the right-hand side with SO42− (53%), NO3− (37%), and Mg2+ (16%) 
positioned in the left-hand side. This distribution is reinforced by the positive correlation between Q 
and HCO3− and the negative one between SO42− and Mg2+ (Table S2), suggesting that during low-water 
level period, SO42− and Mg2+ concentrations increased, while HCO3− decreased. Also, Ca2+ with HCO3− 
on one side and Mg2+ with SO42− on the other side, appeared in opposite position relatively to Axis 2 
in the PCA plot (Figure 2a, Table S1). 

  
 

(a) (b) 



Water 2020, 12, 1227 11 of 29 

 

Figure 2. Principal component analysis (PCA) of the main hydrologic and physico-chemical 
parameters measured in the Baget stream waters for the period 1994–2006 plus 2016–2018 of common 
measurements (N = 594): (a) components 1 vs. 2 and (b) components 3 vs. 4. 

The third axis (Figure 2b and Table S1) accounted for 11.2% of the variance (Table S2). It opposed 
pCO2 (55%) and K+ (34%) with NO3− (16%), meanwhile the fourth axis, contributing 10.9% to the 
variance, contrasted K+ (47%) and Cl− (33%) with pCO2 (24%). Besides, Cl− exhibited a positive 
correlation with K+ and NO3− (Table S2). 

3.1.3. Alkalinity Decrease (∆Alk) 

When the main lithology of a catchment is composed of carbonate rocks, the natural dissolution 
of carbonate by carbonic acid (see Equation 4) led to an equivalent ratio Ca2+ + Mg2+/HCO3− of 1 since 
for two equivalent of calcium, two equivalents of bicarbonate were released, one coming from the 
soil CO2 and the other one from the calcite. However, if the carbonate is dissolved by strong acids 
such as H2SO4 (see Equation 13) or HNO3 (see Equation 14), all the bicarbonates released in solution 
originated from the CO3 of the minerals as follows: 2CaCOଷ(ୱ) + HଶSOସ ↔  2Ca(ୟ୯)ଶା + 2HCOଷ(ୟ୯)ି + SOସ(ୟ୯)ଶି , (13)CaCOଷ(ୱ) + HNOଷ ↔  Ca(ୟ୯)ଶା + HCOଷ(ୟ୯)ି + NOଷ(ୟ୯)ି , (14)

These strong acids can be supplied by atmospheric acid deposition over the catchment or by 
pyrite oxidation (Equation 15) if there are any pyrite minerals in the geological formation: FeSଶ(ୱ) + 15/4Oଶ()  + 7/2HଶO ↔  Fe(OH)ଷ(ୱ) + 2SOସ(ୟ୯)ଶି +  4H(ୟ୯)ା , (15) 

Then, in calcareous environments, the sulfuric acid released can be rapidly neutralized by 
carbonate dissolution [110], following the Equation 13. In that case, the equivalent ratio Ca2+ + 
Mg2+/HCO3− increases to 2 if the carbonate is only dissolved by the sulfuric acid. 

Nevertheless, in the Baget catchment, there is a mixing of carbonate dissolution by carbonic acid 
and by strong acids like sulfuric acid, releasing sulfates into solution. Finally, the sum Ca2+ + Mg2+ is 
generally equilibrated by the sum HCO3− + SO42− and thus the equivalent ratio Ca2+ + Mg2+/HCO3− + 
SO42− tends to 1. 

Consequently, strong acid inputs also result in a decrease of the stream water alkalinity, mainly 
composed by HCO3− [72,111]. This acidification process due to strong acids can be estimated by the 
decrease of alkalinity. Indeed, the amount of Ca2+ + Mg2+ released by natural dissolution of carbonates 
by carbonic acid produces a higher alkalinity than that observed (Equation 4). The decrease of 
alkalinity (ΔAlk, expressed in equivalent percentage), can be thus calculated as follows for carbonated 
systems [67]: Δ୪୩ (%) =  (Caଶା + Mgଶା) − HCOଷି(Caଶା + Mgଶା)  ×  100 (16)

As seen in Figure 3a, there is a significant positive relationship between Ca2+ + Mg2+ and HCO3− 
in the stream waters of BC but the slope (equivalent ratio) was slightly greater than 1 (Figure 3a), and 
the cluster of points is above the theoretical line of carbonate dissolution by carbonic acid. 

Then, the lag observed in Figure 3a could be both attributed to a relative decrease of alkalinity 
and to a relative increase of Ca2+ + Mg2+ concentration, from theoretical alkalinity and Ca2+ + Mg2+ 
values corresponding to Equation 4 (line 1/1 in Figure 3a). Nevertheless, the lag observed in Figure 
3a could be also attributed to gypsum dissolution as follows: CaSOସ(ୱ) + 2HଶO ↔  Ca(ୟ୯)ଶା + SOସ(ୟ୯)ଶି + 2HଶO (17) 

In order to detect a seasonal and hydrological influence, instantaneous values were gathered 
into three groups: from July to October (predominantly warm and dry conditions), from November 
to February (winter time), and from Mars to June (mainly cold and wet conditions). The summer-
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autumn group exhibited the highest ratios with a mean slope of 1.18 for the regression (dashed line 
on Figure 3a; p ≤ 0.001; n = 204). 

The alkalinity decrease due to strong acids and to gypsum dissolution was correlated with the 
SO42− to Ca2+ + Mg2+ equivalent ratio, with an average ∆Alk of 15.2 ± 7.5% which corresponds to an 
average ratio of 0.13 ± 0.07 (Figure 3b). Thus, as this ratio increased, the ∆Alk also increased, reaching 
24% when the ratio was close to 0.2. These highest ∆Alk values were associated with the highest 
equivalent ratios between Ca2+ + Mg2+ and HCO3− (Figure 3a), also displayed mainly between July 
and October (red points). On the opposite, the lowest ∆Alk values were observed during the winter 
(blue points) and spring (green points) periods. 

 

Figure 3. Relationship between (a) (Ca2+ + Mg2+) vs. (HCO3−) and (b) alkalinity decrease (∆Alk) vs. 
(SO42−)/(Ca2+ + Mg2+) equivalent ratio. Regression equations were as follows: (a) the straight line: y = 
1.14x, R2 = 0.98 (p ≤ 0.001; n = 592) concern all data, the dashed line: y = 1.18x, R2 = 1.00 (p ≤ 0.001; n = 
204) concern data from July to October, the theoretical lines 2:1 and 1:1 (corresponding to expected 
(Ca2+ + Mg2+)/(HCO3−) equivalent ratio according to Equations (12)–(14) were indicated; (b) the straight 
line: y = 113.8x, R2 = 0.95 (p ≤ 0.001 n = 592) represent the linear regression for all data. The light blue 
circles represent flows less than 0.1 m3·s−1 and the first floods of the hydrological year that were 
delayed in the period between November and December. 

3.2. Long Term Trends in Stream Water Chemistry: Instantaneous Values and Mean Annual Data 

Long-term trends of the dissolved elements at the outlet of BC for both instantaneous (Figure 4) 
and mean annual values (Figure 5) were considered to elucidate their behavior over time and their 
control by environmental factors. 

Over the whole 40 years, the air temperature, Ca2+ + Mg2+ and HCO3− trends slightly increased, 
meanwhile the discharge and the pCO2 trends are not significant (Table S3). The moving averages, 
which allow to smooth the seasonal variations [112], exhibit the same trends. The two statistical tests 
applied on these trends (Mann Kendall trend test and linear regression of instantaneous values) were 
only significant (p < 0.01) for temperature, Ca2+ + Mg2+ and HCO3− (Table S4). 
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Figure 4. Long-term variations of instantaneous values for (Ca2+ + Mg2+), HCO3−, and SO42− 
concentrations (meq·L−1), pCO2 (1 × 10−2 atm), air temperature (°C), and log of discharge (m3·s−1) for 
the Lachein stream water in the Baget catchment over the period 1978–2018 (data from Binet et al. [82] 
until 2006 for (Ca2+ + Mg2+), HCO3−, and SO42−, and this study for the rest). Dotted lines represent the 
regression lines of the long-term trends. For details of linear regressions, Mann Kendall trend tests 
and 5-year annual moving average are reported in Tables S3 and S4. 
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Figure 5. Deviation (in %, 100 × (yi−ӯ)/ӯ) of the mean annual values from the mean interannual values 
for (Ca2+ + Mg2+), bicarbonate, and sulfate concentrations (meq·L−1), pCO2 (atm), discharge (m3·s−1), 
and air temperature (°C). The mean concentrations are discharge-weighted. For more details see Table 
S5. 

During the period 1978–2006, similar increasing trends were observed for air temperature, Ca2+ 
+ Mg2+ and HCO3−. On the opposite, discharge and SO42− concentrations decreased (Table S3). 
Similarly, as for the longest time period, these trends were only significant (p < 0.01) for temperature, 
discharge, Ca2+ + Mg2+, and HCO3− (Table S4). 

The Buishand test performed on instantaneous values evidenced the common ruptures in the 
time series (Table S4). Concerning Ca2+ + Mg2+, a breaking point was observed in September 1988, just 
following a breaking point for discharge in July 1988, at the beginning of the driest period of the 
whole series: 1988–1989 (0.22 m3·s−1, deficit of 49% compared to the inter-annual average) and 1989–
1990 (0.24 m3·s−1, deficit of 45% compared to the inter-annual average). Regarding HCO3−, the 
breaking point was in October 1991 and occurred six months after the breaking point of pCO2 in the 
same year. All these breakpoints are in the period of the pumping test carried out in 1990. 

Looking at the mean annual values over the study period, as shown by the deviation to the 
interannual mean (Figure 5), the air temperature showed an increasing trend with the lower values 
at the beginning of the survey period (1978–1981, 1983–1986, and 1990–1993), while the highest 
temperatures were registered at the middle and end of the period (1989–1990, 2002–2003, and 2014–
2018). Furthermore, the discharge displayed a succession of dry periods (1988–1990, 1997–1998, 2005–
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2006, and 2016–2017) with a mean discharge of 0.25 m3·s−1, deficit of 43% compared to the inter-annual 
average) and humid ones (1980–1981, 1993–1994, 2012–2014, and 2017–2018) with a mean discharge 
of 0.67 m3·s−1, increase of 52% compared to the inter-annual average). 

Additionally, the three strongest flood events over the whole period were recorded (in 
decreasing order of mean daily discharge) in October 1993 (10.10 m3·s−1), February 2015 (8.94 m3·s−1) 
and May 2002 (8.54 m3·s−1). Regarding the temperature, the highest daily air temperature was 
observed in August 2003 (29.5 °C). Furthermore, even if there is no clear relationship between pCO2, 
discharge and temperature, pCO2 showed the highest values during humid periods with low 
temperature (1990–1994), the highest one being in October 1991 (1 × 10−1.64 atm). 

3.3. Seasonal Patterns Based on Long Term Data Series in Stream Water Chemistry 

The seasonal variations of discharge, temperature, pCO2 and the dynamics of ion concentrations 
throughout the year were assessed in Figure 6 using the mean monthly values calculated over the 
whole period 1994–2006 plus 2016–2018. 

 

Figure 6. Fluctuation of the mean monthly deviation (in %, 100 × (yi−ӯ)/ӯ) from the mean interannual 
monthly values of the different hydrochemical parameters for the period 1994–2006 plus 2016–2018. 
The mean concentrations are discharge-weighted. For more details see Table S6. 

The discharge and air temperature exhibited seasonal patterns which are characteristic of the 
Pyrenees Mountains [88,113]. The fluctuations of mean monthly discharge deviation from the 
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interannual monthly average showed two high flow level periods: the first and highest one from 
December to February in winter (0.66 m3·s−1, 5.0 °C) and a second and lower one between March and 
May in spring (0.54 m3·s−1, 11.3 °C). On the opposite side, the lowest water flow period was from June 
to October during summer (0.17 m3·s−1, 19.3 °C). The air temperature fluctuations presented an exact 
inverse pattern to discharge (Figure 6a). 

Moreover, pCO2 increased in summer, with the highest average peak in August (1 × 10−2.42 atm) 
and it began to decrease slowly in autumn reaching its minimum average peak in March (1 × 10−2.64 
atm). Inversely, spring waters were in equilibrium or undersaturated with respect to calcite at the 
end of summer and oversaturated with respect to calcite the rest of the year with the highest average 
peak in March (Figure 6b), corresponding to the lowest mean pCO2. 

Regarding major elements, K+ and Cl− concentrations were higher during the rainy period in 
winter and decreased as summer approaches (Figure 6d,f, respectively). Conversely, NO3− and SO42− 
showed a different pattern with low concentrations during both high flow periods and an 
accentuated increase in summer especially for SO42− (Figure 6e,f). 

In addition, (Ca2+ + Mg2+), HCO3−, and Na+ varied slightly during the year (Figure 6c–e, 
respectively). In fact, (Ca2+ + Mg2+) and HCO3− exhibited the maximum concentrations at the end of 
autumn (October and November), meanwhile, the lowest concentrations occurred in spring for (Ca2+ 
+ Mg2+) and in summer for HCO3−. 

4. Discussion 

4.1. Natural vs. Anthropogenic Sources of Elements 

To elucidate the export dynamics of major ions, we analyzed in detail their origin and each of 
the factors that could influence the export patterns of the major elements in BC. 

The dissolved elements in stream water result of the interaction between the anthropogenic 
activities, the atmospheric deposition, the biosphere, the soils and the chemical weathering of rocks 
and sediments [114]. 

The natural weathering process due to the reaction of the carbonic acid on minerals, provides 
dissolved elements such as Ca2+, Mg2+, Na+, K+, HCO3−, and SO42−. These elements originate mainly 
from the dissolution of silicates, carbonates, and sometimes from evaporite dissolution or from the 
pyrite oxidation [115–118]. This is evidenced in the BC stream waters by the distribution of these 
dissolved elements along the Factor 1 in the PCA (Figure 2a). According to the major lithology of BC 
(Figure 1), the main source of Ca2+ and HCO3− is the calcite dissolution (Equation 2), these two 
dominant ions (Figure S1) being strongly positively correlated (Figure 2a, Table S1). Dolomite and 
magnesian calcite dissolutions are part of the origin of Mg2+ [83], however a positive correlation 
linked Mg2+ and SO42− (Table S1 and Figure 2). This relationship is related to their higher relative 
contribution for both elements during the summer period (Figure 6c,e), but only the first one would 
come from carbonates (Figure 1). 

Indeed, sulfate in stream water may have several origins. According to the different lithologies 
in the basin, two minerals can be sources of sulfate. The first one is gypsum (CaSO4), which 
dissolution produces Ca2+ and Mg2+, respectively, but does not produce HCO3−. A gypsum origin 
must be taken into account since although the gypsum outcrop is only about 0.2% [83,85], its 
dissolution remains still possible due to its very high solubility, even after the calcite and dolomite 
reach saturation [27]. The second mineral is pyrite (FeS2), whose oxidation produces sulfuric acid (see 
Equation 15). The pyrite presence in limestones and schists is confirmed by Bakalowicz [83] and 
Debroas [85]. Many authors have mentioned that sulfuric acid can substitute carbonic acid in the 
dissolution of carbonates [70,76,107,119]. This substitution can be proposed as a hypothesis because 
of the relative decrease in HCO3− during summer whereas the SO42− concentration increases during 
low water period (Figure 6e) as illustrated also by the PCA factor 2 (Figure 2). However, one must 
also keep in mind that another hypothesis can be put forward: the higher relative contribution of 
enriched-sulfur sources at the outlet during the summer period compared to high water conditions. 
This might also explain this relative balance between HCO3− and SO42− (see Section 4.2). 
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Indeed, the influence of sulfuric acid on the dissolution of carbonate could be demonstrated by 
the molar ratio Ca2+ + Mg2+ over HCO3− slightly greater than 0.5 (Figure 3a). It indicates that: (1) some 
Ca2+ + Mg2+ comes from the gypsum dissolution, but also (2) some carbonate dissolution could be 
induced by sulfuric acid. Therefore, because both sulfuric and carbonic acids are weathering actors 
in BC, the new weathering equation would be as follows [39]: (α + 2β)Caଵି୶Mg୶COଷ + αHଶCOଷ + βHଶSOସ→  (1 − x)(α + 2β)Caଶା + (x)(α + 2β)Mgଶା + βSOସଶି + (2α + 2β)HCOଷି  

(18)

This equation is under alkaline conditions and it is pH-dependent process [120]. Also, when 
bicarbonate ions released will be exported downstream, a significant amount could be transformed 
to dissolved CO2 if the pH of stream waters decreases downstream [121]. 

The influence of sulfuric acid on carbonate dissolution and the gypsum dissolution are both 
supported by the significant positive correlation between the alkalinity decrease and the relative 
sulfate content in the Baget stream water (Figure 3b). Nevertheless, during the low water period 
(Figure 7a,b and Figure 8a), the influence of sulfuric acid on carbonate dissolution is consistent with: 
(i) the increase of sulfate and the slightly lower pH values in the stream water and (ii) the opposite 
ratio Mg2+/Ca2+ pattern observed between HCO3− and SO42− indicating an enhanced dolomite 
dissolution, which is less soluble than calcite. Moreover, the increase of carbonate dissolution by 
sulfuric acid during summer causes an undersaturation of stream waters regarding calcite (Figure 
8b). 

 

Figure 7. Relationship between the equivalent ratio of Mg2+/Ca2+ and the concentration of: (a) HCO3− 
and (b) SO42− in stream-water. Regression lines represent the equations for the summer period (red 
points); (a): y = −0.02x + 0.19, R2 = 0.08 (p ≤ 0.001; n = 204) and (b): y = 0.04x + 0.11, R2 = 0.12 (p ≤ 0.001; n 
= 204). The light blue circles represent flows less than 0.1 m3·s−1 and the first floods of the hydrological 
year that were delayed in the period between November and December. 
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Figure 8. Relationships between interannual mean monthly values of different hydroclimatic and 
physico-chemical parameters in the Baget stream water for the period 1994–2006 plus 2016–2018: (Ca2+ 
+ Mg2+)/HCO3− ratio versus SO42−/HCO3− ratio (a), SIc, Ca2+ + Mg2+and HCO3− vs. pCO2 (respectively (b), 
(c) and (d)), pCO2 versus discharge (e) and air temperature (f). For more details see Table S6. 

Finally, recent results [122] on spatial isotopic analysis of δଷସSୗర  carried out on spring and 
stream waters during summer 2019 based on the lithology of their sub-catchments, give arguments 
for the major origin of sulfates in stream waters. The presence of sulfate released by pyrite oxidation 
was detected mainly in waters draining the black flysch (δଷସSୗర = −8.1‰) and the sulfate from 
gypsum dissolution in waters draining the evaporite clays (δଷସSୗర = 13.3‰). However, the δଷସSୗర 
isotopic signature of the riverine sulfates (δଷସSୗర = 11.3‰) at the outlet of BC was close to the 
gypsum signature, showing that sulfate at BC outlet would be mainly supplied by gypsum 
dissolution [122], even if the contribution of sulfuric acid to carbonate dissolution is higher during 
the summer period. 

Atmospheric deposition is also a potential source of sulfate. The δଷସSୗర  in precipitation is 
unknown in BC but Puig et al. [123] reported values between +3.3‰ and +0.2‰ for Vallcebre 
(Pyrenees) with a potential atmospheric deposition regional background of 7.2‰, and Probst A. and 
Fritz B. (unpublished data, 1994) reported values between +5.2‰ and +1.8‰ for the Strengbach 
catchment (Vosges). These data do not allow to discriminate the atmospheric contribution of sulfates 
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for the BC stream waters. However, despite the BC remote position, Binet et al. [82] proposed that a 
non-negligible part of sulfate would be deposited as dry deposition, particularly by the early sixties. 
Indeed, some French unpolluted catchments also exhibit high sulfate concentrations [36]. These 
catchments, which are covered by coniferous forests, were probably also affected by enhanced 
sulfuric acid inputs due to atmospheric pollution, particularly captured as dry deposits, as already 
shown for example by Probst et al. [78] and Pierret et al. [124] for the coniferous Strengbach catchment 
in the Vosges Mountains (France). 

After a significant increase until the 1980s, like in other regions in the northern hemisphere [125], 
acid atmospheric deposition was reduced by half from 1980 to 2005, and has probably decreased at 
the Baget site like in other sites in France located in remote areas [126]. This might explain the general 
decreasing trend observed in stream water (SO42− (meq·L−1) = −6 × 10−6 (date) + 0.6; n = 763; p < 0.001 
from 1982 to 2018, Figure 4 and Table S3). This trend is very consistent (similar slope) with that 
observed in the Strengbach stream, which is strongly linked to the decreasing atmospheric sulfates 
input by precipitation [127]. 

Even if the atmospheric contribution to riverine sulfate in BC might be lower than the lithological 
contributions, the long-term influence on carbonate dissolution and CO2 consumption, has been 
proved to be non-neglectable at least during the last decades (16%–25% of the total Ca2+ + Mg2+ 
concentration could have been due to an increase of carbonate dissolution by acid deposition [82]). 
In addition, sulfuric acid atmospheric deposition decreases during these last decades would have led 
to stream water Ca2+ + Mg2+ decrease contrary to what happens, indicating that other processes are 
involved such as indirect effect of temperature increase or land use change (see sub-Section 4.2). 

In the BC, chloride mainly originates from rainfall because there is no anthropogenic activities 
(such as agriculture) which could supply chloride and there is no evaporitic formation containing 
halite or sylvite (Figure 1b) [36,128]. This is supported in the PCA (Figure 2b), where this conservative 
anion is opposed to pCO2 and Cl− concentration increasing when pCO2 decreases during the rainy 
periods. The positive correlation between K+ and Cl− (Figure 2a, Table S1), and their joined substantial 
increase during the rainy season in winter, argue for an atmospheric origin of the two elements, and 
possibly a soil contribution for K+ since it is a largely recycled element not used by vegetation during 
winter time (Figure 6d,f). Furthermore, Cl− and NO3− increase in autumn with the first flood events 
at the beginning of the hydrological year. These high concentrations of Cl− and NO3−, with peaks in 
October and November, would be due to the onset of rainfall and the leaching of the fir–beech forest 
or epikarst (see Section 4.3, for NO3−), respectively (Figure 6f) [36]. 

4.2. Role of Discharge, Temperature and Vegetation on Stream Water Composition and Trends 

The hydrological cycle plays a major role in controlling the carbon dynamics in the karst critical 
zone [129]. The stream discharge, which shows the highest variability during the year, is a key factor 
in relation to mineral dissolution processes (Equation 4). Its primary control exerting over fluxes of 
dissolved elements has long been demonstrated [7,34,37,56,130,131]. 

However, due to dilution processes, discharge also contributes to concentration decrease. This 
is mainly due to the input of rainwater and surface runoff, which are less concentrated than 
groundwater flow [132–134]. This could be illustrated by the decrease in both pCO2 and ions loads 
due to high discharge during winter and spring in BC (Figure 8c–e). 

In addition, it was observed that the decrease in discharge would lead to an increase in Ca2+ and 
HCO3− in BC (Figure 6a,c,e). A similar effect was observed on the Houzhai catchment, southwestern 
China, where a decrease of rainfall between 2007 and 2013 led to an annual mean increase of dissolved 
element concentrations in stream water [53,129]. 

Moreover, in BC, during the low water flow period in summer, some tributaries dry out 
completely, causing particular areas to increase their relative contribution of dissolved elements to 
the waterbody. An evidence of this process can be supported by the contrast between discharge and 
Mg2+ and SO42− on factor 2 in PCA (Figure 2a) and the significant relative increase of SO42− in summer 
(Figure 6e). As evoked before, the change in the relative contribution of water sources can explain the 
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variation of around 10% in Mg2+ (coming from dolomitic lithology) and of around 20% in SO42− 
(coming from pyritic lithology) in the piper diagram (Figure S1). 

In addition to discharge, the temperature is another factor of similar importance, but with an 
opposite tendency (Figure 2 and 6a, Table S1). This antagonism related to the climate characteristics 
of the Pyrenees Mountains (high water flow with lower temperature in winter and early spring, and 
low water flow with higher temperature during summer and early autumn). It is also supported by 
the negative relationship between temperature and both Cl− and K+ (Figure 2), which are rainfall or 
vegetation dependent elements. 

Indeed, temperature is an important catalytic agent in the dissolution reactions of minerals. 
However, carbonate dissolution was shown as an exception. The increase in temperature contributes 
to a decrease in the dissolution because the solubility of calcite increases when temperature decreases 
[12,98]. In BC, this is opposite to the observed long-term trend patterns of increasing temperature and 
Ca2+ + Mg2+ and HCO3− (Figure 4), indicating the influence of other key factors. Indeed, air 
temperature is considered as the main factor related to seasonal changes in soil pCO2 as demonstrated 
by the nice anti-clockwise hysteresis observed in Figure 8f. In summer, low soil moisture could 
enhance the diffusion of biogenic CO2 to the atmosphere and could also limit the growth rate of plants 
by decreasing their role in the soil [135]. Despite these processes, Zhao et al. [39] showed that the 
increase in temperature not only improves pCO2 derived from root respiration, but also stimulates 
the decomposition of organic matter in the soil. Therefore, the increase in temperature would rise the 
generation of biogenic CO2, which can enhance the dissolution of carbonates. The factor 1 in PCA 
(Figure 2a) shows this influence, in which the temperature is resembled with SO42− but also with Ca2+ 
and HCO3−. Additional evidence is shown with the positive relationship between Ca2+ + Mg2+ and 
HCO3− with pCO2 (Figure 8c,d), denoting that a higher pCO2 level in water promotes higher carbonate 
dissolution rates. Figure 8f also shows a net pCO2 decrease from end-of-summer to winter, probably 
due to the increase in water flow level and to the decrease of temperature [136,137]. But outside the 
dilution effect during the high flow period, the lower content of bicarbonate could be attributed to 
the consumption of DIC by secondary formation of CaCO3 and also to losses by CO2 degassing into 
the atmosphere (inverse reaction of Equation 4). This hypothesis is supported by a higher SIc and a 
lower pCO2 during high flow conditions (Figure 8b) [138]. The lowest pCO2 values could be also 
related to a lower residence time during the spring period. After this period, stream water pCO2 
increases again with temperature increase until August. Previous studies showed similar behavior at 
stream water BC: pCO2 was 1 × 10−1.9 atm in summer and 1 × 10−2.6 atm in winter [83]. 

At the annual and inter-annual scale, it is difficult at this stage (more data in Ulloa-Cedamanos 
PhD in progress) to provide complete evidence that the trends observed for Ca2+ and HCO3− are 
mostly related to climate change or land-use change (Figure 5). The observed significant increasing 
trends over time of Ca2+ + Mg2+ and HCO3− (Figure 4) could be explained by the temperature increase 
(p < 0.01) as described above and the discharge decrease (p < 0.01 from 1978 to 2006). However, 
surprisingly, under usual hydroclimatic conditions without extreme events, there is no relationship 
between pCO2 level and Ca2+ + Mg2+ and bicarbonates (Figure 5). The pCO2 peaks observed in the 
early 1990s could be due to a side effect of the long-term pumping test of 1990 (Figures 4 and 5). At 
this period, the decrease of the discharge corresponds to a pH decrease. This could be interpreted as: 
(1) a decrease of the relative contribution of waters draining carbonates and (2) a relative increase of 
the contribution of waters draining lithological formations containing pyrites. This pH decreases of 
the water would have caused the transformation of bicarbonate ions into dissolved CO2 (Equation 
19). In fact, Mangin [79] has shown that a very severe low water flow conditions can impact the 
hydrological functioning of a karst system for a long period (at least 5 years in the case of Baget). 

At the seasonal scale, most of stream waters in BC had SIc above 0 (Figure 8b), indicating that 
Equation 4 would occur in the opposite direction in response to calcite oversaturation, allowing 
calcite precipitation and CO2 degassing to the atmosphere. Indeed, it has been shown by several 
studies [38,53,139] based on a theoretical diffusion model of CO2 fluxes between river waters and 
atmosphere, that CO2 evasion is important in the riverine carbon cycle. Conversely, August is the 
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only month showing an undersaturation with regard to calcite and holding the highest pCO2. In fact, 
the pCO2 increase leads to the increase in calcite dissolution needed to reach the equilibrium. 

Additionally, pCO2 of stream water in winter and spring tends towards low values but 
remaining always greater than the atmospheric pCO2 (>1 × 10−3.5 atm). This shows that the direct 
atmospheric CO2 contribution to DIC can be ignored in BC. At the same time, this could be a clue 
showing that groundwater stored near the surface in the epikarst could be in relation to a gas phase 
permanently enriched with the soil pCO2 [28]. Therefore, the role of epikarst on the dynamics of 
carbonate dissolution is important to consider. 

4.3. Respective Control of Karst and Epikarst on Stream Water Chemical Composition and Trends 

The epikarst drives rainwater into a network of drainage pathways [140,141]. During the rainy 
season, a part of rainwater which recharges the karst aquifer is partly stored in the epikarst causing 
three different processes: (i) evaporation processes of a large fraction (with concentration of dissolved 
salts), (ii) slow infiltration through the fine cracks and pores, and (iii) delayed infiltration during the 
heavy rains recharging the epikarst (“piston effect”) [28,142,143]. These processes can be observed 
directly and indirectly in BC. For example, all dissolved elements, even SO42−, would be concentrated 
in the epikarst during summer, a period of intense mineralization in the soils. Later, all these major 
elements subjected to a delayed infiltration by storage near the surface, are released with the first 
heavy rainfalls in autumn, in particular NO3− (Figure 6f and Figure 8c,d). This “piston effect” may be 
displayed by the positive correlation between dissolved elements coming from the dissolution of 
carbonates, mainly calcite (Ca2+ and HCO3−) and those coming from rainwater or vegetation interface 
recycling (Cl− and K+) (Figure 2, Table S1). 

The decrease of sulfate concentrations observed in autumn with the inputs of the first rainfalls, 
illustrate the contribution of water draining lithological areas less concentrated in sulfate (see 
November position on Figure 8a). Subsequently, since the pre-stored water in the epikarst has been 
released in winter, the ions exhibiting the greatest increase are those mainly originating from rainfall 
(i.e., Cl−), or less recycled by the vegetation due to the dormant period (i.e., K+) (Figure 6f,d, 
respectively). Lastly, during the spring, part of rainwater incoming will be used to recharge the 
epikarst [79] and then, during summer, the epikarst water is progressively mineralized. 

The epikarst also appears as a reservoir with higher pCO2 values than those measured in the 
surrounding soils and caves, due to an active exchange between the sub-surface flow and deep flow 
[53], and to a CO2 accumulation effect [47,144]. Therefore, during the temperature conditions in 
summer, carbonate dissolution is enhanced by high concentrations of soil CO2. Then, Ca2+ and HCO3− 
concentrations increase in epikarst aquifers. Afterwards, large amounts of Ca2+ + Mg2+ and HCO3− can 
be released during the epikarst drainage in autumn (Figure 8b,c, respectively). Also, the higher 
exchange between epikarst zone and the atmosphere can be evaluated by the pCO2 decrease and the 
calcite oversaturation (SIc > 0) during the epikarst drainage (Figure 8b). 

Lastly, the rise in ion concentrations observed in stream water during autumn with the first 
stormflow events occurring after the strong summer evaporation period, is supposed to come from 
soil horizons and epikarst drainage. This “flushing effect” was evidenced by Walling and Foster [145] 
and later on by several authors on catchment draining various lithologies and under various climate 
conditions: on silicate basins such as the Mont-Lozère, the Strengbach and Ringelbach [72,111], the 
silicate-rich Chari–Logone River catchment in Chad [146], the Vantaa River boreal catchment in 
southern Finland [147], the Heidingzi agricultural catchment in China [137], and also on calcareous 
basins such as the Oka River forested catchment in Spain [148], the Middle Bussento Karst System in 
Italy [149], and the Chenqi agricultural karstic catchment [150]. 

5. Conclusions 

This study investigated the response of a small, remote, and forested karst catchment to the 
impact of inter-annual and seasonal changes on stream water hydrochemistry using a 40-year period 
survey, through instantaneous, monthly, and annual data series. 
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Over the long-term, the significant rising trends in Ca2+ + Mg2+ and bicarbonate concentrations 
could be related to the global warming as shown by the air temperature increase, which enhanced 
the biogenic activity and then the carbonate dissolution. Whereas discharge and pCO2 trends are not 
significant, except for discharge during the period 1978–2006 (decreasing trend). In contrast, a 
decreasing trend was observed for sulfates, which might be related to atmospheric deposition 
decrease over the last decades. Indeed, in the context of global warming and hydroclimatic 
fluctuations, the increasing trends of Ca2+ + Mg2+ and bicarbonates could be a consequence of the 
buffering effect of carbonate dissolution on the global increasing trends of atmospheric CO2, and then 
on short time scales, an important CO2 sink. 

The seasonal patterns allowed to decipher the origin and the export dynamics of major ions in 
the BC: (i) a major lithological origin for the main base cations (Ca2+ and Mg2+) and anions 
(bicarbonates and sulfates) from carbonates and/or sulfate mineral dissolution; (ii) a major 
atmospheric origin for chloride and potassium, and (iii) a biological origin for nitrates. Besides, calcite 
undersaturation and carbonate dissolution increase were observed during the warm climatic 
conditions and low flow period, in relation with the biogenic CO2 production. 

Outside the classical controls of water–rock interactions (depending on water residence time), 
dilution effect (by precipitation input), and concentrating effect (by evapotranspiration output), the 
water discharge regime induces a variable importance of water source contribution from the different 
lithologies. This is illustrated by the increased sulfate to bicarbonate ratio up to two-times higher 
during low water flow period. Moreover, the role of the epikarst contribution was highlighted, and 
particularly illustrated by the first heavy rains in autumn, which cause by “piston effect” and 
“flushing effect”, the release of large amounts of Ca2+ + Mg2+ and bicarbonates previously stored in 
the epikarst solutions. 

Such long-term studies of the critical zone must be promoted since they have proven to be 
efficient in identifying: water and element sources and trends, weathering and biogeochemical 
processes, at various time scales, and the key controlling parameters. In a period of contrasting 
regional climate patterns, such critical zone survey provides robust validation data for the 
development of predictive models. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-4441/12/5/1227/s1, Figure 
S1: Piper ternary diagram for major ion concentrations in Baget stream waters for the period from 1994 to 2006 
and 2016 to 2018, Table S1: Principal Component Analysis (PCA). Contribution of the main physico-chemical 
parameters and discharge to the four first PCA factors (in %, N = 592). In bold the percentages greater than 10. 
The signs (+) or (−) indicate positive and negative correlation, respectively, Table S2: Eigenvalues relative to the 
10 main axis of the PCA (N = 594), Table S3: Regression coefficients (a and b) for the linear trends (Y = aX + b) for 
the main hydrochemical parameters over the periods 1978–2018 (all elements, except sulfates, 1982–2018) and 
1978–2006 (all elements, except sulfates, 1994–2018). p-value: significance level, R2: Pearson correlation 
coefficient, N: number of observations (in the calculations, X was expressed in days from 01-01-1900), Table S4: 
Change-points (according to Buishand tests), statistical trend test (Mann Kendall trend tests and linear 
regression test for instantaneous, mean monthly and mean annual values) as well as on 5-year annual moving 
average, for the main physico-chemical parameters over the considered study periods. p-values were lower than 
0.01, except when p-values were mentioned. The sign (+) and (−) indicated a positive or negative trend, 
respectively, Table S5: Mean annual values of the physico-chemical parameter characteristics of the Baget stream 
water for the period 1978–2018. The units are m3·s−1 (Q, discharge), °C (T°, air temperature), µS·cm−1 (Cond, 
conductivity), meq·L−1 (major elements), mg·L−1 (TDS), and atm (pCO2). The mean concentrations are discharge-
weighted. SIc is the calcite saturation index. Each hydrological year (H.Y.) starts on 1 October and ends on the 
next 30 September. Table S6: Mean interannual monthly values of the physico-chemical parameter characteristics 
of the Baget stream water for the period 1994−2006 plus 2016−2018. The units are m3·s−1 (Q, discharge), °C (T°, 
air temperature), µS·cm−1 (Cond, conductivity), meq·L−1 (major elements), mg·L−1 (TDS), and atm (pCO2). The 
mean concentrations are discharge-weighted. SIc is the calcite saturation index. N is the number of samples for 
each month. 
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