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ABSTRACT

Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the
Universe. Unfortunately, much of the cosmological information is encoded on small scales, where the clustering of dark matter and the effects of
astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint
analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the
signal on small scales and find that they result in significantly different predictions. Moreover, the different non-linear corrections lead to biased
parameter estimates, especially when the analysis is extended into the highly non-linear regime, with the Hubble constant, H0, and the clustering
amplitude, σ8, affected the most. Improvements in the modelling of non-linear scales will therefore be needed if we are to resolve the current
tension with more and better data. For a given prescription for the non-linear power spectrum, using different corrections for baryon physics does
not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order
to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the
accuracy of the recipes that account for non-linear structure formation, as well as the modelling of the impact of astrophysical processes that
redistribute the baryons.

Key words. gravitational lensing: weak – large-scale structure of Universe – cosmological parameters

1. Introduction

Next-generation surveys (stage IV) of the cosmic large-scale
structure will greatly improve both the amount and quality of
data for cosmological investigations. For instance, in the com-
ing decade the surveys carried out by Euclid1, the Vera C. Rubin
Observatory2, and the Nancy Grace Roman Space Telescope3

will probe scales and redshifts that were previously inaccessible.
The correct interpretation of such a large amount of high-quality
data, however, poses a challenge for our theoretical modelling.

In this paper we explore the current modelling limitations
for one of the most promising probes: cosmic shear, the mea-
surement of the apparent distortions of galaxy shapes caused by
? This paper is published on behalf of the Euclid Consortium.

1 https://www.euclid-ec.org
2 https://www.lsst.org
3 https://roman.gsfc.nasa.gov/

the weak lensing (WL) effect of intervening matter between us
and distant sources (see Kilbinger 2015, for a recent review). It
provides a direct way to trace the distribution of matter, and as
a result it can be used to infer the total matter power spectrum,
Pδδ(k, z). In contrast, the galaxy power spectrum, Pgg(k, z), esti-
mated from the clustering of galaxies, depends on the galaxy bias
and how galaxies occupy non-linear structures.

A complication is that much of the constraining power of
the cosmic shear signal relies on the ability to interpret scales
far into the non-linear regime, corresponding to wavenumbers
k ≈ 7 h Mpc−1 (e.g., Huterer & Takada 2005; Semboloni et al.
2011; Taylor et al. 2018b). On those scales, perturbations of the
matter density field are no longer small, and linear theory cannot
be used to predict the evolution of large-scale structures.

There are theoretical approaches for predicting clustering
beyond the limit of linear theory, such as: standard perturbation
theory (Blas et al. 2014; see also Bernardeau et al. 2002 for a
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detailed review) that includes higher-order terms; renormalised
perturbation theory (Crocce & Scoccimarro 2006; Crocce et al.
2012; Blas et al. 2016); response functions (Nishimichi et al.
2016); effective field theory (Baumann et al. 2012); and the
reaction method (Cataneo et al. 2019). These methods are able
to achieve accuracies on power spectrum predictions of ≈1%
with respect to numerical simulations, up to scales k .
0.3 h Mpc−1 (see e.g., Foreman & Senatore 2016; Beutler et al.
2017; D’Amico et al. 2020). This is sufficient for modelling the
mildly non-linear regime, where the baryonic acoustic oscilla-
tion peak is located, but these techniques cannot be used to pre-
dict the signal in the highly non-linear regime that WL analy-
ses will probe. The reaction method, however, can in principle
achieve an accuracy of ≈1% up to scales k . 10 h Mpc−1 when
using the results of an emulator as a baseline (Giblin et al. 2019;
Cataneo et al. 2020).

The common approach of modelling the non-linear part of
the power spectrum instead relies on fitting formulae determined
from comparisons to N-body simulations of cold dark matter
particles (e.g., Halofit; Smith et al. 2003). While very econom-
ical in terms of computational time, these fitting formulae have
a limited range of applicability because the simulations they are
based on assume a specific model – usually the cosmological
constant cold dark matter (ΛCDM) model or minimal extensions
with a constant dark energy equation of state parameter allowed
to be different from −1. Thus, applying these corrections to mod-
els outside the range constrained by the simulations, for example
a more general dark energy fluid, may lead to biased results (see
e.g., Casarini et al. 2011a; Seo et al. 2012).

Recently, so-called emulators – based on a large suite of
simulations, such as the Coyote Universe (Heitmann et al.
2010, 2009, 2014; Lawrence et al. 2010), the Mira Universe
(Heitmann et al. 2016; Lawrence et al. 2017), the Euclid
Emulator Project (Knabenhans et al. 2019), and the BACCO
simulation project (Angulo et al. 2020)– have been proposed as
an alternative to fitting formulae. Emulators interpolate between
high-resolution simulation runs at key points (nodes) in the cos-
mological parameter space. The main advantage of an emulator
with respect to a fitting formula is that it does not degrade the
accuracy of the corrections over the parameter space sampled by
the simulations, such as the range in redshift and scales.

Another way to predict the matter power spectrum on small
scales is provided by HMCode4 (Mead et al. 2015), which is
based on the analytical halo model (Peacock & Smith 2000;
Seljak 2000; Cooray & Sheth 2002) and tuned to match the
Coyote Extended Emulator (Heitmann et al. 2014) results.
It has subsequently been improved to include effects of neutri-
nos, chameleon and Vainshtein screened models, and dynamical
dark energy (Mead et al. 2016) 5.

All these methods depend on the quality of the simulations
on which they are based, in addition to the declared quality of
the method itself (for example the accuracy of the fitting formula
or the accuracy of the interpolation of the emulators). Restrict-
ing ourselves to just the non-linear clustering, the agreement
between purely dark matter simulations is limited by the size
of the simulated volume, the number of particles employed in
the simulation, and the choice of initial conditions (see e.g.,
Casarini et al. 2015; Schneider & Teyssier 2015). Hence, part of
the differences between the methods described above may be
attributed to the simulation parameters on which they are based

4 https://github.com/alexander-mead/HMcode
5 During the preparation of this work an update of HMCode was pub-
lished, as described in Mead et al. (2021).

(e.g., when dimension and resolution are insufficient) rather than
the methods themselves.

Moreover, our ability to extract cosmological informa-
tion from WL measurements on small scales is limited fur-
ther by baryonic feedback processes (Semboloni et al. 2011)
because gas cooling, star formation, galactic winds, supernova
explosions, and feedback from active galactic nuclei (AGNs)
modify the expected distribution of matter on small scales
(Jing et al. 2006; Rudd et al. 2008; Casarini et al. 2011b, 2012;
van Daalen et al. 2011; Castro et al. 2018; Debackere et al.
2020). Accurate predictions of the matter power spectrum
on those scales require hydrodynamical simulations that not
only need to reproduce the non-linear clustering of cold dark
matter particles, but should also reliably describe the bary-
onic component. Such hydrodynamical simulations are much
more demanding in terms of computational resources, and the
impact of baryonic feedback extracted from hydrodynamical
runs has to be modelled and incorporated in the reconstruction
of the cosmic shear signal (see e.g., Schneider & Teyssier 2015;
Schneider et al. 2016, for a method to include the impact of feed-
back in the data analysis pipeline). In order to reduce the compu-
tational power requested to include such effects, methods relying
on ’baryonification’ algorithms that mimic the effects of astro-
physical processes induced by baryons have been proposed (see
e.g., Aricò et al. 2021, 2020).

Given the cost of simulating large volumes with high resolu-
tion for every necessary point in the parameter space for each
specific cosmological model, we are particularly interested in
techniques that can drastically reduce the number of simulations
(see Linder & White 2005; Francis et al. 2007; Casarini et al.
2009). As an example, in this work we use the PKequal6

method, which allows us to determine the non-linear power spec-
trum of a dynamical dark energy model at a particular redshift
with an ensemble of non-linear spectra of simpler constant w
models (Casarini et al. 2009, 2016).

In this paper, we investigate the impact of different imple-
mentations of the non-linear corrections and baryonic feedback
prescriptions on cosmological parameter estimation, adopting
cosmic shear measurements from Euclid (Laureijs et al. 2011) as
our baseline (for an analysis of the impact of non-linear correc-
tions on other LSS observables see e.g., Safi & Farhang 2020).
We note that we do not investigate here other effects that might
affect the parameter estimation pipeline, such as the common
assumption of a Gaussian likelihood, which is only an approxi-
mation. The paper is organised as follows. After describing the
various non-linear recipes in Sect. 2, in Sect. 3 we summarise the
Euclid specifications relevant for our analysis. As a first exam-
ple of the impact of non-linear prescriptions, we assess in Sect. 4
the constraining power of the Euclid survey on the dark energy
parameters, here assumed to be described by the so-called CPL
parameterisation (Chevallier & Polarski 2001; Linder 2003). In
Sect. 5 we quantify the shifts in cosmological parameters when
a wrong correction pipeline is used, focusing on the combina-
tion of Planck and mock Euclid data. In Sect. 6 we examine the
impact of baryonic feedback.

2. Available non-linear prescriptions

In this section we describe the techniques that we use in this
study to compute the matter power spectrum in the deeply non-
linear regime.

6 https://github.com/luciano-casarini/PKequal
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2.1. Halofit

One of the first widely used prescriptions to model the non-linear
part of the power spectrum, called Halofit, was developed by
Smith et al. (2003). The authors measured the non-linear evo-
lution of the matter power spectra using a large library of cos-
mological N-body simulations with power-law initial spectra
(Jenkins et al. 1998).

The Halofit approach is based on the halo model
(Peacock & Smith 2000; Seljak 2000; Ma & Fry 2000), in which
the density field is described in terms of the distribution of
isolated dark matter haloes. The correlations in the field are
assumed to arise from the clustering of haloes with respect to
each other on large scales, and through the clustering of dark
matter particles within the same halo on small scales. The total
non-linear power spectrum, PNL(k), can then be decomposed
into

PNL(k) = PQ(k) + PH(k), (1)

where PQ(k) is the quasi-linear term related to the large-scale
contribution to the power spectrum, and PH(k) describes the con-
tribution from the self-correlation of haloes. These terms are also
known as the two-halo and the one-halo term, respectively, and
we discuss them in this order below.

Seljak (2000), Ma & Fry (2000), Scoccimarro et al. (2001)
proposed to use linear theory filtered by the effective window
that corresponds to the distribution of haloes as a function of
mass, n(M), convolved with their density profiles, ρ̃(k,M), and
a prescription for their bias with respect to the underlying mass
field, bH(M). The quasi-linear term can then be expressed as

PQ(k) = PL(k)
[
1
ρ̄

∫
dM bH(M)n(M)ρ̃(k,M)

]2

, (2)

with ρ̄ the homogeneous background matter density, and PL(k)
the linear power spectrum.

A simpler approach was proposed by Peacock & Smith
(2000), who assumed that the quasi-linear term corresponds to
pure linear theory, PQ(k) = PL(k). However, quasi-linear effects
must modify the relative correlations of haloes away from lin-
ear theory, irrespective of the allowance made for the finite size
of the haloes (see Smith et al. 2003, and references therein).
Halofit takes then an empirical approach, allowing the quasi-
linear term to depend on n(M), and truncating its effects at small
scales. If we define the dimensionless power spectrum as

∆2(k) ≡
k3

2π2 P(k), (3)

the quasi-linear term in Halofit is given by

∆2
Q(k) = ∆2

L(k)
[1 + ∆2

L(k)]βn

1 + αn∆2
L(k)

e− f (y), (4)

where y ≡ k/kσ, kσ is a non-linear wavenumber related
to the spherical collapse model (Press & Schechter 1974;
Sheth & Tormen 1999; Jenkins et al. 2001), αn and βn are coef-
ficients sensitive to the input linear spectrum, and f (y) = y/4 +
y2/8 governs the decay rate at small scales.

To describe the clustering of matter on small scales, we need
a description for PH, which is given by

PH(k) =
1

ρ̄2(2π)3

∫
dM n(M)|ρ̃(k,M)|2. (5)

In order to model this term, we can use an expression that looks
like a shot-noise spectrum on large scales, but progressively van-
ishes on small scales by the filtering effects of halo profiles and
the mass function. A good candidate is

∆2
H
′
(k) =

any3

1 + bny + cny3−γn
, (6)

where an, bn, cn, and γn are dimensionless numbers that depend
on the input spectrum.

Cooray & Sheth (2002), however, showed that with this
expression the halo model disagrees with low-order perturbation
theory in some cases. To solve this, Halofitmodifies Eq. (6) to
obtain a spectrum steeper than Poisson on the largest scales

∆2
H(k) =

∆2
H
′(k)

1 + µny−1 + νny−2 , (7)

where µn and νn are, again, coefficients that depend on the input
spectrum. Smith et al. (2003) showed that Halofit is able to
reproduce the measurements from simulations more accurately,
and down to smaller scales, than the halo model.

2.2. Halofit with Bird and Takahashi corrections

All the coefficients used in the Halofit recipe were deter-
mined by Smith et al. (2003) from a fit to cold dark matter sim-
ulations in boxes of lengths of 256 h−1 Mpc containing 2563

particles (Jenkins et al. 1998). As a consequence of the rela-
tively large particle mass, Halofit may not be suitable if we
want to test cosmologies with massive neutrinos, or go down
to very small scales, where the impact of baryonic interac-
tions is non-negligible. Moreover, the limited simulation vol-
ume results in large sample variance (see Casarini et al. 2015;
Schneider & Teyssier 2015), and thus may lead to inaccurate
results even for a ΛCDM cosmology (White & Vale 2004;
Casarini et al. 2009, 2012; Hilbert et al. 2009; Heitmann et al.
2010). Finally, as the simulations were performed for the stan-
dard cosmological model, using Halofit with a dark energy
equation of state w , −1 may yield an incorrect estimate of the
power spectrum (Casarini et al. 2011a; Seo et al. 2012).

To address these limitations, Bird et al. (2012) investigated
the impact of massive neutrinos, and performed several N-body
simulations of the matter power spectrum incorporating massive
neutrinos with masses between 0.15 and 0.6 eV. They focussed
on non-linear scales below 10 h Mpc−1 at z < 3, and extended
the Halofit approximation to account for massive neutrinos.
They found that in the strongly non-linear regime Halofit over-
predicts the suppression due to the free-streaming of the neu-
trinos. In particular, the asymptotic behaviour of the non-linear
term in Halofit is given by ∆2

H ∼ yγn , and therefore Bird et al.
(2012) adjusted γn to their ΛCDM simulations with massive neu-
trinos. Moreover, they modified the non-linear power spectrum
with the ansatz

(∆ν
NL)2 = ∆2

NL(1 + Qν), (8)

with

Qν =
l fν

1 + k3m
, (9)

where fν = Ων/Ωm is the ratio between the neutrino and total
matter energy densities, and l and m are fitted to the simulations.
They also modified Eq. (4) to

∆2
Q(k) = ∆2

L(k)
[1 + ∆̃2

L(k)]β̃n

1 + αn∆̃2
L(k)

e− f (y), (10)

A100, page 3 of 17



A&A 649, A100 (2021)

with

∆̃2
L = ∆2

L

(
1 +

p fνk2

1 + 1.5k2

)
, (11)

β̃n = βn + fν(r + n2s), (12)

where p, r, and s are fitted to the simulations.
Another important improvement to the original Halofit

was introduced in Takahashi et al. (2012), who updated the fit-
ting parameters using high-resolution N-body simulations with
box sizes of L = 300−2000 h−1 Mpc with np = 10243 parti-
cles each, for 16 cosmological models around the best fitted cos-
mological parameters from WMAP data (Hinshaw et al. 2013),
including dark energy models with a constant equation of state.
This revised version of Halofit provides an accurate prediction
of the non-linear matter power spectrum down to k ∼ 30 h Mpc−1

and up to z ≥ 3 with an accuracy ∼5–10%. In the remainder of
this paper we refer to the non-linear prescription that includes
the improvements from Takahashi et al. (2012) and Bird et al.
(2012) as Halofit, for simplicity.

2.3. Halofit with PKequal

One of the limitations of the standard Halofit approach, even
after the corrections by Bird et al. (2012) and Takahashi et al.
(2012) are considered, is that it is based on a fit to N-body sim-
ulations with a constant value for the dark energy equation of
state. However, given the precision of stage IV surveys, we are
particularly interested in determining whether the data prefer an
evolving dark energy equation of state. To avoid biases in our
non-linear predictions, we could run N-body simulations that
include a time dependence for w, such as the CPL parameteri-
sation (Chevallier & Polarski 2001; Linder 2003) given by

w(a) = w0 + wa(1 − a). (13)

This approach implies the need for significant computational
resources. Another option, however, is to map the non-linear
power spectra of dark energy models with a constant equation of
state to those with a time varying one. In this work we consider
the PKequal code (Casarini et al. 2016), which implements the
spectral equivalence from Casarini et al. (2009). Francis et al.
(2007) showed how predictions for constant w models at z = 0
can be related to the power spectra of cosmologies with an evolv-
ing equation of state w(a) given by Eq. (13) with an accuracy
∼0.5% up to k ' 1 h Mpc−1. The PKequal technique achieves
this precision also at z > 0 for a general equation of state
w = w(a) by imposing the equivalence of the distance to the
last scattering surface and requiring that the amplitudes of the
density fluctuations at the redshift of interest are the same. For
a given set of values of w0 and wa, these two conditions yield
at each z a unique value of weq and σ8,eq for the constant w
model.

The performance of this method has been tested for several
dark energy models (Casarini et al. 2009; Casarini 2010), and
also in the presence of gas cooling, star formation and SN feed-
back (Casarini et al. 2011b). These studies find differences in
power spectra between the mapped dynamical dark energy mod-
els and the ensemble of equivalent constant w models that are
within 1 % up to k ' 2–3 h Mpc−1. With this method it is possi-
ble to extend both emulators (see Casarini et al. 2016) and fitting
formulae (as in this work) to dynamical dark energy models if
they are valid for constant w models.

2.4. HMCode

An alternative approach to predict the non-linear matter power
spectrum, called HMCode, was proposed by Mead et al. (2015).
It introduces physically motivated free parameters into the halo
model formalism, instead of using empirical fitting functions.
Mead et al. (2015) fit these to N-body simulations with box
sizes L = 90–1300 h−1 Mpc and np = 5123–10243 particles
for a variety of ΛCDM and wCDM models (Heitmann et al.
2010). HMCode also accounts for the effects of baryonic feed-
back on the power spectrum by fitting the halo model to hydro-
dynamical simulations that include gas cooling, star formation,
as well as supernova and AGN feedback (Schaye et al. 2010;
van Daalen et al. 2011).

In Mead et al. (2016) HMCode was updated to account for
massive neutrinos, chameleon and Vainshtein screening mech-
anisms, as well as evolving dark energy equations of state
described by the CPL parameterisation. Throughout the rest of
the paper we will consider this latest version when referring to
HMCode. We note, however, that the PKequal approach can also
be used with the original HMCode by applying it to the equiv-
alent {weq, 0} constant w model at any redshift z, and imposing
the same σ8(z). This yields the prediction for a given {w0,wa}

CPL model, with an accuracy similar to that of the fit and the
simulations on which HMCode itself is based.

2.5. Comparison

Before we study how the different methods affect the inference
of cosmological parameters and related confidence regions, we
show by how much the power spectra differ as a function of
the wavenumber k for the prescriptions described above. We note
that theoretical approaches based on perturbation theory or the
effective field theory of large-scale structure do not yet provide
accurate power spectra for the small scales we consider here.

In Fig. 1 we show the relative difference between the var-
ious predictions and the one from Halofit. The power spec-
tra were computed using CAMB (Lewis et al. 2000) at redshift
0, where discrepancies are most pronounced. Hence, these rep-
resent a worst case scenario as WL probes mostly intermedi-
ate redshifts. The upper-left panel shows the relative differences
between the linear power spectrum (orange), Halofit with
PKequal (blue), and HMCode (red) for the ΛCDM model using
the Planck TTTEEE+lowE+lensing+BAO 2018 mean values for
the various cosmological parameters (Planck Collaboration VI
2020). The linear power spectrum diverges from Halofit for
k > 0.1 h Mpc−1, while the disagreement between Halofit and
HMCode is below 7.5% for k < 10 h Mpc−1. While in general
non-linear corrections boost the matter power spectrum, Fig. 1
shows how the linear power spectrum takes larger values than
the corrected one in the range 0.005 . k . 0.1. This feature,
which is slightly counter-intuitive though well known, is due to
the effect of the quasi-linear term of the halo model, relevant at
these scales, that can lead to a suppression of power with respect
to the linear case (Smith et al. 2003).

The upper-right panel shows the variation on small scales
when we consider parameters around the mean values of ΛCDM.
For this comparison we generated 100 power spectra with cos-
mological parameters drawn from a five-dimensional Gaussian
distribution with the diagonal given by five times the 1σ uncer-
tainty quoted by Planck TTTEEE+lowE+lensing+BAO 20187.
7 We note that we fix the value of τ to its mean value; therefore we
are left with a five-dimensional Gaussian instead of the six-dimensional
one that would correspond to ΛCDM.
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Fig. 1. Relative difference between the various predicted matter power spectra and the Halofit prediction at z = 0 for different cosmologies. Top-
left panel: using the mean values of the ΛCDM parameters given by Planck 2018 (Planck Collaboration VI 2020). Top-right panel: differences
when the ΛCDM parameters are drawn from a five-dimensional Gaussian distribution with the diagonal given by five times the 1σ uncertainty
quoted by Planck TTTEEE+lowE+lensing+BAO 2018. Bottom-left panel: differences when also the constant dark energy equation of state is
drawn from a Gaussian distribution with a dispersion of 0.3. Bottom-right panel: difference for evolving dark energy models where, alongside
w0, also wa is Gaussian distributed with a dispersion of 1.0. In the bottom panels w0 and wa (if present) are always chosen in such a way that
w(z) < −1/3. The feature visible at k ≈ 0.005 h Mpc−1 corresponds the scale at which the non-linear corrections are turned on in CAMB.

These results highlight that the discrepancy between Halofit
and HMCode can be larger than 10% for k > 3 h Mpc−1.

The bottom-left panel considers models beyond ΛCDM,
allowing for a constant equation of state parameter, w, that can
differ from −1. The different lines correspond to power spectra
when we draw parameters from a six-dimensional Gaussian dis-
tribution where we adopt a dispersion of 0.3 for w (but we do
require w < −1/3). The bands showing the discrepancy between
the different non-linear corrections increase slightly (a 10% dis-
crepancy is reached at scales of k = 1–2 h Mpc−1), but the overall
shape remains the same.

Finally, in the bottom-right panel we consider dynamical
dark energy models with a dark energy equation of state given
by Eq. (13). In this case we add wa (so that we draw parame-
ters from a seven-dimensional Gaussian) with a dispersion of 1.0
and we require the dark energy equation of state to be always
smaller than −1/3, that is w0 + wa < −1/3. The overall shape
for the bands is the same for HMCode and the linear spectra,
although the discrepancies are significantly larger (already 10%
at scales of k = 0.6 h Mpc−1). We also note that, since we
allow wa to vary, there is a difference between Halofit and
Halofit+PKequal.

Lawrence et al. (2017) presented an updated version of
COSMIC EMU that includes massive neutrinos. Their high-
resolution simulations are interpolated with an accuracy of
∼4%. Lawrence et al. (2017) compared their COSMIC EMU pre-
dictions with Halofit, and HMCode. When massive neutri-
nos are considered, the different approaches show differences
of ∼20% and ∼15%, respectively, in the power spectra for
scales above k = 0.1 Mpc−1, indicating the need for further
improvements.

3. The Euclid Cosmic Shear survey

Our aim is to investigate how the expected constraints on cos-
mological parameters from Euclid data depend on the recipe
that is used to predict the matter power spectrum on non-linear
scales, although we note that our finding are also relevant for
other stage IV experiments. Euclid is an M-class mission of the
European Space Agency (Laureijs et al. 2011) that will carry
out a spectroscopic and a photometric survey of galaxies over
an area of 15 000 deg2. The cosmic shear measurements use
high-quality imaging at optical wavelengths, supported by multi-
band optical ground-based photometry and near-infrared obser-
vations by Euclid. The telescope is designed so that (residual)
instrumental sources of bias in the observed cosmic shear signal
are subdominant compared to the statistical uncertainties (e.g.,
Cropper et al. 2013; Euclid Collaboration 2020b). However, to
achieve its objectives, it is essential that the signal can be accu-
rately predicted in the non-linear regime. Although this is also
relevant to fully exploit the data from the clustering of galaxies
and the cross-correlations with the lensing signal, we focus on
the cosmic shear case in this paper and defer a more comprehen-
sive study to future work.

We adopt the baseline specifications for the Euclid data,
which are described in Euclid Collaboration (2020a, hereafter
EC19). The redshift distribution of the sources is given by

n(z) ∝
(

z
z0

)2

exp

− (
z
z0

)3/2 , (14)

with z0 = 0.9/
√

2, resulting in a mean redshift of 〈z〉 = 0.96.
The sample is divided into 10 equi-populated redshift bins ni(z)
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(with the index i indicating the tomographic bin). We assume an
average number density of galaxies with precise shape measure-
ments of n̄g = 30 arcmin−2. To capture the noise arising from the
intrinsic galaxy ellipticities we adopt a dispersion of σε = 0.21
for each of the two ellipticity components. We also use the same
approach as EC19 to compute the WL power spectrum, defined
as

Cεε
i j (`) = c

∫
dz

Wε
i (z)Wε

j (z)

H(z)r2(z)
Pδδ

[
` + 1/2

r(z)
, z

]
, (15)

where Pδδ is the non-linear matter power spectrum, r(z) is the
comoving distance to redshift z, and the window function Wε

i is
defined as

Wε
i (z) = Wγ

i (z) −
AIACIAΩm,0FIA(z)H(z)ni(z)

D(z)c
, (16)

with ni(z) normalised such that
∫

dz ni(z) = 1. In Eq. (16), the
first term corresponds to the usual lensing kernel,

Wγ
i (z) =

3
2

Ωm,0

(H0

c

)2

(1 + z)r(z)

×

∫ zmax

z
dz′ ni(z′)

[
1 −

r(z)
r(z′)

]
, (17)

whilst the second term models the effect of intrinsic alignments
(IA). Here D(z) is the growth factor, CIA = 0.0134 is a constant
so that the normalisation of the model AIA can be compared to
the literature. To describe the dependence of the IA signal as
a function of scale, redshift and galaxy luminosity, we adopt the
extended non-linear alignment model (Joachimi et al. 2015), and
the function FIA(z) is given by

FIA(z) = (1 + z)ηIA [〈L〉(z)/L?(z)]βIA , (18)

where 〈L〉(z) and L?(z) are the redshift-dependent mean and a
characteristic luminosity of source galaxies as computed from
the luminosity function, respectively. The parameters ηIA, βIA,
and AIA are free parameters that can be determined observa-
tionally. We use {AIA, ηIA, βIA} = {1.72,−0.41, 2.17} as fiducial
values, as was done in EC19, while they are allowed to vary in
the parameter estimation.

Our approach for the modelling of IA is phenomenological,
but we note that more physically motivated models have been
proposed. For instance, Fortuna et al. (2021) used a halo model
approach to link direct observations of IA to implications for
cosmic shear. Finally, we note that the modelling of the IA sig-
nal is linked to non-linear structure formation, but exploring this
further is beyond the scope of this paper.

We adopt the same approach presented in EC19 to model the
covariance of the WL observable. As usual, it can be split into
Gaussian and non-Gaussian contributions (Takada & Hu 2013;
Cooray & Hu 2001; Hamilton et al. 2006; Hu & Kravtsov 2003;
Kayo et al. 2012). The latter involve the convergence trispec-
trum, but there are significant uncertainties on how to model
this quantity. Relying on the halo-model formalism (see e.g.,
Cooray & Hu 2001), it was shown in EC19 that the signal-to-
noise ratio of the shear power spectrum (with the specifications
used in this work) decreases by 30% at `max = 5000 when we
add the non-Gaussian contribution. This loss of information cor-
responds to an effective cut at `max = 1420 when using only
a Gaussian covariance. Following EC19, we decide to avoid
uncertainties related to the non-Gaussian modelling and use a
Gaussian covariance with a cut at `max = 1500. This corre-
sponds to the pessimistic scenario. We also consider the impact

Table 1. Fiducial values for the cosmological parameters considered in
the Fisher matrix analysis.

Ωm,0 Ωb,0 w0 wa ns h σ8

0.32 0.05 −1 0 0.960 0.67 0.816

of changing this cut in the optimistic settings, where we set it
at `max = 5000. It is important to note that an `-cut preserving
the signal-to-noise ratio is not directly linked to constraints on
the parameters (see e.g., Copeland et al. 2018), but the ampli-
tude of the impact of the non-Gaussian modelling used here is
small compared to other assumptions.

4. Impact of non-linear corrections on forecast
constraints

Given our desire to use measurements on small scales to esti-
mate cosmological parameters, it is essential to assess how the
different methods to model the power spectrum on highly non-
linear scales affect the results. In the following, we limit our-
selves to a simple extension of the ΛCDM model: We assume
that dark energy is dynamical with its equation of state parame-
terised according to Eq. (13), and that density perturbations for
this component are well described by the parameterised post-
Friedmann approach, which assumes that the dark energy field
remains smooth with respect to matter at the scales of interest
(Hu & Sawicki 2007; Hu 2008; Fang et al. 2008).

To evaluate the impact of the different recipes for the non-
linear power spectrum on the final parameter estimation from
Euclid, we use the Fisher matrix approach (see EC19, for an
extensive review of the methodology). For the different methods
we compute the figure of merit (FoM) for the parameters w0 and
wa, where the FoM is defined as

FoM =

√
detF̃w0wa , (19)

and F̃w0wa is the Fisher matrix marginalised over all the cosmo-
logical parameters except for w0 and wa. This allows us to exam-
ine whether degeneracies between cosmological parameters dif-
fer when switching from one method to the other. We can also
quantify the biases in dark energy parameters and changes in the
FoM, which captures the performance of Euclid.

The free parameters for this analysis are: the matter and
baryon density parameters Ωm,0 and Ωb,0; the dark energy param-
eters, w0 and wa; the spectral index of primordial perturbations,
ns; the dimensionless Hubble parameter, h; and σ8, that is the
root mean square of present-day linearly evolved density fluc-
tuations in spheres of 8 h−1 Mpc radius. The fiducial values of
these parameters are listed in Table 1.

We used the specification of Euclid for WL observations that
were detailed in Sect. 3 and computed the FoM from the WL
power spectra Cεε

`
for different values of the maximum multi-

pole, `max. We considered two different values for `max, namely
1500 and 5000, with the latter probing deeper into the non-linear
regime. We note that here the same `max applies to all redshift
bins, thus leading to a different cut in scales (kmax) for each bin.
We investigated the difference between this analysis and one
considering a kmax rather than a multipole cut in Appendix A.
In both cases the minimum multipole was fixed to `min = 10,
following EC19. We note that the cuts we used here should be
considered an approximation; in general, there is no direct map-
ping between `max and kmax, and a more refined approach would
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Table 2. FoM estimated using Euclid specifications for WL with
Halofit, HMCode, and Halofit+PKequal.

`max Halofit HMCode Halofit+PKequal

1500 23 14 19
5000 44 34 36

be needed to convert a cut in multipoles into a cut in wavenum-
ber (Taylor et al. 2018b).

Table 2 lists the resulting FoM values for our baseline
w0waCDM cosmology for the three different non-linear recipes.
The variation in the predicted FoMs is substantial, which is not
that surprising given the differences we see in Fig. 1; at large k
the differences exceed 10% when the parameters are allowed to
vary with respect to the fiducial model.

The large variation is caused by two separate effects. Firstly,
the fiducial Cεε

`
is obtained by integrating up to k ' 30 h Mpc−1

and then inverted when computing the covariance matrix that
enters the Fisher matrix forecast. Small differences can become
large in the inversion process. Secondly, what is important is not
so much the fiducial model itself, but rather the derivatives of
the power spectrum with respect to the model parameters. Dif-
ferent non-linear corrections predict different derivatives, thus
leading to different Fisher matrix elements. This is supported
by the fact that the FoM for HMCode and Halofit+PKequal
are very similar. These two prescriptions explicitly take devia-
tions of w0 and wa from the fiducial ΛCDM values into account,
while this is not the case for the standard Halofit, which
is designed to describe ΛCDM cosmologies and extended to
cases where dark energy is described by a constant equation
of state. As a consequence, the amplitude of the derivatives of
the matter power spectrum with respect to {w0, wa} are simi-
lar between HMCode and Halofit+PKequal, but different for
Halofit. This explains why the FoM values in the third and
fourth columns are so similar. We also tested the impact of the
differences in the covariance matrix and in the derivatives with
respect to wa, obtaining the FoM through the described proce-
dure, but keeping fixed to the a reference non-linear prescription
either the first or the latter.

It is also worth noting that the FoM is highest for Halofit
because in that case wa impacts the power spectra at non-linear
scales through its effect on the linear matter power spectrum,
while in the other two methods the non-linear corrections are
affected by this parameter as well. Overall, the non-linear cor-
rections dampen the derivatives with respect to wa, leading to
weaker constraints on this parameter and to a lower FoM. These
results demonstrate that the FoM depends critically on the non-
linear model that is used, highlighting the need for (more) accu-
rate prescriptions.

In addition to this, Table 2 shows also that the difference in
the FoM between HMCode and HaloFit decreases in the opti-
mistic case with respect to the pessimistic one. While this might
seem counter intuitive, this effect is due to the fact that the
derivatives with respect to wa, which are the main responsible
for the variation in the FoM value, tend to vanish at high multi-
poles. For such a reason, including smaller scales in the analysis
reduces the impact of such derivatives, and the main difference
between the recipe is now in the covariance matrices. However,
they are computed at the parameter fiducial value, where the dif-
ferences between recipes are less significant. Instead, if we com-
pare HaloFit with HaloFit+PKequal, the change in moving
from the pessimistic to the optimistic case is negligible, due to

Table 3. Fiducial values for the free cosmological parameters in the
MCMC analysis.

Parameter symbol Parameter value

ωb,0 0.02245
ωc,0 0.12056
h 0.67
ln(1010As) 3.05836
ns 0.96
τ 0.06
w0 −0.9
wa 0.1
AIA 1.72
ηIA −0.41
βIA 2.17

Notes. We model neutrinos assuming 2.0328 ultra-relativistic species,
and 1 mass eigenstate with mν = 0.06 eV. The MCMC fiducial model
implies σ8 = 0.786, which corresponds to the value of the Fisher matrix
analysis re-scaled according to the new cosmology, that is replacing the
cosmological constant with a dynamical dark energy with w0 = −0.9
and wa = 0.1.

the different construction of the latter recipe, which is a correc-
tion of HaloFit itself, rather than being based on a different
approach.

5. Bias on cosmological parameter estimates

A major concern is that inaccuracies in the theoretical predic-
tions on non-linear scales translate into shifts in the inferred cos-
mological parameters. To quantify the impact of such biases, we
create a mock dataset of Euclid WL observations, using the spec-
ifications listed in Sect. 3. The fiducial cosmology that we use to
generate these mock data is summarised in Table 3, where As is
the amplitude of the primordial power spectrum, ωb,0 = Ωb,0h2,
ωc,0 = Ωc,0h2 where Ωc,0 is the present time density parame-
ter for cold dark matter, while for the intrinsic alignment nui-
sance parameters, also free in this analysis, we assume the fidu-
cial values {AIA, ηIA, βIA} = {1.72,−0.41, 2.17}. Again, we fol-
low EC19 in neglecting the uncertainties on the galaxy distribu-
tions and shear bias, for simplicity. However, we refer the reader
to Tutusaus et al. (2020) and Euclid Collaboration (2020b) for
analyses focussed on these systematic uncertainties. In contrast
to what was done in Sect. 4, we assume here that the expan-
sion history is provided by a dynamical dark energy, assuming
w0 = −0.9 and wa = 0.1. This allows us to assess the impact of
the different non-linear recipes when a non-standard model is the
true underlying cosmology. This is motivated by the fact that the
recipes in Sect. 2 differ in how they account for such extensions
of the standard cosmological model.

We adopt the non-linear correction provided by
Halofit+PKequal as the reference to which we compare
the parameter estimates for the other recipes. We stress that
we do not advocate the use of a particular prescription, but
rather wish to quantify the shifts in the estimated cosmological
parameters that may arise from using a different prediction.

We analyse this mock dataset with a Markov chain
Monte Carlo method (MCMC), using the MontePython8

suite (Audren et al. 2013; Brinckmann & Lesgourgues 2019),
with a Euclid lensing mock likelihood as presented in

8 https://github.com/brinckmann/montepython_public
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Table 4. Mean values, marginalised 68% errors, and biases in cosmological parameters.

Halofit HMCode

θ `max θ? σ B θ? σ B

1500 0.02244 0.00011 0.08 0.02240 0.00012 0.43
ωb,0

5000 0.02243 0.00012 0.15 0.02246 0.00012 0.05
1500 0.12056 0.00036 0 0.12101 0.00039 1.16

ωc,0
5000 0.12054 0.00038 0.053 0.12112 0.00036 1.57
1500 0.6689 0.0069 0.16 0.6702 0.0096 0.02

h
5000 0.6683 0.0048 0.36 0.6899 0.0066 3.02
1500 3.0591 0.0086 0.09 3.0657 0.0088 0.84

ln(1010As)
5000 3.0593 0.0090 0.10 3.0656 0.0086 0.85
1500 0.9602 0.0025 0.06 0.9615 0.0027 0.57

ns
5000 0.9604 0.0023 0.18 0.9556 0.0023 1.90
1500 −0.888 0.085 0.14 −0.869 0.099 0.31

w0
5000 −0.888 0.060 0.21 −1.021 0.064 1.88
1500 0.07 0.21 0.14 −0.02 0.25 0.50

wa
5000 0.07 0.16 0.16 0.29 0.16 1.22
1500 0.3212 0.0065 0.18 0.3209 0.0090 0.10

Ωm,0
5000 0.32164 0.0046 0.36 0.3031 0.0057 2.96
1500 0.7852 0.0058 0.14 0.7938 0.0071 1.09

σ8
5000 0.7847 0.0041 0.30 0.8080 0.0048 4.62
1500 0.60 32.04

∆χ2

5000 1.06 62.34

Notes. The values are obtained by fitting mock Planck and Euclid WL data to either HMCode without baryonic feedback or Halofit without
PKequal non-linear corrections. The last row shows ∆χ2. By construction χ2 = 0, unless the configuration of the MCMC sampling does not match
the one used to create the fiducial synthetic dataset. The number of degrees of freedom in this case is 11 (the number of free parameters in the
model; Ωm,0 and σ8 are derived parameters), which enables one to compare ∆χ2 to the corresponding confidence interval.

Sprenger et al. (2019)9. With this setting we sample the cos-
mological parameters listed in Table 3 using either Halofit
(switching off PKequal) or HMCode. When using HMCode, the
baryonic feedback parameters are fixed to the values fitting
the COSMIC EMU dark-matter-only simulations (Heitmann et al.
2014).

As done in Sect. 4, we performed the analysis for `max =
1500 and 5000 in order to explore the impact of the non-
linear corrections on the results when including high multipoles.
Also in this case, we explore the difference with a scale cut
in Appendix A. We complemented the WL mock dataset with
TT, TE, EE, and lensing data from a mock Planck likelihood,
thus reproducing the sensitivity of the full mission. We note that
we did not use real Planck data to avoid a mismatch between
the fiducial Euclid cosmology and the actual best fitted Planck
values.

This approach enables us to determine the ‘bias’ (B) on cos-
mological parameters with respect to our fiducial cosmology,
that is the offset of the mean of the estimated posterior distri-

9 With respect to Sprenger et al. (2019), here we apply a z-independent
cut-off at kmax = 30 h Mpc−1, and we do not include the theoretical error.

bution from the true value, which in turn allows us to quantify
the impact of using a different prescription for the non-linear
evolution of density perturbations. To assess the significance of
a particular bias, it is useful to compare it to the expected statis-
tical uncertainty. We therefore consider the (relative) bias on all
the cosmological parameters given by

B(θ) =
|θ? − θfid|

σ
, (20)

where θ? is the mean value of the parameter found with the
MCMC analysis, σ is the 68% uncertainty estimated from the
chains, and θfid is its fiducial value. We note that this estimate
implicitly assumes that the posterior distribution can be approxi-
mated by a Gaussian, which is indeed valid for constraints based
on the combination of Planck and Euclid data.

The statistical uncertainties of Euclid are determined by the
survey design (see Sect. 3). To draw reliable conclusions from
these data, it is essential that systematic uncertainties are suffi-
ciently small. Ideally biases should vanish, but generally it is too
costly to achieve this. A reasonable compromise, however, is to
adopt Bthr . 0.1 (see e.g., Sect. 4.1 in Massey et al. 2013), which
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Fig. 2. One-dimensional posterior distributions, and 68% and 95% confidence level marginalised contours for the dark energy parameters (w0
and wa) and the parameters h and σ8. The left panel refers to the `max = 1500 case, while the right panel uses measurements deeper into the
non-linear regime, with `max = 5000. The mock data of Euclid cosmic shear assume Halofit+PKequal non-linear corrections as reference, while
the parameter estimation is performed with either HMCode (blue), or Halofit (orange). Black dashed lines mark the fiducial model.

is what we do here10. We note that the intrinsic variance of the
mean estimated by the MCMC also contributes to our estimate
of B(θ). We quantified this contribution by computing the scatter
of the mean value by bootstrapping the chains. We find that it is
always within 1% of the final error on cosmological parameters.

The results are reported in Table 4 and the posteriors are pre-
sented in Fig. 2. Although the optical depth τ is a free parameter
in the model, it is effectively constrained by the Planck measure-
ments alone. We therefore do not report its value here. Oppo-
sitely, as a comparison, we can see how constraints on other
parameters tighten thanks to the inclusion of Euclid data. For
instance, Planck Collaboration VI (2020) report for σ8 a 68%
confidence level (C.L.) interval equal to 1.5% or 1% of the
parameter value in a w0waCDM cosmology, when Planck is
respectively combined with RSD and WL data or BAO and SN
data. Instead, with Planck-TT and Euclid-WL only we obtain
here 0.7%.

As expected, the biases are larger for HMCode compared
to Halofit without PKequal. We also find that for Halofit,
increasing the range from `max = 1500 to `max = 5000 does not
increase the bias significantly, whereas the bias strongly depends
on the `-range for HMCode, both in amplitude and in sign. This
can be explained by looking at Fig. 1: at scales larger than a few
h Mpc−1, HMCode systematically over-predicts the power with
respect to Halofit.

We find that in the Halofit case, the biases in the cos-
mological parameters approximately satisfy B(θ) . Bthr when
`max = 1500, while for HMCode the biases for almost all the
parameters exceed this threshold. When setting `max = 5000,
the parameters estimated in the HMCode case are all biased sig-
nificantly more than the acceptable threshold (except for ωb,0),

10 This threshold could in principle be relaxed slightly if one wants to
compromise for a lower variance. The investigation of such a trade-off
is, however, outside the scope of this paper.

and now also the Halofit case exhibits biases larger than Bthr
for h, Ωm,0 and σ8.

In order to correct for the significant mismatch in the non-
linear prescriptions, HMCode increases ωc,0, h, ln(1010As), and
wa, while at the same time the values for ns and w0 are
decreased. This tweaking of parameters increases the amplitude
of the linear matter power spectrum at scales 0.2 h Mpc−1 .
k . 2 h Mpc−1, where HMCode has a lack of power with
respect to Halofit+PKequal (see Fig. 1). As the scales around
0.2 h Mpc−1 are those that mainly contribute to the estimate of
σ8, this explains the large bias observed for this (derived) param-
eter, B(σ8) ∼ 5.

Overall, the ∆χ2 . 1 indicates that replacing Halofit +
PKequal with Halofit-only does not have a strong impact on
the results as it is well within the range of the statistical uncer-
tainties11. On the other hand, using HMCode leads to a signfi-
cantly higher ∆χ2, highlighting how the difference between the
two non-linear prescriptions cannot be fully compensated by
modifying the background quantities and the linear growth.

It is worth to noting that for both Halofit and HMCode the
parameters that are most significantly biased are H0 and σ8.
These are the parameters that currently show tension between
high- and low-redshift measurements (e.g., Riess et al. 2019;
Hildebrandt 2020; Spurio Mancini et al. 2019). Our results
imply that the Euclid cosmic shear measurements have the sta-
tistical power to resolve this, but only if we can accurately model
the non-linear scales.

6. Impact of baryons

Up to this point, we have limited our study to the impact
of changing the recipe that is used to compute the non-linear

11 We note that as we do not introduce noise in our data vector, the χ2

for the fiducial model vanishes.
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evolution of cold dark matter perturbations. On the small scales
of interest, however, baryons collapse into the dark matter haloes
to form stars, or are heated up, or even expelled into the inter-
galactic medium. These processes modify the matter distri-
bution, and it is therefore important to account for baryonic
physics when computing the matter power spectrum Pδδ(k, z)
(e.g., van Daalen et al. 2011; Casarini et al. 2012; Castro et al.
2018; Debackere et al. 2020). This can be done by multiplying
the non-linear power spectrum, Pδδ(k, z) – computed using one
of the non-linear prescriptions discussed above – with B(k, z),
a ‘baryon correction model’ (BCM) that captures the baryonic
effects (e.g., Semboloni et al. 2011), so that

Pc+b(k, z) = Pδδ(k, z)B(k, z), (21)

where Pc+b(k, z) is the corrected power spectrum. The function
B(k, z) can be estimated by fitting Eq. (21) to power spectra
obtained from hydrodynamical simulations that include baryons.

The challenge is that baryonic effects cannot (yet) be incor-
porated into cosmological simulations from first principles. The
different implementations that have been used, not surprisingly,
lead to a variety of possible BCM prescriptions. Here we con-
sider three recent proposals.

The first one presented in Harnois-Déraps et al. (2015, HD15
hereafter), is based on three scenarios of the OverWhelmingly
Large hydrodynamical simulations (Schaye et al. 2010). These
were used to calibrate the power spectra for z < 1.5. It is able to
reproduce the simulated results with an accuracy better than 2%
for scales k < 1 h Mpc−1. The functional form of B(k, z) is given
by

B(k, z) = 1 − AHD15(z) exp
{
[BHD15(z) x(k) −CHD15(z)]3

}
+ DHD15(z) x(k) exp [EHD15(z) x(k)] , (22)

with x(k) ≡ log10 (k/[h Mpc−1]) and XHD15(z) are polynomial
functions of redshift given in Harnois-Déraps et al. (2015).

As a second model, we consider the results obtained by
Schneider & Teyssier (2015, ST15 hereafter), who accounted for
the effects of baryons following a different approach. They start
from a suite of DM only N-body simulations and modify the
density field in such a way that it mimics the effects of a partic-
ular feedback recipe. They achieve this by explicitly modelling
the main constituents of the haloes, which are dark matter, hot
gas in hydrostatic equilibrium, ejected gas and stars. The model
parameters are set to resemble SZ and X - ray observations. The
resulting modifications to the power spectrum are shown to be
well reproduced by defining B(k, z) as

B(k, z) =
1 + (k/ks)2[
1 + k/kg(z)

]3G(z) +
[
1 + (k/ks)2

]
[1 − G(z)] , (23)

with kg(z) and G(z) auxiliary functions provided in
Schneider & Teyssier (2015). We set the model parameters
to the following fiducial values

{ks, log Mc, zb, ηb} = {67 h Mpc−1, 13.8, 2.3, 0.17} . (24)

We note that these are different from those of
Schneider & Teyssier (2015) since we have updated them
to the best fitting values obtained using the more recent
Horizon-AGN simulations (as done in Chisari et al. 2018).

Chisari et al. (2018, hereafter Ch18) found that the ST15
model performs well at low redshift, but its accuracy degrades

Table 5. FoM for w0 and wa parameters estimated using Euclid spec-
ifications for WL and the three BCM prescriptions compared to the
Halofit forecast with no baryons.

`max Halofit HD15 ST15 Ch18

1500 23 22 21 22
5000 44 37 41 41

for larger z. Fitting the Horizon-AGN simulations, they there-
fore proposed the third model we will consider here, with

B(k, z) =
[1 + k/ks(z)]2

[1 + k/ks(z)]1.39 , (25)

where ks is no longer a constant, but a function of z instead. The
detailed form is given in Chisari et al. (2018).

We can now quantify the impact of the choice of BCM on
the FoM by comparing it to the results for the dark-matter-only
forecasts. To this end, we use Halofit as our benchmark model
to compute Pδδ(k, z), which is consistent with what is done in the
quoted papers. Our results are presented in Table 5.

The more recent Ch18 model yields the smallest change in
the FoM, but the differences are never larger than ∼15%, even in
the scenario with the largest change, that is the HD15 model with
`max = 5000. This is the consequence of two opposite effects that
partially cancel each other out.

On the one hand, at k ∼ 3–13 h Mpc−1, gas ejection due to
AGN feedback suppresses the power spectrum, while for larger
k the effect of stars is to increase it. These very small scales
(k > 15 h Mpc−1) are, however, weighted down by the lens-
ing kernel so that the overall effect is to reduce the signal in
the Cεε(`), which tends to reduce the FoM. However, reducing
Cεε(`) also decreases the Gaussian covariance that is used to esti-
mate the uncertainty in the WL signal as the baryonic effects also
change the power spectra used to compute the covariance matrix.
As a result, the inverse covariance boosts the FoM. By moving
the FoM in opposite directions, these two effects roughly com-
pensate each other, so that the choice of the BCM model impacts
the constraining power of the WL signal on dark energy param-
eters only marginally. Qualitatively similar results are obtained
when we compare the marginalised uncertainties for individual
parameters. In general, we find that the parameter bounds are
less affected than the FoM, in accordance with the argument
given above.

Although the detailed implementation of the BCM does not
affect the constraining power much, it is nonetheless necessary
to investigate whether an incorrect choice biases the cosmologi-
cal parameter estimates. To this end, we adopt a procedure sim-
ilar to that of Sect. 5: We generate three simulated Euclid WL
datasets assuming that the BCM describing the true effect of
baryons is CH18, ST15, or HD15, respectively. We then anal-
yse these datasets, together with simulated Planck CMB data,
with theoretical predictions that neglect baryonic effects.

As done in the previous sections, we perform the MCMC
analysis for both `max values, 1500 (pessimitic) and 5000 (opti-
mistic), which allows us to assess the relevance of the BCM for
high multipoles. Our results are reported in Table 6 and shown
in Fig. 3. For `max = 1500 we notice that the bias exceeds
the threshold Bthr for all parameters except for ωb,0 and ωc,0 in
the CH18, while in ST15 also the bias on ln(1010As) is lower
than Bthr. HD15 instead only has this latter parameter within
our acceptable threshold, a result confirmed by the highest ∆χ2

among the three cases. The most significantly biased parameters
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Table 6. Mean values, marginalised 68% errors, and bias.

CH18 ST15 HD15

θ `max θ? σ B θ? σ B θ? σ B

ωb,0 1500 0.2246 0.00011 0.09 0.2245 0.00012 0.00 0.02249 0.00012 0.34
5000 0.02251 0.00012 0.51 0.02252 0.00012 0.64 0.02252 0.00012 0.56

ωc,0 1500 0.12061 0.00035 0.15 0.12059 0.00036 0.08 0.12044 0.00040 0.30
5000 0.12109 0.00036 1.49 0.12110 0.00037 1.46 0.12083 0.00036 0.76

h 1500 0.6833 0.0069 1.92 0.6799 0.0065 1.52 0.6819 0.0069 1.73
5000 0.6990 0.0041 7.15 0.7069 0.0041 9.11 0.6835 0.0045 2.99

ln(1010As) 1500 3.0571 0.0087 0.14 3.0590 0.0083 0.07 3.0578 0.0084 0.07
5000 3.0644 0.0083 0.73 3.0679 0.0087 1.10 3.0592 0.0083 0.10

ns 1500 0.9583 0.0024 0.68 0.9589 0.0025 0.42 0.9572 0.0025 1.11
5000 0.9489 0.0020 5.49 0.9488 0.0021 5.44 0.9503 0.0021 4.69

w0 1500 −1.040 0.078 1.79 −0.990 0.078 1.16 −1.063 0.092 1.77
5000 −1.220 0.039 8.22 −1.240 0.040 8.43 −1.142 0.053 4.55

wa 1500 0.43 0.19 1.68 0.30 0.20 0.98 0.51 0.23 1.78
5000 0.84 0.09 8.27 0.84 0.10 7.70 0.73 0.13 5.04

∆χ2 1500 6.35 3.94 11.54
5000 63.61 107.32 45.05

Notes. The values are obtained by fitting mock Planck and Euclid cosmic shear data with Halofit without baryonic corrections, to non-linear
corrections with either CH18, ST15 or HD15 methods non-linear corrections. The number of degrees of freedom in this case is 11 (the number of
free parameters), which enables one to compare ∆χ2 to the corresponding confidence interval.
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Fig. 3. One-dimensional posterior distributions, and 68% and 95% marginalised joint two-parameter contours for w0 and wa, and the parameters
h, ns and σ8 from the MCMC analysis. The results are obtained by neglecting baryon effects when fitting mock datasets created without baryonic
effects (green) and with baryonic effects (orange for CH18, blue for ST15 and purple for Hd15). The left panel refers to the `max = 1500 case,
while the right panel goes deeper into the non-linear regime, with `max = 5000.

in all three analysis are h, w0 and wa. Overall, however, all three
cases produce very similar results, as can be seen in the left panel
of Fig. 3.

For `max = 5000, we find that the biases are very large when
BCM effects are neglected; B(θ) > Bthr for all parameters, with
B & 5 for the dark energy parameters w0 and wa, B & 3 for h,
and B & 4.5 for ns. As expected, the biases in the power spectrum

amplitude, the baryon density, and the cold dark matter density
are the less significant because these are all well constrained by
the Planck measurements.

Ignoring BCM effects could lead to a false detection of a
time-varying dark energy equation of state. Moreover, with the
current tension between H0 measurements between CMB and
late-time probes, an unbiased measurement of H0 will also be
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crucial. Our results confirm earlier work (e.g., Semboloni et al.
2011) that correctly modelling the impact of baryonic feedback
on the power spectrum is essential for the analysis of Euclid data.

7. Conclusions

Forthcoming surveys of the large-scale structure will deliver
datasets of exquisite quality that will allow us to pursue what is
usually referred to as precision cosmology. To interpret correctly
these measurements, significant improvements in the underly-
ing theoretical predictions are called for: We need to ensure
that errors in the modelling of density fluctuations on non-
linear scales do not introduce biases in the inferred cosmological
parameters that are larger than the expected statistical uncer-
tainties. This is a particular concern for cosmic shear tomog-
raphy, given that one has to integrate the matter power spectrum
Pδδ(k, z) deep into the non-linear regime, where baryonic physics
complicates matters even further. Motivated by these concerns,
we have investigated how different popular prescriptions that
account for these effects influence both the accuracy and the
precision with which Euclid can infer cosmological parameters
using cosmic shear alone.

We used Fisher matrix forecasts to quantify the impact
of three different non-linear recipes on the dark energy FoM.
The recipes that we considered are the revised implementation
of Halofit, Halofit+PKequal, and the HMCode prescription.
These differ significantly from one another when the cosmolog-
ical parameters are left free to take values other than the fiducial
ones. As a consequence, the derivatives of Pδδ(k, z) that enter the
determination of the Fisher matrix are changed, leading to quite
discrepant FoM values. In particular, we find that the Halofit
case provides the higher FoM because of the different role played
by wa in the non-linear corrections. Although we have explic-
itly considered the case of Euclid, this result is generic for cos-
mic shear tomography analyses, although the size of this effect
will depend on the details of the survey of interest. Hence our
findings highlight the importance of choosing the most reliable
non-linear model, in order to compute realistic estimates of the
expected performance of a particular WL survey.

While it is important to quantify the precision, that is how
tight the constraints will be, it is perhaps even more important
to establish the accuracy of the results: We need to be confi-
dent that an incorrect choice of theoretical ingredients does not
introduce an unacceptably large bias, that is a deviation from the
(unknown) true value. Whether or not the bias is too large also
depends on the precision with which that parameter can be mea-
sured. We therefore define B = |θ − θfid|/σ, and adopt a theshold
of B < Bthr ≈ 0.1.

To study the accuracy with which cosmological parameters
can be determined, we created mock data with a given pre-
scription for non-linearities and/or baryon physics, and fitting
these with a different model. This allowed us to address the
issues of the choice of the non-linear recipe and the baryon cor-
rection model separately. To examine the impact of the recipe
used to compute the power spectra on non-linear scales, we cre-
ated a mock dataset using Halofit+PKequal that comprises
Euclid cosmic shear and Planck CMB data. We emphasise that
the choice of Halofit+PKequal is arbitrary as we do not know
which of the non-linear corrections better describes the true
small-scale evolution. We fitted these with Halofit or HMCode.

We find that B . Bthr if Halofit is used for `max = 1500,
while for `max = 5000, some cosmological parameters, namely
h, Ωm,0 and σ8, exceed the threshold. This is not surprising given
the similarities of the two models when one only looks at Pδδ

rather than at its derivatives. In contrast, comparing the theo-
retical spectra obtained using HMCode based corrections with the
assumed Halofit+PKequal fiducial leads to strong biases, with
almost all parameters already biased by more than Bthr if we
restrict the analysis to `max = 1500. Including very non-linear
scales (`max = 5000), we find that B > 1 for all parameters,
except for ωb,0, which is actually tightly constrained by Planck.
In particular, the estimate of w0 shifts towards its ΛCDM value
even if the mock data were created using {w0, wa} = {−0.9, 0.1}.
What is even more interesting is that the most biased parame-
ters are h (B = 3.02) and σ8 (B = 4.62); the values of both
of these are currently debated. The sensitivity of these parame-
ters to the adopted prescription for the non-linear power spec-
trum highlights the need for further improvements, which may
already be needed to correctly interpret current data.

It is also essential that the changes to the power spectrum
caused by baryon physics have to be taken into account. For a
fixed non-linear recipe and baryon correction model prescrip-
tion, severe biases are found when fitting the mock data with
the right non-linear correction, but not accounting for the pres-
ence of baryons, in line with earlier work (e.g., Semboloni et al.
2011). In the most constraining setting (`max = 5000), for all the
three cases we considered, we find significant biases for all the
cosmological parameters, except for {ωb,0, ln (1010As)}, which
are actually constrained by the Planck data rather than by cosmic
shear. While this work was near to completion, Schneider et al.
(2020) presented a similar analysis, but their method to account
for baryons is very different from the one we have adopted
here. They use instead a model for the baryonification of dark
matter only simulations to determine the matter power spec-
trum (Schneider et al. 2019). Notwithstanding these differences,
which make a straightforward comparison impossible, their con-
clusions are in agreement with what we found here.

As a final remark, we remind the reader that our results
refer to the case where cosmic shear is used as the only probe.
This is, however, only part of the information that future sur-
veys will provide. Indeed, the same data used to do cosmic
shear tomography (WL) can and will be used to compute the
photometric galaxy clustering (GCph) and to cross correlate the
shear and density fields (XC). As was shown in EC19 and fur-
ther investigated in Tutusaus et al. (2020), it is the joint use of
WL+GCph+XC that is needed to achieve ∼{1, 10}% errors on
{w0,wa}, rather than any single probe by itself. It is therefore
worth considering whether, and to which extent, the results we
have obtained here change if all the three probes are considered.

For instance, EC19 limited the GCph and XC to smaller mul-
tipoles compared to what was used for WL, reducing their sensi-
tivity to the small-scale corrections. This diminishes the impact
of errors in the prediction of Pδδ(k, z) in the large k regime,
but at the expense of larger statistical uncertainties. This moti-
vates extending our work to quantify the impact of modelling
the small-scale power spectra for the joint probes. Such a study,
which is beyond the scope of our initial exploration, would pro-
vide guidance on how to proceed in order to exploit the high-
quality data that stage IV surveys will provide.
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Appendix A: Comparison between scales and
multipole cuts

In the analyses performed in this paper, we considered two cases,
with different cuts in multipoles used; the optimistic `max = 5000
cut represents the situation in which data for all scales are
included in the analysis, while the `max = 1500 mimics the
removal of non-linear scales that could be performed in the data
analysis in order to reduce the impact of small-scale modelling.

However, our approach can be seen as a first approximation
as a constant multipole cut corresponds to different scales for dif-
ferent redshifts. In this subsection we investigate a less simplistic
approach, implementing a kmax scale cut, rather than a multipole
one, with the purpose of removing part of the non-linear scales.

We assume kmax = 0.25 h Mpc−1 and, using the Limber
approximation considered to express the Cεε(`) in Eq. (15), we
convert this cut in a maximum multipole for each redshift bin:

`max(zi) = kmaxr(zi) −
1
2
, (A.1)

where zi is the mean redshift of each redshift bin.
We apply this approach to our MCMC analysis, and com-

pare the results we obtain with those of the `max = 1500 case. In
Fig. A.1 we show the comparison in the results for the analysis
performed using Halofit (left panel) and HMCode (right panel).
In both cases we find that the kmax analysis leads to broader
constraints with respect to the `max case; this is due to the fact
that the chosen kmax translates into a much more agressive cut in
multipoles, especially at low redshift. Therefore, a significative
amount of information is lost with respect to the `max = 1500
case.

Concerning the bias found on cosmological parameters, B(θ)
does not change significantly in the Halofit analysis, while
for HMCode the biases are slightly enhanced with respect to the

`max = 1500 case, with w0, wa, h and σ8 now reaching B ≈ 1.
This apparent increase however is mostly due to the loss of
constraining power when the scale cut is implemented; as it
can be seen in Fig. A.1, the marginalised posterior distributions
for the cosmological parameters now exhibit non-Gaussian fea-
tures while Eq. (20) implicitly assumes Gaussian distributions.
In Fig. A.1 it is shown how the scale cut case produces contours
closer to the expected fiducial values, a result supported also by
the change in ∆χ2 moving from the `max to the scale cut, which
changes from 32 to 14 in the HMCode case.

We performed the same analysis at the Fisher matrix
level finding a still significant dependence of the results
on the adopted non-linear recipe. We indeed get FoM =
(2.93, 3.59, 1.59) for Halofit, HMCode, and Halofit +
PKequal, respectively. While the severe decrease in the FoM
is expected given that we are removing a large part of the data,
it is somewhat surprising to still find such a variety of values.
This is, however, a consequence of the integrated nature of the
WL Cεε

i j (`). To understand what is going on, we focus on the case
i = j = 5 giving `max ' 500. Because of the photo - z broaden-
ing of the lensing kernel, the integral giving C55(`max) gets con-
tributions from the redshift range (0.1, 2.6). Over this range, the
argument k`(z) of the matter power spectrum Pδδ(k, z) feeding the
integral is larger than kmax for z < 0.84 so that which non-linear
recipe is adopted still matters. Such an argument can be repeated
for all the bins combinations and the multipoles thus explaining
why the FoM is still dependent on the non-linear recipe even
with these very conservative scale cuts, a result in agreement
with what was discussed in Taylor et al. (2018a). Therefore, in
order to remove completely the dependence on the non-linear
description from the analysis, different approaches are needed,
for example using band powers rather than a Cεε(`) analysis
(Joachimi et al. 2021).
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Fig. A.1. One-dimensional posterior distributions, and 68% and 95% confidence level marginalised contours for the dark energy parameters (w0
and wa) and the parameters h and σ8. Here we compare results obtained with a multipole cut at `max = 1500 (green contours) with those related to
the analysis with the scales cut kmax = 0.25 h Mpc−1 (red contours). The mock data of Euclid cosmic shear assume Halofit+PKequal non-linear
corrections as reference, while the parameter estimation is performed with either HMCode (right panel), or Halofit (left panel). Black dashed
lines mark the fiducial model.
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Appendix B: MCMC results validation

The results of this paper have been obtained using both Fisher
matrix and MCMC codes. The Fisher analysis relies on one
of the codes used in EC19, which has passed through a care-
ful validation procedure that included intensive comparisons
between different Fisher matrix codes. Our MCMC analysis
relies on a public MontePython likelihood for Euclid WL
(Brinckmann & Lesgourgues 2019), adapted to the Euclid spec-
ifications of EC19. It has been further modified to include dif-
ferent models of baryonic feedback effects. This likelihood code
was first used in Sprenger et al. (2019). In contrast to the Fisher
code, it has not been validated against other codes. In this
Appendix, we therefore present a comparison between validated
Fisher forecasts and the MCMC ones.

In the Euclid-only case, our analysis reveals some deviations
that are attributed to the intrinsic limitation of any Fisher analysis,
due to the non-Gaussianity of the posterior distribution, as well as
some important parameter degeneracies. Nevertheless, the impact
on the forecasts becomes negligible when Planck constraints are
included in the analysis. In this case, we find that the forecasts
on cosmological parameters obtained with the Fisher and MCMC
methods agree very well. This therefore validates our MCMC
approach against the Fisher codes used in EC19.

The Euclid forecasts for WL in EC19 are accompanied by
a series of public Fisher matrices, corresponding to different
setups and cosmologies. In order to validate our MontePython
likelihood and MCMC analysis, we compared forecasts obtained
for both the pessimistic and optimistic setups, and using the same
cosmological parameters (in particular, Ωb,0 and Ωm,0 instead of
ωb and ωc). We performed these comparisons for Euclid only,
and in combination with Planck. In the latter case, we used the
mock Planck likelihood available in Montepython that accu-
rately reproduces the Planck limits on cosmological parameters.
We construct a covariance matrix from the MCMC chains in the
Planck-only case. Its inverse provides a Fisher matrix that can
be added to the validated Euclid Fisher matrices. We checked
that the Planck-only case constrains the standard cosmological
parameters well, with close-to-Gaussian two-dimensional poste-
rior distributions. This is a good indication that one can safely
use the Planck covariance matrix for the Fisher analysis. In con-
trast to the standard cosmological parameters, most of the con-
straining power for the dark energy parameters w0 and wa comes
from Euclid, not Planck. As a consequence, the correspond-
ing entries in the Planck Fisher matrix are not relevant and do
not significantly impact the Euclid + Planck forecasts for these
parameters.
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Fig. B.1. Fisher matrix vs MCMC fore-
casts, for Euclid WL only with `max = 1500.
In red, one-dimensional marginalised posterior
distributions, with two-dimensional 68% and
95% confidence level marginalised contours,
for varying cosmological parameters and fixed
DE and IA parameters. Black curves represent
the corresponding Fisher ellipses, from the val-
idated Fisher matrix of EC19.
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For Euclid only, the marginalised two-dimensional poste-
rior distributions and the Fisher contours obtained in the case
`max = 1500 for five varying cosmological parameters (Ωm,0,
Ωb,0, h, ns andσ8), with DE and IA parameters fixed to their fidu-
cial values, are shown in Fig. B.1. We find that the directions and
widths of all the Fisher ellipses are well recovered by the MCMC
approach. However, we also find two significant differences.
First, the MCMC contours in the plane (Ωb,0, h) display a banana
shape, leading to a more stringent constraint on Ωb,0 compared to
the Fisher method. In turn, this affects two-dimensional contours
between Ωb,0 and other parameters. Second, the marginalised
posterior distribution for h has a significant non-Gaussian shape,
falling more rapidly at lower values than at higher values. Con-
sequently, some of the contours are less extended on one side
compared to the Fisher ellipses. This also arises from the degen-
eracy between h and Ωb,0, with these parameters being poorly
constrained with Euclid WL only. These features cannot be
recovered by the Fisher analysis that relies on the assumption
that the posterior distribution is Gaussian, which is not the case
for strong variations of h and Ωb,0. Nonetheless, these results
show that both the MCMC and Fisher methods provide con-
sistent results, even if the agreement between them is limited
by the intrinsic limitation of the Fisher analysis. Adding dark

energy parameters in the analysis further degrades the agreement
between the Fisher and MCMC forecasts, for similar reasons.
Here, we have only shown the case in which w0 and wa remain
fixed, for a better illustration of the effect of parameter degen-
eracies on the two method comparison.

For Planck + Euclid WL, we find a very good agreement
between Fisher and MCMC forecasts, even when the DE and
IA parameters are varying. This is shown in Fig. B.2 represent-
ing the MCMC marginalised two-dimensional posterior distri-
butions, which fit well to all the Fisher ellipses. We find that
the differences in the forecasts are less than 10% for all the cos-
mological parameters. This therefore validates the approach we
have used throughout the paper. It also illustrates the importance
of adding CMB data to break parameter degeneracies. Compared
to the Euclid WL only case, the differences between the Fisher
and MCMC methods are suppressed. The few remaining differ-
ences can be either due to a limited convergence of the MCMC
chains, to uncertainties induced by the binning method, or to a
slightly non-Gaussian likelihood function for Planck-only that
induces small differences between MCMC posteriors and the
corresponding Planck Fisher ellipses extracted from the covari-
ance matrix of the MCMC chains. Similar results have been
obtained for the optimistic setup with `max = 5000.

0.3
0

0.3
3

m

0.045
0.060

re
io

0.5
0.5

w
a

1.3
1.0w

0

0.80

0.84

8

0.955

0.965

n s

0.645
0.670
0.695

h

0.046
0.050b

0.0
5

b

0.6
5

0.6
9

h
0.9

6

ns

0.8
0

0.8
4

8

1.2 0.8

w0

0.5 0.5

wa

0.0
6

reio

Planck+Euclid WL

mcmc
Fisher Matrix

Fig. B.2. Fisher matrix vs MCMC forecasts,
for Planck+Euclid WL, with `max = 1500.
In red, one-dimensional marginalised posterior
distributions, with two-dimensional 68% and
95% confidence level marginalised contours,
for varying cosmological parameters including
w0 and wa and IA parameters. Black curves
represent the corresponding Fisher ellipses,
from the validated Fisher matrix of EC19 com-
bined with a Planck-only Fisher matrix.
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