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We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a
Lorentzian manifold (hence distinct from the Newton-Cartan formalism), inspired from the 1 4+ 3 and 3 + 1
formalisms of general relativity. We begin by writing the Newton equations in a general time-parametrized
coordinate system. We show that the freedom on the coordinate velocity of this system with respect to a
Galilean reference system is similar to the shift freedom in the 3 + 1-formalism of general relativity. This
allows us to write Newton’s theory as living in a 4-dimensional Lorentzian manifold MN. This manifold
can be chosen to be curved depending on the dynamics of the Newtonian fluid. In this paper, we focus on a
specific choice for MN leading to what we call the 1 + 3-Newton equations. We show that these equations
can be recovered from general relativity with a Newtonian limit performed in the rest frames of the
relativistic fluid. The 1 + 3 formulation of the Newton equations along with the Newtonian limit we
introduce also allow us to define a dictionary between Newton’s theory and general relativity. This
dictionary is defined in the rest frames of the dust fluid, i.e., a nonaccelerating observer. A consequence of
this is that it is only defined for irrotational fluids. As an example supporting the 1 + 3-Newton equations
and our dictionary, we show that the parabolic free-fall solution in 1 4+ 3-Newton exactly translates into the
Schwarzschild spacetime, and this without any approximations. The dictionary might then be an additional
tool to test the validity of Newtonian solutions with respect to general relativity. It however needs to be
further tested for nonvacuum, nonstationary, and nonisolated Newtonian solutions, as well as to be adapted
for rotational fluids. One of the main applications we consider for the 1 + 3 formulation of Newton’s
equations is to define new models suited for the study of backreaction and global topology in cosmology.
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I. INTRODUCTION

Fluid dynamics in Newton’s and Einstein’s theories of
gravitation are known to be closely related on a formal
aspect. This is well presented by Ellis [1] where the parallel
between the fluid kinematical quantities and equations in
Newton’s theory with those in general relativity (defined
via the 1 4 3-formalism of general relativity) is drawn. This
parallel highlights the similarities, but also the differences
between both theories. From the point of view of general
relativity (hereafter GR) these differences appear as missing
physical phenomena in the Newtonian theory. For instance
we can mention the precession of perihelion for elliptic
orbits or the gravitational waves. However, there also are
phenomena in Newton’s theory which are not included in
GR. This is the case for shear-free dust solutions, which can
both expand and rotate in Newton’s theory, but cannot in
GR (e.g. [2]). Newtonian gravitation is then not a reduction
of Einstein’s theory of gravitation.

Another phenomenon which is not described by
Newton’s theory is the backreaction of inhomogeneities
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on the global expansion of the Universe. This effect was
shown to be exactly zero for a compact space in Newton by
Buchert and Ehlers [3]. Though no such theorem exists in
GR, we still do not know whether or not the backreaction
might play a major role in the expansion of space: this is the
backreaction problem in cosmology.

Then, due to Buchert and Ehlers [3], one has to use GR to
study this problem. This can be done with exact analytical
classes of solutions such as the Lemaitre-Tolman-Bondi
model or the Szekeres model. Though solutions to these
models can be refined to feature complex structures [4],
they suffer from highly symmetric conditions which implies
that they are poorly representative of the Universe. That is
why the last decade has seen the development of fully
relativistic simulations, solving exactly the Einstein equa-
tions in a cosmological setup (e.g., [5,6]). But while these
simulations were performed to probe the backreaction, for
resolution reasons they still need to be realized in a cubic
box with a size smaller than the Hubble radius. Like the
symmetric conditions in the analytical models, the box in
these simulations might act as a restrictive condition. The
latter can however be physically meaningful as it corre-
sponds to imposing a specific compact topology and size to
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the Universe, corresponding to the 3-torus T3 for these
simulations.

As of today, no clear evidence for a nontrivial global
topology exists. Nonetheless, studying the potential effects
of different compact topologies on structure formations and
backreaction remains important. This is heavy to imple-
ment in numerical simulations as most of the algorithms
and frameworks require a cubic box with Cartesian
coordinates.' One might then want to seek for an analytical
GR based model which enables realistic structure formation
along with the study of topological effects on backreaction.
The relativistic Lagrangian perturbation theory of Ref. [8]
allows for realistic nonlinear structure formation in the
context of GR. However the backreaction in a compact
space cannot be studied as the model is based on a
perturbation around a homogeneous global expansion.

The aim of this paper is to introduce a formulation of
Newton’s theory which could help in the construction of
such a model. This formulation is a 4-dimensional (here-
after 4D) covariant writing of Newton’s equations for dust
fluid dynamics on a Lorentzian manifold.”> We call the
formulation 1 4 3-Newton. The corresponding equations
are equivalent to the classical Newton’s equations. Being
written on such a Lorentzian manifold the theory can then
be easily compared with GR. This will allow us to better
understand why some physical gravitational phenomena
like the backreaction are not present in Newton. In
particular we think that the 1+ 3-Newton formulation
can be a starting point to define new simple models suited
for the study of backreaction and global topology in
cosmology. This will be briefly discussed at the end of
this paper. We will rather focus on the construction of the
new formulation of Newton’s equations.

To support the 1 + 3-Newton formulation, we will show
that it can be directly recovered from GR with a Newtonian
limit. This is however done only for irrotational fluids.
Furthermore, as a consequence of this limit, we are also
able to construct a dictionary between the Newtonian fluid
kinematical quantities and the ones of GR, for vorticity-free
flows. This will be an additional tool in the scope of
defining new cosmological models. The observer with
respect to which this dictionary is defined is the dust fluid
itself, and thus is a nonaccelerating observer. To the best of
our knowledge this differs from existing Newton-GR
dictionaries (e.g., Green and Wald [9]). In this sense it
might be an interesting complementary test to assess at
which point nonlinear Newtonian simulations are physi-
cally relevant in a cosmological context. For instance, we
would complement studies like that of East et al. [10]
which compared Newtonian and relativistic simulations of

'Brown [7] might give the best formulation of the BSSN
formalism to enable numerical simulations in nonflat topologies.

We explain in Sec. III C 3 why writing Newton’s equations on
a Lorentzian manifold is not in contradiction with this theory.

a simplified cosmological setup using the dictionary of
Green and Wald [9].

We will show that our dictionary is coherent in the
specific case of the Schwarzschild spacetime. In particular
we will show that the Schwarzschild manifold is the exact
translation of a solution of the 1 + 3-Newton equations.

This 1+ 3-Newton formulation is different from the
Newton-Cartan (hereafter NC) theory (e.g., Kiinzle [11])
which also provides a 4D formulation of Newton’s theory.
The 4D-manifold in NC is however not a Lorentzian
manifold as in GR but a Galilei manifold with two degenerate
spacetime metrics.” Thus this manifold does not provide a
direct comparison with Einstein’s theory of gravitation. In
place the correspondence between both theories is given by
the Newtonian limit in the frame theory of Ehlers [12]. This
limit however only constructs a Galilei manifold from a
solution of the Einstein equations, but not the contrary. The
correspondence between both theories then only works in
one way, i.e., from GR to NC. In our formulation, we are able
to define a nondegenerate spacetime metric, with signature
(— 4+ ++), hence implying the manifold to be Lorentzian.

This paper will detail the construction of the 4D-Newton
equations from the classical formulation of Newton’s
theory on a 3-dimensional (hereafter 3D) flat manifold.
To do so, we first derive the Newton equations in a general
time-parametrised coordinate system in Sec. II. This first
step aims at showing that the classical 3D formulation of
Newton can already be covariantly written for any coor-
dinate system. These covariant Newton equations, while
still defined on a 3D-manifold, will feature similarities with
the Einstein equations: in addition to the formal equiv-
alence between the Newton equations and the 1+ 3-
Einstein equations (well presented by Ellis [1]), we show
that the freedom on the general coordinate system we
introduced behaves like the shift freedom of the 3 + 1-
formalism of GR. This allows us to write the Newton
equations on a 4D-manifold MN. This is presented in
Sec. III: in this section we first review the construction of
the 3 4 1-Einstein equations in Sec. III A, then detail the
construction of the 4D-Newton equations in Sec. III C.

The manifold MY needs to have what we call a
Newtonian foliation (defined in Sec. III C). But apart from
this constraint, MN can be any 4D (pseudo)-Riemannian
manifold (Riemannian or Lorentzian) and in general its
properties do not depend on the dynamics of the fluid. We
can however restrict MY to depend on this dynamics. Such
a restriction is studied in Sec. IV and leads to what we call
the 1 + 3-Newton equations. In this section we also present
the Newtonian limit allowing us to recover these equations
from GR (Sec. IVC). Our Newton-GR dictionary is
defined in Sec. IVD and an application is studied in
Sec. IV E in the case of the Schwarzschild geometry. We

*No nondegenerate spacetime metric is defined in NC.
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show that we can recover the full Schwarzschild spacetime
from an exact solution of the Newton equations.

In Sec. V we discuss some aspects of the 1 + 3-Newton
equations and the related dictionary. In particular, we
present some ideas, in Sec. V B, to allow the dictionary
to be physically valid for rotational flows. Section V D aims
at discussing the potential use of the 1+ 3-Newton
formalism to define modified Newtonian models based
on GR. We focus on the possibility to define models suited
for the study of the backreaction problem and the global
topology in cosmology. We, however, leave the precise
definition of such models for a further study.

II. THE CLASSICAL NEWTON SYSTEM OF
EQUATIONS

In this section, after recalling the usual form of the
Newton equations, we will express them in a general time
parametrized coordinate system. Then specific choices of
coordinates and their interpretation will be made.
Similarities with the 3 + 1-Einstein equations will appear.
This will allow us to extend the definition of the Newton
equations to 4D-spacetime manifolds in Sec. III.

A. Notations

In this section we define notations which will be used in
the remainder of this paper.

Unless otherwise stated the light speed c is taken to be 1.

A tensor of any type, except scalars, will be denoted in
bold (example: g). In the case where the type is of
importance, a tensor of type (n,m) will be denoted as a
bold letter with n overbars and m underbars (example: g for
a type (0, 2) tensor).

We define the symmetric part T',;), the antisymmetric
part 7,5 and the symmetric traceless part 7', of a rank-2
tensor T as

1 1
T = 3 (Tap + Tha); Tiap) = 3 (Tap = Tpa)s

T
T(ab) = T(ab) - Ngabi

where g is the metric of the manifold on which 7 is defined
and N the dimension of this manifold.

The Lie derivative on a manifold M of a tensor T along a
vector field A is denoted £, T. The Lie derivative does not
commute with the metric, so for instance, for a rank-1
tensor B, L,B # L,4B. We will then use £, B, respectively
L4B,, to denote the coordinate components of LB,
respectively £4B.

Then for a vector A and a tensor T on a manifold M, we
have

‘CATalmbl... ::Acchal..,blm

where V is the Levi-Civita connection of M.

Finally, indices running from 0 to 3 will be denoted by
Greek letters (@, f3, 7, ...) and indices running from 1 to 3 by
Roman letters (a, b, c, ...).

B. General form of the Newton system

1. In fixed coordinates

We only consider dust fluids, implying the pressure and
the nonideal fluid terms to be zero.

The Newton system of equations describes the time
evolution of a fluid characterized by a scalar field p, the
fluid density, and a vector field v, the fluid velocity. These
two tensors are defined in a 3-dimensional flat manifold*
denoted =N and are parametrized by the time . They are
thus function of ¢ and the position on =N. The metric on N
is denoted k. The system of equations is composed of two
evolution equations, one for the scalar p and one for the
vector v, and two constraint equations. Given a fixed
coordinate basis vector {e;},_;,3 on ZN, ie., the vectors
e; are not parametrized by time, the evolution equations in
the corresponding coordinate system {x'},_, , are

(1) the mass conservation equation

0y, + v*Dp)p = —pDy*, (2)
(ii) the Euler equation

(9, + V"D = ¢, (3)

where D; are the components of the Levi-Civita connection
on XN in the coordinates x’ and g is the gravitational vector
field constraint by the following equations:

(1) the Newton-Gauss equation

Dyg* = —4nGp + A, (4)
(ii) the Newton-Faraday equation

with A the cosmological constant.

*The only requirement on >N is to be flat, i.e., its Riemann
tensor is zero. =N is however not necessarily R>. It can have any
topology depending on geometric compatibility conditions (see
Sec. I1C 3).
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Due to the equivalence principle, the Euler equation (3)
can be seen as a definition of the gravitational vector field.
Then apart from this equation, the Newton system can be
written independently of g. To do so, we introduce the
expansion tensor @ and the vorticity tensor @ of the vector
field v being respectively the symmetric and the antisym-
metric part of the velocity gradient Dv, with’

®ij=Dqvj; ;= Dyvy, (6)

and we note the trace ®, =: 6. The indices are lowered and
raised by the metric . We can then rewrite Egs. (2), (4),
and (5) respectively as

0y, + Ly)p = —p0, (7)
(3% —+ £v)9 = —477.'Gp + A — ®U®U + a),-ja)ij, (8)

0y, + L,)w;; = 0. )

The gravitational vector field g is defined as
g = (9, +L,)v' + 040, + o). (10)

Introducing the Lie derivative in this last equation allows us
to have the same differential operator acting on p, ©
and ;.

The system (6)—(9) is closed and equivalent to the system
(2)-5).

In the form (6)—(9), the Newton system is composed of 3
evolution equations for the density, the expansion and the
vorticity tensors. Equations (7)—(9) are respectively called
the Newton mass conservation equation, the Newton-
Raychaudhuri equation and the Newton vorticity equation.
As stated above, they are valid in a fixed coordinate system
(see Sec. II B 4 for more details). While the expansion and
vorticity tensors are explicitly covariant under any change
of coordinates, parametrized by time or not, the differential
operator 8% is not. In the next section we will see how it
changes as function of the time parametrization of the
coordinate transformation. This will allow us to write the
Newton system for any time parametrized coordinate
system.

ijs

2. In general parametrized coordinates—v description

We consider a coordinate vector basis {é,},_; ,3 on ZN.
If the vectors &, are parametrized by time, the coordinate

Here we adopt the sign convention w;; := +Djv;. This
implies the relation: curl v; = eijkwfk where ¢, is the Levi-

Civita tensor. The inverse relation is w;; = %e,- ,-kcurlvk.

system they define is called a parametrized coordinate
system. We consider such a coordinate system on =N and
note it {X“},_; ,3. For this section, any component of a
tensor in the fixed coordinates x’ will use the Roman letters
i, J, k, I, etc. (example: T';) and the same applies for the
partial derivatives with 0, = 8% and 0; := 0,;; any com-
ponent of a tensor in the parametrized coordinates X will
be denoted with a tilde and will use the Roman letters a, b,
¢, d, etc. (example: T',;,) and the same applies for the partial
derivatives with 9, := 8% and 9, = Osa.

To be able to write the Newton equations in the X¢
coordinates from the equations in the x! coordinates, we
need to consider the coordinate transformation between x’
and %“. This allows us to write ¥ as functions of x’ and ¢, and
inversely x' as functions of ¥ and ¢. The Jacobian matrix J/,,
of this transformation, and its inverse J;¢, are then

Ji= 0,0 T = 050

Because the change of coordinates x' — ¥ depends on time,
in general the Jacobian will also depend explicitly on time.

The components 7%, of any tensor T in =N are
related to the components 7%/, of that same tensor by

T“b“'cd”' = (]ianb...)Tij“‘kl (JkCJld...).

We consider now a tensor W whose components in the
{e;};_1 13 basis are W/, = 9,T, with T a para-
metrized tensor. As mentioned in the previous section,
because the derivative J, is not explicitly covariant under
the change of coordinates x' — ¥%(¢,x'), the relation
weab-- = 9,T% ., does not hold in general. It only
holds if the X coordinates do not depend on time. Instead
we have the relation

(42 0Ty YT e )

= ézTab”'cd... _‘CUTabmcd“.v (11)

where U is the coordinate velocity vector of the X¢
coordinates with respect to the x' coordinates and is defined
such as

U' = 0,x', (12)

which implies U¢ = —9,%¢ using (11).

Proof.-—For simplicity we show the proof for a rank-1
tensor; it can easily be generalized for any tensor. Making
use of 9, = 9, — 0,x*0,, we have
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JO,T: = Ji,(8,T; — D,x*0,T;)
=9,T,-T;0J',—J ,Ud,T;
=0,T, — J' (T, 0;U* + U*d,T;)
=90,T, - (LyT),
=0,T, - LyT,. [

We can then write the system (7)—(10) in the coordinates
X“. This gives the generalized Newton equations for the
fluid velocity vector v in a time parametrized coordinate
system:

(0 + Ly—v)p = —p0, (13)

(0, + Ly_y)0 = =42Gp + A — 0,0 + @ 0,  (14)
(0, + Ly_v)@eq = 0. (15)

and the definition of the gravitational field

g = (g)t + L, p)?" + f)C(éca +@.9). (16)

These equations, while written for any parametrized
coordinate system, still require reference coordinates, i.e.,
the fixed coordinates x’, to be able to define the tensor U.
This is discussed in Sec. I B 4.

The system (13)—(16) depends on the vectors U and v.
The latter can be called the velocity of the fluid with respect
to the fixed coordinates. However when taking a nonzero
coordinate velocity U, it might be useful to work with the
velocity vector V' of the fluid with respect to the para-
metrized coordinates defined as

Vi=y-U. (17)

In the next section we develop the Newton equations as
functions of U and V.

3. In general parametrized coordinates—V description

We introduce the expansion tensors Y@ and Y@, and the

vorticity tensors Y and Y@ of the vectors V and U as

and their trace V0 := Y0,¢ and Y0 := U0 .

We can then write the system (13)—(16) as function of V
and U. This gives the generalized Newton equations for the
fluid coordinates velocity vector V in a time parametrized
coordinate system:

(0, + Ly)p = =p(Y0 +10), (18)

(0, + Ly) ("6 +0) = —4zGp + A
_ (Vécd + Uécd)(V@cd+ U@cd)
+ (Yarca + Yareg) ("o + Yard), (19)

(O + Ly) ("@eq + Yidg) = 0, (20)
and the definition of the gravitational field

§ = (0 + Ly) (Ve + 0%
+(V+ U ("0 + 90, + Vo  + Vb ). (21)

4. Class of coordinates

We define the following mathematical object:

Definition.—Given a coordinate system {y“},_;,3,
parametrized or not, we define the class of y coordinates,
denoted X, as the ensemble of coordinate systems which
can be obtained from the system {y“},_,,; with a time-
independent coordinate transformation.

The equations developed in Secs. IIB 1, [I B2, and II B 3
were defined, directly or indirectly, with respect to a chosen
fixed coordinate system {x'},_; , ; on EN. They however do
not depend on this system as all these equations are invariant
under a time-independent change of coordinates. Instead,
any system of coordinates in the class of fixed coordinates
can be chosen. The same applies for the definition of the
vector U, and so of the vector V.

Proof.—We consider two fixed coordinate systems
{x}_1,5 and {y'},_,,5 and a parametrized coordinate
system {¥“},_, , 3. The components of a tensor in the y/
coordinates will be denoted with capital Roman letters
I,J,... Let U be the coordinate velocity vector of the
coordinates ¥“ with respect to the coordinates x. Then

Ul = 0,x
= étxi(yl)
= 0,y xx'.

Byxxi is the Jacobian of the coordinate transformation

between x' and yX. Then U’ :=d,y’. This means that
the definition of U is unchanged if the fixed system of
reference is {y'},_; 53. u

The choice of parametrized coordinates X then defines
uniquely the vector U. The opposite is wrong: defining a
vector field U on XN does not determine uniquely a
parametrized system {X“},_;,;. Instead U uniquely
defines a class of parametrized coordinate systems which
we can write X'y;. Then U is the coordinate velocity of any
system in Xy with respect to any system in X, where X; is
the class of fixed coordinates.
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The Newton system (13)-(16), or equivalently the
system (18)—(21), then corresponds to the original
Newton system (7)—(10) written in any class of coordinates.
It is the most general writing of the original equations (7)—
(10), assuming the time parameter is unchanged.6

But while the original set of equations required the
definition of only one vector field, the fluid velocity vector
v, the general equations of Sec. II B 2 require the definition
of a second vector field, the coordinate velocity vector U of
the chosen class of coordinates to work in. If one chooses
the point of view of Sec. II B 3, the pair of vectors (v, U) is
replaced by the pair (V, U). However only v is physical as it
is the fluid velocity vector and does not depend on a chosen
class of coordinates: taking v = 0 changes the generality of
the equations as it implies 9,p = 0, while U or V can be
taken to O without loss of generality.

A nontrivial choice of U can however be of physical
interest depending on the physical system studied. In the
next section we present specific examples of parametrized
coordinates.

C. Specific choices of coordinates

In this section we will always use the Newton equations
in the same class of coordinates as the vector U we will
choose. We can then omit the tilde notation. The partial
time derivative will also always be partial time derivative at
fixed Xy coordinates, we will note it 8,|U.7

1. Galilean coordinates

Galilean coordinates are the classes of coordinates for
which 8t|u U? = 0and VU = 0, i.e., the coordinates Xy, are
uniformly moving with respect to the class of fixed
coordinates. If one chooses the fluid description in terms
of (v, U), then the corresponding Newton system (13)—(16)
is not equivalent for all Galilean coordinates due to the
terms U°D,. The Galilean invariance only appears in the
(V,U) description of the fluid as the corresponding
Egs. (18)—(21) are formally equivalent for all Galilean
coordinates.

This shows that the description in terms of the fluid
coordinate velocity is more appropriate when U is nonzero
as it will encode the noninertial effect due to U. Indeed, we
can rewrite the Euler equation (21) to feature the noninertial
terms acting on V

(94, + VDV = " = (3, + UD,) U

—2ve(Y9,% + Voo, ). (22)

tly

(’Making a change of parametrisation ¢ — 7 corresponds to a
change of foliation for the 4-dimensional Newton equations (see
Sec. IV B).

"To avoid possible confusions, we precise that this notation
does not imply 9, U = 0.

We see that the acceleration of V, on the left-hand side of
the equation, is affected by the gravitational field and the
noninertial terms, depending on U. We however recall that
these effects are only gauge effects as the true dynamics of
the fluid is given by v.

2. Globally translating and rotating coordinates

In classical mechanics, the most general coordinates are
usually globally rotating and translating with respect to X.
In this case they are called frames. They correspond to
all the classes of coordinates where U can be decomposed
as

U= Ulr + Urot’ (23)

where DU, = 0, Y0,, = 0 and €,,,D,D°U%, = 0 where €
is the Levi-Civita tensor.

The condition DU, = 0 ensures that U, is a global
translation of the X'y coordinates with respect to the
Galilean classes of coordinates; Y@, = 0 ensures that
U, is only rotational. The rotation vector of the frame is
Q¢ := 4, ,DUL,. Then €,,.,D,D UL, = D,Q, =0 ensures
that this rotation is also global.

In these conditions, the Euler equation (22) becomes

(0, + VD)V = g* = 9y, Ui — 9y, Uty

- (Utcr + Ufot)wca - zchwca. (24)

tly tly

The term 0y, Uf; + 0y, Ufo, + (Uf; + Usy)w.“ is the cen-
trifugal acceleration, and 2V<VYw_ ¢ is the Coriolis accel-
eration. We retrieve the usual Euler equation in a
noninertial frame where the vorticity of U corresponds
to the global rotation of that frame with respect to a
Galilean frame. There is however no contribution of the
expansion tensor of U in that case, as it is zero. In the
next section we will show to what corresponds a non-
zero V0.

3. Homogeneous deformation

The expansion tensor of the coordinate velocity vector U
can be linked to the time variations of the metric in the X'y
coordinates. We have the following relation:

! U
58 hap = "Bp- (25)

tly

Proof.—For this proof only we reintroduce the tilde and
untilde notations of Sec. II B 2 concerning parametrized
and fixed coordinates. Using property (11), we have

Jianbatk]hij = (8t\U - AC:U)i‘labv
- 8 ilab - ZD<aOb).

tly
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dy, 1s the time derivative with respect to the fixed
coordinate class. Because x' are fixed coordinates,
8y,hij = 0. Then 9, hy), — 2D, Uy = 0. "

Remark.—In a frame coordinate system, i.e., globally
translating and rotating, the metric is static as Y@ = 0.

Relation (25) implies that with a change of coordinates
from fixed coordinates, we can simulate space expansion.
This expansion is always a gradient expansion, i.e.,
%8,‘Uha,, is the gradient of a vector. Taking Y@ such that
DUY® = 0 implies that the expansion is global: this is called
a homogeneous deformation. Furthermore, when it is
isotropic, the coordinate velocity vector corresponds to
the position vector, i.e., in Cartesian coordinates U“ o x“.
In this case this is called a Hubble flow. However one has to
remember that the physical vector is v. Therefore the
expansion due to Y@ is strictly speaking a fluid expansion
and not a space expansion (see Sec. IV C 1 for precisions
on this interpretation).

The main consequence of the gradient expansion is that no
global expansion is possible if the 3D-manifold =N has a
compact topology.8 Indeed in such a topology x“ cannot be
the components of a tensor as they do not respect the global
symmetry of a compact space. So strictly speaking,
Newtonian cosmological simulations, said to be realized
in a 3-torus with global isotropic expansion, are actually
simulating an infinite 3D-manifold. The 3-torus symmetry is
only set on V and not U, thus the physical vector v lies in an
infinite 3D-manifold. If one wants =N to be strictly compact
and be allowed for expansion, modified-Newtonian equa-
tions have to be used. This is discussed in Sec. V D 1.

4. Lagrangian coordinates

We saw that the physical dynamical properties of the
fluid are encoded in v. By working in parametrized
coordinates, we split these properties into U and V.
Then, taking V = 0 implies that the coordinate velocity
U is the velocity of the fluid v. Coordinates such as V =0
are called Lagrangian coordinates as they follow the fluid
flows given by v. In Lagrangian coordinates, part of the
fluid dynamics, the pure expansion 6 and the shear o, :=
O,y Of v, is put into the time variation of the metric. The
other part, the vorticity of v, does not affect the metric.

D. Similarities with the 3+ 1 and 1+ 3 formalisms of
general relativity

In Sec. II B, we derived the Newton system of equations
in an arbitrary class of coordinates. We saw that the
freedom associated with a choice of class is a vector U.
Furthermore the difference between two partial time
derivatives is a Lie derivative. These two properties
resemble the properties of the shift freedom in the 3 + 1

The only possible compact oriented topology is the flat
3-torus T3 up to a finite covering.

formalism of general relativity (see Sec. III A). We could
add that Newton’s equations live on a time-parametrized
3D-manifold” which is the same situation as for the 3 + 1-
Einstein equations.

This shows that apart from the known formal equiv-
alence between the Newtonian system (7)—(9) and the
1 + 3-Einstein equations explained in Ref. [1], Newton
also features similarities with the 3 + 1 construction of the
Einstein equations. In the next section, we will reverse this
construction in the case of the Newton theory to get 4D-
Newton equations.

III. THE 4D-NEWTON SYSTEM

We recall in Sec. III A the construction of the 3 + 1
equations of GR. Reversing this construction will allow us
to write the 4D-Newton equations in Sec. III C. We also
quickly present the 1 + 3-Einstein equations in Sec. III B as
they will be formally equivalent to the 4D-Newton system
for a certain choice of manifold (see Sec. IV).

A. 3+1 formalism in general relativity

We define a 4D pseudo-Riemannian manifold M, called
the spacetime manifold, and its metric g. This metric has a
Lorentzian signature (—+ ++). In the following subsec-
tions we will derive, from the Einstein equations, the 3 + 1-
Einstein equations on a 3-dimensional manifold.

1. Foliation variables

The principle behind the 3 + 1 formalism is to split the
spacetime manifold M into space and time. If M is
globally hyperbolic, which we will suppose from now, it
is possible to define a family of spacelike hypersurfaces
{Z;},er in M. This family is called a foliation and can be
uniquely defined by the level surfaces of a smooth scalar
field 7 on M.

The 3 + 1-Einstein equations are the projections of the
Einstein equation onto and normal to the foliation {Z, },cg-
To be able to realize these projections one has to define a
normal unit vector field to the family of hypersurfaces. The
gradient V7 of the scalar field 7 defines naturally a normal
timelike vector field to the hypersurfaces. In general this
vector is not a unit vector. We then define the timelike unit
vector field to the hypersurfaces X, as

n:=—NVi, (26)

where N := (—=V,iV#7)71/2 is called the lapse, is positive
by convention, and only depends on the foliation. The
global minus sign in the definition of n is a convention
imposing this vector to be future oriented with respect to

9Actually, among the tensors defining N, only the metric can
depend on time, the Riemann tensor being zero in any class of
coordinates.
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the time scalar field 7. The 3 + 1-Einstein equations we will
get do not depend on this convention.

The projection operator on to the hypersurfaces is the
tensor

h=g+nQ®n, (27)

where g is the metric on M.

A spatial tensor is defined as having no normal part with
respect to the hypersurfaces X,. The spatial covariant
derivative D applied on a spatial vector T is defined as

DTy = o, (h, )k )V T, (28)

We define two more spatial rank-2 tensors, the intrinsic
Ricci curvature R of the hypersurfaces X, and the extrinsic
curvature K of these hypersurfaces embedded in M. The
extrinsic curvature makes the link between the geometrical
properties of the hypersurfaces X, and the ones of M. We
can write the components of K as

K(l/)’ = —h"ah”ﬁvynﬂ, (29)

or

1
K(z/} = - ﬂ ‘CNn hrl/)" (30)

The negative sign is a convention. Because n is propor-
tional to a gradient, K is a symmetric tensor. Then the
gradient of the normal vector can be decomposed as

Van[i = _Kﬂa - nanaﬂ’ (31)

where "ag is the 4-acceleration of the normal vector
with "a, == n*V,n, = D,InN.

2. 3+1 decomposition of the spacetime Ricci tensor

We give in the present section the decomposition of the
Ricci curvature tensor “R of M onto the foliation and
orthogonal to it. “R being a symmetric tensor, we will have
10 projection equations. Details for the derivation of these
equations can be found in Ref. [13].

The two times projection onto X, gives the 3 + 1-Ricci'
equation

1 1
W h*5°R,, = — N,CN,,K(,,,, - ND(,D/;N

+ Rop + KKop — 2K K5, (32)

op

where K is the trace of K. Note that this equation features
only spatial tensors as the Lie derivatives of a spatial tensor
along Nn (or along n) is a spatial tensor.

""We name the equations with the suffix “3 4 1" to distinguish
them from their equivalent in the 1 4 3 formalism of general
relativity (see Ref. [14]).

The spatial and orthogonal projection gives the 3 + 1-
Codazzi equation

iR, = DyK — D, K*,. (33)

The two times orthogonal projection gives the 3 + 1-
Raychaudhuri equation

1
n“n*R,, = NEN,,K - K, K"

1
+ N D,D'N. (34)
Combining the trace of the 3 4 1-Ricci equation (32)
with the 3 4 1-Raychaudhuri equation (34) we obtain the
3 + 1-Gauss equation

‘R +2'R, n*n* = R+ K* — K, K" (35)

Note that 3 + 1-Gauss is redundant with the 3 4 1-Ricci
and 3 + 1-Raychaudhuri equations together, it is however
essential when solving the Cauchy problem in general
relativity.

3. 3+ 1-Einstein equations

We consider now that M is solution to the Einstein
equations. Then “R is solution of

4
R
Rop — > Yap T Agop = 8nGT yp, (36)

where T is the stress-energy tensor of the matter in M and
can be decomposed with respect to the foliation {X, },cg as

Taﬂ = Enanﬁ + Phaﬁ + 2Q(anﬂ) + Haﬂ- (37)

E, P, Q, Il are respectively the energy density, the pressure,
the heat flux, and the anisotropic stress of the matter as
measured by an observer of 4-velocity n. We call such an
observer an Eulerian observer. By definition Q,n* = 0 and
s = Hgp) with I,,n* =0 and I1,* = 0.

The 3 + 1-Einstein system of equations is obtained from
Egs. (32)-(35) when introducing the previous matter vari-
ables. Written as a Cauchy system it is composed of 6
evolution equations, obtained from the 3 + 1-Ricci equation,

1
N;CN,,K“/; = 4T[G[—(E—P)haﬂ +2Ha/}}

K"y,

1
—Ahy, —NDaDﬁN + R+ KKop—2K,,

(38)

and two constraint equations, the momentum constraint (39)
(or 3 4 1-Codazzi equation) and the Hamilton constraint
(40) (or 3 + 1-Gauss equation):
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—872GQ, = D,K — D,K*,, (39)
162GE +2A = R + K> — K, K*. (40)

Like in the previous section, combining the 3 4 1-Ricci
equation (38) and the Hamilton constraint (40), we get the
3 + 1-Raychaudhuri equation

1
NEN,,K = —477,'G(E + 3P) + A + KW/KI‘U
1
~ 7 DuD'N. (41)

While this last equation is not part of the Cauchy problem of
the 3 + 1-Einstein equations, we keep it as it will be useful
for further comparisons with Newton.

4. 3 + I-conservation equations

Solving the set of Egs. (38)—(40) is sufficient to solve the
Einstein equations. It is however of physical relevance to
give two additional equations, that is the 3 + 1-energy
conservation and the 3 + 1-momentum conservation both
coming from the projections of the conservation equation
V,T*, = 0 with respect to {Z,},cg-

The 3 4 1-energy conservation is

!
~LvaE = K(E+ P) = D,0" = 20D, InN
+ K, I, (42)

and the 3 + 1-momentum conservation is

1
N’CNnQa = _<E+P)Da1nN_DaP+KQa
— D,TV, —TI,D, In N. (43)

5. The matter fluid

We assume the matter is a fluid of 4-velocity u with
u,u* = —1, i.e., a nonradiative fluid.

Stress-energy tensor.—The stress-energy tensor can be
decomposed with respect to the fluid 4-velocity as

Ta} = €U lUp + pba[)’ + 2q(ozu/}) + Tap> (44)

where € is the energy density, p the pressure, g the heat
flux, and 7 the anisotropic stress of the fluid as measured in
its rest frames. b is the projector on the rest frames of the
fluid, with b := g +u ® u. As for Q and I, by definition,
g, =0 and o5 = 7(,p) with zu* =0 and 7,/ = 0.
For a general foliation, n # u. Then the fluid variables
measured in the rest frames are different from the one
measured by the Eulerian observer. The nature of the fluid

is however given by the variables measured in the rest frames.
It is therefore often useful to express the variables measured
by n [defined in (37)] as function of the ones measured by u
[defined in (44)]. For this we introduce the tilt velocity w of
the fluid 4-velocity with respect to the foliation as

1

W:=—u—n, (45)

4
where y := (1 — w,w*)~1/2 is the Lorentz factor. w is spatial
by definition.

We then have the following relations:

E=p*+(*-1)p+ 2ywtq, +whw'm,,, (46)
P=(r=De+(r> +2)p +2rw'q, + ww'm,,  (47)
Q=1 (e+P)Wo+rW'qWa+ 71 @, — W W1, (48)
My = r2ewewy + p(has + 7*wowp) + 2rwihptq,,

+ hot'hy'my, — Phyg, (49)

We also give the specific example of a dust fluid,
characterized by g, =0 ==z, and p = 0:

EDF) — y2¢, (50)

pOF) _ yz?,_‘lg, (51)

o = pew,, (52)

R (R =) RS

DF

where we introduced the upper-script (°F) to denote the

Eulerian fluid variables for a dust fluid.

Kinematical variables—As for Newton we define an
expansion tensor ® and a vorticity tensor @ of the fluid.
They respectively correspond to the symmetric and anti-
symmetric part of the 4-velocity gradient Vu projected on
the rest frames of the fluid:

Oy = b (,b" 5V ,u,, (54)
Wap = b [ob" 5V, (55)

Then the 4-velocity gradient can be decomposed as
Vatty = O + wop — u,"ag. (56)

where “a® := u*V,u” is the 4-acceleration of the fluid. For a
dust fluid “@ = 0 and we can rewrite the expansion and
vorticity tensors as
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DF
00" = Viuy). (57)
wl(ll;F) = V[auﬁ]. (58)

In the case of a flow orthogonal foliation, i.e., n = u, we
have the following relation between the extrinsic curvature
and the expansion tensor, K = —0. However, the vorticity
in that case is necessarily zero because of the Frobenius
theorem. So for vortical flows, if one wants to decompose
the Einstein equation on a foliation, the fluid will neces-
sarily be tilted with respect to that foliation.

It is however still possible to write the Einstein equation
projected normal and orthogonal to the fluid. This gives
the 1+ 3-Einstein equations (e.g., [1,14]) presented in
Sec. III B.

6. Foliation adapted coordinates

To formulate the Newton equations on a 4D-manifold we
will need the mathematical tools used to write the 3 + 1-
Einstein equations on a single 3D-manifold. This section
aims at presenting these tools.

Shift vector and classes of adapted coordinates.—The last
tool we needed for construction of the 4D-Newton equa-
tions concerns the choice of coordinates. Until now we
wrote the 3 4 1-Einstein equations for any coordinate
system. We however often want to introduce one, and
especially one which is adapted to the foliation. In such a
coordinate system, the coordinate vector basis {9, } 40123
features three spatial vectors: 9, 0,, and 3;. The 0-
coordinate is chosen to correspond to the scalar field 7. We
then write 9, := 8, and call it the time vector. By definition,
d, is not spatial."’

In general, 9, # n, and we have (0,)*n, = —N. We then
define the shift vector f as

p =98, — Nn. (59)

By definition g is spatial.

This vector plays the same role as U in Sec. 1IB 4:
instead of defining a single adapted coordinate system in
M, it defines a class of coordinate systems adapted to the
foliation {X;},cp in M. We write this class A}. By
definition, any coordinate system in XZ can be obtained

from a coordinate system having g as shift vector
with a time independent spatial change of coordinates,
Le., (1=1x95y"(x")) 4 po1 23

Reversing the definition (59): to a spatial vector f
corresponds a time vector

""This does not imply that 9, is timelike (see section 5.2 in
Ref. [13]). This will be discussed in relation with the 1 + 3-
Newton equations in Sec. IV.

n8t|p = Nn —|—ﬂ

whose partial time derivative "at‘ﬂ is at fixed X;

coordinates.

The class with a zero shift, denoted X and its time
vector "9, , is said to be comoving with respect to the
Eulerian observer. We call these coordinates Eulerian
comoving coordinates. Then any shift # corresponds to
the coordinate velocity vector of the class X’ Z with respect

to these coordinates.

Pull-back.—Once we chose an adapted coordinate system
{t,x"} ,_1 23» characterized by its shift §, it is possible to
write the 3 + 1-Einstein equations (38)—(41) with indices
running from 1 to 3. This comes from the fact that the 4D-
components 75 of any spatial tensor T are totally
determined by the spatial components 7%, and by the
spatial components #“ of the shift [see Eq. (60)]. Note that
the shift is only needed for covariant components.

For instance, in a class A, the contravariant components
of a rank-1 spatial tensor A are A% = (0,V“), and its
covariant components are V, = (f°V.,V,). The spatial
covariant components can be obtained from the contra-
variant ones by lowering with the spatial components £, of
the spatial metric, i.e., V, = V°h,.. The same can be done
with a rank-2 tensor T

o (OO
“(o17)

The operation T3 — T is called a pull-back. It links
spatial tensors on M to tensors on a single 3-dimensional
manifold . The components of the pulled-back tensor 7" on
X are T ;. As for each hypersurface X, corresponds a pull-
back to X, the global pull-back from M to X is said to be
parametrized by time. This implies that the properties of the
3D-manifold X and the tensors defined on it are para-
metrized by time. This situation is similar to the Newton
theory in Sec. II, where we had a time-parametrized 3D-
manifold XN,

Applying the pulling-back operation on the 3+ 1-
Einstein equations (38)—(41) allows us to have equations
living on the 3D-manifold X and parametrized by time.

. ﬂcﬂchd ‘ ﬂCTca
> ( Ta(?ﬂc ‘ Tab )
(60)

3 + 1-Einstein equations on X.—To write the 3 4 1-equa-
tions on X we need to pull-back each term of these
equations. The only nontrivial term is one arising from
the Lie derivative Ly, present in the 3 + 1-Ricci (38) and
3 + 1-Raychaudhuri (41) equations, as it still explicitly
features a nonspatial tensor, i.e., n. To remove this
dependence, we use the definition of the shift (59) and
the fact that 5"8,‘,,Ta""/f|... :"8t‘ﬁT"l“'ﬁlm. Then for a
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spatial tensor T of type (n,m), the spatial components of
Ly, T are

(L) y, = "0y, Ty, = LgT ., (61)

where we introduced the notation *£ to denote the Lie
derivative on X. According to the definition of the Lie
derivative (1), =L uses the Levi-Civita connection on X,
which corresponds to the pull-back of D.
Remark.—ZEﬁT“*“b]m corresponds to the spatial com-
ponents of the spatial projection of LgT* 5 . The latter is
however not necessarily spatial (see Appendix A).
Equations (60) and (61) allow us to write the 3 + 1-
Einstein equations as equations living on the 3D-manifold
Y~ parametrized by the time ¢. Then the 3 + 1-Ricci
evolution equation becomes
1 n z
N( at|ﬂ - ‘Cﬂ>Kab
= 4nG[—(E = P)hyy + 211,
1
— Ahab — NDanN + Rab + KKab — ZKQCKCb; (62)
the 3 4 I-constraints become
-82GQ, =D,K - DK, (63)
162GE +2A = R + K? — K ,K; (64)
and the 3 + 1-Raychaudhuri equation becomes

"y, — “Lp)K = —47G(E +3P) + A + K oK

1
— —D,D*N. (65)
N

1
T

This concludes the construction of the 3 + 1-Einstein
equations on a time parametrized 3D-manifold X from the
Einstein equation.

While detailing this construction, we saw that the shift
vector plays the same role as U in Sec. IIB2. The
differential operator in the 3 + 1-Einstein equations is also
similar to the one in the Newton equations (7)—(9). Using
these similarities, we will be able to formulate the classical
Newton equations as living in a 4D-manifold. This will be
done in Sec. III C 1 with the dual to the pull-back operation,
i.e., a push-forward.

B. 1+ 3-Einstein equations

We briefly present in this section the 1 -+ 3-Einstein
system of equations (see Ref. [14] for a more complete
study). These equations correspond to the Einstein equation
projected on u and on the rest frames of the fluid, with the
projector b :=g +u @ u. The rest frames on which the

equations are written however do not correspond to a
family of hypersurfaces if the fluid is rotational.

For future comparisons with the 4D-Newton equations,
we introduce two of the 1 4 3 equations, namely the 1 + 3-
Raychaudhuri equation obtained by projecting twice “R on
the fluid 4-velocity

L,0 = —4zGe — 0,,0" + @, 0" +V, a", (66)
and the 1 + 3-vorticity equation
ﬁua)aﬂ = b”[ab”ﬁ]vﬂay. (67)

This last equation is a geometrical constraint and does not
require the Finstein equation to be valid.

Note that there also exists a 14 3-Ricci equation. It
however requires to define a Riemann tensor on the rest
frames of the fluid which does not have all the symmetries
of the usual Riemann tensor (see Ref. [14]). We do not
introduce this equation here as it will not be useful for our
discussion.

Finally the conservation equation V,T*, for the fluid
stress-energy tensor gives the 1 + 3-energy conservation

L,e =—0(e+p)=V,q" ="a,q" — 0,7, (68)
and the 1 4+ 3-momentum conservation

bﬂa[’uQﬂ = —(6 + p)uaa - bﬂavyp - 6610{
— bV, (69)

C. Construction of the 4D-Newton equations

In Sec. Il A we detailed the construction of the 3 4 1-
Einstein equations on a time parametrized 3D-manifold X.
In the present section we will reverse this construction for
the case of the Newton equations: from the parametrized
manifold =N, we will define a spacetime manifold M~ and
write the Newton equations on this manifold.

1. Push-forward of the Newton equations

In order to write the Newton equations as equations
living in a 4D-manifold MY, we reverse the pull-back
operation of Sec. Il A 6. The operation =N — M is called
a push-forward of =N in MN. While the pull-back in
general relativity defined the parametrized manifold %, the
push-forward here will define the spacetime manifold MN.

The push-forward is parametrized by t. It hence defines a
set {ZN},cg of hypersurfaces embedded in MN. At this
stage, for a general push-forward, these hypersurfaces can
intersect. We however impose that the family {ZN},.x
defines a foliation in MN. We note n and A the normal
vector and the lapse of this foliation.
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FIG. 1. Representation of a slice ZN of the foliation {ZN},cp.
We show the vectors defining the 4D-manifold MN (in black);
the Newtonian fluid velocity (in red); the vectors relative to a
general adapted class X (in blue).

In the 3 + 1-Einstein equations (62) and (65) on X, the
partial time derivative "8,“3 carries the information on the
shift of the adapted coordinates in which the pull-back was
made. This is not the case for the classical 3D-Newton
equations (6)—(9) as no pull-back is at their origin. This
means that the derivative 9, in the Newton equations does
not necessarily correspond to the derivative "9, in MN.
Instead in a general push-forward of the Newton equations,
0y, becomes "9, ., where B is a spatial vector relative to the
foliation {ZN},cg-

So a class Xy in N corresponds to an adapted class
X%y in MN. This is schematized in Fig. 1 where we
represent a slice N and the vectors n, B and v. We also
represent in blue the shift # and the time vector #9, of a
general adapted class A% as well as the vectors U and V
defined in Sec. II B 2 with respect to this class.

The only constraint on the foliation {ZN},.r, and so on
MN, is to be spatially flat and to have an adapted
coordinate system in which the spatial components of
the spatial metric do not depend on time. This coordinate
system is X’. There are however no constraints on A or B
from the Newton equations.

In the coordinates X', the spacetime metric is

N2+ BB | B,
Gap = < >, (70)

B, ‘ hap(x€)

where h,;,(x¢) are the spatial components of the flat spatial
metric in the chosen adapted coordinates. The 4 sign
depends on the choice of signature for the metric: + for
(++++) signature and — for (—+++) signature. This is
discussed in Sec. IIIC3. As MY is determined by the
metric (70), then the choice of A" and B determines this
manifold.

Remark.—The push-forward 9, — ﬁ"a,\g is only pos-
sible if the derivative is applied on a contravariant tensor as
L:na"B applied on a covariant tensor is not spatial (see

Appendix A). This is also true for ZNEV - MNEV, where
', and ML, are respectively the Lie derivative in =N and
in MN. Therefore, the push-forward of the Newton-
vorticity equation (9) has to be done when written in the
contravariant form.

2. 4D-Newton equations

The push-forward on MN of the 3D-Newton equa-
tions (6)—(10) gives the 4D-Newton equations

LnniBvP = —pY, (71)
Lynigt = —42Gp + A - 0,0" + 0,0, (72)
Lm0 = _40)”[“@/}]/47 (73)
with the definition of the gravitational field
= Lxumnt® + 40, +0,5).  (T4)
where 0,4 and w,; are defined as

®aﬂ = D(avﬂ); waﬂ = D[avﬁ]‘ (75)
The constraints on the foliation are that the Ricci tensor of
the hypersurfaces N is zero for all  and that their extrinsic
curvature is

Ka/)’ = ND(GB/;) (76)

This amounts to saying that the spatial components of the
spatial metric in the coordinates A% do not depend on time.
We call such a foliation, a Newtonian foliation.

The system (71)—(75) is equivalent to the original system
(6)—(10), i.e., both systems can be derived from the other.
The solutions for v in the 4D-system are then the same as
for the original system. Furthermore, it is still possible to
write the 4D Newton-Raychaudhuri equation (72) like the
Newton-Gauss equation (4). This means that we have the
relation D,g* = —4zGp + A and this for any choice of N/
and B. The same applies for the 4D Newton-vorticity
equation (73) which can be written as Dj,g5 = 0.

As said before, the only constraint at that point on MN is
to have a Newtonian foliation. So in the general case where
N and B are not chosen, MN is not influenced by the
dynamics of v. However, choices on N and B can be made
such that the properties of this manifold will depend on v.
Such a choice is the subject of Sec. IV. Also in Sec. III C 5
we discuss a choice where MY is a homogeneous expand-
ing background manifold.

Remark.—Making the push-forward from the Newton
equations in Xy [Egs. (13)-(16)] is equivalent as from the
same equations in X, which is done in this section. The
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equations from X’y are obtained from (71)—(74) by chang-
ing Binto B+ U.

3. Signature of MN

While constructing MN with its metric given by (70), we
made no assumptions on its signature. The push-forward
maneuver made in Sec. IIIC1 is independent of this
signature. So the metric of MN can be either of
Lorentzian (— + ++), or Euclidean (+ + ++) signature.
It is an additional freedom to N and B of the 4D-Newton
equations. We will however take only Lorentzian mani-
folds. The only argument to take such manifolds is to
enable us to directly compare MN with solutions of the
Einstein equations.

The Lorentzian choice might seem in contradiction with
the Galilean invariance of Newton’s theory. This is only the
case if we ask the connection related to the metric (70),
defined on the spacetime manifold MY, to have this
invariance. This property is however not imposed by the
axioms of the classical formulation of Newton’s theory on a
3D-manifold, i.e., the one presented in Sec. II. In this
formulation, no spacetime manifold is defined. That is why,
when constructing MN from the classical formulation,
some freedom appears on the properties of this manifold.
This view is different from the Newton-Cartan theory,
where the structure on the manifold, defined by two
degenerate metrics and a compatible connection, is
imposed to be invariant under Galilean transformations.
This structure is called a Galilei structure, and the related
manifold, a Galilei manifold (see Ref. [11]).

The Lorentzian choice might also seem in contradiction
with the fact that there is no speed limit in Newton’s theory,
something linked to the notion of causality. We clarify why
there is no such contradiction hereafter.

The causality is the relationship between causes and
effects of an event, or observer. Thus this notion depends on
the definition of observers. In general relativity, the mani-
fold of work is a 4D-manifold, on which an observer is
defined by a 4-vector such that the spatial velocity of an
event he measures in his rest frames cannot be greater than
c. This implies that the spacetime manifold is a Lorentzian
manifold and that the 4-vector of this observer is a unit,
timelike vector.

In the classical formulation of Newton’s theory, an
observer is described by a velocity vector field p in the
Euclidean 3-space not limited by the speed of light. If we
push-forward this observer in MY, it is still defined by p
which is spatial. Then an observer in the 4D-formulation of
Newton’s theory is not described by a unit 4-velocity
vector, but by a spatial vector field, not limited by c. On the
one hand, contrary to general relativity, this definition of an
observer does not require MY to be Lorentzian; reversely,
choosing MY to be Lorentzian does not impose constraints
on the definition of an observer in 4D-Newton. On the other
hand, this Newtonian definition of an observer, and

therefore of causality, naturally allows for the measure
of superluminous velocities on the foliation {EN}, . by
any observers as their spatial velocities can themselves be
arbitrarily large.

In the next subsection we will see that it is possible to
physically define a 4-velocity vector Mu for the Newtonian
fluid. We will however necessarily have an additional
constraint if we want this vector to be a unit vector
[see Eq. (79)].

Remark.—The push-forward used to construct MN is
taken from the 3 + 1-formalism of GR; it thus automatically
defines a spacetime metric, implying MN to be (pseudo)-
Riemannian. It might however be allowed to use a push-
forward which does not necessarily lead to such a manifold.
Recovering the Newton-Cartan theory using the method of
Sec. III C should in this case be possible.

4. Newtonian 4-velocity

The equations of Sec. III C 2 describe the evolution of a
Newtonian fluid in MN. This fluid is defined by the spatial
vector v. We would like to define a vector Mu which we can
call the 4-velocity of the Newtonian fluid. The definition of
this vector is not constrained by the 4D-equations, so it
remains a choice.

The choice we make is physically motivated by the
definition of the Lagrangian coordinates (see Sec. I1 C 4).
In general relativity, Lagrangian coordinates are defined to
be comoving with the fluid 4-velocity, i.e., 0, o< u. For a
foliation defined by the normal vector n and the lapse N,
and a tilt velocity vector w of the fluid with respect to that
foliation, the Lagrangian coordinates correspond to the
adapted class A%,,,.

In the classical Newton theory, these coordinates corre-
spond to the class X, on ZN. Its equivalent on the foliation
{ZN} e is the adapted class X%, (see Sec. III C 1). Then
we demand that the tilt velocity vector of Nu with respect to
the foliation defined by n and N be - (B +v).

However there remains a freedom on the choice of the
normal part of Mz with respect to {ZN},cg. Two natural
choices are possible:

(1) The Newton-Cartan choice: this 4D theory features a
1-form 1//12 which defines an absolute time and a
foliation. An observer in this theory, described by a
vector u, is defined with respect to this absolute
time. The vector u has then the following property
w,u* = 1. The analogue to this definition in our case
would be to impose 7,Nu# = —1. This leads to a first
definition of Nu:

1
N

Ny

Nn+B+v), (77)

12Using the notation of Kiinzle [11].
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FIG. 2. Representation of the chosen Newtonian 4-velocity
vector Nu with respect to the foliation {EN},.g. Using the
analogue between Lagrangian coordinates in Newton and in
GR, we imposed the tilt velocity of Nu to be w := ; (B + v). The
normal part is chosen to be n, which is the equivalent to what is
taken in the Newton-Cartan theory for the 4-velocity of an
observer.

(i1) The relativistic choice: in GR, an observer is
described by a unit vector u, with u,u* = —1. In
our case, this translates into Nu,Nu¥ = —1. This
leads to a second natural definition of Nu:

Ny = % (Nn+B+v), (78)

with y:=[1 =55 (B, +v,)(B*+v*)]"'/2. The down-
side of this definition is that it adds the following
constraint to the 4D-Newton equations (71)—(75):

(B, +v,)(B* + v*) < N2 (79)

This is indeed a constraint, as if we take A" = 1 and
B =0, Eq. (79) imposes vﬂv" < 1. Such a con-
straint is not implied by the first definition (77).

We take the first definition (77), as it remains general
with respect to the 4D-Newton equations. This 4-velocity is
illustrated in Fig. 2, along with n, B and v.

With this choice, we can interpret the 4-velocity Mu as
follows: Nu corresponds to the covered distance Ax* in
spacetime per unit of proper time "z, where "z refers to the
proper time of n. This vector n and its induced foliation
then define a fundamental time (as in the NC theory) with
respect to which Newtonian 4-velocities are defined.
The situation is different in general relativity, where the
4-velocity of a fluid element is defined as the covered
distance Ax* in spacetime per unit of fluid element proper
time “z.

Remark.—With what precedes, we can complete the
definition of a Newtonian observer in the 4D-Newton
theory, as being described by a vector m such that

m*n, = —1. This is the equivalent definition of an observer

in the NC theory. The observer given by Nu is then the fluid
itself.

Remark.—For both definitions, v corresponds to the
coordinate velocity of the fluid 4-velocity Nu with respect to
the coordinates A% (see Fig. 2). The tilt velocity is however
still not the physical vector. The latter remains v as taking
v = 0 still implies a constraint on p with the 4D equa-
tion (71). This is not the case if we take 1 (B +v) = 0.

5. Background homogeneous expanding spacetime

In this section, we present a first choice for the mani-
fold MN.

Taklng N :=1 and Kaﬂ = D(aBﬂ) = —Ha/}, with
D,H 5 := 0, implies that MN is a homogeneous globally
expanding spacetime. This expansion is anisotropic, unless
H .5 o hyg which corresponds to the Einstein-de Sitter
spacetime.

The tilt velocity of Mu is then w = B + v. The expansion
tensor can be rewritten O := Hys + D(,wp). Then, in
Eulerian comoving coordinates, the 4D-Newton equations
for the vector w become the usual Newton equations with
a homogeneous deformation (equations for V introduced
in Sec. IIB3 with the homogeneous deformation of
Sec. IIC 3).

We still have the same results concerning expansion in a
compact topology. If we impose the hypersurfaces N to
have a compact topology, then H,; being a constant
gradient, has to be zero. It is still not possible to have
an expanding compact topology in Newton, even when
using the 4D-Newton formalism. This was expected as the
two formulations are equivalent. In order to do it, the trick
is to consider periodic boundaries only on the vector w as
explained in Sec. II C 3. In this case the topology of the
hypersurfaces N is still R3 as B is not periodically defined.

The choice of 4D-manifold MN of this section is
independent of the fluid kinematical quantities. It is then
only a background manifold. We therefore cannot draw any
dictionary between the Newtonian fluid quantities and the
relativistic fluid quantities defined via the Einstein equation
for the 4D-manifold. In the next section, M~ will depend
on the Newtonian fluid enabling, the definition of a
dictionary in Sec. IV D.

Remark.—The choice we make here cannot strictly be
called a foliation choice as this would imply that another
choice would describe the same equations but in another
foliation, the 4D-manifold being unchanged. This is not true
as, in general, another choice for N and B changes MNew,

IV. 1+3-NEWTON EQUATIONS
A. The choice

A natural choice coming from the definition of the
Newtonian 4-velocity (77) is to take A/ and B such that the

124005-14



1 +3 FORMULATION OF NEWTON’S EQUATIONS

PHYS. REV. D 102, 124005 (2020)

foliation is orthogonal to Nu, implying Nu = n. This is done
by taking B = —v. The lapse AN remains unknown. In
analogy with GR, as we deal with a dust fluid, we choose
the 4-acceleration of Nu to be zero, which is imposed by
N = 1. We expect this choice to be different in the case of
nondust fluids (this is discussed in Sec. V C).

Remark.—Interestingly, with the above choice, the two
definitions (77) and (78) are equivalent.

Under the present choice the 4D-Newton equations
become

Ly,p = —pb, (80)
Lx,0 = —47Gp + A = 0, 0" + w, 0",  (81)
[’Nua)aﬁ =0, (82)

with the definition of the gravitational field

g* = Ly, 0" + 1"(0,% + »,%), (83)

where
Oy = D(qvp); Wap = Digug, (84)
= V(aNu/j), (85)

and with Nu*V,Nu* =0 and V,Nuy =0, so that Nu
defines a foliation. Note that the covariant form of the
vorticity equation is now possible as only the normal vector
remains in the Lie derivative.

The gravitational field definition (74) can be rewritten as

g* = Nu”V”v“. (86)
The right-hand side (rhs) is spatial as “u has no
4-acceleration. We see that the gravitational field corre-
sponds to the 4-acceleration, with respect to the observer
Nu, of the Newtonian fluid velocity v.

The properties of the foliation {ZN},_ are now linked to
those of the fluid with the relation K,3 = —©,4. Then the
4D-Newton equations (80)—(82) closely resemble the
1 + 3-Einstein equations (66)—(68) for a dust fluid: on a
formal aspect and on the fact that they are expressed in the
rest frames of the fluid. We call them the 1 + 3-Newton
equations.

The main difference between the 1 + 3-Newton and the
1 4 3-Einstein equations remains in the definition of the
vorticity. In the Einstein equations, it is defined as the
antisymmetric rest frame projection of the gradient Vu
[definition (55)]. However in Newton, the antisymmetric
part of VNu is zero as Nu defines a foliation. Instead the
vorticity is defined as the antisymmetric part of a spatial
vector gradient [second equation in (84)], the symmetric

part of that gradient being the expansion tensor [first
equation in (84)]. This is the reason why we will define
the Newtonian limit (see Sec. IV C) and the Newton-GR
dictionary (see Sec. IV D) for irrotational flows.

With the choice made in the present section, the
spacetime metric of the manifold MY in the adapted
coordinates X", is

(Lt wef | vp @7)
gaﬂ_ Va ‘ hab(xc) .

where h,;,(x¢) are the spatial components of the flat spatial
metric in the fixed coordinates used to derive the solution
for v.

Remark.—As said previously, the norm of the
Newtonian spatial velocity v is not bounded by c. Where

v is superluminal, the time vector ", | is spacelike and the

points in MN where v,v* = ¢* correspond to coordinate

singularities of the class A%;. As we will see in Sec. IVE,
this is not necessarily unphysical.

B. 3 +1-Newton equations

Once we have chosen A and B, the manifold MY is set.
The choice made in Sec. IV A, leading to Egs. (80)—(83), is
such that these equations are written with respect to the
foliation orthogonal to the Newtonian fluid 4-velocity Nu
we defined. This is why they are called 1+ 3-Newton
equations. We can however change this foliation.

We define a timelike unit vector field m on MN, defining
a foliation {=N"} . of lapse M in MN. We can then
decompose Nz, © and @ with respect to {Z}"},cp. The
same can be done for the 14 3-Newton equations.
Equations (80) and (81) are scalar equations and do not
need to be projected, contrary to Eqs. (82) and (83). As for
the Lie derivative Ly,, it becomes L, with the usual
decomposition of Nu with respect to m defined in (45).

Then writing the 1+ 3-Newton equations in terms
of the variables Nu, ® and @ projected with respect to
{zNewm1 o gives the 3 4 1-Newton equations. We do not
give these equations here but discuss in Sec. VB1 a
possible use of them in relation with dictionary defined in
Sec. IV D.

C. 1+3-Newton from GR

The choice of N and B leading to the 1 + 3-Newton
equations implies that the properties of the Lorentzian
manifold MN depend on the dynamics of the Newtonian
velocity v. We however do not know at which point MN
with the metric (87) is solution of the Einstein equations for
the same fluid as the one in 1 + 3-Newton, i.e., a dust fluid.
In this section we will recover the 1 + 3-Newton equations
from GR, enabling us to answer this question in Sec. IV D.
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1. Expansion tensor decomposition

We want to recover the 1 4 3-Newton equations from
general relativity, thus defining a Newtonian limit. Our
approach will need the definition of a flow orthogonal
foliation. However, as explained in Sec. [V A, the difference
in the definition of vorticity between Newton and GR implies
that such a foliation cannot be built in the latter theory as
opposed to the former. So we expect that recovering the
1 + 3-Newton equations from the 1 4 3-Einstein equations
will be more complicated for vortical flows.

We then only take irrotational fluids in both theories.
Note that a solution to allow for vorticity, but still dealing
with foliations, is to make the limit between the 3 + 1-
Newton equations (presented in IV B) and the 3 + 1-
Einstein equations. This will not be studied in this paper
but it is discussed in Sec. VB 1.

We consider the 3 4 1-Einstein equations (38), (39), and
(41) in the orthogonal foliation of an irrotational dust fluid
of 4-velocity u (they are equivalent to the 1 + 3-Einstein
equations for irrotational flows). The Hamilton constraint
(40) is redundant with the other equations and not needed
for the discussion. For this section only we use spatial
indices and reintroduce the light speed c.

In a cosmological setup, we suppose that we can
decompose the expansion tensor into scalar, vector, and
tensor parts as in standard perturbation theoryB:

Oup = xhap + D(aVp) + Eap (88)
with £.¢ =0 and D.E°, = 0. h,, is the spatial metric of
the orthogonal foliation. The irreducibility of this decom-
position is discussed in Appendix B 1.

We take v to be irrotational, i.e., Divp) = 0. This is a
choice motivated by the 1 + 3-Newton equations in which
Dy,vy) plays the role of the vorticity. In Sec. VB2 we
discuss what D,v;) should be in the case of rotational
fluids.

Remark.—The scalar-vector-tensor decomposition we
made is fully covariant (it does not depend on an adapted
class of coordinates). It is also independent of a choice of
foliation as the spatial projection used is defined with
respect to the fluid. This is not the case for the decom-
position of the spatial metric in standard perturbation
theory.

The parameter y is interpreted as the scalar expansion,
D ,vy) as the gradient expansion and B as the gravitational
wave term. Z is only a shear term as its trace is zero. While
the trace of the gradient expansion is on average zero for a
compact space, the scalar expansion is not. Then global
expansion in a compact space is driven by y. Both y and E

“In standard perturbation theory this is done for the spatial
metric.

are not present in Newton, where only D(,vy) is. This is
coherent with the fact that there are no gravitational waves
nor global expansion in a compact space for this theory.
In this view, we can then interpret Dv to be the Newtonian
fluid expansion and y to be the space expansion.

2. The limit

The first approximation we make is to neglect the space
expansion and the gravitational wave term compared to the
Newtonian fluid expansion (this is discussed in appendix B):

O, = D,vp. (89)
This implies that in the adapted class X%,
“Oy_ hap < Dy,
and thus
“Oi_,(Davp) = Do(*0y_ vy). (90)

In this commutation relation we neglected the time variation
of the spatial metric.
We define the beta-factor f3, := |v|/c and the following
length scales:
(i) the typical length scale L, ; of the spatial variation
of the vector v, i.e., 1 D,v, =10,, ~,/L,,,
(ii) the typical length scale L,, of the time variation
of the vector v, i.e., 5“0, v* ~f,/L,,
(iii) the Schwarzschild density length scale L, :=
(Ge)(-1/2),
(iv) the typical local curvature radius Ly of the spatial
Ricci tensor, i.e., Ry, ~ 1/L%.
By defining the Newtonian gravitational field as ¢“ :=
(*0y_, +v°D.)v" [justified by the 1+ 3-Newton equa-
tion (86)], we can say that in a Newtonian regime, ”(9t‘_v ¢
will be of the same order as v“D.v* which implies

L1:.Z/Lv,t ~ ﬁv'

Assuming that 1 D,Dyv, ~ f,/L? , and using the 3 + 1-
Raychaudhuri equation (65) with the commutation relation

(90) we have
Lv,l 2 o~ 32
LE v

This relation along with the 3 + 1-Ricci equation (62)
leads to

(O1)

For the usual condition 3, < 1 on the Newtonian velocity v,
relation (91) shows that the spatial variations of the
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Newtonian velocity are small in front of the typical length
scale given by the spatial curvature. This shows that the
curvature is of second order in f3,,.

We can then consider that, at leading order, the spatial
curvature does not affect the dynamics of v, i.e., Dv ~l§v,

where D is the connection of a flat metric h (a more
quantitative justification of this approximation is given in
Appendix B). Then, at leading order, the 3 4 1-Ricci
equation is not an evolution equation anymore but becomes
a relation giving the spatial curvature orthogonal to the
fluid as function of the kinematical quantities of that fluid.
In this view, we then have R, = Rgzb) where be) is of
second order in S, with

-1
RY) = p= {("aq_v +*L,)04

4nG .
+ < ﬂ.z “r )hab +600,, —20,0°%|, (92)

C

with © = Dv.

As for the momentum constraint (63), it becomes
D[af)b]vc =0 at leading order in f,. This is consistent
with a zero curvature at first order. Thus Eq. (63) is not a
constraint anymore.

We give an additional relation for the Weyl tensor in this
limit (see Ref. [15] for the expression of the Weyl tensor in
terms of the kinematical quantities ® and w). Its electric
part £, is

Ey = _D<agb)' (93)

This relation is true to any order in #, once assumption (89)
is made. The magnetic part H,, is zero. Note that if
Dy, vy # 0, this is not true anymore. This is discussed in
Sec. VB 2.

Remark.—Using the decomposition of the expansion
tensor (88), we can see that the solutions of the Einstein
equations which do not feature the Newtonian fluid expan-
sion term will not have a Newtonian limit. In particular, this is
the case for purely gravitational waves solutions.

3. Recovering the 1+ 3-Newton equations

The limit introduced in the previous section implies that
at leading order in f, the Ricci equation is a relation for the
spatial curvature and not an evolution equation anymore.
This spatial curvature orthogonal to the fluid 4-velocity is
of second order in 3,. The expansion tensor is a gradient,
Ou = D(4vp). The momentum constraint is then trivial
at leading order. The only 3+ 1-Einstein equations
remaining to determine the evolution of ®,, are the
3 + 1-Raychaudhuri equation (41) and the 3 + 1-energy
conservation (42), which are respectively equivalent
to Eqgs. (81) and (80) of the 1+43-Newton system.

The Newton-vorticity equation (82) is trivially recovered
as the limit is done for irrotational flows.

With the Newtonian limit defined in the previous
subsection, we recovered the 1+ 3-Newton equations
in the irrotational case. This formulation of Newton’s
equations is then supported. In the next section we will
use the Newtonian limit of the present section to define a
Newton-GR dictionary.

D. Newton-GR dictionary

In the previous section we showed that we can recover
the 1 + 3-Newton equations for irrotational fluids from GR
with a limit at leading order in $,. The limit also defines a
spacetime manifold M;,, solution of the Einstein equations
at leading order. This manifold however differs from the
manifold MN given by the metric (87). Indeed, MN has
strictly flat spatial sections orthogonal to the fluid, whereas
the curvature of the same sections in Mj;,, is nonzero and
of second order. This implies that MY with the metric (87)
is not solution of the Einstein equations at leading order.
The dictionary will therefore be given by M, and not
MN. For the remainder of this paper My, will then be
denoted M (i),

We define the following Newton-GR dictionary for
irrotational dust fluids: given a solution of the Newton
equations for v, the relativistic quantities, denoted with the

upper-script (4¢) are determined by the following relations:
eldic) = p, (94)
0L = D,y (95)

RS = -D,g, — Dov*D,v, + Dyv Dv,
+ (47Gp + N)hgy, (96)

where the rhs are the Newtonian quantities. ®4) is the
expansion tensor of the relativistic fluid, R4 is the spatial
curvature orthogonal to the relativistic fluid, D is a flat
connection, g is the Newtonian gravitational field con-
strained by the Newton-Gauss equation (4) and the
Newton-Faraday equation (5).

Remark.—As we only give the Ricci tensor RE;ZC), the

spatial metric orthogonal to the fluid 4-velocity cannot be
explicitly constructed. However, raising or lowering the
dictionary quantities at leading order only requires the flat

spatial metric fza b

Studying the light ray trajectories with a Newtonian
solution using our dictionary requires the 3 4 1 light-
geodesic equation of the manifold M) This equation
can be found in Ref. [16].

In Sec. IVE we will take the example of an exact
solution of the Newton equations to test the dictionary.
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As the 1 4+ 3-Newton equations were recovered from GR
only for irrotational fluids, we were only able to draw a
dictionary for these kinds of fluids. In Sec. V B we discuss
the possibility of a dictionary with vorticity.

E. Schwarzschild geometry

1. Point mass Newtonian solution

In this section we study an exact vorticity-free solution of
the 1 + 3-Newton equations.

We begin with a 3D-Newtonian calculation. We consider
a point mass of mass M creating a gravitational field g¢ =
(=GM /r?*,0,0) in spherical coordinates (r,6, ). We then
solve the Euler equation (3) for a stationary, irrotational
fluid of test observers of velocity v. We have

with W a scalar field depending only on the radial
coordinates. The general solution is

2GM
pi = (i,/zEJrG—,o,o), (97)
r

where E is a constant corresponding to the energy of the
fluid particles. This solution corresponds to a radially
ingoing or outgoing free-falling fluid of test observers. If
E < 0, the solution is valid in the region r < —2GTM and
corresponds to fluid particles with bounded orbits, i.e.,
elliptic orbits. If E = 0, the orbits are parabolic and for
E > 0 they are hyperbolic. Note that all the particles have
the same type of orbit as E is a constant of space.
Remark.—In the case of the 1 4 3-Newton equations,
this solution implies the following spacetime line element

for MY in the adapted class Xli"v (we recall that Xi”v
corresponds to the class X):

2GM 2GM
ds? = <_1 +2E + —)dz2 T 24/2E + = —dudr
r r

+dr? 4 r2dQ2, (98)
with dQ? = d6? + sin? Od¢?.

2. Relativistic quantities from the Newtonian solution

Using the dictionary (94)—-(96), we can derive the
relativistic quantities corresponding to the Newtonian
solution (97). We obtain

eldic) =, (99)

o

ic : GM i
099 = diag <—2— rv”, ro” sin® 9) ., (100)
r-v

R — _2Ediag(0. 1,sin20),

with v := £ /2E+@.

3. Radially free-falling test fluids in GR

We want to know if the manifold defined by Egs. (99)—
(101) is a solution of the Einstein equations at leading order
in f, and if it describes the same physical system as the
Newtonian solution, i.e., a radially free-falling test fluid on
a mass point.

The solution for this physical system in GR is given by
the Schwarzschild manifold and the adapted coordinates
corresponding to a free-falling observer are the generalized
Gullstrand-Painlevé coordinates (see MacLaurin [17]14).
The Schwarzschild line element in these coordinates is

_] +26M \/2E 421
ds? = ——-di* F2————dudr

2E+1 2E+1

(101)

+ dr? + r2dQ2.

102
2E+1 (102)

where E can be interpreted as the Newtonian energy of the
fluid particles. For E = 0, the observer associated with the
generalized Gullstrand-Painlevé coordinates is a parabolic
radially free-falling test fluid. For £ < 0 and E > 0 the
free-fall is respectively elliptic and hyperbolic.

We note with the upper-script (°P) the relativistic quan-
tities corresponding to an observer associated with the
generalized Gullstrand-Painlevé coordinates. These quan-
tities are

e =0, (103)

GP . GM I
ng ) = diag (—m ro’, ro’ sin? 9), (104)
Ry = —2Ediag(0, 1,5in* 0), (105)

with 0" == £, /2E + 261,

4. Comparison

In the present section, we compare the relativistic
quantities (99)—(101) obtained from the Newton-GR dic-
tionary with the ones of the Schwarzschild metric (103)—
(105). For simplicity, we will not consider the case E < 0.
Then E corresponds to the Newtonian energy of the test
particles at infinity.

“MacLaurin [17] uses the Killing energy e := —nj;£, where
ng is the 4-velocity of the free falling observer and € is a static
Killing vector. The energy definition we use is linked to e with the
relation E = ¢ — 1.
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(dic) (GP)

The energy densities € and ¢ are the same. This
was expected as the Newtonian and the GR solutions are

both vacuum solutions. The covariant components of the

spatial curvatures are also the same, with Rﬁic) = Rii’P).

The covariant components of the expansion tensors differ
only for the component ,,, with eldie) _ (2E + 1)®£?P).

The limit under which the dictionary is defined implies
|v| < ¢ for all r. Taking r — oo, this implies £ < 1 which
in turn implies that the comparison should be done in the
region > GM. Then at leading order in E and % the
dictionary quantities are the same as those of Gullstrand-
Painlevé. This supports our dictionary.

5. The parabolic free-fall: E=0

In the case E = 0, the dictionary quantities are exactly
equal to the general Gullstrand-Painlevé ones. Furthermore
the metric (98) of the manifold MY, constructed from the
Newtonian solution (97), is exactly the Schwarzschild
metric in generalized Gullstrand-Painlevé coordinates,
which implies that MN is the Schwarzschild manifold.
This result is true without any approximation. Then the 4D
construction of Newton’s equations we introduced in this
paper, and in particular the case of the 1+ 3-Newton
equations, allows us to recover exactly a physical solution
of the Einstein equations. This further supports the choice
Ny = n made in Sec. IVA.

Note that it was already known that the velocity as a
function of the point mass distance of a parabolic radially
free-falling observer was the same in Newton and in GR.
What we showed is that this solution allows us to recover
from Newton the full spacetime metric of Schwarzschild.
This was possible because the foliation of the generalized
Gullstrand-Painlevé coordinates with £ = 0 has flat spatial
sections, which is required by the 1 + 3-Newton equations.

We see from this solution that even if the Newtonian
velocity v can, at certain points of MN, be comparable to
the speed of light, and even exceed it, it is still physical. We
know that because it is the Schwarzschild spacetime. This
means that solutions of the Newton equations are not
necessarily unphysical for v#v, ~ 2. We however expect
this statement to be true in a few cases only.

Remark.—Strangely, this exact correspondence between
a Newtonian solution and a GR one arises for a Newtonian
fluid whose energy is zero for any fluid particles. This leads
to the following question: is there a link, in general,
between the energy of a Newtonian fluid and the validity
of the related Newtonian solution with respect to GR? If
this is the case, this would be true only for one gravitational
potential energy convention. For an isolated system like a
mass point, we saw that it works if the gravitational
potential is taken to be zero at infinity. What convention
should be taken in the case of a compact spacelike T3
remains to be determined.

V. DISCUSSIONS

A. Remarks on the Newtonian limit

The Newtonian limit of general relativity and the
corresponding dictionaries (e.g., [9]) are usually done with
respect to an accelerated observer. We note its 4-velocity n.
The foliation corresponding to this observer has then a
lapse NV, the spatial gradient of which is the acceleration of
the observer. Hence in the adapted coordinates X7, the
component gy, of the spacetime metric is N>. The accel-
eration of the observer is considered in these limits to be the
gravitational field of Newton theory. Using "a, := D,In N,
this is why, at leading order, the lapse, and therefore the
component g, gives the Newtonian gravitational potential.
In this leading order approximation, the accelerated
observer is considered to be only slightly tilted with respect
to the fluid.

The Newtonian limit we defined in Sec. IV C is however
made in the rest frames of the fluid, which is not
accelerated, being a dust fluid. The Newtonian gravitational
field then cannot be the lapse, which is fixed to 1. In place,
this field is defined as the acceleration of the spatial vector
present in the decomposition of the expansion tensor
[see Eq. (86)].

However, the interpretation of gy, as the gravitational
potential, in coordinates adapted to the fluid rest frames,
still holds in the case of stationary irrotational fluids. In

these cases,
1
Ga = D, EU”W .

N
In the coordinates X}, we have gy, = —1 + v,v* which
implies

1
9o = 75 Dolgoo + 1), (106)

2
and gq can be interpreted as the gravitational potential.
Note that this interpretation is not valid in the case of the
Lagrangian coordinates X,° where gy =1 as all the
dynamics of the fluid is put in the time variations of the
spatial metric. Furthermore, in the case of nonstationary
fluids, the term gqq is not the gravitational potential any-
more, as (106) does not hold.

B. Dictionary with vorticity

In Sec. IV D we drew our Newton-GR dictionary in the
case of irrotational fluids. The reason for this was that, in
general relativity, no orthogonal foliation can be defined for
a rotational fluid. But as we made the dictionary in the rest
frames of the fluid, we needed such a foliation.

We will not detail the construction of a dictionary with
vorticity in this article. We however present two possibil-
ities that should allow for it.
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1. Tilted dictionary

The first, and most promising possibility, is to make the
dictionary in a tilted foliation with respect to the fluid. In
general relativity, the 3 4 1-Einstein equations provide the
tilted description of a fluid and allow for vortical flows. In
our formulation of Newton’s theory, the equations where
the fluid is tilted are the 3 + 1-Newton equations presented
in Sec. IV B. They are derived from the 1+ 3-Newton
equations by making a change of foliation Nu — m.

One strength of a tilted dictionary would be to show that
Newton’s theory can be obtained from any foliation."> But
as the choice of this foliation is not necessarily physically
motivated (see also Ref. [18] for a discussion of this topic),
we would prefer making the dictionary with respect to the
fluid rest frames. We discuss this in the next subsection.

2. Orthogonal dictionary

Constructing a dictionary in the rest frames of the fluid
might be more complicated as no foliation can be defined in
general relativity, contrary to the Newtonian case.

It is however possible to define a rest frame Riemann
tensor “Riem and a rest frame covariant derivative “D (see
Ref. [14]). They do not have the same properties as the ones
defined on hypersurfaces. The first Bianchi identity for
“Riem will feature the vorticity of the fluid and “D will
have torsion. The latter is however of second order in f,.
We then hope that at leading order the rest frames can be
approximated to be a family of hypersurfaces.

It remains to be shown that the projection along u of the
Lie brackets of rest frame vectors is also of second order.'®
This would indicate that we could maybe define a coor-
dinate basis on the rest frames at leading order.

Remark.—In this dictionary, the gradient in the decom-
position (88) of the expansion tensor would feature a
nonzero antisymmetric part which would be the vorticity
tensor. Subsequently, the magnetic part of the Weyl tensor
would not be zero anymore.

3. Is it really possible?

It is known that Newton’s theory features gravitational
phenomena which are not described by GR. Assuming that
the latter is the genuine theory of gravitation, these
phenomena are not physical. We mentioned in the intro-
duction the case of a shear-free dust fluid which can both
rotate and expand in Newton, but cannot in GR. This
implies that no limit exists which allows us to recover the
full Newtonian theory from GR.

“In standard perturbation theory, this means that any gauge
choice would be suited for a Newton-GR dictionary.
As there is no foliation, there is no coordinate basis in the rest
frames of the fluid. This implies that the Lie brackets of any
vectors in these rest frames feature a nonzero part along u.

To our knowledge, there exists no example of a phe-
nomenon like the one just mentioned, i.e., present in
Newton but not in GR, for a vorticity-free fluid. If this
is indeed the case, this might imply that the impossibility at
fully recovering Newton from GR, is due to the vorticity.
Then constructing a dictionary with vorticity, as we
presented in the previous subsections, would need require
additional approximation than just |v| < c.

C. 1+ 3-Newton for nondust fluids

We assumed until now the Newtonian fluid to be a dust
fluid. This was done to simplify the interpretations made
while constructing the 1+ 3-Newton equations and the
related dictionary. We briefly study the case of a nondust
fluid in this section.

Such a fluid is influenced by additional forces, other than
the gravitational force, described by a vector field F. These
forces can be either internal, linked to the fluid properties
(density, pressure, viscosity,...), or external. The changes in
the Newton system for a nondust fluid is given by the
second law of Newton. This is translated by the addition of
F in the Euler equation (3):

(9, + V" D)v =g + F'/p, (107)
with g still solution of the Newton-Gauss (4) and Newton-
Faraday (5) constraints.

In the Newton system (6)—(9) written in terms of
kinematical quantities of the fluid, the change is made
by adding the divergence of F in the Newton-Raychaudhuri
equation (8) and the vorticity of F in the Newton-vorticity
equation (9). These additional terms are then present in the
4D-Newton equations.

The 1+ 3-Newton equations should not however be
obtained with the choice N'=1 and B = —v but rather
with

B=-y; DInN =F. (108)
This choice would not change the Newton-GR dictionary
much. Essentially the interpretation of the Ricci equation to
be a relation for the spatial curvature tensor would
remain valid.

D. Cosmological models from 1+ 3-Newton

In the introduction of this paper we motivated the
construction of the 1+ 3-Newton system as a way to
better understand why Newton’s theory, compared to GR,
is lacking the phenomenon of backreaction (in a compact
space). Ultimately this would be used to define simple
models suited for the study of backreaction and global
topology in cosmology. This section aims at presenting
how we could define such models from the 1 + 3-Newton
formulation and GR. However, we leave the precise
construction of these models for another paper.
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In Sec. VD 1, we present an extension of our dictionary
to allow for global expansion of a compact space, but still
without backreaction. The next two subsections focus on
possible strategies enabling the construction of the cosmo-
logical models.

1. 1+ 3-Newton equations and dictionary for a globally
expanding compact space

In Secs. IIC3 and IICS5 we showed that no global
expansion is possible in a compact space in Newton’s
theory. A solution to allow for expansion was to decompose
the fluid velocity v into a homogeneous deformation vector
U and a peculiar velocity V, the latter having periodic
boundary conditions. As explained in Sec. II C 3, this is an
effective picture of the expansion in a compact space, as TN
(or equivalently the hypersurfaces XN for the 4D formu-
lation) is still R3.

Having =N compact with a global expansion is possible
with a modification of the Newton equations based on the
effective picture of Sec. IIC3 and the decomposition
introduced in Sec. IV C 1. We will focus on a modification
allowing for isotropic global expansion.

The modification is to replace the definition (84) for the
expansion tensor by

®(1/)’ = Hha/; + D((I’U/;). (109)
where H is a homogeneous Hubble expansion rate (i.e.,
D,H = 0), while still using the 1+ 3-Newton equa-
tions (80)—(83). H an additional fundamental variable in
the theory. These equations, along with the definition (109),
are equivalent to the Hubble flow equations of Sec. II C 3
but allow IN to be compact. Note that the evolution
equation for H, being a spatial constant, is given by the
spatial average of the Raychaudhuri equation over the
whole manifold =N.!” This average equation then depends
on the boundary conditions at infinity if &N = R or on the
topology if =N is compact.

We can then redefine the dictionary of Sec. IVD to
feature the global expansion. We then have a Newton-GR
dictionary for irrotational dust fluids and globally expand-
ing compact spaces:

eldic) = p, (110)

0\ = 0,, (111)

Rgzilt) = _[)agb _9®ab +®ac®cb + (47TG/) +A)ilabv (1 12)

The rhs are the Newtonian quantities with ©,, =
Hh‘ab + ﬁavb and D[alib] =0.

"In the case =N = R3, the spatial average requires boundary
conditions at infinity to be defined.

The modification (109) can be justified by the limit
introduced in Sec. IV C 2 and Appendix B. When neglecting
the space expansion term in Appendix B 2a, a freedom
remained on y from Eq. (B1) as a spatial constant freedom.
This constant is H. We took it to zero in Appendix B 2 a in
order to recover the 1 + 3-Newton equation as defined in
Sec. IVA.

As we included global expansion, the dictionary (109)—
(112) can be used to compare Newtonian and relativistic
cosmological simulations. It is however still a bit limited as
it requires irrotational fluids.

The modified 1 4 3-Newton equations of this section,
and the related dictionary still do not feature backreaction
in a compact space (the theorem of Buchert and Ehlers still
holds). Furthermore, the spatial sections being flat, we are
not able to study structure formation in spherical or
hyperbolic spaces, and the only oriented compact topology
available is T3, up to a finite covering. In the next two
subsections we will discuss possible GR based modifica-
tions of the 1+ 3-Newton equations which would allow
these studies.

2. Models for the study of the backreaction

The Newton theory for fluid dynamics is a scalar-vector
theory, i.e., the dynamical variables are a scalar and a
vector. The scalar is the rotational free part of v and the
vector is the divergence free part of v. The scalar part is
evolved with the Raychaudhuri equation (81) and the
vector part with the vorticity equation (82).

General relativity is a scalar-vector-tensor theory, i.e.,
there are dynamical variables, called tensorial variables,
which cannot be written as function of a scalar or a vector.
This is the case of the gravitational wave term in the
decomposition (88).

What we mean by defining a GR based model from
Newton’s equations is to keep the scalar-vector theory of
Newton but with additional nontensorial variables, terms
and/or equations motivated by GR. Keeping a scalar-vector
theory ensures a relative simplicity compared to tensor
theories like GR. Such a model would enable the study of
relativistic effects not present in Newton’s theory using the
simple tools of this theory.

In particular, we would like to focus on models imple-
menting the backreaction which is a missing phenomenon
of Newton’s theory (for compact spaces). A possible model
to study backreaction while allowing for nonlinear structure
formation would be to consider y # 0 in the decomposition
(88) along with D,y # 0. As in Sec. V D 1, the expansion
tensor features an additional term. But we consider here
that y is not a constant of space. The space expansion is
thus local and global. For this model to be well defined one
has to derive an evolution/constraint equation for the
fundamental field y from GR. This equation will feature
v. Thus the Newtonian fluid dynamics will affect the space
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expansion. In this sense this model could be useful to probe
the backreaction effect.

3. For nonflat topologies

In Appendix B, we assumed the spatial metric to be
conformally flat to justify our Newton-GR dictionary.
Relaxing this hypothesis and supposing 4., to be con-
formal to a constant curvature metric might be a way to
define a Newtonian-like theory on a nonflat space.

Such a theory was heuristically defined in Ref. [19] to
probe the topological acceleration in different spherical
topologies. There were however different possibilities in
this heuristic definition which were not relativistically
motivated.

Adapting the limit leading to the 1 + 3-Newton formal-
ism from GR (by changing the flat conformal hypothesis)
could provide a nonflat Newtonian like theory coherent
with general relativity. Along with the additional term y in
the expansion tensor, this theory if well defined, will be a
tool to probe the effect of topology on the backreaction.

As an example, we give a possible model, but we do not
try to justify it from GR. We consider, similarly to
Ref. [19], that the Newton equations (6)—(10) are also
valid if XN is a constant curvature space, ° i.e., its Ricci
tensoris R;, = gihab, where R is the scalar curvature. Then
if we calculate the backreaction Qy~, on the whole
manifold XN, defined by Buchert and Ehlers [3] as

2

QZN = <92 - ®L.d96d + C()Cda)Cd>ZN - g <9>§N7

(113)
it is not zero for a compact space (as for the flat case)
anymore. Instead, we have the relation

O = B <”c”c>zN (114)

3
where the brackets (-)s~ correspond to the spatial average
over the compact space XN. This relation implies a
dependence of the backreaction on the type of the global
topology (spherical, flat, or hyperbolic) via §, as well as on
the Newtonian dynamics of the fluid via (v.v)s~.

This model is however only heuristically defined, and thus
we cannot be sure that the result (114) is physically relevant.
The 1 + 3-Newton formulation and the Newtonian limit we
introduced might help justify, or disprove, this calculation.

E. Comparison with the Newton-Cartan theory

In the present section we explain the differences between
our 4D formulation of Newton’s equations and the Newton-
Cartan theory.

'8In Ref. [19], the heuristic assumption regarding the curvature
of =N is made on the system (2)—(5) which is not equivalent to
doing it from the system (6)—(10).

The main difference is that we were able to define a
nondegenerate metric on the spacetime manifold MN of
our formulation, implying this manifold to be (pseudo)-
Riemannian, whereas this is not case in NC.

In addition to this point, the 1 + 3-Newton formulation
does not feature an absolute time or foliation. We are free to
change the foliation in which we are writing the equations.
This leads to the 3 + 1-Newton equations (see Sec. IV B).
At most we can say that the formulation implies, like in GR,
a preferred foliation: the one defined with respect to the
fluid 4-velocity. The situation is different in NC where an
absolute time is defined, linked to an absolute foliation.

Finally the 1 + 3-Newton system of equations (80)—(84)
is equivalent to the classical Newton system (6)—(10). The
ensemble of solutions is then the same for both formula-
tions. This is not the case in NC, where the theory is slightly
more general than the classical formulation of Newton’s
theory (see Ref. [20]).

VI. CONCLUSION

The aim of this paper was to introduce a new formulation
of Newton’s equations on a 4-dimensional Lorentzian
manifold.

To get to this formulation, we started from the classical
Newton equations (2)—(5) written in a Galilean frame on a
3-dimensional manifold N. We generalized these equa-
tions by writing them for any time-parametrized coordinate
system [Eqgs. (13)-(16)]. We showed that the freedom on
the choice of this coordinate system corresponds to a vector
U, defining what we called a class of coordinates X;. This
vector in general is not uniform, implying that its gradient
is not zero. The symmetric part of the latter corresponds to
the time variation of components of the metric [Eq. (25)],
the antisymmetric part, if chosen to be a constant of space,
corresponds to a global rotation of the coordinates X'y; with
respect to a Galilean frame.

The freedom on U and the role it plays in the Newton
equations (13)—(16) makes it very similar to the shift vector
in the 3 4 1-formalism of general relativity. This allowed us
to write the Newton equations as living in a 4-dimensional
manifold MN. This was done using a push-forward on MN
of the classical Newton equations (2)—(5) (see Sec. III C 1).
The way the push-forward is done was inspired by the
3 + 1-Einstein equations. It was however not unique,
which therefore implies that some freedom remains on
the properties of MN. Regarding the signature freedom,
we chose this manifold to be Lorentzian and argued
that this was not in contradiction with Newton’s theory
(Sec. III C 3). The remaining freedom (present as a lapse
and a shift freedom) was chosen so that the foliation in
which the equations are written corresponds to the rest
frames of the Newtonian 4-velocity Nu we defined in
Eq. (77). This led to the 1+ 3-Newton equations (80)—
(84). This set of equations is equivalent to the classical
Newton equations, i.e., both can be derived from the
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other. This implies that the solutions described by the
1 4+ 3-Newton equations for the spatial fluid velocity v are
the same as the solutions of the classical Newton equations.

We then showed in Sec. IV B that these equations, in the
case of irrotational flows, can be recovered from general
relativity in a limit [v| < c. This limit was performed with
respect to a nonaccelerating observer, the fluid itself. The
Newtonian gravitational field g then does not correspond to
the 4-acceleration of a relativistic observer. Instead, it is
defined as the acceleration, with respect to the fluid, of the
spatial velocity v [see Eq. (86)]. The limit also showed what
happens to the 3 + 1-Ricci equation of general relativity.
This equation, not needed for a vector theory like Newton,
is shown to be a relation for the second order rest frames
curvature in the limit we introduced.

A first consequence of this limit is that the classical
interpretation of the component g, of the spacetime metric
as the gravitational potential still holds for coordinates
adapted to a nonaccelerating observer (Sec. VA). This is
however true only for stationary and irrotational fluids.

Another consequence of the limit is to define a dictionary
(for irrotational flows) between the Newtonian fluid var-
iables and general relativity (Sec. IV D). The spacetime
manifold, denoted M) given by this dictionary as
function of the Newtonian variables is solution of the
Einstein equations at leading order in |v|/c. In general
M) £ AN implying that MY is not solution of the
Einstein equations at leading order. The difference between
these two manifolds, M4 defined with the dictionary,
and MN defined with the 1 + 3-Newton equations, resides
in the curvature of the fluid rest frames. It is exactly zero for
MY, which is not the case for M (4i¢) where the curvature is
of second order in |v|/c.

The dictionary was then tested for spherically symmetric
vacuum solutions of Newton’s and Einstein’s theories of
gravitation. For Newton this corresponded to a radially
free-falling test fluid, and for general relativity to an
observer associated with the generalized Gullstrand-
Painlevé coordinates of the Schwarzschild spacetime. We
showed that the dictionary allows us to recover the
relativistic solution in the Newtonian limit. But in the
specific case of a parabolic free-falling Newtonian fluid,
the translation to general relativity is exact. This means that
the Schwarzschild spacetime manifold is an exact solution,
in terms of the manifold MY, of the 1+ 3-Newton
equations. This supports our formulation.

The 1 + 3 formulation of Newton’s equations might be
seen as a new approach to evaluate the link between
Newton’s theory and general relativity. What is essentially
new compared to other approaches (e.g., [9]) is that the
comparison is done in the rest frames of the fluid, thus a
nonaccelerating observer. Furthermore we were able to
construct a Lorentzian manifold on which the Newton
equations are defined, contrasting with the Galilei manifold
of the Newton-Cartan theory.

When developing this formulation we had in mind a
future use for the study of the backreaction problem in
cosmology and the effect of global topology. We think that
the formulation might enable us to identify what is missing
in Newton’s theory for this study (due to the Buchert and
Ehlers theorem [3], the backreaction is exactly zero for
compact spaces in this theory). The final objective is then to
use the 14 3-Newton equations and the scalar-vector-
tensor decomposition of the expansion tensor in general
relativity to define relatively simple models aimed at
probing the backreaction and the effect of global topology.
We give an example of what could be such a model in
Sec. VD 3.

Two things remain to be done before reaching this
objective. The first one is to further test the dictionary
for nonvacuum, nonstationary and nonisolated solutions.
This can be done by comparing spherically symmetric
solutions of Newton’s equations with the Lemaitre-Tolman-
Bondi class of solutions in general relativity. The second
one is to upgrade the dictionary for vortical flows. We
discussed this possibility in Sec. V B.
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APPENDIX A: LIE DERIVATIVE IN 3+1

We consider a foliation {Z, },cx in a manifold M. Let A
and T be respectively a spatial vector and a spatial tensor.
Then the Lie derivative of T along A is not necessarily
spatial. It is spatial if 7" has only contravariant indices. In
general we have the relation

[,AT{XI"'/,'I_“ = (l’lalﬂ]...)(hylﬁl...)EATM”'D]_“

=2) g, n, VAV, (A1)

i

Under the formalism of the 3 4 1-Einstein equations,
given a class of adapted coordinates Xz, this means that

LK o3 is not a spatial tensor in general. This implies that
59, K «p are not the spacetime components of a spatial tensor
(contrary to what is stated in Sec. 5.3.1 of Ref. [13]).
However because the Lie derivative Ly, =0, — Ly
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applied on a spatial tensor is spatial, ﬁatKaﬁ — LK op
The pull-back ﬂa,Kaﬁ — LsK 5 —
PO,K u» — L4K,p, remains also true.

The normal part of the partial time derivative ﬂa,Km is

remains  spatial.

n7ﬂ3,KW = 4K}V, pBy). (A2)

APPENDIX B: DETAILS ON THE
APPROXIMATIONS FOR THE NEWTON-GR
DICTIONARY

We detail in this section arguments for the approxima-
tions made in Sec. IV C 1 regarding the decomposition of
the expansion tensor and the covariant spatial derivative.

1. Decomposition theorem?

Equation (88) is a decomposition only if each term in the
rhs of this equation can be uniquely defined from ©,,.
Straumann [21] showed that the decomposition (88) for
rank-2 tensors is always possible in compact ~ constant
curvature spaces (constant scalar curvature and zero trace-
less curvature). To our knowledge, no similar theorem
exists for any curvature, which implies that the decom-
position might be ill-defined in a general space. We
however expect it to be reasonably valid for generally
curved spaces in the context of cosmology. However the
case of vortical flows remains problematic as no hyper-
surface orthogonal to the fluid 4-velocity can be defined.

2. Approximation on the decomposition

The only approximation which did not rely on f§, < 1
regards Eq. (89) where we neglected the space expansion
and the gravitational wave term. We will see in this section
at which conditions it is consistent with a leading order
approximation in f3,.

a. Neglecting the space expansion

Let us consider the momentum constraint (63) with the

decomposition (88). It becomes

D,y = v°R,, (B1)
using Dy vy = 0, and the traceless and divergence free
properties of the gravitational wave term.

We introduce the typical length scale L, of the space
expansion. The rhs of Eq. (B1) is of order f}/L%,. So
unless L, ;/L, > 1, which we assume is not the case for a
cosmological setup, y/c is at least of order 2/L, ;. Then

neglecting the space expansion is coherent with a leading
order approximation in f3,.

For noncompact spaces, fall-off conditions have to be used.

Remark.—Actually this only shows that the space
expansion term is a spatial constant at leading order.
To recover the 1 + 3-Newton equation we take this con-
stant to zero. However, letting it unspecified might be more
interesting as it allows for expansion in a compact space
(see Sec. VD 1).

b. Neglecting the gravitational wave term

Let us consider that 2=0 and y #0, so that
® = yh + Dv. Then in the adapted coordinates A™,

uatl_vhah = thub
The solution to this differential equation can be written as

hab = thab’ (B2)
where fzab is called the background metric with
“9y_hy, =0 and y = "9, Iny. Note that this solution,
while derived from a specific coordinate system, is however
covariantly defined. .

We introduce the covariant derivative D of h. The
conformal relation (B2) implies (see chapter 7 of
Ref. [13] for details on this calculationzo)

],:labﬁcbc In "8
hapD. Iny D Iny,

Ry = Rab - Daﬁb Iny —
+D,InyD,Iny — (B3)

where R is the Ricci tensor relative to the metric fz,
with "0, R, = 0.

In general there does not exist a scalar y and a time
independent spatial metric lAaab such that any Ricci tensor
R,;, can be written as in Eq. (B3). This equations is then a
restriction for the form of R, due to the initial assumption
Z = 0. Consequently we expect the assumption O, ~
D,v;, made in Sec. IVC1 to not be valid if, at leading
order in f3,, the spatial Ricci tensor R is not of the form of
Eq. (B3). This can be seen as a test for the dictionary.

3. Flat covariant derivative approximation

We assume in this section that the spatial metric can be
written as in Eq. (B2), thus dropping the gravitational wave
term. The Ricci tensor have the form (B3). This form
suggests two typical curvature radius associated with R,
one for R, and one for the spatial variation of Iny. We

suppose the conformal metric &, to be flat, so that R = 0 and
R has only one typical radius as assumed in Sec. IV C 1.*!
The relation R,;, ~ 1/L% implies that DIny ~ 1/Ly.

2In Ref. [13], the conformal relation is hy, = w“fzab instead of
our hyy = yrhy,

21Relaxing this hypothesis might lead to nonflat Newtonian-
like theories as discussed in Sec. VD 3.
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The covariant derivative D can be written as function of

w and the covariant derivative D of h,, (see chapter 7 of
Ref. [13] for details on this calculation 20):

D,y = Dy, + hypv'D, Iny — 21)<abb) Iny. (B4)

Using Eq. (91), the second and third terms of the rhs
of the decomposition (B4) are of the order f2. So to
first and leading order in f,, we have Dv =Dy

which is what we assumed in the Newtonian limit of
Sec. IVC2.
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