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ABSTRACT
The detection of the optical transient AT2017gfo proved that binary neutron star mergers are progenitors of kilonovae (KNe).
Using a combination of numerical-relativity and radiative-transfer simulations, the community has developed sophisticated
models for these transients for a wide portion of the expected parameter space. Using these simulations and surrogate models
made from them, it has been possible to perform Bayesian inference of the observed signals to infer properties of the ejected
matter. It has been pointed out that combining inclination constraints derived from the KN with gravitational-wave measurements
increases the accuracy with which binary parameters can be estimated, in particular breaking the distance-inclination degeneracy
from gravitational wave inference. To avoid bias from the unknown ejecta geometry, constraints on the inclination angle for
AT2017gfo should be insensitive to the employed models. In this work, we compare different assumptions about the ejecta and
radiative reprocesses used by the community and we investigate their impact on the parameter inference. While most inferred
parameters agree, we find disagreement between posteriors for the inclination angle for different geometries that have been
used in the current literature. According to our study, the inclusion of reprocessing of the photons between different ejecta
types improves the modeling fits to AT2017gfo and, in some cases, affects the inferred constraints. Our study motivates the
inclusion of large ∼ 1-mag uncertainties in the KN models employed for Bayesian analysis to capture yet unknown systematics,
especially when inferring inclination angles, although smaller uncertainties seem appropriate to capture model systematics for
other intrinsic parameters. We can use this method to impose soft constraints on the ejecta geometry of the KN AT2017gfo.

Key words: gravitational waves – neutron star mergers – radiative transfer – methods: numerical – stars: neutron.

1 IN T RO D U C T I O N

Multimessenger astronomy is driven by the idea that the observation
of a single system with multiple messengers yields a more complete
picture of the astrophysical processes than individual observational
channels could provide. Indeed, the first combined detection of grav-
itational waves (GWs), GW170817 (Abbott et al. 2017), and electro-
magnetic (EM) signals, AT2017gfo and GRB170817A (Alexander
et al. 2017; Chornock et al. 2017; Cowperthwaite et al. 2017; Drout
et al. 2017; Evans et al. 2017; Haggard et al. 2017; Hallinan et al.
2017; Kasliwal et al. 2017; Kilpatrick et al. 2017; Margutti et al.
2017; McCully et al. 2017; Nicholl et al. 2017; Pian et al. 2017;
Shappee et al. 2017; Smartt et al. 2017; Troja et al. 2017; Utsumi
et al. 2017), from the merger of two neutron stars has been a proof
of the concept that a multi-messenger approach can be successful

� E-mail: heinzelj@carleton.edu (JH); cough052@umn.edu (MWC)

to constrain the supranuclear equation of state (EOS) of matter (e.g.
Bauswein et al. 2017; Annala et al. 2018; Coughlin et al. 2018, 2019;
Most et al. 2018; Radice et al. 2018a; Capano et al. 2019; Radice &
Dai 2019; Dietrich et al. 2020) or to measure the expansion rate of the
Universe (e.g. Abbott et al. 2017; Hotokezaka et al. 2019; Coughlin
et al. 2020a,b; Dietrich et al. 2020). It has, however, been pointed out
that even small systematic uncertainties can bias the Hubble constant
constraint significantly (Chen 2020).

Kilonovae (KNe; Lattimer & Schramm 1974; Li & Paczynski
1998; Metzger et al. 2010; Roberts et al. 2011; Kasen et al. 2017)
transients in the infrared, optical, and ultraviolet bands are triggered
by the radioactive decay of r-process elements produced in neutron-
rich ejecta released during and after the merger process. In general,
not all binary systems are expected to create KNe, e.g. binary
neutron star (BNS) systems with too high total masses (Bauswein,
Baumgarte & Janka 2013; Agathos et al. 2019; Köppel, Bovard &
Rezzolla 2019; Bauswein et al. 2020) or black hole-neutron star
(BHNS) systems with sufficiently large mass ratio, aligned black
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hole spins, or compact neutron stars (Pannarale, Tonita & Rezzolla
2011; Foucart 2012; Kawaguchi et al. 2016a; Foucart, Hinderer &
Nissanke 2018; Krüger & Foucart 2020).

In the case of AT2017gfo, the KN signal started out as very blue,
before reddening on a time-scale of a few hours to days. While
there are still a few possible scenarios to explain the initial, early
emission signature (Arcavi 2018), the red component is likely to
be characteristic for almost all KNe originating from the merger of
two neutron stars as well as from a BHNS merger (for a review, see
Metzger 2020 and references therein). Continuous efforts within the
theoretical astrophysics community over the last years allowed the
observed bolometric and photometric data to be connected with the-
oretical KN models based on full radiative-transfer simulations (e.g.
Tanaka & Hotokezaka 2013; Kawaguchi et al. 2016b; Kasen et al.
2017; Burns et al. 2018; Bulla 2019) or analytical/semi-analytical
KN models (e.g. Dietrich & Ujevic 2017; Perego, Radice & Bernuzzi
2017; Kawaguchi, Shibata & Tanaka 2018).

Although KNe are likely observable from all directions and not
beamed as short gamma-ray bursts, numerical relativity simula-
tions (e.g. Hotokezaka et al. 2013; Dietrich & Ujevic 2017; Radice
et al. 2018b) indicate that the ejected matter in a neutron-star merger
is not perfectly spherical. Thus, not only does the photon emission
show a clear angular dependence, but the entire ejecta geometry
can as well. Broadly speaking, there are at least two geometric
sections of the KN: First, the material ejected around the moment
of merger via torque and shocks, called the dynamical ejecta, with
light r-process material primarily distributed in the polar regions and
heavier tidal r-process material concentrated towards the equatorial
plane, (e.g. Wanajo et al. 2014; Kawaguchi et al. 2016a; Dietrich &
Ujevic 2017). The second section is ejected after the merger by
winds produced from the remnant system due to neutrino emission,
magnetic fields, or secular effects that drive further ejection (e.g.
Dessart et al. 2009; Perego et al. 2014; Fernández et al. 2015; Kasen,
Fernandez & Metzger 2015; Kiuchi et al. 2015; Martin et al. 2015;
Foucart et al. 2016; Siegel & Metzger 2017; Radice et al. 2018b).
This component is called the disc wind, and is often approximated
as being free of heavier r-process material.

KNe are often simulated by radiative transfer algorithms, which
simulate emission and propagation of radiation in r-process material.
Since the distribution of radioactive material is directly related to the
distribution of mass, assumptions must be made about the underlying
geometry and behaviour of the ejected material. These geometries are
a critical assumption, as they directly lead to inference on parameters
such as the inclination or mass of the ejected material, which then
are tied back to progenitor parameters.

In this paper, we will use several different KN geometries and
the radiative transfer code POSSIS developed by Bulla (2019) to
understand how inclination constraints on GW170817/AT2017gfo
depend on the underlying geometry assumed, extending the work
of Dhawan et al. (2019) and complementary to the work of Kóbori,
Bagoly & Balázs (2020). In Section 2, we discuss the creation of
surrogate models based on KN geometries inspired by Kasen et al.
(2017), Wollaeger et al. (2018), and Bulla (2019). These surrogate
models are direct extensions of Coughlin et al. (2018) and provide
a phenomenological description of inclination effects. In Section 3,
we compare the surrogate models against each other, in particular
investigating possible systematic biases and uncertainties and explore
how each of the surrogate models derived in Section 2 provide
constraints on the inclination angle of GW170817/AT2017gfo,
the total ejected mass, and the dynamical-to-disc wind mass ra-
tio. We conclude in Section 4 and outline avenues for future
work.

2 K N MO D E L S A N D S U R RO G AT E
C O N S T RU C T I O N

In the following, we explore three different models that simulate mul-
tiple viewing-angle-dependent components. It has become common
to simulate ejecta separately, then add the light curves in flux space
after simulation (e.g. Kasen et al. 2017; Villar et al. 2017; Coughlin
et al. 2018), which neglects any sort of reprocessing between multiple
components, when radiation from one component is absorbed and
re-radiated at a different wavelength by the other component. We
also examine how accounting for this reprocessing can change the
light-curve fitting to AT2017gfo and the inferred posteriors on the
system parameters (cf. Kawaguchi et al. 2018).

All models that we investigate are axially symmetric, following the
precedent of e.g. Kasen et al. (2017), Wollaeger et al. (2018), Bulla
(2019), Kawaguchi, Shibata & Tanaka (2020), and Korobkin et al.
(2020). Thus, our radiative transfer simulations give us inclination-
dependent (but azimuthal independent) light curves, where we
compute light curves for 11 different inclination angles θobs using a
uniform spacing in cos θobs.

2.1 POSSIS

Bulla (2019) developed a radiative transfer code POSSIS, in
which initially a spherical KN geometry had been employed with
a lanthanide-rich component near the equatorial region and a
lanthanide-free component towards the poles; see the left-hand panel
of Fig. 1, labelled SSCr. Bound–bound opacities are treated as
either ‘rich’ (electron fraction Ye ≤ 0.25) or ‘free’ (Ye > 0.25) in
POSSIS, with their wavelength- and time-dependence chosen to
mimic realistic opacities based on atomic calculations from Tanaka
et al. (2018).
POSSIS creates photon packets based on the distribution of

radioactive material and emits them isotropically. The frequencies of
the photon packets produced are sampled from the thermal emissivity
at the precise location, and photon packet energy is determined from
nuclear heating rates in Korobkin et al. (2012).
POSSIS propagates the photon packets through the ejecta (as-

sumed to expand homologously) until they interact with matter. It
then probabilistically decides whether this interaction is governed by
electron scattering, or by a bound–bound, bound–free, or free–free
opacity. In electron scattering, the frequency is unchanged (in the
interaction frame) and the new direction is sampled from a scattering
probability distribution (see equation 12 of Bulla, Sim & Kromer
2015). If a bound–bound transition occurs, Bulla (2019) uses the
two-level atom approach (TLA) of Kasen, Thomas & Nugent (2006),
where the photon packet is re-emitted 10 per cent of the time with the
same frequency while 90 per cent of the time with a new frequency
sampled from the location’s thermal emissivity. The TLA approach
is meant to model the complex behaviour of re-emitting a photon
through many different possible line transitions (for more detailed
investigation on the assumptions inherent to the TLA approach, see
equation 7 and section 3.6 of Kasen et al. 2006). Bound–free and
free–free processes are subdominant at the relevant wavelengths for
KNe (Tanaka et al. 2018) and are thus typically negligible.

We used an improved version of POSSIS, which instead of taking
a fixed value for the thermalization efficiency (εth = 0.5), now takes
its temporal evolution into account, with values approximated by
Barnes et al. (2016). Furthermore, temperature is no longer a free
parameter, and is estimated self-consistently from the mean intensity
of the radiation (Carracedo et al. 2020; Coughlin et al. 2020b)
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Analyses of KN transients 3059

Figure 1. Depictions of the ejecta geometries of the SSCr model in the left-hand panel, the ElDC model in the middle panel, and the TorS model in the
right-hand panel. Blue colours refer to lanthanide-free regions and red refers to lanthanide-rich regions. On the left-hand panel, Coughlin et al. (2020b) defined
their half-opening angle for the lanthanide-rich region � to be analogous to 90◦ − q0, where q0 is the half-opening angle for the lanthanide-free conal region as
defined by Kasen et al. (2017); we use the same definitions for the SSCr model. In the middle panel, we show Kasen et al. (2017)’s ejecta geometries; Kasen
et al. (2017) simulated aspect ratios a of a = 2 or a = 4, with only the polar dynamical ejecta, and the half-opening angle of the polar dynamical ejecta fixed to
be q0 = 45◦. We show the ElDC geometry for these parameters. On the right-hand panel, Wollaeger et al. (2018) simulated the tidal dynamical ejecta according
to direct numerical relativity simulations; in our simulations (the TorS model), we adopted an approximation of their technique.

2.2 Spherical segment-spherical cap (SSCr) geometry

Due to the relatively fast analysis speeds – a typical simulation takes
a few hours to a day on a single core – Coughlin et al. (2020b)
were able to use POSSIS to simulate their KN model over a full
grid of two parameter values for their geometry (Fig. 1, left-hand
panel) – half-opening angle �, and total ejecta mass Mej. We use
the 50 simulations from Coughlin et al. (2020b), and call it the
SSCr reprocessing geometry, based on its qualitative shape (see
Fig. 1). Since reprocessing, i.e. when radiation from one ejecta
component is absorbed by the other and re-radiated at a different
wavelength, between the two components was naturally incorporated
in the simulations from Coughlin et al. (2020b), we will refer to
this geometry as SSCr to be consistent with the other KN models
described below.

The density profile used by the SSCr model is spherically sym-
metric and follows an inverse power-law profile given by

ρ(r) ∝ r−β, (1)

where β = 3 is taken to match hydrodynamical simulations (Ho-
tokezaka et al. 2013; Tanaka & Hotokezaka 2013). Explicitly then,
there is no difference between the treatment of density in the
lanthanide-rich component versus the lanthanide-free component
(Bulla 2019).

2.3 Ellipsoidal-double cone (ElDC) geometry

Kasen et al. (2017) explored non-spherical geometries by using a two-
dimensional axially symmetric geometry, with separate components
for the polar dynamical ejecta and the disc wind ejecta. For the
polar ejecta, they used an ad hoc, broken power-law density profile
describing the distribution of the ejected material (with mass Mej, 1)
over varying radii and velocities, declining gradually in the interior
but dropping steeply in the outer layers:

ρpol(r, θobs, t) = ρ(r, t)

[
1 +

(
f (θobs)

f0

)10
]−1

, (2)

where ρpol(r, θobs, t) is the density profile we used for the polar ejecta,
ρ(r, t) is the normalized spherical density profile, shown in equation
(4) of Kasen et al. (2017), f(θ ) = 1 − cos (θ ), and f0 = 1 − cos (q0).
The idea is that the formula concentrates the ejecta in the polar cone
with half-opening angle q0.

For the disc wind, Kasen et al. (2017) used an oblate ellipsoid
density profile, which stretched the axes in the equatorial plane by
the factor a,

ρdw(x, y, z, t) = ρ(rell, t); rell =
√

z2 + (
x2 + y2

)
/a2, (3)

with ρ(r, t) again as the normalized spherical density profile in
equation (4) in Kasen et al. (2017), x, y, z, t are the ordinary
coordinates in Cartesian spacetime, and rell defines the ellipsoidal
isodensity surfaces (as in equations 25–26 of Bulla et al. 2015). We
then re-normalize the total mass in the disc wind Mej, 2, as stretching
the axes in this way without changing the total mass. The disc wind
ellipsoid model parameters simulated in that work were fixed to an
ejecta mass Mej, 2 = 0.04 M�, an ejecta velocity vej = 0.1c, and a
lanthanide fraction Xlan = 10−2. The axial ratio and opening angle
assumed in their work were a = 4 and q0 = 45◦, respectively.

In our analysis, we extended these two geometry grids for the
disc wind and polar dynamical ejecta formulations, and simulated
a grid of geometries with the four parameters Mej, 1, Mej, 2, q0, and
a, outlined in Table 1. We refer to this model as the EIDC (ElDC)
model. We first simulate the disc wind and dynamical geometries
separately, i.e. we have a ‘dynamical’ simulation set and a ‘disc
wind’ simulation set. As done in e.g. Kasen et al. (2017), Villar et al.
(2017), and Coughlin et al. (2018), we add the light curves together,
first converting to flux space, and then back into magnitudes.

Given the speed of POSSIS, it is possible to combine the geome-
tries to investigate ‘reprocessing’ effects, when radiation escaping
from one ejecta component is absorbed by the other and re-radiated
at the same or at a different frequency (see Section 2.1). To do so,
we combined these two geometries together into a single geometry
by superimposing each disc wind with each dynamical geometry.
Rather than superimpose the ejecta directly and mix the lanthanide
fractions, we take a different approach. Because of how POSSIS
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3060 J. Heinzel

Table 1. Summary of the parameters in the ElDC geometry simulated in
POSSIS.

Ejecta type Parameter Parameter values

Dynamical Mej, 1 [0.001, 0.01, 0.025, 0.04,
0.055, 0.07, 0.085, 0.1] M�

Dynamical q0 [15◦, 30◦, 45◦, 60◦, 75◦]
Disc wind Mej, 2 [0.001, 0.01, 0.025, 0.04,

0.055, 0.07, 0.085, 0.1] M�
Disc wind a [1, 2, 4, 6, 8]

Notes. Mej, 1 refers to the total mass in the lanthanide-free region, q refers to
the half-opening angle of the lanthanide-free region, Mej, 2 refers to the total
mass in the lanthanide-rich region, and a refers to the axial ratio between
the equatorial radius and the height of the lanthanide-rich disc wind. See the
middle panel of Fig. 1 for a depiction of q0 and a in the ElDC model.

treats lanthanide opacities, we needed to ensure directly that the
masses allocated to each component were what we desired. For
each cell, the lanthanide fraction is taken to be lanthanide-rich if the
density contribution from the dynamical component is higher than the
contribution from the disc wind, and lanthanide-free if the opposite
is true. The total mass of each ejecta is then rescaled to match the
desired mass in each ejecta. Since this may mean some cells identified
as lanthanide-free should become lanthanide-rich (or vice-versa), the
above process is done iteratively until a stable point is found, that
is, when there are no more cells that switch from lanthanide-free to
lanthanide-rich. If the process gets stuck in a meta-stable loop, the
process is terminated (usually only a few cells are affected in this
case). We refer to the simulation set with reprocessing as the EIDC
reprocessing (ElDCr) model.

It is important to note that in the typical method, where ejecta
geometries are simulated separately, only a grid of 8 × 5 + 8 × 5 = 80
simulations (see Table 1; 8 Mej, 1 parameter values, 5 q0 parameter
values combines to 40 dynamical simulations, and 8 Mej, 2 parameter
values, 5 a parameter values combines to 40 disc wind simulations,
so 80 total) were needed to cover necessary parameter space. When
multiple geometries are reprocessed, 8 × 5 × 8 × 5 = 1600
simulations were necessary. So this is a case where computational
efficiency is sacrificed for modeling accuracy.

2.4 Toroidal-spherical (TorS) geometry

We also employ POSSIS to simulate geometries similar to those
presented in Wollaeger et al. (2018). To match Wollaeger et al.
(2018), we define our geometry in terms of velocity space, but since
the ejecta is assumed to expand homologously, the transformation
from velocity space to ordinary space is simply r = vt. In other
words, defining the ejecta geometry in velocity space is equivalent
to defining it in ordinary space, and the geometry in velocity space
is identical to the geometry in ordinary position space. Wollaeger
et al. (2018) also used a two-component model, simulating only
tidal dynamical ejecta directly, using long-term numerical relativity
(NR) simulations directly from Rosswog et al. (2014), treated as
lanthanide-rich in composition. For the second component, they
simulated a spherical disc wind treated as lanthanide-poor (so
lanthanide-free in our simulations), with the density profile

ρdw(v) = ρ0

(
1 − v2

v2
dw

)3

, (4)

where ρ0 is a coefficient proportional to the total ejecta mass, and v

is the independent variable velocity analogous to r in Sections 2.2

Figure 2. A comparison between the axially averaged Rosswog et al. (2014)
models used in Wollaeger et al. (2018) (top panels), the χ2 minimization
of equation (5) with respect to all five parameters: ρ0, vtor, a, σ , and vdyn

(middle panels), and the χ2 minimization of equation (5) with vtor = 0.059c
+ vdyn and σ = vdyn/3.5 fixed (bottom panels). From the left- to right-hand
side are the simulations A, B, C, and D from Rosswog et al. (2014).

and 2.3. Wollaeger et al. (2018) fixed vdw = 0.15c, whereas in the
following, we treat vdw as a free parameter.

As there are only four long-term NR simulations from Rosswog
et al. (2014), the simulation set is not large enough for our interpolator
to gain meaningful constraints (MacKay 1998). However, since the
general shape of each NR simulation geometry was seen to be
toroidal (see Fig. 2) in Rosswog et al. (2014), we fit a Gaussian-
toroid described by three free parameters: In cylindrical coordinates,
it is defined as

ρdyn(vr, vz) =
{

ρ0 exp
(

−(vr−vtor)2+(vz/a)2

2σ 2

)
f (vr, vz) ≤ vdyn

0 f (vr, vz) > vdyn

, (5)

where f (vr, vz) =
√

(vr − vtor)2 + (vz/a)2. Here, ρ0 is a density

coefficient proportional to the ejecta mass, vr =
√

v2
x + v2

y is the

radial velocity, vtor = 0.059 c + vdyn represents the central velocity
of the toroid (with 0.059c as the fixed inner velocity), a is the axial
ratio, and σ = vdyn/3.5 is the standard deviation of the Gaussian.

To minimize the number of dimensions for the Gaussian Process
interpolator − we discuss why we minimize the dimension and the
Gaussian Process interpolator in more detail in Section 3.1− we
fixed vtor and σ to those values that minimized the χ2 value. We then
simulated a grid of dynamical and disc–wind geometries as in Table 2,
and added the light curves together post-simulation as done for the
ElDC model. We present the χ2-minimization fits in Fig. 2. Notice
that the functional fit that we chose in equation (5) seems to match the
form of the NR simulations from Rosswog et al. (2014) quite well.
Furthermore, the bottom panels are very similar to the middle panels,
with perhaps slightly extended boundaries, and the reduced χ2s are
only slightly larger. We also found no noticeable discrepancy between
the light curves produced by these geometries, further indicating that
these approximations are appropriate approximating the light curves
of these NR simulated ejecta. We emphasize that our parametrization
by the five parameters in Table 2 therefore contains the models A–D
of Rosswog et al. (2014).

As with the ElDC and ElDCr simulation sets, we constructed
both a simulation set where the ejecta were processed independently,
and a simulation set with ‘reprocessing.’ The dynamical grid had
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Table 2. Summary of the parameters in the TorS geometry simulated in
POSSIS.

Ejecta type Parameter Parameter values

Dynamical Mej, 1 [0.001, 0.01, 0.025, 0.04,
0.055, 0.07, 0.085, 0.1] M�

Dynamical a [0.25,0.5,0.75,1,1.5,2]
Dynamical vdyn [0.04, 0.085, 0.12, 0.155, 0.2,

0.25]c
Disc wind Mej, 2 [0.001, 0.01, 0.025, 0.04,

0.055, 0.07, 0.085, 0.1] M�
Disc wind vdw [0.1, 0.15, 0.2, 0.25, 0.3, 0.35]c

Notes. Mej, 1 refers to the total mass in the lanthanide-rich region, vdyn

parameterizes the geometric scale of the toroidal lanthanide-rich region, and
a represents the axial ratio between the height and width of the cross-sectional
ellipse. Mej, 2 refers to the total mass in the lanthanide-free region, and vdw

refers to the maximum velocity of the spherical lanthanide-free disc wind
region. See the right-hand panel of Fig. 1 for a depiction of vdyn, a, and vdw

in the TorS model.

8 × 6 × 6 = 288 simulations, and the disc wind grid had 8 × 6 = 48
simulations. As we will mention in Section 3, we reduced the
simulation set for ‘reprocessing’, as a full grid would require
288 × 48 = 13 824 simulations, which is more than we can feasibly
do. In addition, training the Gaussian Process Interpolator is the
bottleneck for our analysis procedure, not producing simulations.
Thus, rather than produce a full simulation set, we reduced the
number of parameters in each dimension by a factor of 2, so in
the end we only created 432 simulations.

We refer to this simulation set and the derived model as the
TorS model. With reprocessing accounted for, we call it the TorS
reprocessing (TorSr) model.

3 INCLINATION AND INTERPRETATION O F
G W 1 7 0 8 1 7

Now that we have simulated the light curves for the five different
models, SSCr, ElDC, ElDCr, TorS, and TorSr, we will use these to
constrain the model parameters for GW170817/AT2017gfo. First,
since we want our constraints to be over a continuous range, and
our simulations were only over a discrete parameter grid, we use
a Gaussian Process Regression method to interpolate the simulated
light curves. Gaussian Process Regression has numerous advantages,
and it is particularly useful for inference because it is Bayesian
in nature. Many machine learning algorithms would be able to
interpolate the light curves over the continuous parameter space,
however Gaussian Process is special in its ability to also estimate the
uncertainties associated with the predicted light curves.

When the Gaussian Process Regression algorithm is trained over
our complete parameter grid, it can estimate the light curves produced
from any arbitrary parameter combination, but large uncertainties
make the estimation meaningless if the input parameter vector lies
well outside the training grid. We call this phenomenological function
a surrogate model, and we build a surrogate model for each of our
simulation grids (SSCr, ElDC, ElDCr, TorS, and TorSr). We then
use each of these surrogate models to do Bayesian inference on
AT2017gfo.

3.1 Inclination-dependent surrogates

To use these simulations in the surrogate light-curve models, we
introduce a modification to our previous technique (Coughlin et al.
2017; Coughlin et al. 2018; Coughlin et al. 2019). We use the five

Table 3. A summary of the priors used for the inference in each surrogate
model.

Model Parameter Prior lower bound Upper bound

SSCr log10(Mej/M�) −3 0
� 0◦ 90◦

θobs 0◦ 90◦
ElDC(r) log10(Mej, 1/M�) −3 0

log10(Mej, 2/M�) −3 0
a 1 10
q0 0◦ 90◦

θobs 0◦ 90◦
TorS(r) log10(Mej, 1/M�) −3 0

log10(Mej, 2/M�) −3 0
a 0.25 2

vdyn 0.04c 0.25c
vdw 0.1c 0.35c
θobs 0◦ 90◦

Notes. The priors were kept the same for both the non-reprocessing and
reprocessing cases, i.e. TorS(r) means the TorS and TorSr models. All priors
are taken to be uniform between the lower and upper bound.

different grids of radiative transfer simulations described above as
training for a Gaussian Process Regression based method. This
allows us to interpolate the light curves across the continuous
parameter space of interest. To do so, we take each simulation and
compute u-, g-, r-, i-, z-, y-, J-, H-, and K-band light curves as a
function of the viewing angle. Not only is the Gaussian process
non-parametric, so the form of our parametrization for each model
will not introduce bias into the parameter estimation, but it also is
Bayesian in nature; by comparing the inferred light curve for a set
of parameters to the measured light curve for AT2017gfo, we can
compute likelihoods based on a given set of model parameters. For
each of the simulation sets, we assume flat priors (flat in log for
the ejecta masses) that span the full parameter space we simulated,
but usually do not extend far beyond the simulations. We show the
lower and upper bounds for each parameter in each surrogate model
in Table 3, and the priors were the same for the reprocessing versus
the separately simulated KNe.

For the reprocessing simulation sets, the full set of simulated
training data was too large for the Gaussian Process computation
to sample effectively, so we instead trained the algorithm on a
stratified set, decimated by a factor of 2 in each dimension (except for
the inclination angle). We determined that the reduced training set
provided appropriate constraints by comparing constraints from the
stratified sample to those with a smaller sample; these were shown
to be indistinguishable, and therefore we expect that adding more
training light curves would not have led to a noticeable improvement.

3.2 Parameter estimation

With the surrogates in hand, we calculate the likelihood as a function
of the geometry parameters. In general, we have the ability to allow
for a time shift and distance, but we fix these to match the known
values for AT2017gfo. Over this n-dimensional parameter space (four
dimensional for the SSCr model, six for ElDC and ElDCr, and seven
for TorS and TorSr; the number of geometry parameters plus two
parameters for inclination and physical distance − which affects the
light-curve AB magnitudes), we then obtain posteriors for the most
likely geometry for each model, and the corresponding light curve
predicted by the model. In Fig. 3, we show the maximum-likelihood
χ2 fit to the light-curve data of GW170817, drawn from Coughlin
et al. (2019), using each of the five models, while in Fig. 4, we
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3062 J. Heinzel

Figure 3. Light curves for the inclination-dependent surrogate KN models
with the points of GW170817 included (with the data taken from the sample
from Coughlin et al. 2019). The light curves shown correspond to a maximum
likelihood χ2 fit to the data for the intrinsic parameters, assuming a ±0.5-
mag uncertainty in the light-curve fitting, in quadrature with the photometric
uncertainty from the data. All the light curves are expressed in AB absolute
magnitudes. The circles denote actual detections while the triangles are
upper limits. The letters to the left of the y-axes show the passbands of
the observations. Purple is the SSCr model with a reduced χ2 of 2.80, light
blue is the ElDC model with a reduced χ2 of 4.18, light green is the ElDCr
model with a reduced χ2 of 1.85, orange is the TorS model with a reduced
χ2 of 3.70, and in red is the TorSr model with a reduced χ2 of 1.79.

Figure 4. Corner plot showing posteriors of GW170817 for the SSCr
model assuming an uncertainty of ±0.5 mag added in quadrature with the
measurement uncertainty for the light-curve fitting.

show an example corner plot for the posteriors on the simulation
parameters in the SSCr simulation set.

We are interested in comparing the constraints for model param-
eters represented by the different ejecta geometries. As a metric for
the ‘agreement’ or ‘overlap’ between the posteriors f1, ..., fn, we will
use the Matusita affinity (Matusita 1967; Toussaint 1974),

A =
∫

[f1(x)...fn(x)]1/n dx. (6)

In this formalism, if all the posterior density functions are identical,
then A = 1, and if any two are absolutely disjoint, then A = 0. The
integrand is the geometric mean of the posterior densities, and in
general, has the property of being higher if the n posterior densities
are closer in value. This functional is close to 1 if the n posteriors
are similar in form, and close to 0 if they are different (see Matusita
1967; Toussaint 1974, for more details and properties).

The Matusita affinity is sensitive to the form of each posterior
distribution function. That is, it not only quantifies consistency in
posteriors, but also in form. For example, a constraint of −2.1 ≤
log10(Mej) ≤ 0.1 is consistent with a constraint of −1.3 ≤ log10(Mej)
≤ −1.1, but there is some notion of an inconsistency in form. For
our purposes, we want to be able to quantify both these notions of
consistency, so this Matusita affinity is appropriate.

We show the posteriors for the inclination angle, total ejecta mass,
and ejecta mass ratio in Fig. 5. On the left-hand column of Fig. 5,
we show the posteriors for the fits when we set the systematic error
to ±0.5 mag, added in quadrature with the measured photometric
uncertainty in the samples of AT2017gfo, collected from the data
set described in Coughlin et al. (2019). We summarize the posteriors
in Table 4. The first interesting result that we see is that fits with
reprocessing included result in posteriors with narrower distributions.
To understand this, consider the example of the TorSr model versus
TorS model case. Light curves produced by the TorSr model will
likely have a stronger inclination dependence; to first order the TorSr
and TorS light curves should match, but for the TorSr, there is a
second-order term for the inclination dependent suppression of the
‘red’ ejecta by the ‘blue’ ejecta and vice versa. Given any covariance
between the posteriors for other parameters and the inclination angle,
a sharper peak in inclination angle constraints could cause a sharper
peak in the posteriors for other parameters, in the absence of any
other effects changing the sharpness of the posterior peak.

Secondly, notice that in each of the posteriors, the ElDCr seems
to be in disagreement with the other posteriors. We will quantify
this disagreement by using Equation 6. For the inclinations, Ainc =
0.01. However, motivated by the qualitative disagreement from the
ElDCr posterior from each of the others, we want to see how the
affinity changes if we remove the ElDCr posterior, and consider the
affinity from the other four models. However, it is not clear how the
Matusita affinity functional changes when the number of posteriors
(n in equation 6) changes from 5 to 4. Therefore, we will replace the
ElDCr posterior with what we used as a prior (simply uniform across
0 ≤ θobs ≤ 90, see Table 3), then the affinity increases significantly,
to A′

inc = 0.27 (the prime denotes that we are using a prior instead
of a posterior). Because of the surprisingly narrow posterior for
this constraint, we examined the inferred light curves for the ElDCr
models directly. For θobs 	∈[0◦, 3◦], the light curves diverge from
AT2017gfo, particularly for late times in the NIR bands. This is
consistent with the posterior shown in Fig. 5.

For the ejecta masses, Amass = 0.004. This time, however, both
the ElDCr and the ElDC model are very different qualitatively. They
both infer very large ejecta masses, inconsistent with inference from
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Figure 5. Histograms for the inclination angle (top row), ejecta masses (middle row), and dynamical to disc wind mass ratio (bottom row) constraints based
on the five different surrogate models, assuming a ±0.5 (left-hand panel) and ±1.0 mag (right-hand panel) uncertainty for the light-curve fitting. Dark blue is
the SSCr model, light blue is the ElDC model, light green is the ElDCr model, orange is the TorS model, and in red is the TorSr model. In the top row, we also
include constraints from GWs (Abbott et al. 2017), afterglow modelling (Troja et al. 2019), and superluminal motion Hotokezaka et al. (2019). In the middle
and bottom rows, we also include the constraints derived from Coughlin et al. (2018), which uses our previous method.

the other models. When we suppress the ElDC and ElDCr posteriors
and replace them with the uniform priors, A′

mass = 0.22.
We can also derive constraints for the dynamical to disc wind

mass ratio. Like in the inclination angle case, all the models appear
to constrain the dynamical to disc wind mass ratios broadly similarly,

except for the ElDCr model. Quantitatively, when we compare the
five posteriors, we find the Matusita affinity for the posteriors is
Aratio = 0.10, and without the ElDCr model, A′

ratio = 0.53.
This indicates that the ElDC and ElDCr models yield fundamen-

tally different results from the SSCr and the TorS and TorSr models.
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Table 4. A summary of the posteriors inferred in each surrogate model, for
the inclination angle θobs, the log-ejecta mass log10(Mej/M�) in terms of
solar masses, and the logarithm of the dynamical to disc wind mass ratio
log10(ratio).

Parameter Model
0.5-mag

uncertainty
1.0-mag

uncertainty

θobs SSCr 20+17
−15 19+20

−13

ElDC 10+22
−7 29+38

−23

ElDCr 1.2+0.4
−0.5 1.6+0.6

−0.7

TorS 52+14
−13 44+16

−25

TorSr 58+5
−7 58+13

−15

log10(Mej/M�) SSCr −1.4+0.1
−0.1 −1.4+0.1

−0.1

ElDC −0.3+0.2
−0.6 −0.5+0.4

−0.6

ElDCr −0.3+0.2
−0.2 −0.4+0.2

−0.3

TorS −0.9+0.6
−0.4 −0.8+0.6

−0.4

TorSr −1.1+0.1
−0.1 −1.1+0.6

−0.2

log10 (ratio) SSCr −0.4+0.2
−0.2 −0.5+0.3

−0.4

ElDC −1.0+0.8
−1.0 −1.0+0.8

−0.9

ElDCr −2.4+0.4
−0.2 −2.3+0.7

−0.3

TorS −0.5+1.0
−0.9 −0.3+1.0

−0.9

TorSr −0.3+0.2
−0.3 −0.5+0.4

−0.6

Notes. In the third column are the posteriors when the systematic error budget
is set to ±0.5 mag, and the fourth column is with a systematic error budget of
±1.0 mag. The mean of the posterior is given, as well as the upper and lower
68 per cent credible intervals. All angles are measured in degrees.

Given the inconsistency with the other models and other forms of
inclination, ejecta mass and mass ratio measurements (Abbott et al.
2017; Coughlin et al. 2018; Hotokezaka et al. 2019; Troja et al. 2019),
the ElDC model is disfavoured as being a geometry that encapsulates
AT2017gfo particularly well.

We can also use this method to probe the level of systematic errors
within the models. To determine the effect of the assumed systematic
error on the posteriors, we show posteriors when ±1.0 mag is added
in quadrature to the measurement error on the right-hand column
of Fig. 5. As expected, the Matusita affinities indicate much more
consistent posteriors, with the cost of less constraining posteriors.
For the inclinations, Ainc = 0.09, and ignoring the ElDCr model,
A′

inc = 0.67. This is also the case when considering the ejecta masses:
Amass = 0.06, and ignoring the ElDC and ElDCr models, A′

mass =
0.37. For the ejecta mass ratio between the dynamical ejecta and
the disc wind ejecta, the affinity again increases significantly when
a larger uncertainty is used for the fitting: Aratio = 0.41, and without
the ElDCr model, A′

ratio = 0.71. Notice that the affinities increase
substantially with a ±1.0-mag error budget. This indicates that the
±1.0-mag systematic error budget is generally more appropriate,
when more specific information about the geometry of the KN is
unknown.

4 C O N C L U S I O N

In this paper, we have used a combination of KN model grids for a
variety of ejecta geometries in combination with Gaussian Process
Regression to infer source parameters from the AT2017gfo light
curve. Using this method on different geometries and comparing the
inferred constraints, we find that the inferred constraints tend to be
sensitive to the underlying geometry. In particular, we have found

that taking into account reprocessing effects gives a much better fit to
AT2017gfo; this method has also shown that the resulting inclination
constraint from the inclusion of reprocessing can yield constraints
inconsistent with those measured by other methods. Indeed, the
large disagreement between the ElDCr model’s constraint on the
inclination angle and the measurements by analyses such as Abbott
et al. (2017), Troja et al. (2019), Hotokezaka et al. (2019), and Finstad
et al. (2018) implies that this geometry may not be appropriate to
describe AT2017gfo. Our method can therefore be used to constrain
the form of the geometry of the KNe – when radiative reprocessing
is accounted for, the geometry of the KN associated with AT2017gfo
could not have been of the form of the ElDC geometry.

It is likely the case that the ejecta geometry is dependent on the
progenitor initial conditions; the ElDC geometry could likely be
more consistent with a future KN observation. Our method, over
many detections, will be able to measure how the geometry depends
on the progenitor.

We also showed that the Matusita affinity increases dramatically
for the inclination angle constraints (and increases a bit more mod-
estly for the ejecta mass and ratio constraints) when an uncertainty
of ±1 mag is used in quadrature with the measurement uncertainty,
as opposed to the nominal 0.5 mag. For this reason, we recommend
using at least an uncertainty of ±1 mag in light-curve fitting for
inclination angle constraints until systematic uncertainties are better
under control.

Our method has also shown how to evaluate the efficacy of
certain geometries or constrain the geometry of KN ejecta, i.e. it
is not necessarily bad that differently constructed but reasonable
geometries seem to disagree with one another. In a future work,
using a larger range of possible geometries, one could investigate the
possibility of more directly constraining the geometry of KN ejecta
using a modification of our technique here.

Altogether, this analysis shows that using more sophisticated
and realistic geometry sets, parameterized according to physical
variables, should be encouraged. These could be constructed using
long-term numerical-relativity simulations directly, for example, as
opposed to the more common subjective geometrical parameters. In
the short term, however, analyses going forward should use more
agnostic geometries, i.e. those one that strike the right balance
between approximating a KN geometry and being non-committal to
any specific features, such as those achieved in the SSCr geometry.
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https://github.com/mcoughlin/gwemlightcurves.
The POSSIS simulations are available at:
https://github.com/mbulla/kilonova models.
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