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ABSTRACT
Perturbation theory is an indispensable tool for studying the cosmic large-scale structure,
and establishing its limits is therefore of utmost importance. One crucial limitation of
perturbation theory is shell-crossing, which is the instance when cold-dark-matter trajectories
intersect for the first time. We investigate Lagrangian perturbation theory (LPT) at very high
orders in the vicinity of the first shell-crossing for random initial data in a realistic three-
dimensional Universe. For this, we have numerically implemented the all-order recursion
relations for the matter trajectories, from which the convergence of the LPT series at shell-
crossing is established. Convergence studies performed at large orders reveal the nature of
the convergence-limiting singularities. These singularities are not the well-known density
singularities at shell-crossing but occur at later times when LPT already ceased to provide
physically meaningful results.

Key words: cosmology: theory – large-scale structure of Universe – dark matter – dark en-
ergy.

1 IN T RO D U C T I O N

A given function �(D) that is analytic around D = 0 can be locally
represented by a convergent Taylor series. In physical applications,
the maximal value of the (temporal) variable D = D� for which
the series converges is frequently unknown, always limited by the
nearest singularity(ies) in the complex D-plane (sometimes at D� =
∞), and can be determined, e.g. by using d’Alembert’s ratio test.

Mutatis mutandis, the same applies for the cosmological grav-
itational dynamics of cold dark matter (CDM), at least when
formulated in Lagrangian coordinates. Indeed, CDM trajectories
can be represented by a convergent Taylor series (Zheligovsky &
Frisch 2014; Rampf, Villone & Frisch 2015), however so far only
rough estimates on the radius of convergence exist (Michaux et al.
2021). The framework for calculating the Taylor coefficients is
called Lagrangian perturbation theory (LPT), with pioneering work
done by e.g. Zel’dovich (1970), Buchert (1989), Buchert & Ehlers
(1993), Bouchet et al. (1992), Bouchet et al. (1995), and Ehlers &
Buchert (1997). None the less, without knowledge of the radius of
convergence, spanned by D�, it is unclear until which time these
solutions remain mathematically meaningful.

Furthermore, since standard LPT is based on a perfect pres-
sureless fluid description, its predictions are no longer physically
meaningful once matter trajectories have crossed for the first

� E-mail: cornelius.rampf@oca.eu
† Marie Skłodowska-Curie Fellow.

time. This instance is usually called shell-crossing (sc) and is
accompanied by (formally) infinite densities. Shell-crossing is well
understood for simplified initial conditions (Novikov 1970; Yano
et al. 2004; McQuinn & White 2016; Rampf & Frisch 2017;
Taruya & Colombi 2017; Pietroni 2018; Saga, Taruya & Colombi
2018; Rampf 2019; Rampf, Frisch & Hahn 2019), but not so for
realistic initial conditions.

Curiously, an infinite density at shell-crossing is not necessarily
a convergence-limiting singularity, since in Lagrangian coordinates
the density is not a dynamical field but merely a derived quantity. It
is the purpose of this work to investigate the rather distinct problems
of finding the radius of convergence of LPT, and of detecting the first
shell-crossing in a �CDM Universe with cosmological constant �.
We find that LPT converges fairly fast, precisely since the radius of
convergence surpasses the instance of the first shell-crossing.

2 SET-U P

We define the peculiar velocity of matter with v = a∂t x, where
x = r/a are comoving coordinates and a is the cosmic scale factor.
The basic equations that describe the evolution of matter elements
in a �CDM Universe are

d2x
dt2

+ 2H
dx
dt

= − 1

a2
∇xφ , ∇2

xφ = 4πGρ̄ a2 δ(x) , (1)

where H is the Hubble parameter, ρ̄ the mean matter density of the
Universe, and δ = (ρ − ρ̄)/ρ̄ the density contrast.
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It is standard to solve these equations by introducing the matter
trajectory q �→ x(q, t) = q + ψ(q, t) from initial position q to
current position x at time t, where ψ(q, t) is the Lagrangian
displacement field. Until shell-crossing, mass conservation is

δ(x(q, t)) = 1

J (x(q, t))
− 1 , (2)

where J = det(∇Lx) is called the Jacobian, and ∇L denotes a partial
derivative in Lagrangian space. The first shell-crossing is achieved
for J (qsc, tsc) ≡ 0 at the smallest possible time tsc and location qsc.
As it is well-known, at those locations, we have δ → ∞.

In standard LPT, equations (1 and 2) are solved with the following
Ansatz for the displacement ψ = x − q:

ψ(q, t) =
∞∑

n=1

ψ (n)(q) Dn , (3)

where D = D+(a) is the linear growth function in �CDM, which
we use here as a refined time variable. Taking divergence and curl
operations of (1) and matching the powers in Dn, one obtains all-
order recurrence relations for the spatial coefficients (Rampf 2012;
Zheligovsky & Frisch 2014; Matsubara 2015; Rampf et al. 2015)

∇L · ψ (n) = −ϕini
,ll δ

n
1 +

∑
0<s<n

(3 − n)/2 − s2 − (n − s)2

(n + 3/2) (n − 1)
μ

(s,n−s)
2

+
∑

n1+n2+n3=n

(3 − n)/2 − n2
1 − n2

2 − n2
3

(n + 3/2) (n − 1)
μ

(n1,n2,n3)
3 , (4a)

∇L × ψ (n) = 1
2

∑
0<s<n

n−2s
n

∇Lψ
(s)
k × ∇Lψ

(n−s)
k , (4b)

where ‘, l’ denotes a partial derivative with respect to compo-
nent ql, summation over repeated indices is assumed, and ϕini

is the initial gravitational potential provided at a = 0 (suitably
rescaled); see e.g. Michaux et al. (2021) for details how ϕini is ob-
tained. Furthermore, μ

(n1,n2)
2 = (1/2)[ψ (n1)

l,l ψ (n2)
m,m − ψ

(n1)
l,m ψ

(n2)
m,l ] and

μ
(n1,n2,n3)
3 = (1/6)εiklεjmnψ

(n1)
i,j ψ

(n2)
k,m ψ

(n3)
l,n are purely spatial kernels

of the Jacobian, and εijk the Levi–Cività symbol. Note that we ignore
sub-dominant, higher-order terms ∝ � in equations (4) since we are
here interested in observables at rather high redshifts (z � 5) where
they are vanishingly small; this could be rectified if needed.

As regards to the numerical implementation, the divergence and
curl relations (4) define a Helmholtz decomposition from which the
displacement field can be determined to arbitrary high precision in
perturbation theory. These recursion relations can be translated into
an efficient algorithm in Fourier space, which we have implemented
in the publicly available software package MUSIC2-MONOFONIC.1

The numerical code is parallelized (MPI + threads), handles
convolutions, and space derivatives by employing fast Fourier
transforms, and is fully de-aliased. Regarding the latter, this turns
out to be memory intensive due to the appearance of cubic terms
in equation (4a) for which the computational domain needs to be
temporarily extended by a factor twice as much as the usual Orszag’s
3/2 rule (Roberts 2011), requiring eight times the memory. In
addition, the ψ (n)’s need to be stored temporarily. Thus, the primary
limitation of generating the displacement is due to limited working
memory.

For the cosmological parameters, we set �m = 0.302, �b =
0.045, �� = 0.698, h = 0.703, σ 8 = 0.811, and ns = 0.961. If not
otherwise stated, we evaluate the fields at N = 2563 grid points with
box length Lbox = 125 Mpc h−1 for which kNy = 6.43h Mpc−1 is

1Available from https://bitbucket.org/ohahn/monofonic.

the Nyquist frequency. LPT results are sensitive to the shape of
the initial power spectrum, and to elucidate this, we show results
for standard CDM, as well as for a fictitious warm dark matter
(WDM) model with an unrealistically large mass mwdm = 0.25 keV
normalized with respect to σ 8, where we employ the Eisenstein &
Hu (1998) transfer functions. Details to the used algorithms and
numerical tests are provided in the Supplementary Material A.

3 SH E L L - C RO S S I N G A N D C O N V E R G E N C E

After having numerically implemented perturbative solutions of the
displacement to arbitrarily high order, it is natural to ask whether
equation (3) defines a convergent series? And if yes, what are the
criteria for its breakdown?

Regarding the former, Zheligovsky & Frisch (2014) and Rampf
et al. (2015) determined lower bounds on the radius of convergence,
implying that the LPT series is time-analytic and converges at
least until some finite time. However, these theoretical methods
cannot predict the actual radius of convergence for random initial
conditions, for which numerical tests should be employed – as we
do below.

Regarding the criteria for its breakdown, it is clear that, phys-
ically, equation (3) remains only meaningful as long as the flow
is (locally) in the single-stream regime. Indeed, once the first
shell-crossing has occurred, some regions will be occupied with
multiple fluid streams which gravitationally interact with each other.
However, standard LPT does not encapsulate the resulting non-
trivial accelerations in those multistreaming regions. Instead of
incorporating such effects, here we rather raise another, highly
nontrivial question: for �CDM initial conditions, is the actual
radius of convergence of the LPT series limited by the first instance
of shell-crossing?

To dissect the distinct problems, we first study the convergence
at the first shell-crossing. For this, we generate the displacement
coefficients at successively higher orders and search for the spatial
grid point location qsc, where the perturbatively truncated Jacobian

J {n} ≡ det

(
1 + ∇L

n∑
s=1

ψ (s)(q) Ds

)
(5)

vanishes for the first time (1 is the unit matrix). This search
determines z(n)

sc , which is the nth-order estimate of the redshift
of shell-crossing. Then we iterate to higher orders and monitor
the trend of z(n)

sc at successive orders. In all cases considered, we
find that z(n)

sc converges to a stable answer, correct to two decimal
places, starting at orders between n = 7 and 17. Henceforth, we call
the converged redshift and corresponding shell-crossing location
simply zsc and qsc, respectively. Here, the speed of convergence
depends mostly on the topology of the seeds that collapse first. See
Section 4 for further details, and the Supplementary Material B for
explicit case examples as well as sub-grid convergence studies.

Regarding the overall convergence of the Jacobian in the whole
spatial domain, in Fig. 1, we show the PDF resulting from taking
the difference of perturbatively truncated Jacobians �J {n}(q, zsc) =
J {n}(q, zsc) − J {n−1}(q, zsc) from all grid points at shell-crossing
redshift (here, zsc = 14.77 for our base CDM model), for various
perturbation orders n. As it is expected for a convergent series, we
observe that the truncated distribution of �J{n} approaches zero for
increasing orders n. Furthermore, the tails in those PDFs lose their
support for larger n’s: In the specific case shown in the figure, for n =
5, 10, and 15, the most extremal absolute deviations of �J{n} from 0
are respectively 0.081 44, 0.009 16, and 0.001 57. Actually, even
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Shell-crossing in �CDM L73

Figure 1. PDF of the residual �J {n}(q) = J {n} − J {n−1} for LPT orders
n = 5, 10, and 15 (blue, orange, and green lines), evaluated at the redshift
of first shell-crossing, which for the present CDM case is at zsc = 14.77.
This figure demonstrates that LPT displays convergent behaviour at all grid
locations.

for those rare events with extremal deviations, which we frequently
observed in void regions, LPT displays convergent behaviour until
zsc – and even slightly beyond (by employing the Domb–Sykes
method explained below). Thus, the Jacobian is converged to at
least two decimal places at 10 LPT at shell-crossing time – and not
just at qsc, but in the whole spatial domain.

We remark that the LPT convergence at zsc can also be observed
in Fourier space. For this, we determine the power spectrum PJ of
the perturbatively truncated Jacobian at various redshifts, where
〈J̃ (k1) J̃ (k2)〉 = (2π)3δ

(3)
D (k1 + k2) PJ (k1), with a tilde denoting

the Fourier transform, δ
(3)
D being the Dirac delta, and k = ||k||.

We find that, until the first shell-crossing, PJ is already converged
to sub per cent precision at 3 LPT (cf. Michaux et al. 2021); for
details, we refer to the Supplementary Material A (see in particular
Fig. A4).

Convergence is lost iff, for some later time and for sufficiently
high perturbation orders, different refinement levels of perturbative
truncations (e.g. for the Jacobian) begin to diverge. This is illustrated
in Fig. 2, where we show ratios of PJ at 15th versus 10th order
in LPT for various redshifts, for standard CDM (top panel) and
a WDM model (bottom panel). Evidently, the 10th and 15th-order
predictions for the Jacobian coincide to an extremely high precision
at shell-crossing. Even more, this level of precision is maintained
shortly after shell-crossing, denoted with z�, suggesting that the time
of mathematical convergence of LPT surpasses the time of shell-
crossing – a conclusion that we have reached for all considered
initial data and resolutions. Surpassing z�, by contrast, generally
leads to the loss of convergence which, shortly after z�, is rather
subtle, however amplifies and eventually affects all relevant Fourier
scales (see Figs A6 and A7 for late-time results). We remark that,
strictly speaking, J refers to the physical Jacobian only until shell-
crossing but not later; none the less, even at later times, J remains a
good indicator of the loss of mathematical convergence.

To pin down the convergence rigorously, we consider the LPT
series of the L2 norms of displacement coefficients

�(q, t) ≡
∞∑

n=1

∥∥ψ (n)(q)
∥∥ Dn , (6)

and perform numerically the ratio test

lim
n→∞

∥∥ψ (n)
∥∥/

∥∥ψ (n−1)
∥∥ = 1

D�

, (7)

Figure 2. Ratio between power spectra of the truncated Jacobian J{n}

for n = 15 versus n = 10 at various redshifts, for CDM (upper panel)
and a fictitious WDM model with mwdm = 0.25 keV (lower panel). At the
redshift of first shell-crossing (zsc), the ratios conform to unity to extremely
high precision (grey shading denotes 10−4 deviation). Only at much later
times, starting at z� which marks the estimated redshift of convergence (see
Fig. 3), the ratios begin to diverge, thereby revealing the loss of convergence.
Evidently, the loss of convergence is rather subtle at those high redshifts,
but gets vastly amplified later on (cf. Figs A6 and A7). Note that for results
z ≤ zsc, LPT does not incorporate multistreaming effects.

Figure 3. Domb–Sykes plot at first shell-crossing locations qsc for CDM
[WDM] up to n = 15 [n = 40], drawn at various resolutions. Shown are the
ratios of subsequent Taylor coefficients ‖ψ (n)‖/‖ψ (n−1)‖ over 1/n. For all
data, we set Lbox = 125 Mpc h−1. Lines denote the median obtained from
five realizations, shaded regions its 32 and 68 percentiles, while the dotted
lines are the respective linear extrapolations at large Taylor orders. The y
intercepts of those extrapolations reveal the numerical predictions of the
inverse of the radius of convergence (see Table 1).

where D� is the radius of convergence (when the limit exists). To do
so, we draw in Fig. 3 the Domb–Sykes plot (cf. Domb & Sykes 1957)
at the first shell-crossing location, averaged over five realizations.
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Table 1. Results from the linear extrapolation y = m (1/n) + b of Taylor
coefficients ‖ψ (n)‖/‖ψ (n−1)‖ at large orders n (dotted lines in Fig. 3). The
estimated singularity exponent is ρ = −1 − m/b, while the convergence
redshifts are obtained from z� = 1/a(D)|D=D� − 1, where D� = 1/b.
Finally, zsc denotes here the median of the first shell-crossing redshift,
and we have added the 32 and 68 percentiles as errors to z� and zsc.

Model N m b ρ z� zsc

CDM 1283 -11.16 6.95 0.61 7.90−0.21
−0.81 11.17+0.15

−0.27

CDM 2563 -12.30 8.90 0.38 10.40+0.21
−0.19 15.57+0.30

−0.80

CDM 5123 -19.90 12.74 0.56 15.31+0.55
+0.08 20.69+0.27

−0.26

WDM 1283 -9.72 5.40 0.80 5.91+0.16
−0.54 6.81+0.13

−0.07

WDM 2563 -11.26 5.80 0.94 6.42+0.06
−0.34 6.96+0.12

−0.12

Specifically, for given realization, we draw subsequent ratios of
coefficients ‖ψ (n)‖/‖ψ (n−1)‖ versus 1/n, and take the y-intercept
(‘n → ∞’) as the estimate for 1/D� (or, conversely, the redshift of
convergence z�). For WDM, we go up to 40th order in LPT while
for CDM we recommend not going beyond n = 15 for reasons
explained below. The ratios of displacement coefficients settle into
a linear behaviour at sufficient high orders, which justifies using a
linear extrapolation to the y-intercept (denoted by dotted lines). In
Table 1, we show the Medians for z� and zsc together with their 32
and 68 percentile variances (for z� the variances result from linear
extrapolations in the Domb–Sykes plot). For zsc, these variances
span up the window when shell-crossing is most likely to occur.

Evidently, the value for z� is only mildly resolution dependent for
WDM, while for CDM the values of z� differ substantially. This is
due to the non-compact nature of the CDM spectrum, which leads
to an intrinsic ultraviolet (UV) dependence at large k. None the less,
we expect that this UV dependence should become smaller when
the Nyquist frequency is appropriately increased. We leave such
computationally challenging avenues for future work.

We note that the linear asymptotic behaviour of Taylor ratios is
usually obtained also for single realizations. Only in rare cases,
we observe a mild oscillating behaviour superposed on a linear
regression: these oscillations appear to arise due to overlapping
or adjacent singularities; see Supplementary Material C for details.
None the less, even in such cases the ratios of Taylor coefficients still
converge to a single point, and thus allow the accurate determination
of z� – but collude identifying the nature of the singularities.

For the cases when the extrapolation of the Domb–Sykes plot
is linear at large orders n, we can assume that the underlying
singularities have a pole-like structure with local behaviour

� ∝ (D − D�) ρ , (8)

with ρ being a non-integer singularity exponent (if ρ is positive,
then derivatives of � blow up). Indeed, as shown by Domb & Sykes
(1957), and van Dyke (1974), for such singularities the ratio

‖ψ (n)‖/‖ψ (n−1)‖ = 1

D�

[
1 − (1 + ρ)

1

n

]
(9)

is exactly linear for large n, which furthermore reveals the large-
n asymptotic behaviour ‖ψ (n)‖  γ n−ρ−1 exp(βn), with β and γ

being fitting coefficients (Podvigina, Zheligovsky & Frisch 2016).
See Table 1 for the estimated values of ρ, and the Supplementary
Material D for further details. We find that for most cases consid-
ered, we have 0 < ρ � 1 (and rarely ρ > 1), thus indicating that
the first-time derivative of the displacement (the velocity) blows up
at D�. We stress again that D� is a critical time, which for �CDM
appears to be always later than the shell-crossing time, i.e. D� > Dsc.

Of course, cases when the velocity blows up at D� are not physical
and just reflect the strength of the underlying singular problem.

Strictly speaking, investigating the singularities in LPT should be
done on a case-by-case basis for given random seed, as the outcome
of such analysis can depend crucially on the given topology at
hand. For example, we find that the singularity exponent is closer to
zero if the local initial overdensity has quasi-spherical shape (where
LPT converges relatively slowly, cf. Saga et al. 2018; Rampf 2019),
while in that case z� is just shortly behind zsc. By contrast, for initial
overdensities that are rather close to being quasi-one-dimensional
(where LPT converges fast, see Rampf & Frisch 2017), ρ is larger
while z� � zsc; see the Supplementary Material C for specific case
examples. None the less, the first shell-crossing usually arises from
rather quasi-spherical initial overdensities (see the next section).

Finally, let us comment on why in the CDM case we include
‘only’ 15th-order effects, while we go up to 40th order for WDM.
The ‖ψ (n)(q)‖’s grow exponentially for large orders n at shell-
crossing locations, and thus lead to sharp peaks with exponentially
increasing height at increasing perturbation order. Since the numer-
ical computations of LPT coefficients involves Fourier transforms,
those peaks in ‖ψ (n)(q)‖ can lead to wave-like features in real
space due to the Gibbs phenomenon, thereby obscuring the LPT
coefficients with unphysical artefacts at very large Taylor orders.
These peaks are the sharpest for CDM spectra while they are
tamer for WDM spectra, basically since the sharpness of those
peaks is related to the information content of the initial density
spectra at small spatial scales, where WDM spectra have less
support. We find that the Domb–Sykes plot for CDM is unaffected
by the Gibbs phenomenon only for n � 15 (see Supplementary
Material C for details), while for WDM we could not detect any
such limitation. The connection between Fourier series convergence
and LPT convergence in these cases could be an interesting aspect
of future investigations.

4 W HICH SEEDS/SHAPES COLLAPSE FIRST?

As a last point, we investigate which seeds shell-cross first. In that
context, it is useful to consider the Jacobian matrix J ≡ 1 + ∇Lψ

to a given perturbative truncation, and diagonalize its symmetric
part into the coordinate system along the fundamental axes. The
symmetrized Jacobian, denoted with Js, can then be written in terms
of the three real eigenvalues λ1,2,3 = λ1,2,3(q, t) as

J s = | diag(λ1, λ2, λ3) | , (10)

where we impose the ordering λ1 ≤ λ2 ≤ λ3. Locally, shell-crossing
is reached when λ1 → 0, while instantaneous multilateral compres-
sions with λ1, 2 → 0, or even λ1, 2, 3 → 0, are essentially excluded for
random initial conditions (Doroshkevich 1970; Zel’dovich 1970).
Note that the above λi’s relate to the eigenvalues of the so-called
deformation tensor ∇Lψ , dubbed λi,d, according to λi,d = λi − 1.

In Fig. 4, we show the resulting distribution of λi’s at the initial
redshift zini = 100 (dashed lines) and shell-crossing redshift zsc

(solid lines), obtained for 65 standard �CDM random realizations
of first shell-crossing locations. To be specific, for a given realiza-
tion, we search for the first shell-crossing location and evaluate the
eigenvalues at those Lagrangian positions at redshift zsc to fifth-
order precision, and to second order at zini = 100. Note that zsc

varies slightly, depending on the seed, while we keep zini fixed.
A prominent feature in Fig. 4 is the distribution of λ1 at zsc, which

is, as expected, essentially a delta peak at the origin. The other two
eigenvalues have medians of 0.41 and 0.65, respectively, indicating
that the first collapsing objects have fairly ellipsoidal shape initially.
Another noticeable but subtle feature is the appearance of a smaller
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Shell-crossing in �CDM L75

Figure 4. Conditional distribution of eigenvalues of J from locations q =
qsc that shell-cross first, obtained from 65 standard-�CDM realizations.
Shown are the initial distributions at zini = 100 (dashed lines; amplitudes
scale according to right y-axis) and at shell-crossing zsc (solid lines; left
y-axis).

peak in λ2 around 0.8 at zsc (that actually traces back to another
small peak in λ2  0.96 at zini), which implies that quasi one-
dimensional collapse rarely is the source of the first shell-crossing.
The initial distributions of the λi(qsc, zini)’s turn out to be already
fairly extreme, with at least 3σ deviations of λ2,3(qsc, zini) compared
to λ2,3(q, zini) from all grid points, and at least 5σ for λ1.

Finally, we have also investigated the ellipticity e = (λ1,d −
λ3,d)/2

∑
λi,d and prolateness p = (λ1,d − 2λ2,d + λ3,d)/2

∑
λi,d

of the collapsing seeds in full non-linearity (see Supplementary
Material E for linear predictions). For the first shell-crossing
locations, we find that both e and p change hardly between zini

and zsc, but with a slight tendency in becoming less oblate/prolate
at late times. This tendency is also reflected by a slight shift of their
medians of e = 0.171 and p = 0.054 at zini, and e = 0.168 and
p = 0.042 at zsc. Further details are provided in the Supplementary
Material E.

We remark that the present avenue is fairly distinct from the
ones of e.g. Doroshkevich (1970), Bardeen et al. (1986), Sheth, and
Mo & Tormen (2001), while those works considered the statistics of
peaks by means of linear theory or approximative collapse models,
here we investigate the matter collapse on a deterministic and fully
non-linear level for various seeds, from which we are able to deduct
what the (extreme) statistics of those shell-crossing regions are.

5 C O N C L U D I N G R E M A R K S

We have shown that LPT can be used to rigorously investigate
the first shell-crossing in a �CDM Universe. We find that the
LPT series for the displacement field converges until shell-crossing
and, accidentally, even shortly after. Actually, the latter statement
guarantees a rather fast convergence until shell-crossing, thereby
allowing to determine time and location of the first shell-crossing
efficiently and to high accuracy.

The precise time of first shell-crossing varies with chosen
numerical resolution and spectrum of the initial data. In fact, fixing
the mesh spacing fixes also an effective fluid description. Below
the grid scale, this effective fluid is blind to large-k fluctuations in
the spectrum of primordial density fluctuations. Whether such UV
effects should be included in cosmic fluid descriptions (and in N-
body simulations) is subject to debate (e.g. Taruya, Nishimichi &
Jeong 2018; Chen & Pietroni 2020) and should be assessed in
forthcoming work.

Our results can be applied to generate accurate initial conditions
for numerical N-body simulations, possibly even for simulations
with multiple fluids (cf. Hahn, Rampf & Uhlemann 2020; Rampf,
Uhlemann & Hahn 2020). Higher-order initial conditions open up
the portal for late-time initializations, thereby suppressing strongly
discretization errors that affect such simulations at earlier times (see
e.g. Michaux et al. 2021). In the long term, our methods assist in
closing the gap between theoretical and numerical methods for the
cosmic large-scale structure. Possible future directions include the
study of LPT against numerical simulation techniques, as well as
investigating the fully non-linear formation process of primordial
dark-matter haloes within the tidal gravitational field.
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