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We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a
Lorentzian manifold (hence distinct from the Newton-Cartan formalism), inspired from the 1þ 3 and 3þ 1

formalisms of general relativity. We begin by writing the Newton equations in a general time-parametrized
coordinate system. We show that the freedom on the coordinate velocity of this system with respect to a
Galilean reference system is similar to the shift freedom in the 3þ 1-formalism of general relativity. This
allows us to write Newton’s theory as living in a 4-dimensional Lorentzian manifold MN. This manifold
can be chosen to be curved depending on the dynamics of the Newtonian fluid. In this paper, we focus on a
specific choice forMN leading to what we call the 1þ 3-Newton equations. We show that these equations
can be recovered from general relativity with a Newtonian limit performed in the rest frames of the
relativistic fluid. The 1þ 3 formulation of the Newton equations along with the Newtonian limit we
introduce also allow us to define a dictionary between Newton’s theory and general relativity. This
dictionary is defined in the rest frames of the dust fluid, i.e., a nonaccelerating observer. A consequence of
this is that it is only defined for irrotational fluids. As an example supporting the 1þ 3-Newton equations
and our dictionary, we show that the parabolic free-fall solution in 1þ 3-Newton exactly translates into the
Schwarzschild spacetime, and this without any approximations. The dictionary might then be an additional
tool to test the validity of Newtonian solutions with respect to general relativity. It however needs to be
further tested for nonvacuum, nonstationary, and nonisolated Newtonian solutions, as well as to be adapted
for rotational fluids. One of the main applications we consider for the 1þ 3 formulation of Newton’s
equations is to define new models suited for the study of backreaction and global topology in cosmology.

DOI: 10.1103/PhysRevD.102.124005

I. INTRODUCTION

Fluid dynamics in Newton’s and Einstein’s theories of
gravitation are known to be closely related on a formal
aspect. This is well presented by Ellis [1] where the parallel
between the fluid kinematical quantities and equations in
Newton’s theory with those in general relativity (defined
via the 1þ 3-formalism of general relativity) is drawn. This
parallel highlights the similarities, but also the differences
between both theories. From the point of view of general
relativity (hereafter GR) these differences appear as missing
physical phenomena in the Newtonian theory. For instance
we can mention the precession of perihelion for elliptic
orbits or the gravitational waves. However, there also are
phenomena in Newton’s theory which are not included in
GR. This is the case for shear-free dust solutions, which can
both expand and rotate in Newton’s theory, but cannot in
GR (e.g. [2]). Newtonian gravitation is then not a reduction
of Einstein’s theory of gravitation.
Another phenomenon which is not described by

Newton’s theory is the backreaction of inhomogeneities

on the global expansion of the Universe. This effect was
shown to be exactly zero for a compact space in Newton by
Buchert and Ehlers [3]. Though no such theorem exists in
GR, we still do not know whether or not the backreaction
might play a major role in the expansion of space: this is the
backreaction problem in cosmology.
Then, due to Buchert and Ehlers [3], one has to use GR to

study this problem. This can be done with exact analytical
classes of solutions such as the Lemaitre-Tolman-Bondi
model or the Szekeres model. Though solutions to these
models can be refined to feature complex structures [4],
they suffer fromhighly symmetric conditionswhich implies
that they are poorly representative of the Universe. That is
why the last decade has seen the development of fully
relativistic simulations, solving exactly the Einstein equa-
tions in a cosmological setup (e.g., [5,6]). But while these
simulations were performed to probe the backreaction, for
resolution reasons they still need to be realized in a cubic
box with a size smaller than the Hubble radius. Like the
symmetric conditions in the analytical models, the box in
these simulations might act as a restrictive condition. The
latter can however be physically meaningful as it corre-
sponds to imposing a specific compact topology and size to*quvigneron@gmail.com
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the Universe, corresponding to the 3-torus T3 for these
simulations.
As of today, no clear evidence for a nontrivial global

topology exists. Nonetheless, studying the potential effects
of different compact topologies on structure formations and
backreaction remains important. This is heavy to imple-
ment in numerical simulations as most of the algorithms
and frameworks require a cubic box with Cartesian
coordinates.1 One might then want to seek for an analytical
GR based model which enables realistic structure formation
along with the study of topological effects on backreaction.
The relativistic Lagrangian perturbation theory of Ref. [8]
allows for realistic nonlinear structure formation in the
context of GR. However the backreaction in a compact
space cannot be studied as the model is based on a
perturbation around a homogeneous global expansion.
The aim of this paper is to introduce a formulation of

Newton’s theory which could help in the construction of
such a model. This formulation is a 4-dimensional (here-
after 4D) covariant writing of Newton’s equations for dust
fluid dynamics on a Lorentzian manifold.2 We call the
formulation 1þ 3-Newton. The corresponding equations
are equivalent to the classical Newton’s equations. Being
written on such a Lorentzian manifold the theory can then
be easily compared with GR. This will allow us to better
understand why some physical gravitational phenomena
like the backreaction are not present in Newton. In
particular we think that the 1þ 3-Newton formulation
can be a starting point to define new simple models suited
for the study of backreaction and global topology in
cosmology. This will be briefly discussed at the end of
this paper. We will rather focus on the construction of the
new formulation of Newton’s equations.
To support the 1þ 3-Newton formulation, we will show

that it can be directly recovered from GR with a Newtonian
limit. This is however done only for irrotational fluids.
Furthermore, as a consequence of this limit, we are also
able to construct a dictionary between the Newtonian fluid
kinematical quantities and the ones of GR, for vorticity-free
flows. This will be an additional tool in the scope of
defining new cosmological models. The observer with
respect to which this dictionary is defined is the dust fluid
itself, and thus is a nonaccelerating observer. To the best of
our knowledge this differs from existing Newton-GR
dictionaries (e.g., Green and Wald [9]). In this sense it
might be an interesting complementary test to assess at
which point nonlinear Newtonian simulations are physi-
cally relevant in a cosmological context. For instance, we
would complement studies like that of East et al. [10]
which compared Newtonian and relativistic simulations of

a simplified cosmological setup using the dictionary of
Green and Wald [9].
We will show that our dictionary is coherent in the

specific case of the Schwarzschild spacetime. In particular
we will show that the Schwarzschild manifold is the exact
translation of a solution of the 1þ 3-Newton equations.
This 1þ 3-Newton formulation is different from the

Newton-Cartan (hereafter NC) theory (e.g., Künzle [11])
which also provides a 4D formulation of Newton’s theory.
The 4D-manifold in NC is however not a Lorentzian
manifold as inGRbut aGalileimanifoldwith two degenerate
spacetime metrics.3 Thus this manifold does not provide a
direct comparison with Einstein’s theory of gravitation. In
place the correspondence between both theories is given by
the Newtonian limit in the frame theory of Ehlers [12]. This
limit however only constructs a Galilei manifold from a
solution of the Einstein equations, but not the contrary. The
correspondence between both theories then only works in
oneway, i.e., fromGR toNC. In our formulation, we are able
to define a nondegenerate spacetime metric, with signature
ð−þþþÞ, hence implying the manifold to be Lorentzian.
This paper will detail the construction of the 4D-Newton

equations from the classical formulation of Newton’s
theory on a 3-dimensional (hereafter 3D) flat manifold.
To do so, we first derive the Newton equations in a general
time-parametrised coordinate system in Sec. II. This first
step aims at showing that the classical 3D formulation of
Newton can already be covariantly written for any coor-
dinate system. These covariant Newton equations, while
still defined on a 3D-manifold, will feature similarities with
the Einstein equations: in addition to the formal equiv-
alence between the Newton equations and the 1þ 3-
Einstein equations (well presented by Ellis [1]), we show
that the freedom on the general coordinate system we
introduced behaves like the shift freedom of the 3þ 1-
formalism of GR. This allows us to write the Newton
equations on a 4D-manifold MN. This is presented in
Sec. III: in this section we first review the construction of
the 3þ 1-Einstein equations in Sec. III A, then detail the
construction of the 4D-Newton equations in Sec. III C.
The manifold MN needs to have what we call a

Newtonian foliation (defined in Sec. III C). But apart from
this constraint, MN can be any 4D (pseudo)-Riemannian
manifold (Riemannian or Lorentzian) and in general its
properties do not depend on the dynamics of the fluid. We
can however restrictMN to depend on this dynamics. Such
a restriction is studied in Sec. IV and leads to what we call
the 1þ 3-Newton equations. In this section we also present
the Newtonian limit allowing us to recover these equations
from GR (Sec. IV C). Our Newton-GR dictionary is
defined in Sec. IV D and an application is studied in
Sec. IV E in the case of the Schwarzschild geometry. We1Brown [7] might give the best formulation of the BSSN

formalism to enable numerical simulations in nonflat topologies.
2We explain in Sec. III C 3 why writing Newton’s equations on

a Lorentzian manifold is not in contradiction with this theory. 3No nondegenerate spacetime metric is defined in NC.
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show that we can recover the full Schwarzschild spacetime
from an exact solution of the Newton equations.
In Sec. V we discuss some aspects of the 1þ 3-Newton

equations and the related dictionary. In particular, we
present some ideas, in Sec. V B, to allow the dictionary
to be physically valid for rotational flows. Section VD aims
at discussing the potential use of the 1þ 3-Newton
formalism to define modified Newtonian models based
on GR. We focus on the possibility to define models suited
for the study of the backreaction problem and the global
topology in cosmology. We, however, leave the precise
definition of such models for a further study.

II. THE CLASSICAL NEWTON SYSTEM OF
EQUATIONS

In this section, after recalling the usual form of the
Newton equations, we will express them in a general time
parametrized coordinate system. Then specific choices of
coordinates and their interpretation will be made.
Similarities with the 3þ 1-Einstein equations will appear.
This will allow us to extend the definition of the Newton
equations to 4D-spacetime manifolds in Sec. III.

A. Notations

In this section we define notations which will be used in
the remainder of this paper.
Unless otherwise stated the light speed c is taken to be 1.
A tensor of any type, except scalars, will be denoted in

bold (example: g). In the case where the type is of
importance, a tensor of type ðn;mÞ will be denoted as a
bold letter with n overbars andm underbars (example: g for
a type (0, 2) tensor).
We define the symmetric part TðabÞ, the antisymmetric

part T ½ab� and the symmetric traceless part Thabi of a rank-2
tensor T as

TðabÞ ≔
1

2
ðTab þ TbaÞ; T ½ab� ≔

1

2
ðTab − TbaÞ;

Thabi ≔ TðabÞ −
T
N
gab;

where g is the metric of the manifold on which T is defined
and N the dimension of this manifold.
The Lie derivative on a manifoldM of a tensor T along a

vector field Ā is denoted LAT. The Lie derivative does not
commute with the metric, so for instance, for a rank-1
tensor B, LAB̄ ≠ LAB. We will then use LABa, respectively
LABa, to denote the coordinate components of LAB̄,
respectively LAB.
Then for a vector A and a tensor T on a manifoldM, we

have

LATa1…
b1…≔Ac∇cTa1…

b1…

þ
X
i

Ta1…
…c

↑
i

…∇biA
c−

X
j

T…c
↓
j

…
b1…∇cAaj ;

ð1Þ
where ∇ is the Levi-Civita connection of M.
Finally, indices running from 0 to 3 will be denoted by

Greek letters (α; β; γ;…) and indices running from 1 to 3 by
Roman letters (a; b; c;…).

B. General form of the Newton system

1. In fixed coordinates

We only consider dust fluids, implying the pressure and
the nonideal fluid terms to be zero.
The Newton system of equations describes the time

evolution of a fluid characterized by a scalar field ρ, the
fluid density, and a vector field v, the fluid velocity. These
two tensors are defined in a 3-dimensional flat manifold4

denoted ΣN and are parametrized by the time t. They are
thus function of t and the position on ΣN. The metric on ΣN

is denoted h. The system of equations is composed of two
evolution equations, one for the scalar ρ and one for the
vector v, and two constraint equations. Given a fixed
coordinate basis vector feigi¼1;2;3 on ΣN, i.e., the vectors
ei are not parametrized by time, the evolution equations in
the corresponding coordinate system fxigi¼1;2;3 are

(i) the mass conservation equation

ð∂tjx
þ vkDkÞρ ¼ −ρDkvk; ð2Þ

(ii) the Euler equation

ð∂tjx
þ vkDkÞvi ¼ gi; ð3Þ

whereDi are the components of the Levi-Civita connection
on ΣN in the coordinates xi and g is the gravitational vector
field constraint by the following equations:

(i) the Newton-Gauss equation

Dkgk ¼ −4πGρþ Λ; ð4Þ

(ii) the Newton-Faraday equation

D½igj� ¼ 0: ð5Þ

with Λ the cosmological constant.

4The only requirement on ΣN is to be flat, i.e., its Riemann
tensor is zero. ΣN is however not necessarily R3. It can have any
topology depending on geometric compatibility conditions (see
Sec. II C 3).
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Due to the equivalence principle, the Euler equation (3)
can be seen as a definition of the gravitational vector field.
Then apart from this equation, the Newton system can be
written independently of g. To do so, we introduce the
expansion tensor Θ and the vorticity tensor ω of the vector
field v being respectively the symmetric and the antisym-
metric part of the velocity gradient Dv, with5

Θij ≔ DðivjÞ; ωij ≔ D½ivj�; ð6Þ

and we note the trace Θk
k ≕ θ. The indices are lowered and

raised by the metric h. We can then rewrite Eqs. (2), (4),
and (5) respectively as

ð∂tjx
þ LvÞρ ¼ −ρθ; ð7Þ

ð∂tjx
þ LvÞθ ¼ −4πGρþ Λ − ΘijΘij þ ωijω

ij; ð8Þ

ð∂tjx
þ LvÞωij ¼ 0: ð9Þ

The gravitational vector field g is defined as

gi ≔ ð∂tjx
þ LvÞvi þ vkðΘk

i þ ωk
iÞ: ð10Þ

Introducing the Lie derivative in this last equation allows us
to have the same differential operator acting on ρ, Θij,
and ωij.
The system (6)–(9) is closed and equivalent to the system

(2)–(5).
In the form (6)–(9), the Newton system is composed of 3

evolution equations for the density, the expansion and the
vorticity tensors. Equations (7)–(9) are respectively called
the Newton mass conservation equation, the Newton-
Raychaudhuri equation and the Newton vorticity equation.
As stated above, they are valid in a fixed coordinate system
(see Sec. II B 4 for more details). While the expansion and
vorticity tensors are explicitly covariant under any change
of coordinates, parametrized by time or not, the differential
operator ∂tjx

is not. In the next section we will see how it
changes as function of the time parametrization of the
coordinate transformation. This will allow us to write the
Newton system for any time parametrized coordinate
system.

2. In general parametrized coordinates—v description

We consider a coordinate vector basis fẽaga¼1;2;3 on ΣN.
If the vectors ẽa are parametrized by time, the coordinate

system they define is called a parametrized coordinate
system. We consider such a coordinate system on ΣN and
note it fx̃aga¼1;2;3. For this section, any component of a
tensor in the fixed coordinates xi will use the Roman letters
i, j, k, l, etc. (example: Tij) and the same applies for the
partial derivatives with ∂t ≔ ∂tjx

and ∂i ≔ ∂xi ; any com-
ponent of a tensor in the parametrized coordinates x̃a will
be denoted with a tilde and will use the Roman letters a, b,
c, d, etc. (example: T̃ab) and the same applies for the partial
derivatives with ∂̃t ≔ ∂tjx̃

and ∂̃a ≔ ∂ x̃a .
To be able to write the Newton equations in the x̃a

coordinates from the equations in the xi coordinates, we
need to consider the coordinate transformation between xi

and x̃a. This allows us towrite x̃a as functions of xi and t, and
inversely xi as functions of x̃a and t. The Jacobian matrix Jia
of this transformation, and its inverse Jia, are then

Jia ≔ ∂̃axi; Jia ≔ ∂ix̃a:

Because the change of coordinates xi → x̃a depends on time,
in general the Jacobian will also depend explicitly on time.
The components T̃ab…

cd… of any tensor T in ΣN are
related to the components Tij…

kl… of that same tensor by

T̃ab…
cd… ≔ ðJiaJjb…ÞTij…

kl…ðJkcJld…Þ:

We consider now a tensor W whose components in the
feigi¼1;2;3 basis are Wij…

kl… ≔ ∂tTij…
kl… with T a para-

metrized tensor. As mentioned in the previous section,
because the derivative ∂t is not explicitly covariant under
the change of coordinates xi → x̃aðt; xiÞ, the relation
W̃ab…

cd… ¼ ∂̃tT̃ab…
cd… does not hold in general. It only

holds if the x̃a coordinates do not depend on time. Instead
we have the relation

ðJiaJjb…Þ∂tðTij…
kl…ÞðJkcJld…Þ

¼ ∂̃tT̃ab…
cd… − LUT̃ab…

cd…; ð11Þ

where U is the coordinate velocity vector of the x̃a

coordinates with respect to the xi coordinates and is defined
such as

Ui ≔ ∂̃txi; ð12Þ

which implies Ũa ¼ −∂tx̃a using (11).
Proof.—For simplicity we show the proof for a rank-1

tensor; it can easily be generalized for any tensor. Making
use of ∂t ¼ ∂̃t − ∂̃txk∂k, we have

5Here we adopt the sign convention ωij ≔ þD½ivj�. This
implies the relation: curl vi ¼ ϵijkω

jk where ϵijk is the Levi-
Civita tensor. The inverse relation is ωij ¼ 1

2
ϵijkcurlvk.

QUENTIN VIGNERON PHYS. REV. D 102, 124005 (2020)

124005-4



Jia∂tTi ¼ Jiað∂̃tTi − ∂̃txk∂kTiÞ
¼ ∂̃tT̃a − Ti∂̃tJia − JiaUk∂kTi

¼ ∂̃tT̃a − JiaðTk∂iUk þ Uk∂kTiÞ
¼ ∂̃tT̃a − JiaðLUTÞi
¼ ∂̃tT̃a − LUT̃a: ▪

We can then write the system (7)–(10) in the coordinates
x̃a. This gives the generalized Newton equations for the
fluid velocity vector v in a time parametrized coordinate
system:

ð∂̃t þ Lv−UÞρ ¼ −ρθ; ð13Þ

ð∂̃t þ Lv−UÞθ ¼ −4πGρþ Λ − Θ̃cdΘ̃cd þ ω̃cdω̃
cd; ð14Þ

ð∂̃t þ Lv−UÞω̃cd ¼ 0; ð15Þ

and the definition of the gravitational field

g̃a ≔ ð∂̃t þ Lv−UÞṽa þ ṽcðΘ̃c
a þ ω̃c

aÞ: ð16Þ

These equations, while written for any parametrized
coordinate system, still require reference coordinates, i.e.,
the fixed coordinates xi, to be able to define the tensor U.
This is discussed in Sec. II B 4.
The system (13)–(16) depends on the vectors U and v.

The latter can be called the velocity of the fluid with respect
to the fixed coordinates. However when taking a nonzero
coordinate velocity U, it might be useful to work with the
velocity vector V of the fluid with respect to the para-
metrized coordinates defined as

V ≔ v − U: ð17Þ

In the next section we develop the Newton equations as
functions of U and V.

3. In general parametrized coordinates—V description

We introduce the expansion tensors VΘ and UΘ, and the
vorticity tensors Vω and Uω of the vectors V and U as

VΘ̃ab ≔ D̃ðaṼbÞ; UΘ̃ab ≔ D̃ðaŨbÞ;
Vω̃ab ≔ D̃½aṼb�; Uω̃ab ≔ D̃½aŨb�;

and their trace Vθ ≔ VΘ̃c
c and Uθ ≔ UΘ̃c

c.
We can then write the system (13)–(16) as function of V

and U. This gives the generalized Newton equations for the
fluid coordinates velocity vector V in a time parametrized
coordinate system:

ð∂̃t þ LVÞρ ¼ −ρðVθ þ UθÞ; ð18Þ

ð∂̃t þ LVÞðVθ þ UθÞ ¼ −4πGρþ Λ

− ðVΘ̃cd þ UΘ̃cdÞðVΘ̃cdþ UΘ̃cdÞ
þ ðVω̃cd þ Uω̃cdÞðVω̃cd þ Uω̃cdÞ; ð19Þ

ð∂̃t þ LVÞðVω̃cd þ Uω̃cdÞ ¼ 0; ð20Þ

and the definition of the gravitational field

g̃a ≔ ð∂̃t þ LVÞðṼa þ ŨaÞ
þ ðṼc þ ŨcÞðVΘ̃c

aþ UΘ̃c
a þ Vω̃c

a þ Uω̃c
aÞ: ð21Þ

4. Class of coordinates

We define the following mathematical object:
Definition.—Given a coordinate system fyaga¼1;2;3,

parametrized or not, we define the class of y coordinates,
denoted Xy, as the ensemble of coordinate systems which
can be obtained from the system fyaga¼1;2;3 with a time-
independent coordinate transformation.
The equations developed in Secs. II B 1, II B 2, and II B 3

were defined, directly or indirectly, with respect to a chosen
fixed coordinate system fxigi¼1;2;3 on ΣN. They however do
not depend on this system as all these equations are invariant
under a time-independent change of coordinates. Instead,
any system of coordinates in the class of fixed coordinates
can be chosen. The same applies for the definition of the
vector U, and so of the vector V.

Proof.—We consider two fixed coordinate systems
fxigi¼1;2;3 and fyIgI¼1;2;3 and a parametrized coordinate
system fx̃aga¼1;2;3. The components of a tensor in the yI

coordinates will be denoted with capital Roman letters
I; J;… Let U be the coordinate velocity vector of the
coordinates x̃a with respect to the coordinates xi. Then

Ui ≔ ∂̃txi

¼ ∂̃txiðyIÞ
¼ ∂tyK∂yKx

i:

∂yKx
i is the Jacobian of the coordinate transformation

between xi and yK . Then UI ≔ ∂̃tyI . This means that
the definition of U is unchanged if the fixed system of
reference is fyIgI¼1;2;3. ▪
The choice of parametrized coordinates x̃a then defines

uniquely the vector U. The opposite is wrong: defining a
vector field U on ΣN does not determine uniquely a
parametrized system fx̃aga¼1;2;3. Instead U uniquely
defines a class of parametrized coordinate systems which
we can write XU. Then U is the coordinate velocity of any
system inXU with respect to any system inX0, whereX 0 is
the class of fixed coordinates.
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The Newton system (13)–(16), or equivalently the
system (18)–(21), then corresponds to the original
Newton system (7)–(10) written in any class of coordinates.
It is the most general writing of the original equations (7)–
(10), assuming the time parameter is unchanged.6

But while the original set of equations required the
definition of only one vector field, the fluid velocity vector
v, the general equations of Sec. II B 2 require the definition
of a second vector field, the coordinate velocity vector U of
the chosen class of coordinates to work in. If one chooses
the point of view of Sec. II B 3, the pair of vectors ðv;UÞ is
replaced by the pair ðV;UÞ. However only v is physical as it
is the fluid velocity vector and does not depend on a chosen
class of coordinates: taking v ¼ 0 changes the generality of
the equations as it implies ∂tρ ¼ 0, while U or V can be
taken to 0 without loss of generality.
A nontrivial choice of U can however be of physical

interest depending on the physical system studied. In the
next section we present specific examples of parametrized
coordinates.

C. Specific choices of coordinates

In this section we will always use the Newton equations
in the same class of coordinates as the vector U we will
choose. We can then omit the tilde notation. The partial
time derivative will also always be partial time derivative at
fixed XU coordinates, we will note it ∂tjU .

7

1. Galilean coordinates

Galilean coordinates are the classes of coordinates for
which ∂tjUU

a ¼ 0 and∇U ¼ 0, i.e., the coordinatesXU are
uniformly moving with respect to the class of fixed
coordinates. If one chooses the fluid description in terms
of ðv;UÞ, then the corresponding Newton system (13)–(16)
is not equivalent for all Galilean coordinates due to the
terms UcDc. The Galilean invariance only appears in the
ðV;UÞ description of the fluid as the corresponding
Eqs. (18)–(21) are formally equivalent for all Galilean
coordinates.
This shows that the description in terms of the fluid

coordinate velocity is more appropriate when U is nonzero
as it will encode the noninertial effect due to U. Indeed, we
can rewrite the Euler equation (21) to feature the noninertial
terms acting on V

ð∂tjU þ VcDcÞVa ¼ ga − ð∂tjU þ UcDcÞUa

− 2VcðUθcaþ Uω̃c
aÞ: ð22Þ

We see that the acceleration of V, on the left-hand side of
the equation, is affected by the gravitational field and the
noninertial terms, depending on U. We however recall that
these effects are only gauge effects as the true dynamics of
the fluid is given by v.

2. Globally translating and rotating coordinates

In classical mechanics, the most general coordinates are
usually globally rotating and translating with respect to X 0.
In this case they are called frames. They correspond to
all the classes of coordinates where U can be decomposed
as

U ¼ Utr þ Urot; ð23Þ

where DUtr ¼ 0, UΘrot ¼ 0 and ϵacdDbDcUd
rot ¼ 0 where ϵ

is the Levi-Civita tensor.
The condition DUtr ¼ 0 ensures that Utr is a global

translation of the XU coordinates with respect to the
Galilean classes of coordinates; UΘrot ¼ 0 ensures that
Urot is only rotational. The rotation vector of the frame is
Ωa ≔ ϵacdDcUd

rot. Then ϵbcdDaDcUd
rot ¼DaΩb ¼ 0 ensures

that this rotation is also global.
In these conditions, the Euler equation (22) becomes

ð∂tjU þ VcDcÞVa ¼ ga − ∂tjUU
a
tr − ∂tjUU

a
rot

− ðUc
tr þUc

rotÞωc
a − 2VcUωc

a: ð24Þ

The term ∂tjUU
a
tr þ ∂tjUU

a
rot þ ðUc

tr þ Uc
rotÞωc

a is the cen-
trifugal acceleration, and 2VcUωc

a is the Coriolis accel-
eration. We retrieve the usual Euler equation in a
noninertial frame where the vorticity of U corresponds
to the global rotation of that frame with respect to a
Galilean frame. There is however no contribution of the
expansion tensor of U in that case, as it is zero. In the
next section we will show to what corresponds a non-
zero UΘ.

3. Homogeneous deformation

The expansion tensor of the coordinate velocity vector U
can be linked to the time variations of the metric in the XU
coordinates. We have the following relation:

1

2
∂tjUhab ¼ UΘab: ð25Þ

Proof.—For this proof only we reintroduce the tilde and
untilde notations of Sec. II B 2 concerning parametrized
and fixed coordinates. Using property (11), we have

JiaJjb∂tj0hij ¼ ð∂tjU − LUÞh̃ab;
¼ ∂tjU h̃ab − 2D̃ðaŨbÞ:

6Making a change of parametrisation t → t̃ corresponds to a
change of foliation for the 4-dimensional Newton equations (see
Sec. IV B).

7To avoid possible confusions, we precise that this notation
does not imply ∂tjUU

a ¼ 0.
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∂tj0 is the time derivative with respect to the fixed
coordinate class. Because xi are fixed coordinates,
∂tj0hij ¼ 0. Then ∂tjU h̃ab − 2D̃ðaŨbÞ ¼ 0. ▪
Remark.—In a frame coordinate system, i.e., globally

translating and rotating, the metric is static as UΘ ¼ 0.
Relation (25) implies that with a change of coordinates

from fixed coordinates, we can simulate space expansion.
This expansion is always a gradient expansion, i.e.,
1
2
∂tjUhab is the gradient of a vector. Taking UΘ such that

DUΘ ¼ 0 implies that the expansion is global: this is called
a homogeneous deformation. Furthermore, when it is
isotropic, the coordinate velocity vector corresponds to
the position vector, i.e., in Cartesian coordinates Ua ∝ xa.
In this case this is called a Hubble flow. However one has to
remember that the physical vector is v. Therefore the
expansion due to UΘ is strictly speaking a fluid expansion
and not a space expansion (see Sec. IV C 1 for precisions
on this interpretation).
Themain consequence of the gradient expansion is that no

global expansion is possible if the 3D-manifold ΣN has a
compact topology.8 Indeed in such a topology xa cannot be
the components of a tensor as they do not respect the global
symmetry of a compact space. So strictly speaking,
Newtonian cosmological simulations, said to be realized
in a 3-torus with global isotropic expansion, are actually
simulating an infinite 3D-manifold. The 3-torus symmetry is
only set on V and not U, thus the physical vector v lies in an
infinite 3D-manifold. If one wants ΣN to be strictly compact
and be allowed for expansion, modified-Newtonian equa-
tions have to be used. This is discussed in Sec. V D 1.

4. Lagrangian coordinates

We saw that the physical dynamical properties of the
fluid are encoded in v. By working in parametrized
coordinates, we split these properties into U and V.
Then, taking V ¼ 0 implies that the coordinate velocity
U is the velocity of the fluid v. Coordinates such as V ¼ 0
are called Lagrangian coordinates as they follow the fluid
flows given by v. In Lagrangian coordinates, part of the
fluid dynamics, the pure expansion θ and the shear σab ≔
Θhabi of v, is put into the time variation of the metric. The
other part, the vorticity of v, does not affect the metric.

D. Similarities with the 3 + 1 and 1 + 3 formalisms of
general relativity

In Sec. II B, we derived the Newton system of equations
in an arbitrary class of coordinates. We saw that the
freedom associated with a choice of class is a vector U.
Furthermore the difference between two partial time
derivatives is a Lie derivative. These two properties
resemble the properties of the shift freedom in the 3þ 1

formalism of general relativity (see Sec. III A). We could
add that Newton’s equations live on a time-parametrized
3D-manifold9 which is the same situation as for the 3þ 1-
Einstein equations.
This shows that apart from the known formal equiv-

alence between the Newtonian system (7)–(9) and the
1þ 3-Einstein equations explained in Ref. [1], Newton
also features similarities with the 3þ 1 construction of the
Einstein equations. In the next section, we will reverse this
construction in the case of the Newton theory to get 4D-
Newton equations.

III. THE 4D-NEWTON SYSTEM

We recall in Sec. III A the construction of the 3þ 1
equations of GR. Reversing this construction will allow us
to write the 4D-Newton equations in Sec. III C. We also
quickly present the 1þ 3-Einstein equations in Sec. III B as
they will be formally equivalent to the 4D-Newton system
for a certain choice of manifold (see Sec. IV).

A. 3 + 1 formalism in general relativity

We define a 4D pseudo-Riemannian manifoldM, called
the spacetime manifold, and its metric g. This metric has a
Lorentzian signature ð−þþþÞ. In the following subsec-
tions we will derive, from the Einstein equations, the 3þ 1-
Einstein equations on a 3-dimensional manifold.

1. Foliation variables

The principle behind the 3þ 1 formalism is to split the
spacetime manifold M into space and time. If M is
globally hyperbolic, which we will suppose from now, it
is possible to define a family of spacelike hypersurfaces
fΣtgt∈R in M. This family is called a foliation and can be
uniquely defined by the level surfaces of a smooth scalar
field t̂ on M.
The 3þ 1-Einstein equations are the projections of the

Einstein equation onto and normal to the foliation fΣtgt∈R.
To be able to realize these projections one has to define a
normal unit vector field to the family of hypersurfaces. The
gradient ∇t̂ of the scalar field t̂ defines naturally a normal
timelike vector field to the hypersurfaces. In general this
vector is not a unit vector. We then define the timelike unit
vector field to the hypersurfaces Σt as

n ≔ −N∇t̂; ð26Þ

where N ≔ ð−∇μt̂∇μt̂Þ−1=2 is called the lapse, is positive
by convention, and only depends on the foliation. The
global minus sign in the definition of n is a convention
imposing this vector to be future oriented with respect to

8The only possible compact oriented topology is the flat
3-torus T3 up to a finite covering.

9Actually, among the tensors defining ΣN, only the metric can
depend on time, the Riemann tensor being zero in any class of
coordinates.
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the time scalar field t̂. The 3þ 1-Einstein equations we will
get do not depend on this convention.
The projection operator on to the hypersurfaces is the

tensor

h ≔ gþ n ⊗ n; ð27Þ

where g is the metric on M.
A spatial tensor is defined as having no normal part with

respect to the hypersurfaces Σt. The spatial covariant
derivative D applied on a spatial vector T is defined as

DμTα1…
β1… ≔ hσμðhα1μ1…Þðhν1β1…Þ∇σTμ1…

ν1…: ð28Þ
We define two more spatial rank-2 tensors, the intrinsic

Ricci curvature R of the hypersurfaces Σt and the extrinsic
curvature K of these hypersurfaces embedded in M. The
extrinsic curvature makes the link between the geometrical
properties of the hypersurfaces Σt and the ones of M. We
can write the components of K as

Kαβ ¼ −hμαhνβ∇νnμ; ð29Þ
or

Kαβ ¼ −
1

2N
LNnhαβ: ð30Þ

The negative sign is a convention. Because n is propor-
tional to a gradient, K is a symmetric tensor. Then the
gradient of the normal vector can be decomposed as

∇αnβ ¼ −Kβα − nαnaβ; ð31Þ
where naβ is the 4-acceleration of the normal vector
with naα ≔ nμ∇μnα ¼ Dα lnN.

2. 3 + 1 decomposition of the spacetime Ricci tensor

We give in the present section the decomposition of the
Ricci curvature tensor 4R of M onto the foliation and
orthogonal to it. 4R being a symmetric tensor, we will have
10 projection equations. Details for the derivation of these
equations can be found in Ref. [13].
The two times projection onto Σt gives the 3þ 1-Ricci10

equation

hμαhνβ4Rμν ¼ −
1

N
LNnKαβ −

1

N
DαDβN

þ Rαβ þ KKαβ − 2KαμKμ
β; ð32Þ

where K is the trace of K. Note that this equation features
only spatial tensors as the Lie derivatives of a spatial tensor
along Nn (or along n) is a spatial tensor.

The spatial and orthogonal projection gives the 3þ 1-
Codazzi equation

hμαnν4Rμν ¼ DαK −DμKμ
α: ð33Þ

The two times orthogonal projection gives the 3þ 1-
Raychaudhuri equation

nμnν4Rμν ¼
1

N
LNnK − KμνKμν

þ 1

N
DμDμN: ð34Þ

Combining the trace of the 3þ 1-Ricci equation (32)
with the 3þ 1-Raychaudhuri equation (34) we obtain the
3þ 1-Gauss equation

4Rþ 24Rμνnμnν ¼ Rþ K2 − KμνKμν: ð35Þ

Note that 3þ 1-Gauss is redundant with the 3þ 1-Ricci
and 3þ 1-Raychaudhuri equations together, it is however
essential when solving the Cauchy problem in general
relativity.

3. 3 + 1-Einstein equations

We consider now that M is solution to the Einstein
equations. Then 4R is solution of

4Rαβ −
4R
2
gαβ þ Λgαβ ¼ 8πGTαβ; ð36Þ

where T is the stress-energy tensor of the matter in M and
can be decomposed with respect to the foliation fΣtgt∈R as

Tαβ ¼ Enαnβ þ Phαβ þ 2QðαnβÞ þ Παβ: ð37Þ

E, P, Q, Π are respectively the energy density, the pressure,
the heat flux, and the anisotropic stress of the matter as
measured by an observer of 4-velocity n. We call such an
observer an Eulerian observer. By definitionQμnμ ¼ 0 and
Παβ ¼ ΠðαβÞ with Παμnμ ¼ 0 and Πμ

μ ¼ 0.
The 3þ 1-Einstein system of equations is obtained from

Eqs. (32)–(35) when introducing the previous matter vari-
ables. Written as a Cauchy system it is composed of 6
evolution equations, obtained from the 3þ 1-Ricci equation,

1

N
LNnKαβ ¼ 4πG½−ðE−PÞhαβþ2Παβ�

−Λhab−
1

N
DαDβNþRαβþKKαβ−2KαμKμ

β;

ð38Þ

and two constraint equations, the momentum constraint (39)
(or 3þ 1-Codazzi equation) and the Hamilton constraint
(40) (or 3þ 1-Gauss equation):

10We name the equations with the suffix “3þ 1" to distinguish
them from their equivalent in the 1þ 3 formalism of general
relativity (see Ref. [14]).

QUENTIN VIGNERON PHYS. REV. D 102, 124005 (2020)

124005-8



−8πGQα ¼ DαK −DμKμ
α; ð39Þ

16πGEþ 2Λ ¼ Rþ K2 − KμνKμν: ð40Þ

Like in the previous section, combining the 3þ 1-Ricci
equation (38) and the Hamilton constraint (40), we get the
3þ 1-Raychaudhuri equation

1

N
LNnK ¼ −4πGðEþ 3PÞ þ Λþ KμνKμν

−
1

N
DμDμN: ð41Þ

While this last equation is not part of the Cauchy problem of
the 3þ 1-Einstein equations, we keep it as it will be useful
for further comparisons with Newton.

4. 3 + 1-conservation equations

Solving the set of Eqs. (38)–(40) is sufficient to solve the
Einstein equations. It is however of physical relevance to
give two additional equations, that is the 3þ 1-energy
conservation and the 3þ 1-momentum conservation both
coming from the projections of the conservation equation
∇μTμ

α ¼ 0 with respect to fΣtgt∈R.
The 3þ 1-energy conservation is

1

N
LNnE ¼ KðEþ PÞ −DμQμ − 2QμDμ lnN

þ KμνΠμν; ð42Þ

and the 3þ 1-momentum conservation is

1

N
LNnQα ¼ −ðEþ PÞDα lnN −DαPþ KQα

−DμΠμ
α − Πμ

αDμ lnN: ð43Þ

5. The matter fluid

We assume the matter is a fluid of 4-velocity u with
uμuμ ¼ −1, i.e., a nonradiative fluid.

Stress-energy tensor.—The stress-energy tensor can be
decomposed with respect to the fluid 4-velocity as

Tαβ ¼ ϵuαuβ þ pbαβ þ 2qðαuβÞ þ παβ; ð44Þ

where ϵ is the energy density, p the pressure, q the heat
flux, and π the anisotropic stress of the fluid as measured in
its rest frames. b is the projector on the rest frames of the
fluid, with b ≔ gþ u ⊗ u. As for Q and Π, by definition,
qμuμ ¼ 0 and παβ ¼ πðαβÞ with παμuμ ¼ 0 and πμ

μ ¼ 0.
For a general foliation, n ≠ u. Then the fluid variables

measured in the rest frames are different from the one
measured by the Eulerian observer. The nature of the fluid

is however given by thevariablesmeasured in the rest frames.
It is therefore often useful to express the variables measured
by n [defined in (37)] as function of the ones measured by u
[defined in (44)]. For this we introduce the tilt velocity w of
the fluid 4-velocity with respect to the foliation as

w ≔
1

γ
u − n; ð45Þ

where γ ≔ ð1 − wμwμÞ−1=2 is the Lorentz factor. w is spatial
by definition.
We then have the following relations:

E ¼ γ2ϵþ ðγ2 − 1Þpþ 2γwμqμ þ wμwνπμν; ð46Þ

P ¼ ðγ2 − 1Þϵþ ðγ2 þ 2Þpþ 2γwμqμ þ wμwνπμν; ð47Þ

Qα¼ γ2ðϵþpÞwαþγwμqμwαþγhμαqμ−hμαwνπμν; ð48Þ

Παβ ¼ γ2ϵwαwβ þ pðhαβ þ γ2wαwβÞ þ 2γwðαhβÞμqμ
þ hαμhβνπμν − Phαβ; ð49Þ

We also give the specific example of a dust fluid,
characterized by qμ ¼ 0 ¼ πμν and p ¼ 0:

EðDFÞ ¼ γ2ϵ; ð50Þ

PðDFÞ ¼ γ2 − 1

3
ϵ; ð51Þ

QðDFÞ
μ ¼ γ2ϵwμ; ð52Þ

ΠðDFÞ
μν ¼ ϵ

�
γ2wμwν −

γ2 − 1

3
hμν

�
; ð53Þ

where we introduced the upper-script ðDFÞ to denote the
Eulerian fluid variables for a dust fluid.

Kinematical variables.—As for Newton we define an
expansion tensor Θ and a vorticity tensor ω of the fluid.
They respectively correspond to the symmetric and anti-
symmetric part of the 4-velocity gradient ∇u projected on
the rest frames of the fluid:

Θαβ ≔ bμðαbνβÞ∇μuν; ð54Þ

ωαβ ≔ bμ½αbνβ�∇μuν: ð55Þ

Then the 4-velocity gradient can be decomposed as

∇αuβ ¼ Θαβ þ ωαβ − uαnaβ: ð56Þ

where uaα ≔ uμ∇μuα is the 4-acceleration of the fluid. For a
dust fluid ua ¼ 0 and we can rewrite the expansion and
vorticity tensors as
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ΘðDFÞ
αβ ¼ ∇ðαuβÞ; ð57Þ

ωðDFÞ
αβ ¼ ∇½αuβ�: ð58Þ

In the case of a flow orthogonal foliation, i.e., n ¼ u, we
have the following relation between the extrinsic curvature
and the expansion tensor, K ¼ −Θ. However, the vorticity
in that case is necessarily zero because of the Frobenius
theorem. So for vortical flows, if one wants to decompose
the Einstein equation on a foliation, the fluid will neces-
sarily be tilted with respect to that foliation.
It is however still possible to write the Einstein equation

projected normal and orthogonal to the fluid. This gives
the 1þ 3-Einstein equations (e.g., [1,14]) presented in
Sec. III B.

6. Foliation adapted coordinates

To formulate the Newton equations on a 4D-manifold we
will need the mathematical tools used to write the 3þ 1-
Einstein equations on a single 3D-manifold. This section
aims at presenting these tools.

Shift vector and classes of adapted coordinates.—The last
tool we needed for construction of the 4D-Newton equa-
tions concerns the choice of coordinates. Until now we
wrote the 3þ 1-Einstein equations for any coordinate
system. We however often want to introduce one, and
especially one which is adapted to the foliation. In such a
coordinate system, the coordinate vector basis f∂αgα¼0;1;2;3

features three spatial vectors: ∂1, ∂2, and ∂3. The 0-
coordinate is chosen to correspond to the scalar field t̂. We
then write ∂t ≔ ∂0 and call it the time vector. By definition,
∂t is not spatial.

11

In general, ∂t ≠ n, and we have ð∂tÞμnν ¼ −N. We then
define the shift vector β as

β ≔ ∂t − Nn: ð59Þ

By definition β is spatial.
This vector plays the same role as U in Sec. II B 4:

instead of defining a single adapted coordinate system in
M, it defines a class of coordinate systems adapted to the
foliation fΣtgt∈R in M. We write this class Xn

β . By
definition, any coordinate system in Xn

β can be obtained
from a coordinate system having β as shift vector
with a time independent spatial change of coordinates,
i.e., ðt→t;xa→ybðxaÞÞa;b¼1;2;3.
Reversing the definition (59): to a spatial vector β

corresponds a time vector

n∂tjβ ≔ Nnþ β

whose partial time derivative n∂tjβ is at fixed Xn
β

coordinates.
The class with a zero shift, denoted Xn

0 and its time
vector n∂tj0, is said to be comoving with respect to the
Eulerian observer. We call these coordinates Eulerian
comoving coordinates. Then any shift β corresponds to
the coordinate velocity vector of the class Xn

β with respect
to these coordinates.

Pull-back.—Once we chose an adapted coordinate system
ft; xaga¼1;2;3, characterized by its shift β, it is possible to
write the 3þ 1-Einstein equations (38)–(41) with indices
running from 1 to 3. This comes from the fact that the 4D-
components Tα1…

β1… of any spatial tensor T are totally
determined by the spatial components Ta1…

b1… and by the
spatial components βa of the shift [see Eq. (60)]. Note that
the shift is only needed for covariant components.
For instance, in a class Xn

β , the contravariant components
of a rank-1 spatial tensor A are Aα ¼ ð0; VaÞ, and its
covariant components are Vα ¼ ðβcVc; VaÞ. The spatial
covariant components can be obtained from the contra-
variant ones by lowering with the spatial components hab of
the spatial metric, i.e., Va ¼ Vchac. The same can be done
with a rank-2 tensor T:

Tαβ ¼
�
0 0

0 Tab

�
; Tαβ ¼

�
βcβdTcd βcTca

Tacβ
c Tab

�
:

ð60Þ

The operation Tαβ → Tab is called a pull-back. It links
spatial tensors on M to tensors on a single 3-dimensional
manifold Σ. The components of the pulled-back tensor T on
Σ are Tab. As for each hypersurface Σt corresponds a pull-
back to Σ, the global pull-back from M to Σ is said to be
parametrized by time. This implies that the properties of the
3D-manifold Σ and the tensors defined on it are para-
metrized by time. This situation is similar to the Newton
theory in Sec. II, where we had a time-parametrized 3D-
manifold ΣN.
Applying the pulling-back operation on the 3þ 1-

Einstein equations (38)–(41) allows us to have equations
living on the 3D-manifold Σ and parametrized by time.

3þ 1-Einstein equations on Σ.—To write the 3þ 1-equa-
tions on Σ we need to pull-back each term of these
equations. The only nontrivial term is one arising from
the Lie derivative LNn present in the 3þ 1-Ricci (38) and
3þ 1-Raychaudhuri (41) equations, as it still explicitly
features a nonspatial tensor, i.e., n. To remove this
dependence, we use the definition of the shift (59) and
the fact that Ln∂tjβ

Tα1…
β1… ¼ n∂tjβT

α1…
β1…. Then for a

11This does not imply that ∂t is timelike (see section 5. 2 in
Ref. [13]). This will be discussed in relation with the 1þ 3-
Newton equations in Sec. IV.
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spatial tensor T of type ðn;mÞ, the spatial components of
LNnT are

ðLNnTÞa1…b1… ¼ n∂tjβT
a1…

b1… − ΣLβTa1…
b1…; ð61Þ

where we introduced the notation ΣL to denote the Lie
derivative on Σ. According to the definition of the Lie
derivative (1), ΣL uses the Levi-Civita connection on Σ,
which corresponds to the pull-back of D.
Remark.—ΣLβTa1…

b1… corresponds to the spatial com-
ponents of the spatial projection ofLβTα1…

β1…. The latter is
however not necessarily spatial (see Appendix A).
Equations (60) and (61) allow us to write the 3þ 1-

Einstein equations as equations living on the 3D-manifold
Σ parametrized by the time t. Then the 3þ 1-Ricci
evolution equation becomes

1

N
ðn∂tjβ −

ΣLβÞKab

¼ 4πG½−ðE − PÞhab þ 2Πab�

− Λhab −
1

N
DaDbN þ Rab þ KKab − 2KacKc

b; ð62Þ

the 3þ 1-constraints become

−8πGQa ¼ DaK −DcKc
a; ð63Þ

16πGEþ 2Λ ¼ Rþ K2 − KcdKcd; ð64Þ

and the 3þ 1-Raychaudhuri equation becomes

1

N
ðn∂tjβ −

ΣLβÞK ¼ −4πGðEþ 3PÞ þ Λþ KcdKcd

−
1

N
DcDcN: ð65Þ

This concludes the construction of the 3þ 1-Einstein
equations on a time parametrized 3D-manifold Σ from the
Einstein equation.
While detailing this construction, we saw that the shift

vector plays the same role as U in Sec. II B 2. The
differential operator in the 3þ 1-Einstein equations is also
similar to the one in the Newton equations (7)–(9). Using
these similarities, we will be able to formulate the classical
Newton equations as living in a 4D-manifold. This will be
done in Sec. III C 1 with the dual to the pull-back operation,
i.e., a push-forward.

B. 1 + 3-Einstein equations

We briefly present in this section the 1þ 3-Einstein
system of equations (see Ref. [14] for a more complete
study). These equations correspond to the Einstein equation
projected on u and on the rest frames of the fluid, with the
projector b ≔ gþ u ⊗ u. The rest frames on which the

equations are written however do not correspond to a
family of hypersurfaces if the fluid is rotational.
For future comparisons with the 4D-Newton equations,

we introduce two of the 1þ 3 equations, namely the 1þ 3-
Raychaudhuri equation obtained by projecting twice 4R on
the fluid 4-velocity

Luθ ¼ −4πGϵ − ΘμνΘμν þ ωμνω
μν þ∇μaμ; ð66Þ

and the 1þ 3-vorticity equation

Luωαβ ¼ bμ½αbνβ�∇μaν: ð67Þ

This last equation is a geometrical constraint and does not
require the Einstein equation to be valid.
Note that there also exists a 1þ 3-Ricci equation. It

however requires to define a Riemann tensor on the rest
frames of the fluid which does not have all the symmetries
of the usual Riemann tensor (see Ref. [14]). We do not
introduce this equation here as it will not be useful for our
discussion.
Finally the conservation equation ∇μTμ

α for the fluid
stress-energy tensor gives the 1þ 3-energy conservation

Luϵ ¼ −θðϵþ pÞ −∇μqμ − uaμqμ − Θμνπ
μν; ð68Þ

and the 1þ 3-momentum conservation

bμαLuqμ ¼ −ðϵþ pÞuaα − bμα∇μp − θqα

− bμα∇νπ
ν
μ: ð69Þ

C. Construction of the 4D-Newton equations

In Sec. III A we detailed the construction of the 3þ 1-
Einstein equations on a time parametrized 3D-manifold Σ.
In the present section we will reverse this construction for
the case of the Newton equations: from the parametrized
manifold ΣN, we will define a spacetime manifoldMN and
write the Newton equations on this manifold.

1. Push-forward of the Newton equations

In order to write the Newton equations as equations
living in a 4D-manifold MN, we reverse the pull-back
operation of Sec. III A 6. The operation ΣN → MN is called
a push-forward of ΣN in MN. While the pull-back in
general relativity defined the parametrized manifold Σ, the
push-forward here will define the spacetime manifoldMN.
The push-forward is parametrized by t. It hence defines a

set fΣN
t gt∈R of hypersurfaces embedded in MN. At this

stage, for a general push-forward, these hypersurfaces can
intersect. We however impose that the family fΣN

t gt∈R
defines a foliation in MN. We note n and N the normal
vector and the lapse of this foliation.
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In the 3þ 1-Einstein equations (62) and (65) on Σ, the
partial time derivative n∂tjβ carries the information on the
shift of the adapted coordinates in which the pull-back was
made. This is not the case for the classical 3D-Newton
equations (6)–(9) as no pull-back is at their origin. This
means that the derivative ∂tj0 in the Newton equations does
not necessarily correspond to the derivative n∂tj0 in MN.
Instead in a general push-forward of the Newton equations,
∂tj0 becomes n∂tjB , whereB is a spatial vector relative to the
foliation fΣN

t gt∈R.
So a class XU in ΣN corresponds to an adapted class

Xn
BþU in MN. This is schematized in Fig. 1 where we

represent a slice ΣN
t and the vectors n, B and v. We also

represent in blue the shift β and the time vector β∂t of a
general adapted class Xn

β as well as the vectors U and V
defined in Sec. II B 2 with respect to this class.
The only constraint on the foliation fΣN

t gt∈R, and so on
MN, is to be spatially flat and to have an adapted
coordinate system in which the spatial components of
the spatial metric do not depend on time. This coordinate
system is Xn

B. There are however no constraints onN or B
from the Newton equations.
In the coordinates Xn

B, the spacetime metric is

gαβ ¼
��N 2 þ BcBc Bb

Ba habðxcÞ
�
; ð70Þ

where habðxcÞ are the spatial components of the flat spatial
metric in the chosen adapted coordinates. The � sign
depends on the choice of signature for the metric: þ for
ðþþþþÞ signature and − for ð−þþþÞ signature. This is
discussed in Sec. III C 3. As MN is determined by the
metric (70), then the choice of N and B determines this
manifold.

Remark.—The push-forward ∂tj0 → Ln∂tjB is only pos-
sible if the derivative is applied on a contravariant tensor as
Ln∂tjB

applied on a covariant tensor is not spatial (see

Appendix A). This is also true for ΣN
Lv → MN

Lv, where
ΣN
Lv and MN

Lv are respectively the Lie derivative in ΣN and
in MN. Therefore, the push-forward of the Newton-
vorticity equation (9) has to be done when written in the
contravariant form.

2. 4D-Newton equations

The push-forward on MN of the 3D-Newton equa-
tions (6)–(10) gives the 4D-Newton equations

LN nþBþvρ ¼ −ρθ; ð71Þ

LN nþBþvθ ¼ −4πGρþ Λ − ΘμνΘμν þ ωμνω
μν; ð72Þ

LN nþBþvω
αβ ¼ −4ωμ½αΘβ�

μ; ð73Þ

with the definition of the gravitational field

gα ≔ LN nþBþvvα þ vμðΘμ
α þ ωμ

αÞ; ð74Þ

where Θαβ and ωαβ are defined as

Θαβ ≔ DðαvβÞ; ωαβ ≔ D½αvβ�: ð75Þ

The constraints on the foliation are that the Ricci tensor of
the hypersurfaces ΣN

t is zero for all t and that their extrinsic
curvature is

Kαβ ≔ NDðαBβÞ: ð76Þ

This amounts to saying that the spatial components of the
spatial metric in the coordinates Xn

B do not depend on time.
We call such a foliation, a Newtonian foliation.
The system (71)–(75) is equivalent to the original system

(6)–(10), i.e., both systems can be derived from the other.
The solutions for v in the 4D-system are then the same as
for the original system. Furthermore, it is still possible to
write the 4D Newton-Raychaudhuri equation (72) like the
Newton-Gauss equation (4). This means that we have the
relation Dμgμ ¼ −4πGρþ Λ and this for any choice of N
and B. The same applies for the 4D Newton-vorticity
equation (73) which can be written as D½αgβ� ¼ 0.
As said before, the only constraint at that point onMN is

to have a Newtonian foliation. So in the general case where
N and B are not chosen, MN is not influenced by the
dynamics of v. However, choices onN and B can be made
such that the properties of this manifold will depend on v.
Such a choice is the subject of Sec. IV. Also in Sec. III C 5
we discuss a choice where MN is a homogeneous expand-
ing background manifold.

Remark.—Making the push-forward from the Newton
equations in XU [Eqs. (13)–(16)] is equivalent as from the
same equations in X0, which is done in this section. The

FIG. 1. Representation of a slice ΣN
t of the foliation fΣN

t gt∈R.
We show the vectors defining the 4D-manifold MN (in black);
the Newtonian fluid velocity (in red); the vectors relative to a
general adapted class Xn

β (in blue).
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equations from XU are obtained from (71)–(74) by chang-
ing B into Bþ U.

3. Signature of MN

While constructingMN with its metric given by (70), we
made no assumptions on its signature. The push-forward
maneuver made in Sec. III C 1 is independent of this
signature. So the metric of MN can be either of
Lorentzian ð−þþþÞ, or Euclidean ðþ þ þþÞ signature.
It is an additional freedom to N and B of the 4D-Newton
equations. We will however take only Lorentzian mani-
folds. The only argument to take such manifolds is to
enable us to directly compare MN with solutions of the
Einstein equations.
The Lorentzian choice might seem in contradiction with

the Galilean invariance of Newton’s theory. This is only the
case if we ask the connection related to the metric (70),
defined on the spacetime manifold MN, to have this
invariance. This property is however not imposed by the
axioms of the classical formulation of Newton’s theory on a
3D-manifold, i.e., the one presented in Sec. II. In this
formulation, no spacetime manifold is defined. That is why,
when constructing MN from the classical formulation,
some freedom appears on the properties of this manifold.
This view is different from the Newton-Cartan theory,
where the structure on the manifold, defined by two
degenerate metrics and a compatible connection, is
imposed to be invariant under Galilean transformations.
This structure is called a Galilei structure, and the related
manifold, a Galilei manifold (see Ref. [11]).
The Lorentzian choice might also seem in contradiction

with the fact that there is no speed limit in Newton’s theory,
something linked to the notion of causality. We clarify why
there is no such contradiction hereafter.
The causality is the relationship between causes and

effects of an event, or observer. Thus this notion depends on
the definition of observers. In general relativity, the mani-
fold of work is a 4D-manifold, on which an observer is
defined by a 4-vector such that the spatial velocity of an
event he measures in his rest frames cannot be greater than
c. This implies that the spacetime manifold is a Lorentzian
manifold and that the 4-vector of this observer is a unit,
timelike vector.
In the classical formulation of Newton’s theory, an

observer is described by a velocity vector field p in the
Euclidean 3-space not limited by the speed of light. If we
push-forward this observer in MN, it is still defined by p
which is spatial. Then an observer in the 4D-formulation of
Newton’s theory is not described by a unit 4-velocity
vector, but by a spatial vector field, not limited by c. On the
one hand, contrary to general relativity, this definition of an
observer does not require MN to be Lorentzian; reversely,
choosingMN to be Lorentzian does not impose constraints
on the definition of an observer in 4D-Newton. On the other
hand, this Newtonian definition of an observer, and

therefore of causality, naturally allows for the measure
of superluminous velocities on the foliation fΣN

t gt∈R by
any observers as their spatial velocities can themselves be
arbitrarily large.
In the next subsection we will see that it is possible to

physically define a 4-velocity vector Nu for the Newtonian
fluid. We will however necessarily have an additional
constraint if we want this vector to be a unit vector
[see Eq. (79)].

Remark.—The push-forward used to construct MN is
taken from the 3þ 1-formalism of GR; it thus automatically
defines a spacetime metric, implying MN to be (pseudo)-
Riemannian. It might however be allowed to use a push-
forward which does not necessarily lead to such a manifold.
Recovering the Newton-Cartan theory using the method of
Sec. III C should in this case be possible.

4. Newtonian 4-velocity

The equations of Sec. III C 2 describe the evolution of a
Newtonian fluid inMN. This fluid is defined by the spatial
vector v. We would like to define a vector Nu which we can
call the 4-velocity of the Newtonian fluid. The definition of
this vector is not constrained by the 4D-equations, so it
remains a choice.
The choice we make is physically motivated by the

definition of the Lagrangian coordinates (see Sec. II C 4).
In general relativity, Lagrangian coordinates are defined to
be comoving with the fluid 4-velocity, i.e., ∂t ∝ u. For a
foliation defined by the normal vector n and the lapse N,
and a tilt velocity vector w of the fluid with respect to that
foliation, the Lagrangian coordinates correspond to the
adapted class Xn

Nw.
In the classical Newton theory, these coordinates corre-

spond to the class X v on ΣN. Its equivalent on the foliation
fΣN

t gt∈R is the adapted class Xn
Bþv (see Sec. III C 1). Then

we demand that the tilt velocity vector of Nu with respect to
the foliation defined by n and N be 1

N ðBþ vÞ.
However there remains a freedom on the choice of the

normal part of Nu with respect to fΣN
t gt∈R. Two natural

choices are possible:
(i) The Newton-Cartan choice: this 4D theory features a

1-form ψ12 which defines an absolute time and a
foliation. An observer in this theory, described by a
vector u, is defined with respect to this absolute
time. The vector u has then the following property
ψμuμ ¼ 1. The analogue to this definition in our case
would be to impose nμNuμ ¼ −1. This leads to a first
definition of Nu:

Nu ≔
1

N
ðNnþ Bþ vÞ; ð77Þ

12Using the notation of Künzle [11].
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(ii) The relativistic choice: in GR, an observer is
described by a unit vector u, with uμuμ ¼ −1. In
our case, this translates into NuμNuμ ¼ −1. This
leads to a second natural definition of Nu:

Nu ≔
γ

N
ðNnþ Bþ vÞ; ð78Þ

with γ≔ ½1− 1
N 2ðBμþvμÞðBμþvμÞ�−1=2. The down-

side of this definition is that it adds the following
constraint to the 4D-Newton equations (71)–(75):

ðBμ þ vμÞðBμ þ vμÞ < N 2: ð79Þ

This is indeed a constraint, as if we take N ¼ 1 and
B ¼ 0, Eq. (79) imposes vμvμ < 1. Such a con-
straint is not implied by the first definition (77).

We take the first definition (77), as it remains general
with respect to the 4D-Newton equations. This 4-velocity is
illustrated in Fig. 2, along with n, B and v.
With this choice, we can interpret the 4-velocity Nu as

follows: Nu corresponds to the covered distance Δxμ in
spacetime per unit of proper time nτ, where nτ refers to the
proper time of n. This vector n and its induced foliation
then define a fundamental time (as in the NC theory) with
respect to which Newtonian 4-velocities are defined.
The situation is different in general relativity, where the
4-velocity of a fluid element is defined as the covered
distance Δxμ in spacetime per unit of fluid element proper
time uτ.

Remark.—With what precedes, we can complete the
definition of a Newtonian observer in the 4D-Newton
theory, as being described by a vector m such that
mμnμ ¼ −1. This is the equivalent definition of an observer

in the NC theory. The observer given by Nu is then the fluid
itself.

Remark.—For both definitions, v corresponds to the
coordinate velocity of the fluid 4-velocity Nuwith respect to
the coordinates Xn

B (see Fig. 2). The tilt velocity is however
still not the physical vector. The latter remains v as taking
v ¼ 0 still implies a constraint on ρ with the 4D equa-
tion (71). This is not the case if we take 1

N ðBþ vÞ ¼ 0.

5. Background homogeneous expanding spacetime

In this section, we present a first choice for the mani-
fold MN.
Taking N ≔ 1 and Kαβ ¼ DðαBβÞ ≔ −Hαβ, with

DμHαβ ≔ 0, implies that MN is a homogeneous globally
expanding spacetime. This expansion is anisotropic, unless
Hαβ ∝ hαβ which corresponds to the Einstein-de Sitter
spacetime.
The tilt velocity of Nu is then w ¼ Bþ v. The expansion

tensor can be rewritten Θαβ ≔ Hαβ þDðαwβÞ. Then, in
Eulerian comoving coordinates, the 4D-Newton equations
for the vector w become the usual Newton equations with
a homogeneous deformation (equations for V introduced
in Sec. II B 3 with the homogeneous deformation of
Sec. II C 3).
We still have the same results concerning expansion in a

compact topology. If we impose the hypersurfaces ΣN
t to

have a compact topology, then Hαβ, being a constant
gradient, has to be zero. It is still not possible to have
an expanding compact topology in Newton, even when
using the 4D-Newton formalism. This was expected as the
two formulations are equivalent. In order to do it, the trick
is to consider periodic boundaries only on the vector w as
explained in Sec. II C 3. In this case the topology of the
hypersurfaces ΣN

t is stillR3 asB is not periodically defined.
The choice of 4D-manifold MN of this section is

independent of the fluid kinematical quantities. It is then
only a background manifold. We therefore cannot draw any
dictionary between the Newtonian fluid quantities and the
relativistic fluid quantities defined via the Einstein equation
for the 4D-manifold. In the next section, MN will depend
on the Newtonian fluid enabling, the definition of a
dictionary in Sec. IV D.

Remark.—The choice we make here cannot strictly be
called a foliation choice as this would imply that another
choice would describe the same equations but in another
foliation, the 4D-manifold being unchanged. This is not true
as, in general, another choice for N and B changes MNew.

IV. 1 + 3-NEWTON EQUATIONS

A. The choice

A natural choice coming from the definition of the
Newtonian 4-velocity (77) is to takeN and B such that the

FIG. 2. Representation of the chosen Newtonian 4-velocity
vector Nu with respect to the foliation fΣN

t gt∈R. Using the
analogue between Lagrangian coordinates in Newton and in
GR, we imposed the tilt velocity of Nu to be ω ≔ 1

N ðBþ vÞ. The
normal part is chosen to be n, which is the equivalent to what is
taken in the Newton-Cartan theory for the 4-velocity of an
observer.
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foliation is orthogonal to Nu, implying Nu ¼ n. This is done
by taking B ¼ −v. The lapse N remains unknown. In
analogy with GR, as we deal with a dust fluid, we choose
the 4-acceleration of Nu to be zero, which is imposed by
N ¼ 1. We expect this choice to be different in the case of
nondust fluids (this is discussed in Sec. V C).

Remark.—Interestingly, with the above choice, the two
definitions (77) and (78) are equivalent.

Under the present choice the 4D-Newton equations
become

LNuρ ¼ −ρθ; ð80Þ

LNuθ ¼ −4πGρþ Λ − ΘμνΘμν þ ωμνω
μν; ð81Þ

LNuωαβ ¼ 0; ð82Þ

with the definition of the gravitational field

gα ≔ LNuv
α þ vμðΘμ

α þ ωμ
αÞ; ð83Þ

where

Θαβ ≔ DðαvβÞ; ωαβ ≔ D½αvβ�; ð84Þ

¼ ∇ðαNuβÞ; ð85Þ

and with Nuμ∇μ
Nuα ¼ 0 and ∇½αNuβ� ¼ 0, so that Nu

defines a foliation. Note that the covariant form of the
vorticity equation is now possible as only the normal vector
remains in the Lie derivative.
The gravitational field definition (74) can be rewritten as

gα ≔ Nuμ∇μvα: ð86Þ

The right-hand side (rhs) is spatial as Nu has no
4-acceleration. We see that the gravitational field corre-
sponds to the 4-acceleration, with respect to the observer
Nu, of the Newtonian fluid velocity v.
The properties of the foliation fΣN

t gt∈R are now linked to
those of the fluid with the relation Kαβ ¼ −Θαβ. Then the
4D-Newton equations (80)–(82) closely resemble the
1þ 3-Einstein equations (66)–(68) for a dust fluid: on a
formal aspect and on the fact that they are expressed in the
rest frames of the fluid. We call them the 1þ 3-Newton
equations.
The main difference between the 1þ 3-Newton and the

1þ 3-Einstein equations remains in the definition of the
vorticity. In the Einstein equations, it is defined as the
antisymmetric rest frame projection of the gradient ∇u
[definition (55)]. However in Newton, the antisymmetric
part of ∇Nu is zero as Nu defines a foliation. Instead the
vorticity is defined as the antisymmetric part of a spatial
vector gradient [second equation in (84)], the symmetric

part of that gradient being the expansion tensor [first
equation in (84)]. This is the reason why we will define
the Newtonian limit (see Sec. IV C) and the Newton-GR
dictionary (see Sec. IV D) for irrotational flows.
With the choice made in the present section, the

spacetime metric of the manifold MN in the adapted
coordinates Xn

−v is

gαβ ¼
�−1þ vcvc vb

va habðxcÞ
�
: ð87Þ

where habðxcÞ are the spatial components of the flat spatial
metric in the fixed coordinates used to derive the solution
for v.

Remark.—As said previously, the norm of the
Newtonian spatial velocity v is not bounded by c. Where
v is superluminal, the time vector n∂tj−v is spacelike and the
points in MN where vμvμ ¼ c2 correspond to coordinate
singularities of the class Xn

B. As we will see in Sec. IV E,
this is not necessarily unphysical.

B. 3 + 1-Newton equations

Once we have chosenN and B, the manifoldMN is set.
The choice made in Sec. IVA, leading to Eqs. (80)–(83), is
such that these equations are written with respect to the
foliation orthogonal to the Newtonian fluid 4-velocity Nu
we defined. This is why they are called 1þ 3-Newton
equations. We can however change this foliation.
We define a timelike unit vector fieldm onMN, defining

a foliation fΣN;m
t gt∈R of lapse M in MN. We can then

decompose Nu, Θ and ω with respect to fΣN;m
t gt∈R. The

same can be done for the 1þ 3-Newton equations.
Equations (80) and (81) are scalar equations and do not
need to be projected, contrary to Eqs. (82) and (83). As for
the Lie derivative LNu, it becomes Lγmþγw with the usual
decomposition of Nu with respect to m defined in (45).
Then writing the 1þ 3-Newton equations in terms

of the variables Nu, Θ and ω projected with respect to
fΣNew;m

t gt∈R gives the 3þ 1-Newton equations. We do not
give these equations here but discuss in Sec. V B 1 a
possible use of them in relation with dictionary defined in
Sec. IV D.

C. 1 + 3-Newton from GR

The choice of N and B leading to the 1þ 3-Newton
equations implies that the properties of the Lorentzian
manifold MN depend on the dynamics of the Newtonian
velocity v. We however do not know at which point MN

with the metric (87) is solution of the Einstein equations for
the same fluid as the one in 1þ 3-Newton, i.e., a dust fluid.
In this section we will recover the 1þ 3-Newton equations
from GR, enabling us to answer this question in Sec. IV D.
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1. Expansion tensor decomposition

We want to recover the 1þ 3-Newton equations from
general relativity, thus defining a Newtonian limit. Our
approach will need the definition of a flow orthogonal
foliation. However, as explained in Sec. IVA, the difference
in thedefinitionofvorticity betweenNewton andGR implies
that such a foliation cannot be built in the latter theory as
opposed to the former. So we expect that recovering the
1þ 3-Newton equations from the 1þ 3-Einstein equations
will be more complicated for vortical flows.
We then only take irrotational fluids in both theories.

Note that a solution to allow for vorticity, but still dealing
with foliations, is to make the limit between the 3þ 1-
Newton equations (presented in IV B) and the 3þ 1-
Einstein equations. This will not be studied in this paper
but it is discussed in Sec. V B 1.
We consider the 3þ 1-Einstein equations (38), (39), and

(41) in the orthogonal foliation of an irrotational dust fluid
of 4-velocity u (they are equivalent to the 1þ 3-Einstein
equations for irrotational flows). The Hamilton constraint
(40) is redundant with the other equations and not needed
for the discussion. For this section only we use spatial
indices and reintroduce the light speed c.
In a cosmological setup, we suppose that we can

decompose the expansion tensor into scalar, vector, and
tensor parts as in standard perturbation theory13:

Θab ¼ χhab þDðavbÞ þ Ξab ð88Þ

with Ξc
c ¼ 0 and DcΞc

a ¼ 0. hab is the spatial metric of
the orthogonal foliation. The irreducibility of this decom-
position is discussed in Appendix B 1.
We take v to be irrotational, i.e., D½avb� ¼ 0. This is a

choice motivated by the 1þ 3-Newton equations in which
D½avb� plays the role of the vorticity. In Sec. V B 2 we
discuss what D½avb� should be in the case of rotational
fluids.

Remark.—The scalar-vector-tensor decomposition we
made is fully covariant (it does not depend on an adapted
class of coordinates). It is also independent of a choice of
foliation as the spatial projection used is defined with
respect to the fluid. This is not the case for the decom-
position of the spatial metric in standard perturbation
theory.

The parameter χ is interpreted as the scalar expansion,
DðavbÞ as the gradient expansion and Ξ as the gravitational
wave term. Ξ is only a shear term as its trace is zero. While
the trace of the gradient expansion is on average zero for a
compact space, the scalar expansion is not. Then global
expansion in a compact space is driven by χ. Both χ and Ξ

are not present in Newton, where only DðavbÞ is. This is
coherent with the fact that there are no gravitational waves
nor global expansion in a compact space for this theory.
In this view, we can then interpret Dv to be the Newtonian
fluid expansion and χ to be the space expansion.

2. The limit

The first approximation we make is to neglect the space
expansion and the gravitational wave term compared to the
Newtonian fluid expansion (this is discussed in appendix B):

Θab ≃Davb: ð89Þ

This implies that in the adapted class Xu
−v

u∂tj−vhab ≪ Davb;

and thus

u∂tj−vðDavbÞ ≃Daðu∂tj−vvbÞ: ð90Þ

In this commutation relation we neglected the time variation
of the spatial metric.
We define the beta-factor βv ≔ jvj=c and the following

length scales:
(i) the typical length scale Lv;l of the spatial variation

of the vector v, i.e., 1c Davb ¼ 1
cΘab ∼ βv=Lv;l,

(ii) the typical length scale Lv;t of the time variation
of the vector v, i.e., 1

c2
u∂tj−vv

a ∼ βv=Lv;t,
(iii) the Schwarzschild density length scale Lϵ ≔

ðGϵc4 Þð−1=2Þ,
(iv) the typical local curvature radius LR of the spatial

Ricci tensor, i.e., Rab ∼ 1=L2
R.

By defining the Newtonian gravitational field as ga ≔
ðu∂tj−v þ vcDcÞva [justified by the 1þ 3-Newton equa-
tion (86)], we can say that in a Newtonian regime, u∂tj−vv

a

will be of the same order as vcDcva which implies

Lv;l=Lv;t ∼ βv:

Assuming that 1c DaDbvc ∼ βv=L2
v;l and using the 3þ 1-

Raychaudhuri equation (65) with the commutation relation
(90) we have

�
Lv;l

Lϵ

�
2

∼ β2v:

This relation along with the 3þ 1-Ricci equation (62)
leads to �

Lv;l

LR

�
2

∼ β2v: ð91Þ

For the usual condition βv ≪ 1 on the Newtonian velocity v,
relation (91) shows that the spatial variations of the

13In standard perturbation theory this is done for the spatial
metric.
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Newtonian velocity are small in front of the typical length
scale given by the spatial curvature. This shows that the
curvature is of second order in βv.
We can then consider that, at leading order, the spatial

curvature does not affect the dynamics of v, i.e., Dv ∼ D̂v,
where D̂ is the connection of a flat metric ĥ (a more
quantitative justification of this approximation is given in
Appendix B). Then, at leading order, the 3þ 1-Ricci
equation is not an evolution equation anymore but becomes
a relation giving the spatial curvature orthogonal to the
fluid as function of the kinematical quantities of that fluid.

In this view, we then have Rab ¼ Rð2Þ
ab , where Rð2Þ

ab is of
second order in βv with

Rð2Þ
ab ¼ −1

c2

�
ðu∂tj−v þ ΣLvÞΘab

þ
�
4πGϵ
c2

þ Λ
�
ĥab þ θΘab − 2ΘacΘc

b

�
; ð92Þ

with Θ ¼ D̂v.
As for the momentum constraint (63), it becomes

D̂½aD̂b�vc ¼ 0 at leading order in βv. This is consistent
with a zero curvature at first order. Thus Eq. (63) is not a
constraint anymore.
We give an additional relation for the Weyl tensor in this

limit (see Ref. [15] for the expression of the Weyl tensor in
terms of the kinematical quantities Θ and ω). Its electric
part Eab is

Eab ¼ −Dhagbi: ð93Þ

This relation is true to any order in βv once assumption (89)
is made. The magnetic part Hab is zero. Note that if
D½avb� ≠ 0, this is not true anymore. This is discussed in
Sec. V B 2.

Remark.—Using the decomposition of the expansion
tensor (88), we can see that the solutions of the Einstein
equations which do not feature the Newtonian fluid expan-
sion termwill not have aNewtonian limit. In particular, this is
the case for purely gravitational waves solutions.

3. Recovering the 1 + 3-Newton equations

The limit introduced in the previous section implies that
at leading order in βv the Ricci equation is a relation for the
spatial curvature and not an evolution equation anymore.
This spatial curvature orthogonal to the fluid 4-velocity is
of second order in βv. The expansion tensor is a gradient,
Θab ¼ DðavbÞ. The momentum constraint is then trivial
at leading order. The only 3þ 1-Einstein equations
remaining to determine the evolution of Θab are the
3þ 1-Raychaudhuri equation (41) and the 3þ 1-energy
conservation (42), which are respectively equivalent
to Eqs. (81) and (80) of the 1þ3-Newton system.

The Newton-vorticity equation (82) is trivially recovered
as the limit is done for irrotational flows.
With the Newtonian limit defined in the previous

subsection, we recovered the 1þ 3-Newton equations
in the irrotational case. This formulation of Newton’s
equations is then supported. In the next section we will
use the Newtonian limit of the present section to define a
Newton-GR dictionary.

D. Newton-GR dictionary

In the previous section we showed that we can recover
the 1þ 3-Newton equations for irrotational fluids from GR
with a limit at leading order in βv. The limit also defines a
spacetime manifoldMlim solution of the Einstein equations
at leading order. This manifold however differs from the
manifold MN given by the metric (87). Indeed, MN has
strictly flat spatial sections orthogonal to the fluid, whereas
the curvature of the same sections in Mlim is nonzero and
of second order. This implies that MN with the metric (87)
is not solution of the Einstein equations at leading order.
The dictionary will therefore be given by Mlim and not
MN. For the remainder of this paper Mlim will then be
denoted MðdicÞ.
We define the following Newton-GR dictionary for

irrotational dust fluids: given a solution of the Newton
equations for v, the relativistic quantities, denoted with the
upper-script ðdicÞ, are determined by the following relations:

ϵðdicÞ ¼ ρ; ð94Þ

ΘðdicÞ
ab ¼ D̂avb; ð95Þ

RðdicÞ
ab ¼ −D̂agb − D̂cvcD̂avb þ D̂avcD̂

cvb

þ ð4πGρþ ΛÞĥab; ð96Þ

where the rhs are the Newtonian quantities. ΘðdicÞ is the
expansion tensor of the relativistic fluid, RðdicÞ is the spatial
curvature orthogonal to the relativistic fluid, D̂ is a flat
connection, g is the Newtonian gravitational field con-
strained by the Newton-Gauss equation (4) and the
Newton-Faraday equation (5).

Remark.—As we only give the Ricci tensor RðdicÞ
ab , the

spatial metric orthogonal to the fluid 4-velocity cannot be
explicitly constructed. However, raising or lowering the
dictionary quantities at leading order only requires the flat
spatial metric ĥab.

Studying the light ray trajectories with a Newtonian
solution using our dictionary requires the 3þ 1 light-
geodesic equation of the manifold MðdicÞ. This equation
can be found in Ref. [16].
In Sec. IV E we will take the example of an exact

solution of the Newton equations to test the dictionary.
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As the 1þ 3-Newton equations were recovered from GR
only for irrotational fluids, we were only able to draw a
dictionary for these kinds of fluids. In Sec. V B we discuss
the possibility of a dictionary with vorticity.

E. Schwarzschild geometry

1. Point mass Newtonian solution

In this section we study an exact vorticity-free solution of
the 1þ 3-Newton equations.
We begin with a 3D-Newtonian calculation. We consider

a point mass of mass M creating a gravitational field ga ¼
ð−GM=r2; 0; 0Þ in spherical coordinates ðr; θ;φÞ. We then
solve the Euler equation (3) for a stationary, irrotational
fluid of test observers of velocity v. We have

DaðvcvcÞ ¼ 2ga;

va ¼ DaΨ;

with Ψ a scalar field depending only on the radial
coordinates. The general solution is

va ¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2GM

r

r
; 0; 0

�
; ð97Þ

where E is a constant corresponding to the energy of the
fluid particles. This solution corresponds to a radially
ingoing or outgoing free-falling fluid of test observers. If
E < 0, the solution is valid in the region r < − 2GM

E and
corresponds to fluid particles with bounded orbits, i.e.,
elliptic orbits. If E ¼ 0, the orbits are parabolic and for
E > 0 they are hyperbolic. Note that all the particles have
the same type of orbit as E is a constant of space.
Remark.—In the case of the 1þ 3-Newton equations,

this solution implies the following spacetime line element

for MN in the adapted class X
Nu
−v (we recall that X

Nu
−v

corresponds to the class X0):

ds2 ¼
�
−1þ 2Eþ 2GM

r

�
dt2 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2GM

r

r
dtdr

þ dr2 þ r2dΩ2; ð98Þ

with dΩ2 ≔ dθ2 þ sin2 θdφ2.

2. Relativistic quantities from the Newtonian solution

Using the dictionary (94)–(96), we can derive the
relativistic quantities corresponding to the Newtonian
solution (97). We obtain

ϵðdicÞ ¼ 0; ð99Þ

ΘðdicÞ
ab ¼ diag

�
−
GM
r2vr

; rvr; rvr sin2 θ

�
; ð100Þ

RðdicÞ
ab ¼ −2Ediagð0; 1; sin2 θÞ; ð101Þ

with vr ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2GM

r

q
.

3. Radially free-falling test fluids in GR

We want to know if the manifold defined by Eqs. (99)–
(101) is a solution of the Einstein equations at leading order
in βv and if it describes the same physical system as the
Newtonian solution, i.e., a radially free-falling test fluid on
a mass point.
The solution for this physical system in GR is given by

the Schwarzschild manifold and the adapted coordinates
corresponding to a free-falling observer are the generalized
Gullstrand-Painlevé coordinates (see MacLaurin [17]14).
The Schwarzschild line element in these coordinates is

ds2 ¼ −1þ 2GM
r

2Eþ 1
dt2 ∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2GM

r

q
2Eþ 1

dtdr

þ 1

2Eþ 1
dr2 þ r2dΩ2: ð102Þ

where E can be interpreted as the Newtonian energy of the
fluid particles. For E ¼ 0, the observer associated with the
generalized Gullstrand-Painlevé coordinates is a parabolic
radially free-falling test fluid. For E < 0 and E > 0 the
free-fall is respectively elliptic and hyperbolic.
We note with the upper-script ðGPÞ the relativistic quan-

tities corresponding to an observer associated with the
generalized Gullstrand-Painlevé coordinates. These quan-
tities are

ϵðGPÞ ¼ 0; ð103Þ

ΘðGPÞ
ab ¼ diag

�
−

GM
r2vrð2Eþ 1Þ ; rv

r; rvr sin2 θ

�
; ð104Þ

RðGPÞ
ab ¼ −2Ediagð0; 1; sin2 θÞ; ð105Þ

with vr ≔ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eþ 2GM

r

q
.

4. Comparison

In the present section, we compare the relativistic
quantities (99)–(101) obtained from the Newton-GR dic-
tionary with the ones of the Schwarzschild metric (103)–
(105). For simplicity, we will not consider the case E < 0.
Then E corresponds to the Newtonian energy of the test
particles at infinity.

14MacLaurin [17] uses the Killing energy e ≔ −nμffξμ where
nff is the 4-velocity of the free falling observer and ξ is a static
Killing vector. The energy definition we use is linked to ewith the
relation E ¼ e2 − 1.
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The energy densities ϵðdicÞ and ϵðGPÞ are the same. This
was expected as the Newtonian and the GR solutions are
both vacuum solutions. The covariant components of the

spatial curvatures are also the same, with RðdicÞ
ab ¼ RðGPÞ

ab .
The covariant components of the expansion tensors differ

only for the component rr, with ΘðdicÞ
rr ¼ ð2Eþ 1ÞΘðGPÞ

rr .
The limit under which the dictionary is defined implies

jvj ≪ c for all r. Taking r → ∞, this implies E ≪ 1 which
in turn implies that the comparison should be done in the
region r ≫ GM. Then at leading order in E and GM

r , the
dictionary quantities are the same as those of Gullstrand-
Painlevé. This supports our dictionary.

5. The parabolic free-fall: E = 0

In the case E ¼ 0, the dictionary quantities are exactly
equal to the general Gullstrand-Painlevé ones. Furthermore
the metric (98) of the manifold MN, constructed from the
Newtonian solution (97), is exactly the Schwarzschild
metric in generalized Gullstrand-Painlevé coordinates,
which implies that MN is the Schwarzschild manifold.
This result is true without any approximation. Then the 4D
construction of Newton’s equations we introduced in this
paper, and in particular the case of the 1þ 3-Newton
equations, allows us to recover exactly a physical solution
of the Einstein equations. This further supports the choice
Nu ¼ n made in Sec. IVA.
Note that it was already known that the velocity as a

function of the point mass distance of a parabolic radially
free-falling observer was the same in Newton and in GR.
What we showed is that this solution allows us to recover
from Newton the full spacetime metric of Schwarzschild.
This was possible because the foliation of the generalized
Gullstrand-Painlevé coordinates with E ¼ 0 has flat spatial
sections, which is required by the 1þ 3-Newton equations.
We see from this solution that even if the Newtonian

velocity v can, at certain points of MN, be comparable to
the speed of light, and even exceed it, it is still physical. We
know that because it is the Schwarzschild spacetime. This
means that solutions of the Newton equations are not
necessarily unphysical for vμvμ ∼ c2. We however expect
this statement to be true in a few cases only.

Remark.—Strangely, this exact correspondence between
a Newtonian solution and a GR one arises for a Newtonian
fluid whose energy is zero for any fluid particles. This leads
to the following question: is there a link, in general,
between the energy of a Newtonian fluid and the validity
of the related Newtonian solution with respect to GR? If
this is the case, this would be true only for one gravitational
potential energy convention. For an isolated system like a
mass point, we saw that it works if the gravitational
potential is taken to be zero at infinity. What convention
should be taken in the case of a compact spacelike T 3

remains to be determined.

V. DISCUSSIONS

A. Remarks on the Newtonian limit

The Newtonian limit of general relativity and the
corresponding dictionaries (e.g., [9]) are usually done with
respect to an accelerated observer. We note its 4-velocity n.
The foliation corresponding to this observer has then a
lapse N, the spatial gradient of which is the acceleration of
the observer. Hence in the adapted coordinates Xn

0 , the
component g00 of the spacetime metric is N2. The accel-
eration of the observer is considered in these limits to be the
gravitational field of Newton theory. Using naα ≔ Dα lnN,
this is why, at leading order, the lapse, and therefore the
component g00, gives the Newtonian gravitational potential.
In this leading order approximation, the accelerated
observer is considered to be only slightly tilted with respect
to the fluid.
The Newtonian limit we defined in Sec. IV C is however

made in the rest frames of the fluid, which is not
accelerated, being a dust fluid. The Newtonian gravitational
field then cannot be the lapse, which is fixed to 1. In place,
this field is defined as the acceleration of the spatial vector
present in the decomposition of the expansion tensor
[see Eq. (86)].
However, the interpretation of g00 as the gravitational

potential, in coordinates adapted to the fluid rest frames,
still holds in the case of stationary irrotational fluids. In
these cases,

gα ¼ Dα

�
1

2
vμvμ

�
:

In the coordinates X
Nu
−v, we have g00 ¼ −1þ vμvμ which

implies

gα ¼
1

2
Dαðg00 þ 1Þ; ð106Þ

and g00 can be interpreted as the gravitational potential.
Note that this interpretation is not valid in the case of the

Lagrangian coordinates X
Nu
0 where g00 ¼ 1 as all the

dynamics of the fluid is put in the time variations of the
spatial metric. Furthermore, in the case of nonstationary
fluids, the term g00 is not the gravitational potential any-
more, as (106) does not hold.

B. Dictionary with vorticity

In Sec. IV D we drew our Newton-GR dictionary in the
case of irrotational fluids. The reason for this was that, in
general relativity, no orthogonal foliation can be defined for
a rotational fluid. But as we made the dictionary in the rest
frames of the fluid, we needed such a foliation.
We will not detail the construction of a dictionary with

vorticity in this article. We however present two possibil-
ities that should allow for it.
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1. Tilted dictionary

The first, and most promising possibility, is to make the
dictionary in a tilted foliation with respect to the fluid. In
general relativity, the 3þ 1-Einstein equations provide the
tilted description of a fluid and allow for vortical flows. In
our formulation of Newton’s theory, the equations where
the fluid is tilted are the 3þ 1-Newton equations presented
in Sec. IV B. They are derived from the 1þ 3-Newton
equations by making a change of foliation Nu → m.
One strength of a tilted dictionary would be to show that

Newton’s theory can be obtained from any foliation.15 But
as the choice of this foliation is not necessarily physically
motivated (see also Ref. [18] for a discussion of this topic),
we would prefer making the dictionary with respect to the
fluid rest frames. We discuss this in the next subsection.

2. Orthogonal dictionary

Constructing a dictionary in the rest frames of the fluid
might be more complicated as no foliation can be defined in
general relativity, contrary to the Newtonian case.
It is however possible to define a rest frame Riemann

tensor uRiem and a rest frame covariant derivative uD (see
Ref. [14]). They do not have the same properties as the ones
defined on hypersurfaces. The first Bianchi identity for
uRiem will feature the vorticity of the fluid and uD will
have torsion. The latter is however of second order in βv.
We then hope that at leading order the rest frames can be
approximated to be a family of hypersurfaces.
It remains to be shown that the projection along u of the

Lie brackets of rest frame vectors is also of second order.16

This would indicate that we could maybe define a coor-
dinate basis on the rest frames at leading order.

Remark.—In this dictionary, the gradient in the decom-
position (88) of the expansion tensor would feature a
nonzero antisymmetric part which would be the vorticity
tensor. Subsequently, the magnetic part of the Weyl tensor
would not be zero anymore.

3. Is it really possible?

It is known that Newton’s theory features gravitational
phenomena which are not described by GR. Assuming that
the latter is the genuine theory of gravitation, these
phenomena are not physical. We mentioned in the intro-
duction the case of a shear-free dust fluid which can both
rotate and expand in Newton, but cannot in GR. This
implies that no limit exists which allows us to recover the
full Newtonian theory from GR.

To our knowledge, there exists no example of a phe-
nomenon like the one just mentioned, i.e., present in
Newton but not in GR, for a vorticity-free fluid. If this
is indeed the case, this might imply that the impossibility at
fully recovering Newton from GR, is due to the vorticity.
Then constructing a dictionary with vorticity, as we
presented in the previous subsections, would need require
additional approximation than just jvj ≪ c.

C. 1 + 3-Newton for nondust fluids

We assumed until now the Newtonian fluid to be a dust
fluid. This was done to simplify the interpretations made
while constructing the 1þ 3-Newton equations and the
related dictionary. We briefly study the case of a nondust
fluid in this section.
Such a fluid is influenced by additional forces, other than

the gravitational force, described by a vector field F. These
forces can be either internal, linked to the fluid properties
(density, pressure, viscosity,…), or external. The changes in
the Newton system for a nondust fluid is given by the
second law of Newton. This is translated by the addition of
F in the Euler equation (3):

ð∂tjx
þ vkDkÞvi ¼ gi þ Fi=ρ; ð107Þ

with g still solution of the Newton-Gauss (4) and Newton-
Faraday (5) constraints.
In the Newton system (6)–(9) written in terms of

kinematical quantities of the fluid, the change is made
by adding the divergence of F in the Newton-Raychaudhuri
equation (8) and the vorticity of F in the Newton-vorticity
equation (9). These additional terms are then present in the
4D-Newton equations.
The 1þ 3-Newton equations should not however be

obtained with the choice N ¼ 1 and B ¼ −v but rather
with

B ¼ −v; D lnN ¼ F: ð108Þ

This choice would not change the Newton-GR dictionary
much. Essentially the interpretation of the Ricci equation to
be a relation for the spatial curvature tensor would
remain valid.

D. Cosmological models from 1+ 3-Newton

In the introduction of this paper we motivated the
construction of the 1þ 3-Newton system as a way to
better understand why Newton’s theory, compared to GR,
is lacking the phenomenon of backreaction (in a compact
space). Ultimately this would be used to define simple
models suited for the study of backreaction and global
topology in cosmology. This section aims at presenting
how we could define such models from the 1þ 3-Newton
formulation and GR. However, we leave the precise
construction of these models for another paper.

15In standard perturbation theory, this means that any gauge
choice would be suited for a Newton-GR dictionary.

16As there is no foliation, there is no coordinate basis in the rest
frames of the fluid. This implies that the Lie brackets of any
vectors in these rest frames feature a nonzero part along u.
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In Sec. V D 1, we present an extension of our dictionary
to allow for global expansion of a compact space, but still
without backreaction. The next two subsections focus on
possible strategies enabling the construction of the cosmo-
logical models.

1. 1 + 3-Newton equations and dictionary for a globally
expanding compact space

In Secs. II C 3 and III C 5 we showed that no global
expansion is possible in a compact space in Newton’s
theory. A solution to allow for expansion was to decompose
the fluid velocity v into a homogeneous deformation vector
U and a peculiar velocity V, the latter having periodic
boundary conditions. As explained in Sec. II C 3, this is an
effective picture of the expansion in a compact space, as ΣN

(or equivalently the hypersurfaces ΣN
t for the 4D formu-

lation) is still R3.
Having ΣN compact with a global expansion is possible

with a modification of the Newton equations based on the
effective picture of Sec. II C 3 and the decomposition
introduced in Sec. IV C 1. We will focus on a modification
allowing for isotropic global expansion.
The modification is to replace the definition (84) for the

expansion tensor by

Θαβ ≔ Hhαβ þDðαvβÞ: ð109Þ

where H is a homogeneous Hubble expansion rate (i.e.,
DαH ¼ 0), while still using the 1þ 3-Newton equa-
tions (80)–(83). H an additional fundamental variable in
the theory. These equations, along with the definition (109),
are equivalent to the Hubble flow equations of Sec. II C 3
but allow ΣN

t to be compact. Note that the evolution
equation for H, being a spatial constant, is given by the
spatial average of the Raychaudhuri equation over the
whole manifold ΣN.17 This average equation then depends
on the boundary conditions at infinity if ΣN ¼ R3 or on the
topology if ΣN is compact.
We can then redefine the dictionary of Sec. IV D to

feature the global expansion. We then have a Newton-GR
dictionary for irrotational dust fluids and globally expand-
ing compact spaces:

ϵðdicÞ ¼ ρ; ð110Þ

ΘðdicÞ
ab ¼ Θab; ð111Þ

RðdicÞ
ab ¼−D̂agb−θΘabþΘacΘc

bþð4πGρþΛÞĥab; ð112Þ

The rhs are the Newtonian quantities with Θab ≔
Hhab þ D̂avb and D̂½avb� ¼ 0.

The modification (109) can be justified by the limit
introduced in Sec. IV C 2 and Appendix B.When neglecting
the space expansion term in Appendix B 2 a, a freedom
remained on χ from Eq. (B1) as a spatial constant freedom.
This constant is H. We took it to zero in Appendix B 2 a in
order to recover the 1þ 3-Newton equation as defined in
Sec. IVA.
As we included global expansion, the dictionary (109)–

(112) can be used to compare Newtonian and relativistic
cosmological simulations. It is however still a bit limited as
it requires irrotational fluids.
The modified 1þ 3-Newton equations of this section,

and the related dictionary still do not feature backreaction
in a compact space (the theorem of Buchert and Ehlers still
holds). Furthermore, the spatial sections being flat, we are
not able to study structure formation in spherical or
hyperbolic spaces, and the only oriented compact topology
available is T3, up to a finite covering. In the next two
subsections we will discuss possible GR based modifica-
tions of the 1þ 3-Newton equations which would allow
these studies.

2. Models for the study of the backreaction

The Newton theory for fluid dynamics is a scalar-vector
theory, i.e., the dynamical variables are a scalar and a
vector. The scalar is the rotational free part of v and the
vector is the divergence free part of v. The scalar part is
evolved with the Raychaudhuri equation (81) and the
vector part with the vorticity equation (82).
General relativity is a scalar-vector-tensor theory, i.e.,

there are dynamical variables, called tensorial variables,
which cannot be written as function of a scalar or a vector.
This is the case of the gravitational wave term in the
decomposition (88).
What we mean by defining a GR based model from

Newton’s equations is to keep the scalar-vector theory of
Newton but with additional nontensorial variables, terms
and/or equations motivated by GR. Keeping a scalar-vector
theory ensures a relative simplicity compared to tensor
theories like GR. Such a model would enable the study of
relativistic effects not present in Newton’s theory using the
simple tools of this theory.
In particular, we would like to focus on models imple-

menting the backreaction which is a missing phenomenon
of Newton’s theory (for compact spaces). A possible model
to study backreaction while allowing for nonlinear structure
formation would be to consider χ ≠ 0 in the decomposition
(88) along with Dαχ ≠ 0. As in Sec. V D 1, the expansion
tensor features an additional term. But we consider here
that χ is not a constant of space. The space expansion is
thus local and global. For this model to be well defined one
has to derive an evolution/constraint equation for the
fundamental field χ from GR. This equation will feature
v. Thus the Newtonian fluid dynamics will affect the space

17In the case ΣN ¼ R3, the spatial average requires boundary
conditions at infinity to be defined.
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expansion. In this sense this model could be useful to probe
the backreaction effect.

3. For nonflat topologies

In Appendix B, we assumed the spatial metric to be
conformally flat to justify our Newton-GR dictionary.
Relaxing this hypothesis and supposing hab to be con-
formal to a constant curvature metric might be a way to
define a Newtonian-like theory on a nonflat space.
Such a theory was heuristically defined in Ref. [19] to

probe the topological acceleration in different spherical
topologies. There were however different possibilities in
this heuristic definition which were not relativistically
motivated.
Adapting the limit leading to the 1þ 3-Newton formal-

ism from GR (by changing the flat conformal hypothesis)
could provide a nonflat Newtonian like theory coherent
with general relativity. Along with the additional term χ in
the expansion tensor, this theory if well defined, will be a
tool to probe the effect of topology on the backreaction.
As an example, we give a possible model, but we do not

try to justify it from GR. We consider, similarly to
Ref. [19], that the Newton equations (6)–(10) are also
valid if ΣN is a constant curvature space,18 i.e., its Ricci
tensor is Rab ¼ R

3
hab, where R is the scalar curvature. Then

if we calculate the backreaction QΣN , on the whole
manifold ΣN, defined by Buchert and Ehlers [3] as

QΣN ≔ hθ2 − Θcdθ
cd þ ωcdω

cdiΣN −
2

3
hθi2ΣN ; ð113Þ

it is not zero for a compact space (as for the flat case)
anymore. Instead, we have the relation

QΣN ¼ R
3
hvcvciΣN ð114Þ

where the brackets h·iΣN correspond to the spatial average
over the compact space ΣN. This relation implies a
dependence of the backreaction on the type of the global
topology (spherical, flat, or hyperbolic) via R

3
, as well as on

the Newtonian dynamics of the fluid via hvcvciΣN .
Thismodel is however only heuristically defined, and thus

we cannot be sure that the result (114) is physically relevant.
The 1þ 3-Newton formulation and the Newtonian limit we
introduced might help justify, or disprove, this calculation.

E. Comparison with the Newton-Cartan theory

In the present section we explain the differences between
our 4D formulation of Newton’s equations and the Newton-
Cartan theory.

The main difference is that we were able to define a
nondegenerate metric on the spacetime manifold MN of
our formulation, implying this manifold to be (pseudo)-
Riemannian, whereas this is not case in NC.
In addition to this point, the 1þ 3-Newton formulation

does not feature an absolute time or foliation. We are free to
change the foliation in which we are writing the equations.
This leads to the 3þ 1-Newton equations (see Sec. IV B).
At most we can say that the formulation implies, like in GR,
a preferred foliation: the one defined with respect to the
fluid 4-velocity. The situation is different in NC where an
absolute time is defined, linked to an absolute foliation.
Finally the 1þ 3-Newton system of equations (80)–(84)

is equivalent to the classical Newton system (6)–(10). The
ensemble of solutions is then the same for both formula-
tions. This is not the case in NC, where the theory is slightly
more general than the classical formulation of Newton’s
theory (see Ref. [20]).

VI. CONCLUSION

The aim of this paper was to introduce a new formulation
of Newton’s equations on a 4-dimensional Lorentzian
manifold.
To get to this formulation, we started from the classical

Newton equations (2)–(5) written in a Galilean frame on a
3-dimensional manifold ΣN. We generalized these equa-
tions by writing them for any time-parametrized coordinate
system [Eqs. (13)–(16)]. We showed that the freedom on
the choice of this coordinate system corresponds to a vector
U, defining what we called a class of coordinates XU. This
vector in general is not uniform, implying that its gradient
is not zero. The symmetric part of the latter corresponds to
the time variation of components of the metric [Eq. (25)],
the antisymmetric part, if chosen to be a constant of space,
corresponds to a global rotation of the coordinates XU with
respect to a Galilean frame.
The freedom on U and the role it plays in the Newton

equations (13)–(16) makes it very similar to the shift vector
in the 3þ 1-formalism of general relativity. This allowed us
to write the Newton equations as living in a 4-dimensional
manifoldMN. This was done using a push-forward onMN

of the classical Newton equations (2)–(5) (see Sec. III C 1).
The way the push-forward is done was inspired by the
3þ 1-Einstein equations. It was however not unique,
which therefore implies that some freedom remains on
the properties of MN. Regarding the signature freedom,
we chose this manifold to be Lorentzian and argued
that this was not in contradiction with Newton’s theory
(Sec. III C 3). The remaining freedom (present as a lapse
and a shift freedom) was chosen so that the foliation in
which the equations are written corresponds to the rest
frames of the Newtonian 4-velocity Nu we defined in
Eq. (77). This led to the 1þ 3-Newton equations (80)–
(84). This set of equations is equivalent to the classical
Newton equations, i.e., both can be derived from the

18In Ref. [19], the heuristic assumption regarding the curvature
of ΣN is made on the system (2)–(5) which is not equivalent to
doing it from the system (6)–(10).
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other. This implies that the solutions described by the
1þ 3-Newton equations for the spatial fluid velocity v are
the same as the solutions of the classical Newton equations.
We then showed in Sec. IV B that these equations, in the

case of irrotational flows, can be recovered from general
relativity in a limit jvj ≪ c. This limit was performed with
respect to a nonaccelerating observer, the fluid itself. The
Newtonian gravitational field g then does not correspond to
the 4-acceleration of a relativistic observer. Instead, it is
defined as the acceleration, with respect to the fluid, of the
spatial velocity v [see Eq. (86)]. The limit also showed what
happens to the 3þ 1-Ricci equation of general relativity.
This equation, not needed for a vector theory like Newton,
is shown to be a relation for the second order rest frames
curvature in the limit we introduced.
A first consequence of this limit is that the classical

interpretation of the component g00 of the spacetime metric
as the gravitational potential still holds for coordinates
adapted to a nonaccelerating observer (Sec. VA). This is
however true only for stationary and irrotational fluids.
Another consequence of the limit is to define a dictionary

(for irrotational flows) between the Newtonian fluid var-
iables and general relativity (Sec. IV D). The spacetime
manifold, denoted MðdicÞ, given by this dictionary as
function of the Newtonian variables is solution of the
Einstein equations at leading order in jvj=c. In general
MðdicÞ ≠ MN, implying that MN is not solution of the
Einstein equations at leading order. The difference between
these two manifolds, MðdicÞ defined with the dictionary,
and MN defined with the 1þ 3-Newton equations, resides
in the curvature of the fluid rest frames. It is exactly zero for
MN, which is not the case forMðdicÞ where the curvature is
of second order in jvj=c.
The dictionary was then tested for spherically symmetric

vacuum solutions of Newton’s and Einstein’s theories of
gravitation. For Newton this corresponded to a radially
free-falling test fluid, and for general relativity to an
observer associated with the generalized Gullstrand-
Painlevé coordinates of the Schwarzschild spacetime. We
showed that the dictionary allows us to recover the
relativistic solution in the Newtonian limit. But in the
specific case of a parabolic free-falling Newtonian fluid,
the translation to general relativity is exact. This means that
the Schwarzschild spacetime manifold is an exact solution,
in terms of the manifold MN, of the 1þ 3-Newton
equations. This supports our formulation.
The 1þ 3 formulation of Newton’s equations might be

seen as a new approach to evaluate the link between
Newton’s theory and general relativity. What is essentially
new compared to other approaches (e.g., [9]) is that the
comparison is done in the rest frames of the fluid, thus a
nonaccelerating observer. Furthermore we were able to
construct a Lorentzian manifold on which the Newton
equations are defined, contrasting with the Galilei manifold
of the Newton-Cartan theory.

When developing this formulation we had in mind a
future use for the study of the backreaction problem in
cosmology and the effect of global topology. We think that
the formulation might enable us to identify what is missing
in Newton’s theory for this study (due to the Buchert and
Ehlers theorem [3], the backreaction is exactly zero for
compact spaces in this theory). The final objective is then to
use the 1þ 3-Newton equations and the scalar-vector-
tensor decomposition of the expansion tensor in general
relativity to define relatively simple models aimed at
probing the backreaction and the effect of global topology.
We give an example of what could be such a model in
Sec. V D 3.
Two things remain to be done before reaching this

objective. The first one is to further test the dictionary
for nonvacuum, nonstationary and nonisolated solutions.
This can be done by comparing spherically symmetric
solutions of Newton’s equations with the Lemaitre-Tolman-
Bondi class of solutions in general relativity. The second
one is to upgrade the dictionary for vortical flows. We
discussed this possibility in Sec. V B.
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APPENDIX A: LIE DERIVATIVE IN 3+ 1

We consider a foliation fΣtgt∈R in a manifold M. Let A
and T be respectively a spatial vector and a spatial tensor.
Then the Lie derivative of T along A is not necessarily
spatial. It is spatial if T has only contravariant indices. In
general we have the relation

LATα1…
β1… ¼ ðhα1μ1…Þðhν1β1…ÞLATμ1…

ν1…

− 2
X
i

nβiT
α1…

…ν
↑
i

…nμ∇ðμAνÞ: ðA1Þ

Under the formalism of the 3þ 1-Einstein equations,
given a class of adapted coordinates Xn

β , this means that
LβKαβ is not a spatial tensor in general. This implies that
β∂tKαβ are not the spacetime components of a spatial tensor
(contrary to what is stated in Sec. 5.3.1 of Ref. [13]).
However because the Lie derivative LNn ¼ β∂t − Lβ
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applied on a spatial tensor is spatial, β∂tKαβ − LβKαβ

remains spatial. The pull-back β∂tKαβ − LβKαβ →
β∂tKab − LβKab remains also true.
The normal part of the partial time derivative β∂tKγα is

nγβ∂tKγα ¼ 4Kα
μnν∇ðμβνÞ: ðA2Þ

APPENDIX B: DETAILS ON THE
APPROXIMATIONS FOR THE NEWTON-GR

DICTIONARY

We detail in this section arguments for the approxima-
tions made in Sec. IV C 1 regarding the decomposition of
the expansion tensor and the covariant spatial derivative.

1. Decomposition theorem?

Equation (88) is a decomposition only if each term in the
rhs of this equation can be uniquely defined from Θab.
Straumann [21] showed that the decomposition (88) for
rank-2 tensors is always possible in compact19 constant
curvature spaces (constant scalar curvature and zero trace-
less curvature). To our knowledge, no similar theorem
exists for any curvature, which implies that the decom-
position might be ill-defined in a general space. We
however expect it to be reasonably valid for generally
curved spaces in the context of cosmology. However the
case of vortical flows remains problematic as no hyper-
surface orthogonal to the fluid 4-velocity can be defined.

2. Approximation on the decomposition

The only approximation which did not rely on βv ≪ 1
regards Eq. (89) where we neglected the space expansion
and the gravitational wave term. We will see in this section
at which conditions it is consistent with a leading order
approximation in βv.

a. Neglecting the space expansion

Let us consider the momentum constraint (63) with the
decomposition (88). It becomes

Daχ ¼ vcRac; ðB1Þ

using D½avb� ¼ 0, and the traceless and divergence free
properties of the gravitational wave term.
We introduce the typical length scale Lχ of the space

expansion. The rhs of Eq. (B1) is of order β3v=L2
v;l. So

unless Lv;l=Lχ ≫ 1, which we assume is not the case for a
cosmological setup, χ=c is at least of order β2v=Lv;l. Then
neglecting the space expansion is coherent with a leading
order approximation in βv.

Remark.—Actually this only shows that the space
expansion term is a spatial constant at leading order.
To recover the 1þ 3-Newton equation we take this con-
stant to zero. However, letting it unspecified might be more
interesting as it allows for expansion in a compact space
(see Sec. V D 1).

b. Neglecting the gravitational wave term

Let us consider that Ξ ¼ 0 and χ ≠ 0, so that
Θ ¼ χhþ Dv. Then in the adapted coordinates Xu

−v

u∂tj−vhab ¼ 2χhab:

The solution to this differential equation can be written as

hab ¼ ψ2ĥab; ðB2Þ

where ĥab is called the background metric with
u∂tj−v ĥab ¼ 0 and χ ¼ u∂tj−v lnψ . Note that this solution,
while derived from a specific coordinate system, is however
covariantly defined.
We introduce the covariant derivative D̂ of ĥ. The

conformal relation (B2) implies (see chapter 7 of
Ref. [13] for details on this calculation20)

Rab ¼ R̂ab − D̂aD̂b lnψ − ĥabD̂cD̂
c lnψ

þ D̂a lnψD̂b lnψ − ĥabD̂c lnψD̂
c lnψ ; ðB3Þ

where R̂ is the Ricci tensor relative to the metric ĥ,
with u∂tj−vR̂ab ¼ 0.
In general there does not exist a scalar ψ and a time

independent spatial metric ĥab such that any Ricci tensor
Rab can be written as in Eq. (B3). This equations is then a
restriction for the form of Rab due to the initial assumption
Ξ ¼ 0. Consequently we expect the assumption Θab ≃
Davb made in Sec. IV C 1 to not be valid if, at leading
order in βv, the spatial Ricci tensor R is not of the form of
Eq. (B3). This can be seen as a test for the dictionary.

3. Flat covariant derivative approximation

We assume in this section that the spatial metric can be
written as in Eq. (B2), thus dropping the gravitational wave
term. The Ricci tensor have the form (B3). This form
suggests two typical curvature radius associated with Rab:
one for R̂ab and one for the spatial variation of lnψ . We
suppose the conformalmetric ĥab to be flat, so that R̂ ¼ 0 and
R has only one typical radius as assumed in Sec. IV C 1.21

The relation Rab ∼ 1=L2
R implies that D lnψ ∼ 1=LR.

19For noncompact spaces, fall-off conditions have to be used.

20In Ref. [13], the conformal relation is hab ¼ ψ4ĥab instead of
our hab ¼ ψ2ĥab.21Relaxing this hypothesis might lead to nonflat Newtonian-
like theories as discussed in Sec. V D 3.
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The covariant derivative D can be written as function of
ψ and the covariant derivative D̂ of ĥab (see chapter 7 of
Ref. [13] for details on this calculation 20):

Davb ¼ D̂avb þ habvcD̂c lnψ − 2vðaD̂bÞ lnψ : ðB4Þ

Using Eq. (91), the second and third terms of the rhs
of the decomposition (B4) are of the order β2v. So to
first and leading order in βv, we have Dv ¼ D̂v
which is what we assumed in the Newtonian limit of
Sec. IV C 2.
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Astron. Astrophys. 502, 27 (2009).

[20] J. Ehlers, Examples of Newtonian limits of relativistic
spacetimes, Classical Quantum Gravity 14, A119 (1997).

[21] N. Straumann, Proof of a decomposition theorem for
symmetric tensors on spaces with constant curvature,
Ann. Phys. (Amsterdam) 520, 609 (2008).

1þ 3 FORMULATION OF NEWTON’S EQUATIONS PHYS. REV. D 102, 124005 (2020)

124005-25

https://doi.org/10.1007/s10714-009-0760-7
https://doi.org/10.1007/s10714-009-0760-7
https://doi.org/10.1063/1.1705331
https://doi.org/10.1088/1475-7516/2016/03/012
https://doi.org/10.3847/1538-4357/833/2/247
https://doi.org/10.1103/PhysRevD.99.063522
https://doi.org/10.1103/PhysRevD.79.104029
https://doi.org/10.1103/PhysRevD.79.104029
https://doi.org/10.1103/PhysRevD.86.023520
https://doi.org/10.1103/PhysRevD.85.063512
https://doi.org/10.1103/PhysRevD.97.043509
https://doi.org/10.1007/BF00766139
https://doi.org/10.1007/s10714-019-2624-0
https://doi.org/10.1007/s10714-019-2624-0
https://arXiv.org/abs/1405.6319
https://doi.org/10.1088/0264-9381/15/3/018
https://doi.org/10.1088/0264-9381/29/24/245005
https://doi.org/10.1007/978-3-030-18061-4_9
https://doi.org/10.1007/978-3-030-18061-4_9
https://doi.org/10.1007/s10714-020-02670-6
https://doi.org/10.1051/0004-6361/200911881
https://doi.org/10.1088/0264-9381/14/1A/010

